[go: up one dir, main page]

CN115762782A - Blood glucose analysis method based on CGM dynamic graph and edge calculation device - Google Patents

Blood glucose analysis method based on CGM dynamic graph and edge calculation device Download PDF

Info

Publication number
CN115762782A
CN115762782A CN202211467859.4A CN202211467859A CN115762782A CN 115762782 A CN115762782 A CN 115762782A CN 202211467859 A CN202211467859 A CN 202211467859A CN 115762782 A CN115762782 A CN 115762782A
Authority
CN
China
Prior art keywords
cgm
map
blood sugar
dynamic
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211467859.4A
Other languages
Chinese (zh)
Other versions
CN115762782B (en
Inventor
符义琴
王佳
翟敏
秦玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jingjie Biotechnology Co ltd
Original Assignee
Nanjing Jingjie Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jingjie Biotechnology Co ltd filed Critical Nanjing Jingjie Biotechnology Co ltd
Priority to CN202211467859.4A priority Critical patent/CN115762782B/en
Publication of CN115762782A publication Critical patent/CN115762782A/en
Application granted granted Critical
Publication of CN115762782B publication Critical patent/CN115762782B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种基于CGM动态图谱的血糖分析方法及边缘计算装置,属于智能医疗器械技术领域。本发明包括:利用每日CGM图谱数据预测每日血糖波动风险概率;利用当日日间CGM动态图谱数据和上一日夜间CGM动态图谱数据预测当日夜间低血糖风险概率;对于长期CGM动态图谱数据,预测长期血糖波动风险概率,根据长期血糖波动风险概率和每日分析结果,给出血糖控制效果的风险等级。本发明包括一种边缘计算装置,利用了如上所述的一种基于CGM动态图谱的血糖分析方法。本发明能有效地预防夜间低血糖风险,在一定程度反应病人的血糖控制情况,及时进行风险提示。

Figure 202211467859

The invention provides a blood sugar analysis method and an edge computing device based on a CGM dynamic map, belonging to the technical field of intelligent medical devices. The present invention includes: using the daily CGM atlas data to predict the risk probability of daily blood sugar fluctuations; using the daytime CGM dynamic atlas data and the previous day's nighttime CGM dynamic atlas data to predict the current day's nighttime hypoglycemia risk probability; for the long-term CGM dynamic atlas data, Predict the risk probability of long-term blood sugar fluctuations, and give the risk level of blood sugar control effect according to the risk probability of long-term blood sugar fluctuations and daily analysis results. The present invention includes an edge computing device, which utilizes the above-mentioned blood sugar analysis method based on a CGM dynamic map. The invention can effectively prevent the risk of hypoglycemia at night, reflect the blood sugar control situation of the patient to a certain extent, and give risk prompt in time.

Figure 202211467859

Description

一种基于CGM动态图谱的血糖分析方法及边缘计算装置A blood sugar analysis method and edge computing device based on CGM dynamic map

技术领域technical field

本发明涉及智能医疗器械技术领域,尤其涉及一种基于CGM动态图谱的血糖分析方法及边缘计算装置。The invention relates to the technical field of intelligent medical devices, in particular to a blood glucose analysis method and an edge computing device based on a CGM dynamic map.

背景技术Background technique

近年来,由于生活水平、饮食结构及亚健康的生活方式等诸多因素的影响,糖尿病的患病率逐年提高。为有效的进行血糖控制,血糖监测相关技术也逐渐向智能化、信息化的方向发展,因此动态血糖监测(CGM)系统逐渐受到相关领域人员的广泛关注,其能够发现餐后的高血糖、夜间低血糖、黎明现象及Somogyi现象,在糖尿病的临床医疗中有着重要意义。CGM系统能够生成动态葡萄糖图谱(AGP),可以输出每日固定采样间隔的血糖值、血糖图和血糖图小结(血糖波动、平均值、正常范围时间(TIR)、高于正常范围时间(TAR)、低于正常范围时间(TBR)和血糖曲线下面积等);通过图谱提供的指标信息可以更好的调整糖尿病的治疗方案,评估血糖的控制效果。In recent years, due to the impact of many factors such as living standards, diet structure and sub-healthy lifestyles, the prevalence of diabetes has increased year by year. In order to effectively control blood sugar, blood sugar monitoring related technologies are gradually developing towards intelligence and informatization. Therefore, the continuous blood glucose monitoring (CGM) system has gradually received extensive attention from people in related fields. It can detect hyperglycemia after meals, nighttime Hypoglycemia, dawn phenomenon and Somogyi phenomenon are of great significance in the clinical treatment of diabetes. The CGM system can generate an ambulatory glucose profile (AGP), which can output blood glucose values, blood glucose graphs, and blood glucose graph summaries at fixed daily sampling intervals (blood glucose fluctuations, average values, time in normal range (TIR), time above normal range (TAR) , time below normal range (TBR) and area under the blood glucose curve, etc.); the indicator information provided by the map can better adjust the treatment plan for diabetes and evaluate the control effect of blood glucose.

但是现有CGM系统的血糖动态图谱的利用率较低且技术门槛高,病人很难个人解读图谱报告,出院后仅能从CGM系统对应的APP报警提示进行血糖控制;加之某些病人的依从性较差,CGM的报警频繁,使得用户警报疲劳化,病人会自定义血糖报警阈值设置来忽略报警信息,导致CGM系统的应用效果降低。通常,日间用户会注重自己的血糖变化,在夜间可能会忽视隐匿的低血糖风险,这给用户的生命健康带来威胁,如果能够根据当日日间和历史夜间血糖来预测当日夜间低血糖风险概率,给用户作为参考,将更有效地预防夜间低血糖风险。此外,随时间变化的血糖波动性存在差异,能够在一定程度反应病人的血糖控制情况,当前的动态血糖图谱上未能提供这些差异。另外,在现有条件下,血糖控制效果评价以及需入院治疗的风险提示也不够及时。However, the utilization rate of the dynamic blood glucose map of the existing CGM system is low and the technical threshold is high. It is difficult for patients to personally interpret the report of the map. Poor, CGM alarms are frequent, which makes the user alarm fatigued, and patients will customize the blood sugar alarm threshold settings to ignore the alarm information, resulting in a decrease in the application effect of the CGM system. Usually, users pay attention to their blood sugar changes during the day, and may ignore the hidden risk of hypoglycemia at night, which poses a threat to the life and health of users. If the risk of hypoglycemia at night can be predicted based on the daytime and historical nighttime blood sugar The probability, given to the user as a reference, will more effectively prevent the risk of hypoglycemia at night. In addition, there are differences in blood glucose fluctuations over time, which can reflect the patient's blood glucose control to a certain extent, and these differences cannot be provided on the current dynamic blood glucose map. In addition, under the current conditions, the evaluation of the effect of blood sugar control and the risk warning of the need for hospitalization are not timely enough.

中国发明专利CN111110249B公开了一种血糖波动评价方法和评价装置,是一种针对CGM数据基于梯度变异的血糖波动计算方法,所提出的梯度变异参数虽然可以同时表征血糖波动幅度与血糖波动频率,但是CGM数据中的部分信息仍然有可能丢失;而本发明的图谱分析信息不仅包括血糖波动幅度与血糖波动频率,且使得CGM数据中的信息均可以得到动态的分析。Chinese invention patent CN111110249B discloses a blood sugar fluctuation evaluation method and evaluation device, which is a blood sugar fluctuation calculation method based on gradient variation for CGM data. Although the proposed gradient variation parameter can simultaneously characterize the blood sugar fluctuation amplitude and blood sugar fluctuation frequency, but Part of the information in the CGM data may still be lost; however, the map analysis information of the present invention not only includes the blood sugar fluctuation range and blood sugar fluctuation frequency, but also enables dynamic analysis of the information in the CGM data.

中国发明专利CN113948207A公开了一种用于低血糖预警的血糖数据处理方法,采用预先训练的支持向量机模型,得到与实时血糖数据相应的血糖预测值,虽然实时血糖数据与时间之间存在相关性,使得预警模型的输出结果比只依靠单一变量更准确,但是也仅仅是基于实时血糖数据和时间来进行预警,同时也没有针对夜晚和白天进行区分报警;而本发明不仅基于每一项CGM图谱数据进行预警,且对夜晚的低血糖进行了单独的预警。Chinese invention patent CN113948207A discloses a blood sugar data processing method for hypoglycemia early warning, using a pre-trained support vector machine model to obtain a blood sugar prediction value corresponding to real-time blood sugar data, although there is a correlation between real-time blood sugar data and time , so that the output of the early warning model is more accurate than relying only on a single variable, but it is only based on real-time blood sugar data and time for early warning, and there is no distinction between night and day alarms; and the present invention is not only based on each CGM map Data for early warning, and a separate early warning for hypoglycemia at night.

发明内容Contents of the invention

为解决现有技术中存在的技术问题,本发明提供了一种基于CGM动态图谱的血糖分析方法:利用每日CGM图谱数据预测每日血糖波动风险概率;利用当日日间CGM动态图谱数据和上一日夜间CGM动态图谱数据预测当日夜间低血糖风险概率;对于第一设定时间周期的长期CGM动态图谱数据,预测长期血糖波动风险概率,根据长期血糖波动风险概率和第二设定时间周期的每日分析结果,给出所述第二设定时间周期的血糖控制效果的风险等级。本发明提供了一种边缘计算装置,利用了如上所述的一种基于CGM动态图谱的血糖分析方法。本发明能更有效地预防夜间低血糖风险,在一定程度反应病人的血糖控制情况,且可以及时进行风险提示。In order to solve the technical problems existing in the prior art, the present invention provides a blood sugar analysis method based on CGM dynamic atlas: using daily CGM atlas data to predict the risk probability of daily blood sugar fluctuation; One day and night CGM dynamic map data predicts the risk probability of hypoglycemia at night; for the long-term CGM dynamic map data of the first set time period, predicts the risk probability of long-term blood sugar fluctuations, according to the risk probability of long-term blood sugar fluctuations and the second set time period The results are analyzed daily to give a risk level for glycemic control effectiveness for the second set time period. The present invention provides an edge computing device, which utilizes the above-mentioned blood sugar analysis method based on a CGM dynamic map. The invention can more effectively prevent the risk of hypoglycemia at night, reflect the patient's blood sugar control situation to a certain extent, and can prompt the risk in time.

本发明提供了一种基于CGM动态图谱的血糖分析方法,包括以下步骤:The invention provides a blood glucose analysis method based on CGM dynamic atlas, comprising the following steps:

将用户信息和CGM动态图谱数据经过数据预处理转化成结构化数据;Convert user information and CGM dynamic map data into structured data through data preprocessing;

获取图谱信息;Obtain map information;

利用每日CGM图谱数据,并结合图谱信息预测每日血糖波动风险概率;Use the daily CGM map data and combine the map information to predict the risk probability of daily blood sugar fluctuations;

利用当日日间CGM动态图谱数据和上一日夜间CGM动态图谱数据,并结合图谱信息预测当日夜间低血糖风险概率;Use the daytime CGM dynamic map data and the previous day's nighttime CGM dynamic map data, and combine the map information to predict the risk probability of hypoglycemia at night;

将每日CGM动态图谱数据和每日分析结果转化成结构化数据;Convert daily CGM dynamic map data and daily analysis results into structured data;

根据第一设定时间周期的长期CGM动态图谱数据,并结合图谱信息预测长期血糖波动风险概率;According to the long-term CGM dynamic map data of the first set time period, combined with the map information to predict the risk probability of long-term blood sugar fluctuations;

根据长期血糖波动风险概率和第二设定时间周期的每日分析结果,给出所述第二设定时间周期的血糖控制效果的风险等级。According to the long-term blood sugar fluctuation risk probability and the daily analysis results of the second set time period, the risk level of blood sugar control effect in the second set time period is given.

优选地,每日分析结果包括每日血糖波动风险概率和当夜低血糖波动风险概率。Preferably, the daily analysis results include the risk probability of daily blood sugar fluctuation and the risk probability of nightly hypoglycemia fluctuation.

优选地,每日CGM动态图谱数据的采样时间为24h,采样间隔为5min。Preferably, the sampling time of the daily CGM dynamic atlas data is 24 hours, and the sampling interval is 5 minutes.

优选地,第一设定时间周期不小于14天,第二设定时间周期不小于7天,当日日间为当日6点至当日24点,上一日夜间为当日0点至当日6点,当日日间倒数前三个小时区段为当日21点至当日24点。Preferably, the first set time period is not less than 14 days, the second set time period is not less than 7 days, during the day from 6:00 to 24:00 on the same day, and from 0:00 to 6:00 on the same day at night on the previous day, The period of three hours before the countdown of the day is from 21:00 to 24:00 of the day.

优选地,图谱信息包括图谱分析信息和图谱类别;图谱分析信息包括:时段图谱葡萄糖最大值Max、时段图谱葡萄糖最小值Min、时段图谱斜率Slope、时段图谱葡萄糖变异系数GV、时段图谱标准偏差SD、时段图谱方差Var、时段图谱葡萄糖平均值Mean、时段图谱平均血糖波动幅度MAGE和时段图谱平均血糖绝对差MODD;所述图谱类别包括日间图谱、夜间图谱、全时段图谱和可选时段图谱。Preferably, the map information includes map analysis information and map categories; the map analysis information includes: time period map glucose maximum value Max, time period map glucose minimum value Min, time period map slope Slope, time period map glucose variation coefficient GV, time period map standard deviation SD, Period map variance Var, time period map glucose mean Mean, time period map average blood sugar fluctuation range MAGE, and time period map average blood glucose absolute difference MODD; the map categories include daytime map, nighttime map, full-time map and optional time-period map.

优选地,对于全时段图谱,图谱分析信息包括所有葡萄糖浓度区段在一天中出现的时间对应的时间百分比。Preferably, for the full-time graph, the graph analysis information includes the time percentages corresponding to the times in which all glucose concentration segments appear in a day.

优选地,葡萄糖浓度区段按照每分升中包含的葡萄糖浓度毫克数量进行区段的划分。Preferably, the glucose concentration segments are divided into segments according to the number of mg of glucose concentration contained in each deciliter.

优选地,预测每日血糖波动风险概率由每日血糖波动性评价模型完成;所述每日血糖波动性评价模型根据输入数据x,获得每日血糖波动风险概率,x如下:Preferably, predicting the risk probability of daily blood sugar fluctuation is completed by a daily blood sugar fluctuation evaluation model; the daily blood sugar fluctuation evaluation model obtains the daily risk probability of blood sugar fluctuation according to the input data x, x is as follows:

x=[SD,Mean,GV,MAGE,MODD]。x = [SD, Mean, GV, MAGE, MODD].

优选地,每日血糖波动性评价模型如下式所示:Preferably, the daily blood glucose volatility evaluation model is shown in the following formula:

Figure BDA0003957088580000031
Figure BDA0003957088580000031

其中,p表示每日血糖波动风险概率,y表示人工标定的风险结果,y的数值1和0分别表示血糖波动为高风险和血糖波动为低风险,F(x)包括随机森林分类模型和Logistic回归分类模型,∈表示误差项。Among them, p represents the risk probability of daily blood sugar fluctuation, y represents the risk result of manual calibration, and the values of 1 and 0 in y represent high risk and low risk of blood sugar fluctuation respectively. F(x) includes random forest classification model and Logistic For regression classification models, ∈ represents the error term.

优选地,预测当日夜间低血糖风险概率由当日夜间低血糖风险预警模型完成;当日夜间低血糖风险预警模型根据输入数据X,获得当日夜间低血糖风险概率,X如下:Preferably, the prediction of the nighttime hypoglycemia risk probability is completed by the daytime nighttime hypoglycemia risk warning model; the daytime nighttime hypoglycemia risk warning model obtains the daytime nighttime hypoglycemia risk probability according to the input data X, and X is as follows:

X=[Gpremin夜间,Gmin日间,G_max_re,Gmin-3h,Gmean-3h,Gslope-3h];X=[Gpremin at night , Gmin during the day , G_max_re, Gmin -3h , Gmean -3h , Gslope -3h ];

其中,G_max_re表示当日日间动态图谱葡萄糖值的最大值G_max日间与上一日日间动态图谱葡萄糖值的最大值G_Pre_max日间的比值,Gpremin夜间表示上一日夜间动态图谱葡萄糖值的最小值,Gmin日间表示当日日间动态图谱葡萄糖值的最小值,以及Gmin-3h、Gmean-3h和Gslope-3h分别表示当日日间动态图谱倒数前三个小时区段葡萄糖值的最小值、平均值和斜率。Among them, G_max_re represents the ratio of the maximum value G_max of the daytime dynamic map glucose value of the day to the maximum value G_Pre_max of the daytime dynamic map glucose value of the previous day, and Gpremin night represents the minimum value of the nighttime dynamic map glucose value of the previous day , Gmin during the day indicates the minimum value of the glucose value of the daytime dynamic map of the day, and Gmin -3h , Gmean -3h and Gslope -3h respectively represent the minimum value and average value of the glucose value of the three hours before the reciprocal of the daytime dynamic map of the day and slope.

优选地,当日夜间低血糖风险预警模型如下:Preferably, the day-night hypoglycemia risk warning model is as follows:

Figure BDA0003957088580000032
Figure BDA0003957088580000032

其中,p表示当日夜间低血糖概率,S表示人工标定数据的当日夜间低血糖结果,S的数值1和0分别表示当日夜间为低血糖和当日夜间无低血糖,F(X)包括随机森林分类模型、Logistic回归分类模型、XGboost分类模型和LightGBM分类模型,∈表示误差项。Among them, plow indicates the probability of hypoglycemia at night, S indicates the nighttime hypoglycemia result of manual calibration data, and the values of S 1 and 0 respectively indicate hypoglycemia at night and no hypoglycemia at night, F(X) includes random forest Classification model, Logistic regression classification model, XGboost classification model and LightGBM classification model, ∈ represents the error term.

优选地,预测长期血糖波动风险概率由长期血糖波动性评价模型完成;所述长期血糖波动性评价模型根据X,获得长期血糖波动风险概率,X如下:Preferably, predicting the risk probability of long-term blood sugar fluctuations is completed by a long-term blood sugar fluctuation evaluation model; the long-term blood sugar fluctuation evaluation model obtains the risk probability of long-term blood sugar fluctuations according to the X length , and the X length is as follows:

X=[Clu_indexmean,SDmean,MEANmean,GVmean,MAGEmean,MODDmean];X length = [Clu_index mean , SD mean , MEAN mean , GV mean , MAGE mean , MODD mean ];

其中,Clu_indexmean、SDmean、MEANmean、GVmean、MAGEmean和MODDmean分别为设定周期内每日CGM动态图谱数据的聚类类别指数Clu_index、SD、MEAN、GV、MAGE和MODD的平均值。Among them, Clu_index mean , SD mean , MEAN mean , GV mean , MAGE mean and MODD mean are respectively the average values of the clustering index Clu_index, SD, MEAN, GV, MAGE and MODD of the daily CGM dynamic map data within the set period .

优选地,每日CGM动态图谱数据的聚类类别指数Clu_index利用层次聚类模型获得。Preferably, the cluster index Clu_index of the daily CGM dynamic atlas data is obtained using a hierarchical clustering model.

优选地,长期血糖波动性评价模型如下式所示:Preferably, the long-term blood glucose volatility evaluation model is shown in the following formula:

Figure BDA0003957088580000041
Figure BDA0003957088580000041

其中,p为长期血糖波动风险概率,F(X)包括随机森林分类模型和Logistic回归分类模型,∈表示误差项。Among them, p length is the risk probability of long-term blood glucose fluctuation, F(X length ) includes random forest classification model and Logistic regression classification model, and ∈ represents the error term.

优选地,第二设定时间周期的血糖控制效果的风险等级利用决策树模型获得。Preferably, the risk level of blood glucose control effect in the second set time period is obtained by using a decision tree model.

本发明提供了一种基于CGM动态图谱分析的边缘计算装置,利用如前任一项所述的基于CGM动态图谱的血糖分析方法进行血糖分析,边缘计算装置包括MCU控制器和数据通信模块,MCU控制器与数据通信模块相连;数据通信模块对边缘计算装置与终端和云端数据处理中心的数据进行传输;MCU控制器对从终端接收的CGM动态图谱数据进行数据预处理后转化为结构化数据并进行分析;其中,MCU控制器包括血糖波动性评价单元、夜间低血糖风险预警单元和血糖控制周期性评价单元;The present invention provides an edge computing device based on CGM dynamic map analysis, which uses the blood sugar analysis method based on CGM dynamic map as described in any one of the preceding items to perform blood sugar analysis. The edge computing device includes an MCU controller and a data communication module, and the MCU controls The device is connected to the data communication module; the data communication module transmits the data between the edge computing device and the terminal and the cloud data processing center; the MCU controller performs data preprocessing on the CGM dynamic map data received from the terminal and converts it into structured data and performs Analysis; wherein, the MCU controller includes a blood sugar fluctuation evaluation unit, a nighttime hypoglycemia risk warning unit and a blood sugar control periodic evaluation unit;

血糖波动性评价单元预测每日血糖波动风险概率和长期血糖波动风险概率;The blood sugar fluctuation evaluation unit predicts the risk probability of daily blood sugar fluctuation and the risk probability of long-term blood sugar fluctuation;

夜间低血糖风险预警单元预测当日夜间低血糖风险概率;The nocturnal hypoglycemia risk warning unit predicts the probability of hypoglycemia risk at night;

血糖控制周期性评价单元,评价血糖控制效果的风险等级。The blood sugar control periodic evaluation unit evaluates the risk level of blood sugar control effect.

优选地,云端数据处理中心保存有图谱信息。Preferably, the cloud data processing center stores map information.

优选地,当日夜间低血糖风险概率由数据通信模块传送至终端;血糖控制效果的风险等级由数据通信模块传送至终端和云端数据处理中心,由云端数据处理中心判断终端的用户是否需入院治疗。Preferably, the risk probability of hypoglycemia during the day and night is transmitted to the terminal by the data communication module; the risk level of blood sugar control effect is transmitted to the terminal and the cloud data processing center by the data communication module, and the cloud data processing center judges whether the user of the terminal needs to be hospitalized.

优选地,MCU控制器还包括切片优先级评估单元,根据血糖控制效果的风险等级,将用户分类至不同网速的5G网络切片,其中,血糖控制效果越差的用户分配给对应5G网络切片中网速优先等级越高的网络切片。Preferably, the MCU controller also includes a slice priority evaluation unit, which classifies users into 5G network slices with different network speeds according to the risk level of the blood sugar control effect, wherein users with worse blood sugar control effects are allocated to the corresponding 5G network slices A network slice with a higher network speed priority.

优选地,MCU控制器还包括CGM图谱数据结构化处理单元,将CGM动态图谱数据转化成结构化数据。Preferably, the MCU controller further includes a CGM atlas data structured processing unit for converting the CGM dynamic atlas data into structured data.

优选地,MCU控制器还包括可扩展单元,进行新增单元的接入。Preferably, the MCU controller also includes an expandable unit for adding new units.

优选地,数据通信模块包括5G模组和通信接口单元,5G模组对边缘计算装置与云端数据处理中心和支持5G通信的终端之间的数据进行传输,通信接口单元对边缘计算装置与云端数据处理中心和支持非5G通信的终端之间的数据进行传输。Preferably, the data communication module includes a 5G module and a communication interface unit, the 5G module transmits data between the edge computing device and the cloud data processing center and a terminal supporting 5G communication, and the communication interface unit transmits data between the edge computing device and the cloud data processing center. Data transmission between the processing center and terminals supporting non-5G communication.

优选地,边缘计算装置还包括与MCU控制器连接的存储器、电源、指示灯、蜂鸣器和触摸屏;存储器进行本地数据的存储;电源用于对边缘计算装置进行供电;指示灯用于进行设备运行状态的显示;蜂鸣器用于设备异常报警提醒;触摸屏用于显示和输入边缘计算装置的参数设置,查看边缘计算装置的电源状态、空间容量、内存消耗和进程状态信息。Preferably, the edge computing device also includes a memory connected to the MCU controller, a power supply, an indicator light, a buzzer and a touch screen; the memory stores local data; the power supply is used to supply power to the edge computing device; The display of the running status; the buzzer is used for equipment abnormal alarm reminder; the touch screen is used to display and input the parameter settings of the edge computing device, and check the power status, space capacity, memory consumption and process status information of the edge computing device.

与现有技术相对比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:

1.本发明的一种基于CGM动态图谱的血糖分析方法及边缘计算装置,利用当日日间CGM动态图谱数据和上一日夜间CGM动态图谱数据预测当日夜间低血糖风险概率,将当日夜间低血糖风险概率发送至终端,避免因为用户在夜间可能会忽视隐匿的低血糖风险,给用户的生命健康带来威胁的风险,通过预测当日夜间低血糖风险概率给用户作为参考,更有效地预防夜间低血糖风险。1. A blood glucose analysis method and edge computing device based on CGM dynamic atlas of the present invention uses the daytime CGM dynamic atlas data and the previous day's nighttime CGM dynamic atlas data to predict the risk probability of hypoglycemia at night, and calculates the nighttime hypoglycemia risk probability of the current day. The risk probability is sent to the terminal to avoid the risk of threatening the user's life and health because the user may ignore the hidden hypoglycemia risk at night. By predicting the risk probability of hypoglycemia at night for the user as a reference, it is more effective to prevent nighttime hypoglycemia. Blood sugar risk.

2.本发明的一种基于CGM动态图谱的血糖分析方法及边缘计算装置,利用每日CGM图谱数据预测每日血糖波动风险概率,能够预测每日血糖波动风险概率,而随时间变化的血糖波动性存在的差异能够在一定程度反应病人的血糖控制情况。2. A blood glucose analysis method and edge computing device based on a CGM dynamic atlas of the present invention uses daily CGM atlas data to predict the risk probability of daily blood glucose fluctuations, and can predict the risk probability of daily blood glucose fluctuations, while blood glucose fluctuations that change over time Differences in gender can reflect the patient's blood sugar control to a certain extent.

3.本发明的一种基于CGM动态图谱的血糖分析方法及边缘计算装置,对于大于设定时间周期的长期CGM动态图谱数据,预测长期血糖波动风险概率,给出血糖控制效果的风险等级,使得用户能够获得血糖控制效果评价,并及时进行需入院治疗的风险提示。3. A blood glucose analysis method and edge computing device based on CGM dynamic atlas of the present invention, for long-term CGM dynamic atlas data longer than a set time period, predicts the risk probability of long-term blood sugar fluctuations, and gives the risk level of blood sugar control effect, so that Users can obtain the evaluation of the effect of blood sugar control, and timely prompt the risk of hospitalization.

4.本发明的一种基于CGM动态图谱的血糖分析方法及边缘计算装置,支持5G网络通信,为CGM动态图谱信息采集提供更有利的传输条件。4. A blood glucose analysis method and edge computing device based on CGM dynamic atlas of the present invention supports 5G network communication and provides more favorable transmission conditions for the collection of CGM dynamic atlas information.

5.本发明的一种基于CGM动态图谱的血糖分析方法及边缘计算装置,在边缘计算装置对数据进行计算,然后再传输至云端数据处理中心,降低云端压力,加快数据处理速度和风险提示的效率;提高了CGM动态图谱数据的利用率,有效挖掘潜在的图谱数据价值,有效识别血糖风险、提高用户体验进而有效地进行血糖控制,提高实际的应用效果。5. A blood glucose analysis method and edge computing device based on CGM dynamic map of the present invention, the data is calculated on the edge computing device, and then transmitted to the cloud data processing center, reducing cloud pressure, speeding up data processing speed and risk warning Efficiency: It improves the utilization rate of CGM dynamic map data, effectively taps the value of potential map data, effectively identifies blood sugar risks, improves user experience, and then effectively controls blood sugar, improving the actual application effect.

附图说明Description of drawings

图1为本发明的一个实施例的一种基于CGM动态图谱的血糖分析方法的流程图;Fig. 1 is a flow chart of a blood glucose analysis method based on a CGM dynamic atlas according to an embodiment of the present invention;

图2为本发明的一个实施例的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的血糖分析系统的流程图;FIG. 2 is a flow chart of a blood sugar analysis system integrating a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device according to an embodiment of the present invention;

图3为本发明的一个实施例的一种基于CGM动态图谱分析的边缘计算装置与支持5G通信的终端、连续葡萄糖传感器模块和云端数据处理中心的连接结构示意图;3 is a schematic diagram of the connection structure between an edge computing device based on CGM dynamic map analysis and a terminal supporting 5G communication, a continuous glucose sensor module, and a cloud data processing center according to an embodiment of the present invention;

图4为本发明的一个实施例的一种基于CGM动态图谱分析的边缘计算装置结构示意图;FIG. 4 is a schematic structural diagram of an edge computing device based on CGM dynamic map analysis according to an embodiment of the present invention;

图5为本发明的一个实施例的一种基于CGM动态图谱分析的边缘计算装置的MCU控制器中的各个模块结构示意图。FIG. 5 is a schematic structural diagram of various modules in an MCU controller of an edge computing device based on CGM dynamic graph analysis according to an embodiment of the present invention.

图中,1、MCU控制器;2、存储器;3、数据通信模块;31、通信接口单元;32、5G模组;4、电源;5、指示灯;6、蜂鸣器;7、触摸屏;11、CGM图谱数据结构化处理单元;12、血糖波动性评价单元;13、夜间低血糖风险预警单元;14、血糖控制周期性评价单元;15、切片优先级评估单元;16、可扩展单元。In the figure, 1. MCU controller; 2. memory; 3. data communication module; 31. communication interface unit; 32. 5G module; 4. power supply; 5. indicator light; 6. buzzer; 7. touch screen; 11. CGM atlas data structured processing unit; 12. Blood glucose volatility evaluation unit; 13. Night hypoglycemia risk early warning unit; 14. Blood glucose control periodic evaluation unit; 15. Slice priority evaluation unit; 16. Expandable unit.

具体实施方式Detailed ways

为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments It is some embodiments of the present invention, but not all of them. Based on the implementation manners in the present invention, all other implementation manners obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

实施例1Example 1

结合图1所示,根据本发明的一个具体实施方案,下面对本发明的一种基于CGM动态图谱的血糖分析方法进行详细说明。Referring to FIG. 1 , according to a specific embodiment of the present invention, a blood glucose analysis method based on a CGM dynamic map of the present invention will be described in detail below.

本发明提供了一种基于CGM动态图谱的血糖分析方法,包括以下步骤:The invention provides a blood glucose analysis method based on CGM dynamic atlas, comprising the following steps:

将用户信息和CGM动态图谱数据经过数据预处理转化成结构化数据;Convert user information and CGM dynamic map data into structured data through data preprocessing;

获取图谱信息,图谱信息包括图谱分析信息和图谱类别;所述图谱分析信息包括:时段图谱葡萄糖最大值Max、时段图谱葡萄糖最小值Min、时段图谱斜率Slope、时段图谱葡萄糖变异系数GV、时段图谱标准偏差SD、时段图谱方差Var、时段图谱葡萄糖平均值Mean、时段图谱平均血糖波动幅度MAGE和时段图谱平均血糖绝对差MODD;所述图谱类别包括日间图谱、夜间图谱、全时段图谱和可选时段图谱;Obtain map information, map information includes map analysis information and map category; said map analysis information includes: time period map glucose maximum value, time period map glucose minimum value Min, time period map slope Slope, time period map glucose variation coefficient GV, time period map standard Deviation SD, time period map variance Var, time period map glucose mean Mean, time period map average blood sugar fluctuation range MAGE and time period map average blood glucose absolute difference MODD; the map categories include daytime map, nighttime map, full time map and optional time period Atlas;

利用每日CGM图谱数据,并结合图谱信息预测每日血糖波动风险概率;Use the daily CGM map data and combine the map information to predict the risk probability of daily blood sugar fluctuations;

利用当日日间CGM动态图谱数据和上一日夜间CGM动态图谱数据,并结合图谱信息预测当日夜间低血糖风险概率;Use the daytime CGM dynamic map data and the previous day's nighttime CGM dynamic map data, and combine the map information to predict the risk probability of hypoglycemia at night;

将每日CGM动态图谱数据和每日分析结果转化成结构化数据;Convert daily CGM dynamic map data and daily analysis results into structured data;

根据第一设定时间周期的长期CGM动态图谱数据,并结合图谱信息预测长期血糖波动风险概率;According to the long-term CGM dynamic map data of the first set time period, combined with the map information to predict the risk probability of long-term blood sugar fluctuations;

根据长期血糖波动风险概率和第二设定时间周期的每日分析结果,给出所述第二设定时间周期的血糖控制效果的风险等级。According to the long-term blood sugar fluctuation risk probability and the daily analysis results of the second set time period, the risk level of blood sugar control effect in the second set time period is given.

实施例2Example 2

结合图2-3所示,根据本发明的一个具体实施方案,下面对本发明的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统进行详细说明。2-3, according to a specific embodiment of the present invention, a system of the present invention integrating a blood glucose analysis method based on CGM dynamic map analysis and an edge computing device will be described in detail below.

本发明提供了一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统,在进行血糖分析之前,需进行以下步骤:The present invention provides a system that integrates a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device. Before blood sugar analysis, the following steps are required:

S1:用户打开终端上的血糖监测APP进行注册,输入基本信息和设置是否允许接入边缘计算装置;S1: The user opens the blood glucose monitoring APP on the terminal to register, enters basic information and sets whether to allow access to the edge computing device;

其中,基本信息包括用户信息和血糖传感器信息;基本信息包括姓名、年龄、身高、体重所患糖尿病类型和近期空腹血糖值;传感器信息包括传感器出厂日期、id号、日间血糖图谱采集时间和夜间血糖图谱采集时间,血糖传感器信息可通过APP扫描二维码获取。Among them, basic information includes user information and blood glucose sensor information; basic information includes name, age, height, weight, diabetes type, and recent fasting blood glucose value; sensor information includes sensor factory date, id number, daytime blood glucose map collection time and nighttime Blood glucose map collection time, blood glucose sensor information can be obtained by scanning the QR code through the APP.

S2:若允许接入,则将用户信息、血糖传感器信息以及每日CGM动态图谱数据传输至边缘计算装置;S2: If access is allowed, transmit user information, blood glucose sensor information and daily CGM dynamic map data to the edge computing device;

其中,每日图谱数据包含24h,采样间隔为5min,共288个数据点的传感器输出血糖值;Among them, the daily map data includes 24 hours, the sampling interval is 5 minutes, and the sensor output blood glucose value of a total of 288 data points;

边缘计算装置分两次请求传输CGM动态图谱数据,第一次为日间血糖采集,第二次为夜间血糖采集。The edge computing device requests the transmission of CGM dynamic map data twice, the first time is for daytime blood sugar collection, and the second time is nighttime blood sugar collection.

日间血糖的默认采集时间范围为每日的6:00-24:00,用户可根据自己的日常作息习惯设置日间血糖采集时间范围,如5:30-23:30;The default collection time range of daytime blood glucose is 6:00-24:00 every day, users can set the time range of daytime blood glucose collection according to their daily work and rest habits, such as 5:30-23:30;

夜间血糖的默认采集时间为当日24:00到第二天的6:00,夜间血糖的采集时间根据设置的日间血糖采集时间范围来计算,夜间血糖采集完成后,允许自定义的24h的CGM图谱数据传输完成。The default collection time of nighttime blood glucose is from 24:00 of the current day to 6:00 of the next day. The collection time of nighttime blood glucose is calculated according to the set daytime blood glucose collection time range. After the nighttime blood glucose collection is completed, a custom 24h CGM is allowed. Spectrum data transfer is complete.

实施例3Example 3

结合图2-3所示,根据本发明的一个具体实施方案,下面对本发明的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统进行详细说明。2-3, according to a specific embodiment of the present invention, a system of the present invention integrating a blood glucose analysis method based on CGM dynamic map analysis and an edge computing device will be described in detail below.

本发明提供了一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统,进行血糖分析时,包括以下步骤:The present invention provides a system that integrates a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device. When blood sugar analysis is performed, the following steps are included:

S3:MCU控制器1将用户信息和CGM图谱数据转化成结构化数据至云端数据处理中心保存。S3: MCU controller 1 converts user information and CGM map data into structured data and stores it in the cloud data processing center.

其中,云端数据处理中心中建立用户信息表、传感器信息表、血糖值记录表、图谱分析记录表和用户血糖控制风险评价表,如下表1、表2、表3、表4和表5所示。Among them, the cloud data processing center establishes user information table, sensor information table, blood sugar value record table, map analysis record table and user blood sugar control risk evaluation table, as shown in Table 1, Table 2, Table 3, Table 4 and Table 5 below .

如表1所示,用户信息表的字段包括用户ID、用户信息、网络接入类别、网络优先级、创建时间、修改时间和可扩展字段,主键为用户ID;As shown in Table 1, the fields of the user information table include user ID, user information, network access category, network priority, creation time, modification time and expandable fields, and the primary key is the user ID;

网络接入类别包括非5G通信协议和5G通信协议,分别用整型1和2表示;The network access category includes non-5G communication protocols and 5G communication protocols, represented by integers 1 and 2 respectively;

网络优先级包括4个不同网速优先等级的切片,分别用整型0、1、2、3表示,0代表最高优先级网络切片。The network priority includes 4 slices with different network speed priorities, represented by integers 0, 1, 2, and 3 respectively, and 0 represents the highest priority network slice.

表1用户信息表Table 1 User Information Table

Figure BDA0003957088580000081
Figure BDA0003957088580000081

如表2所示,传感器信息表字段包括传感器ID、传感器属性、用户ID、传感器状态和可扩展字段,主键为传感器ID,外键为用户ID,通过用户ID能够关联用户信息表。As shown in Table 2, the sensor information table fields include sensor ID, sensor attribute, user ID, sensor status and expandable fields. The primary key is the sensor ID, and the foreign key is the user ID. The user information table can be associated with the user ID.

表2传感器信息表Table 2 Sensor information table

Figure BDA0003957088580000082
Figure BDA0003957088580000082

Figure BDA0003957088580000091
Figure BDA0003957088580000091

如表3所示,血糖值记录表字段包括记录序号、血糖值、时间、传感器ID和可扩展字段,主键为记录序号,外键为传感器ID,通过传感器ID能够关联传感器信息表。As shown in Table 3, the fields of the blood glucose record table include record serial number, blood glucose value, time, sensor ID and expandable fields. The primary key is the record serial number, and the foreign key is the sensor ID. The sensor information table can be associated with the sensor ID.

表3血糖值记录表Table 3 blood glucose value recording table

Figure BDA0003957088580000092
Figure BDA0003957088580000092

如表4所示,图谱分析记录表字段包括:记录序号、图谱分析信息、时间、图谱类别、传感器ID和可扩展字段,主键为记录序号,外键为传感器ID,通过传感器ID能够关联传感器信息表。As shown in Table 4, the fields of the map analysis record table include: record number, map analysis information, time, map category, sensor ID and expandable fields. The primary key is the record number, and the foreign key is the sensor ID. Sensor information can be associated with the sensor ID surface.

图谱分析信息包括:时段图谱葡萄糖最大值Max、时段图谱葡萄糖最小值Min、时段图谱斜率Slope、时段图谱葡萄糖变异系数GV、时段图谱标准偏差SD、时段图谱方差Var、时段图谱葡萄糖平均值Mean、时段图谱平均血糖波动幅度MAGE和时段图谱平均血糖绝对差MODD。Spectrum analysis information includes: maximum value of glucose at time period map, minimum value of glucose at time period map Min, slope of time period map Slope, coefficient of variation GV of glucose at time period map, standard deviation SD of time period map, variance Var of time period map, average value of glucose at time period map, time period The average blood glucose fluctuation range MAGE of the map and the absolute difference MODD of the average blood glucose absolute difference of the time map.

对于全区段图谱,图谱分析信息还包括所有葡萄糖浓度区段在一天中出现的时间对应的时间百分比:TAR1(181-250mg/dL)、TAR2(>250mg/dL)、TIR(70-180mg/dL)、TBR1(54-69mg/dL)和TBR2(<54mg/dL)。For the full segment map, the map analysis information also includes the time percentage corresponding to the time of all glucose concentration segments in a day: TAR1 (181-250 mg/dL), TAR2 (>250 mg/dL), TIR (70-180 mg/dL), TIR (70-180 mg/dL), dL), TBR1 (54-69 mg/dL), and TBR2 (<54 mg/dL).

图谱类别包括:日间图谱、夜间图谱、全时段图谱和可选时段图谱(按照一定时间区段选择的图谱)。Map categories include: day map, night map, full-time map and optional time map (map selected according to a certain time period).

表4图谱分析记录表Table 4 Spectrum Analysis Record Form

Figure BDA0003957088580000101
Figure BDA0003957088580000101

如表5所示,用户血糖控制风险评价表字段包括记录序号、评价类型、评价时间、评价结果、备注信息、用户ID和可扩展字段,主键为记录序号,外键为用户ID,通过用户ID能够关联用户信息表;用户各类血糖评价的类型和结果将写入用户血糖控制风险评价表中。As shown in Table 5, the fields of user blood glucose control risk evaluation table include record serial number, evaluation type, evaluation time, evaluation result, remark information, user ID and expandable fields. The primary key is the record serial number, and the foreign key is user ID. Can be associated with the user information table; the types and results of various blood sugar evaluations of the user will be written into the user's blood sugar control risk evaluation table.

表5用户血糖风险评价表Table 5 User Blood Sugar Risk Evaluation Form

Figure BDA0003957088580000102
Figure BDA0003957088580000102

实施例4Example 4

结合图2-3所示,根据本发明的一个具体实施方案,下面对本发明的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统进行详细说明。2-3, according to a specific embodiment of the present invention, a system of the present invention integrating a blood glucose analysis method based on CGM dynamic map analysis and an edge computing device will be described in detail below.

本发明提供了一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统,进行血糖分析时,包括以下步骤:The present invention provides a system that integrates a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device. When blood sugar analysis is performed, the following steps are included:

S4:对于每日CGM动态图谱数据进行每日血糖波动性评价;S4: Evaluate the daily blood glucose volatility for the daily CGM dynamic atlas data;

对于每日CGM动态图谱数据,利用标准偏差SD、区段葡萄糖平均值Mean、区段葡萄糖变异系数GV、平均血糖波动幅度MAGE和平均血糖绝对差MODD作为数据特征输入,人工标定的结果高风险为1,低风险为0作为目标输出,建立每日血糖波动评价模型如下:For the daily CGM dynamic atlas data, the standard deviation SD, segment glucose mean Mean, segment glucose variation coefficient GV, average blood glucose fluctuation range MAGE, and average blood glucose absolute difference MODD are used as data feature input, and the high risk of manual calibration results is 1. The low risk is 0 as the target output, and the daily blood sugar fluctuation evaluation model is established as follows:

Figure BDA0003957088580000111
Figure BDA0003957088580000111

其中,p表示每日血糖波动风险概率,F(x)包括随机森林分类模型和Logistic回归分类模型,∈表示误差项,x表示每日CGM动态图谱输入的特征数据,x=[SD,MEAN,GV,MAGE,MODD]。Among them, p represents the risk probability of daily blood glucose fluctuation, F(x) includes random forest classification model and Logistic regression classification model, ∈ represents the error term, x represents the characteristic data of daily CGM dynamic map input, x=[SD,MEAN, GV, MAGE, MODD].

进一步地,随机森林分类模型和Logistic回归分类模型通过python中的sklearn库中的RandomForestClassifier模块和LogisticRegression模块实现,利用人工标定的数据进行模型训练。Furthermore, the random forest classification model and the Logistic regression classification model are implemented through the RandomForestClassifier module and the LogisticRegression module in the sklearn library in python, and model training is performed using manually calibrated data.

进一步地,每日血糖波动性评价模型在云端数据处理中心已训练完成,传输至边缘计算装置的血糖波动性评价单元14进行调用,输出每日血糖波动风险概率p。Furthermore, the daily blood sugar fluctuation evaluation model has been trained in the cloud data processing center, and is transmitted to the blood sugar fluctuation evaluation unit 14 of the edge computing device for calling, and outputs the daily blood sugar fluctuation risk probability p.

更进一步地,区段葡萄糖变异系数GV公式如下:Furthermore, the formula of segmental glucose variation coefficient GV is as follows:

Figure BDA0003957088580000112
Figure BDA0003957088580000112

更进一步地,平均血糖波动幅度MAGE公式如下:Furthermore, the average blood glucose fluctuation range MAGE formula is as follows:

Figure BDA0003957088580000113
Figure BDA0003957088580000113

其中,Cmax表示血糖曲线一个波动处波峰葡萄糖值,Cmin表示一个波动对应波谷的最小值,一个有效波动指的是(Cmax-Cmin)>1SD,n代表24h内有效波动的次数。Among them, C max represents the peak glucose value at a fluctuation of the blood glucose curve, C min represents the minimum value of a fluctuation corresponding to the trough, an effective fluctuation refers to (C max -C min )>1SD, and n represents the number of effective fluctuations within 24 hours.

更进一步地,平均血糖绝对差MODD公式如下:Furthermore, the MODD formula of the mean absolute difference in blood glucose is as follows:

Figure BDA0003957088580000114
Figure BDA0003957088580000114

其中,Ci表示当日i时刻的葡萄糖观测值,Ci-24h表示上一日i时刻的葡萄糖观测值,k为观测值的数量。Among them, C i represents the observed value of glucose at time i of the current day, C i-24h represents the observed value of glucose at time i of the previous day, and k is the number of observed values.

进一步地,用户更换血糖传感器时,利用距离更换当日最近的数据来计算平均血糖绝对差MODD。Further, when the user replaces the blood glucose sensor, the data closest to the date of replacement is used to calculate the average blood glucose absolute difference MODD.

实施例5Example 5

结合图2-3所示,根据本发明的一个具体实施方案,下面对本发明的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统进行详细说明。2-3, according to a specific embodiment of the present invention, a system of the present invention integrating a blood glucose analysis method based on CGM dynamic map analysis and an edge computing device will be described in detail below.

本发明提供了一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统,进行血糖分析时,包括以下步骤:The present invention provides a system that integrates a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device. When blood sugar analysis is performed, the following steps are included:

S5:利用上一日夜间图谱数据和当日日间图谱数据进行当日夜间低血糖风险预测,若低血糖风险概率超出设定阈值则将风险提示传输至终端。S5: Using the nighttime map data of the previous day and the daytime map data of the current day to predict the risk of hypoglycemia at night, if the risk probability of hypoglycemia exceeds the set threshold, the risk warning is transmitted to the terminal.

其中,输入数据特征提取上一日夜间动态图谱(默认00:00-6:00)的葡萄糖值的最小值G_Pre_min夜间,当日日间动态图谱(6:00-24:00)葡萄糖值的最大值G_max日间与上一日日间动态图谱葡萄糖值的最大值G_Pre_max日间的比值G_max_re,当日日间图谱倒数前三个小时区段(默认21:00-24:00)图谱的最小值Gmin-3h、平均值Gmean-3h和区段斜率Gslope-3hAmong them, the input data feature extraction is the minimum value of the glucose value G_Pre_min of the nighttime dynamic map (default 00:00-6:00) of the previous day , and the maximum value of the glucose value of the daytime dynamic map (6:00-24:00) at night The ratio G_max_re between G_max daytime and the maximum value G_Pre_max of the daytime dynamic map glucose value of the previous day, G_max_re, the minimum value Gmin of the map in the last three hours of the daytime map (default 21:00-24:00) - 3h , mean value Gmean -3h and section slope Gslope -3h .

进一步地,G_max_re的公式如下:Further, the formula of G_max_re is as follows:

Figure BDA0003957088580000121
Figure BDA0003957088580000121

进一步地,若用户根据起居习惯自定义夜间区段和日间区段时间范围,则上述数据特征可归纳为以下输入特征数据X:Furthermore, if the user customizes the time range of the night segment and the day segment according to living habits, the above data characteristics can be summarized as the following input characteristic data X:

X=[Gpremin夜间,Gmin日间,G_max_re,Gmin-3h,Gmean-3h,Gslope-3h]。X=[Gpremin nighttime , Gmindaytime , G_max_re, Gmin -3h , Gmean -3h , Gslope -3h ].

进一步地,输入特征数据X作为输入,人工标定数据的结果当日夜间低血糖为1,无低血糖为0作为目标输出,建立当日夜间低血糖风险预警模型,表示如下:Further, the characteristic data X is input as the input, and the result of manual calibration data is 1 for hypoglycemia at night, and 0 for no hypoglycemia as the target output, and the early warning model of hypoglycemia risk at night is established, which is expressed as follows:

Figure BDA0003957088580000122
Figure BDA0003957088580000122

其中,p表示当日夜间低血糖概率,F(X)包括随机森林分类模型、Logistic回归分类模型、XGboost分类模型和LightGBM分类模型,∈表示误差项。Among them, plow indicates the probability of hypoglycemia at night, F(X) includes random forest classification model, Logistic regression classification model, XGboost classification model and LightGBM classification model, and ∈ represents the error term.

进一步地,XGboost分类模型、LightGBM回归分类模型通过python中的xgboost模块和lightgbm模块实现,利用人工标定的数据进行模型训练。Furthermore, the XGboost classification model and the LightGBM regression classification model are implemented through the xgboost module and lightgbm module in python, and the model training is performed using manually calibrated data.

进一步地,当日夜间低血糖预警模型在云端数据处理中心已训练完成,传输至边缘计算装置的夜间低血糖风险预警单元13进行调用,输出当日夜间低血糖风险概率pFurthermore, the day-night hypoglycemia warning model has been trained in the cloud data processing center, and is transmitted to the night-time hypoglycemia risk warning unit 13 of the edge computing device for calling, and the day-night hypoglycemia risk probability p is low .

实施例6Example 6

结合图2-3所示,根据本发明的一个具体实施方案,下面对本发明的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统进行详细说明。2-3, according to a specific embodiment of the present invention, a system of the present invention integrating a blood glucose analysis method based on CGM dynamic map analysis and an edge computing device will be described in detail below.

本发明提供了一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统,进行血糖分析时,包括以下步骤:The present invention provides a system that integrates a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device. When blood sugar analysis is performed, the following steps are included:

S6:将每日CGM图谱数据和每日分析结果整理成结构化数据保存并传送至云端数据处理中心,每日分析结果包括每日血糖波动风险概率p和当日夜间低血糖概率pS6: Organize the daily CGM map data and daily analysis results into structured data, store them and send them to the cloud data processing center. The daily analysis results include the daily blood sugar fluctuation risk probability p and the nighttime hypoglycemia probability p low .

进一步地,将每个用户的当日全区段图谱数据和图谱分析信息、每日血糖波动风险概率p、当日低血糖风险概率p,整理成json串的格式后传输至云端数据处理中心。Further, each user 's daily full-segment map data and map analysis information, daily blood sugar fluctuation risk probability p, and day low blood sugar risk probability p are organized into a json string format and then transmitted to the cloud data processing center.

S7:对于第一设定时间周期(不小于14天)的每日CGM动态图谱数据,给出血糖长期波动性评价;S7: For the daily CGM dynamic atlas data of the first set time period (not less than 14 days), an evaluation of the long-term fluctuation of blood sugar is given;

进一步地,提取第一设定时间周期(不小于14天)的每日CGM动态图谱数据的TAR1、TAR2、TIR、TBR1和TBR2作为特征输入数据,利用层次聚类模型得到每日CGM动态图谱数据的聚类类别指数Clu_index。Further, extract the TAR1, TAR2, TIR, TBR1 and TBR2 of the daily CGM dynamic map data of the first set time period (not less than 14 days) as feature input data, and use the hierarchical clustering model to obtain the daily CGM dynamic map data The cluster category index Clu_index.

更进一步地,层次聚类模型在云端数据处理中心,通过历史众多病人每天的TAR1、TAR2、TIR、TBR1和TBR2的特征数据作为层次聚类模型的输入,按照TIR比例的从高到低分为35个类别作为Clu_index,Clu_index越大,说明血糖的波动越明显。Furthermore, the hierarchical clustering model is in the cloud data processing center. The characteristic data of TAR1, TAR2, TIR, TBR1 and TBR2 of many historical patients are used as the input of the hierarchical clustering model. According to the ratio of TIR from high to low, it is divided into The 35 categories are used as Clu_index, and the larger the Clu_index, the more obvious the fluctuation of blood sugar.

更进一步地,层次聚类模型由云端数据处理中心训练完成保存至边缘计算装置的血糖波动性评价单元,供调用。Furthermore, the hierarchical clustering model is trained by the cloud data processing center and saved to the blood glucose fluctuation evaluation unit of the edge computing device for calling.

进一步地,根据层次聚类模型,得到第一设定时间周期(不小于14天)内每天的Clu_index,将第一设定时间周期(不小于14天)内的Clu_index求平均得到Clu_indexmeanFurther, according to the hierarchical clustering model, the Clu_index of each day in the first set time period (not less than 14 days) is obtained, and the Clu_index in the first set time period (not less than 14 days) is averaged to obtain Clu_index mean .

进一步地,将在第一设定时间周期(不小于14天)内每天得到的SD、MEAN、GV、MAGE和MODD求平均得到SDmean、MEANmean、GVmean、MAGEmean和MODDmeanFurther, SD, MEAN, GV, MAGE and MODD obtained every day within the first set time period (not less than 14 days) are averaged to obtain SD mean , MEAN mean , GV mean , MAGE mean and MODD mean .

进一步地,将数据整理成输入特征数据X如下:Further, organize the data into the input feature data X as follows :

X=[Clu_indexmean,SDmean,MEANmean,GVmean,MAGEmean,MODDmean];X length = [Clu_index mean , SD mean , MEAN mean , GV mean , MAGE mean , MODD mean ];

进一步地,利用输入特征数据X,人工标定的长期血糖波动为高风险为1,低风险为0作为目标输出,建立如下长期血糖波动性评价模型如下:Further, using the input characteristic data X length , the artificially calibrated long-term blood sugar fluctuation is 1 for high risk and 0 for low risk as the target output, and the following long-term blood sugar fluctuation evaluation model is established as follows:

Figure BDA0003957088580000131
Figure BDA0003957088580000131

其中,p为长期血糖波动概率,F(X)包括随机森林分类模型和Logistic回归分类模型。Among them, p length is the long-term blood glucose fluctuation probability, and F(X length ) includes random forest classification model and Logistic regression classification model.

实施例7Example 7

结合图2-3所示,根据本发明的一个具体实施方案,下面对本发明的一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统进行详细说明。2-3, according to a specific embodiment of the present invention, a system of the present invention integrating a blood glucose analysis method based on CGM dynamic map analysis and an edge computing device will be described in detail below.

本发明提供了一种集成了基于CGM动态图谱分析的血糖分析方法和边缘计算装置的系统,进行血糖分析时,包括以下步骤:The present invention provides a system that integrates a blood sugar analysis method based on CGM dynamic map analysis and an edge computing device. When blood sugar analysis is performed, the following steps are included:

S8:根据长期血糖波动概率和第二设定时间周期(不小于7天)的每日分析结果,给出第二设定时间周期的血糖控制风险等级;每日分析结果包括每日血糖波动风险概率和当夜低血糖波动风险概率。S8: According to the long-term blood sugar fluctuation probability and the daily analysis results of the second set time period (not less than 7 days), give the blood sugar control risk level of the second set time period; the daily analysis results include the daily blood sugar fluctuation risk probability and the risk probability of hypoglycemia fluctuations during the night.

进一步地,根据p、第二设定时间周期内p的平均值p低_ean、第二设定时间周期内的平均葡萄糖值GVmean转化成的糖化血红蛋白值(GHBA1C)以及计算得到的GMI指数,作为特征数据列Xinput如下:Further, the glycosylated hemoglobin value (G HBA1C ) converted from the average value plow_ean of plow in the second set time period, the average glucose value GV mean in the second set time period (G HBA1C ) and calculated The GMI index, as the feature data column X input is as follows:

Xinput=[p,p低_ean,GHBA1C,GMI];X input = [p long , p low_ean , G HBA1C , GMI];

更进一步地,GHBA1C的计算公式如下:Furthermore, the calculation formula of G HBA1C is as follows:

GHBA1C(%)=(GVmean(/L)+2.59)/1.59;G HBA1C (%)=(GV mean (/L)+2.59)/1.59;

更进一步地,GMI的计算公式如下:Furthermore, the calculation formula of GMI is as follows:

GMI(%)=3.31+0.02392*GVmean(/dL);GMI(%)=3.31+0.02392*GV mean (/dL);

进一步地,利用决策树模型,给出血糖控制风险等级,血糖控制风险等级分为低风险、中风险、中高风险和高风险四个等级,对应决策树模型的0,1,2和3等4个类别的输出。Further, using the decision tree model, the risk level of blood sugar control is given. The risk level of blood sugar control is divided into four levels: low risk, medium risk, medium high risk and high risk, corresponding to 0, 1, 2 and 3 of the decision tree model. category output.

进一步地,决策树模型由python中的sklearn库中的DecisionTreeClassifier实现。Further, the decision tree model is implemented by DecisionTreeClassifier in the sklearn library in python.

进一步地,血糖控制风险评价模型由云端数据处理中心训练完成保存至边缘计算装置的血糖控制周期性评价单元14,供调用。Furthermore, the blood sugar control risk assessment model is trained by the cloud data processing center and saved to the blood sugar control periodic assessment unit 14 of the edge computing device for calling.

S9:对于风险等级中高风险和高风险的用户,边缘计算装置将风险信息发送至终端,并将该险信息传送至云端数据处理中心。S9: For users with medium-high risk and high-risk risk, the edge computing device sends the risk information to the terminal, and transmits the risk information to the cloud data processing center.

S10:云端数据处理中心接到风险提示,进一步判断是否需要入院,若是则通知用户及时入院。S10: The cloud data processing center receives the risk warning, further judges whether admission is necessary, and if so, notifies the user to be admitted to the hospital in time.

S11:若终端支持5G通信协议,则根据第二设定时间周期(不小于7天)的血糖控制风险等级,将用户分类至对应的5G切片网络。S11: If the terminal supports the 5G communication protocol, classify the user into the corresponding 5G slice network according to the blood sugar control risk level of the second set time period (not less than 7 days).

进一步地,切片优先级评估单元15将建立第二设定时间周期(不小于7天)的血糖控制风险等级和对应5G网络切片的联系,从用户血糖风险评价表中提取血糖控制风险等级,并修改用户信息表中网络优先级字段值,作为网络切片划分的标识。Further, the slice priority evaluation unit 15 will establish the relationship between the blood sugar control risk level of the second set time period (not less than 7 days) and the corresponding 5G network slice, extract the blood sugar control risk level from the user blood sugar risk evaluation table, and Modify the value of the network priority field in the user information table as an identifier for network slicing.

实施例8Example 8

结合图3-5所示,根据本发明的一个具体实施方案,下面对本发明的一种基于CGM动态图谱分析的边缘计算装置进行详细说明。3-5, according to a specific embodiment of the present invention, an edge computing device based on CGM dynamic map analysis of the present invention will be described in detail below.

本发明提供了一种基于CGM动态图谱分析的边缘计算装置,边缘计算装置利用如前任一实施例所述的基于CGM动态图谱的血糖分析方法进行血糖分析;包括:MCU控制器1、存储器2、数据通信模块3、电源4、指示灯5、蜂鸣器6和触摸屏7;The present invention provides an edge computing device based on CGM dynamic map analysis. The edge computing device uses the blood sugar analysis method based on CGM dynamic map as described in any of the previous embodiments to perform blood sugar analysis; including: MCU controller 1, memory 2, Data communication module 3, power supply 4, indicator light 5, buzzer 6 and touch screen 7;

MCU控制器控制存储器、电源、指示灯、蜂鸣器、触摸屏和数据通信模块之间的运行,以及将从终端传输的CGM动态图谱数据进行数据预处理成结构化数据和分析。The MCU controller controls the operation between the memory, power supply, indicator light, buzzer, touch screen and data communication module, and preprocesses the CGM dynamic map data transmitted from the terminal into structured data and analysis.

存储器2进行本地数据的存储,本地数据包括从终端发送的CGM动态图谱数据、算法模型和参数配置文件。The memory 2 stores local data, and the local data includes CGM dynamic map data, algorithm models and parameter configuration files sent from the terminal.

数据通信模块3用于边缘计算装置与终端和云端数据处理中心的数据传输。The data communication module 3 is used for data transmission between the edge computing device and the terminal and the cloud data processing center.

电源4用于对边缘计算装置进行供电。The power supply 4 is used to supply power to the edge computing device.

指示灯5用于进行设备运行状态的显示。The indicator light 5 is used to display the operating status of the equipment.

蜂鸣器6用于设备异常报警提醒。The buzzer 6 is used for equipment abnormal alarm reminder.

触摸屏7用于显示和输入边缘计算装置的参数设置,查看边缘计算装置的电源状态、空间容量、内存消耗和进程状态信息。The touch screen 7 is used to display and input the parameter settings of the edge computing device, and check the power status, space capacity, memory consumption and process status information of the edge computing device.

实施例9Example 9

结合图3-5所示,根据本发明的一个具体实施方案,下面对本发明的一种基于CGM动态图谱分析的边缘计算装置进行详细说明。3-5, according to a specific embodiment of the present invention, an edge computing device based on CGM dynamic map analysis of the present invention will be described in detail below.

本发明提供了一种基于CGM动态图谱分析的边缘计算装置,边缘计算装置利用如前任一实施例所述的基于CGM动态图谱的血糖分析方法进行血糖分析;边缘计算装置包括MCU控制器1;MCU控制器1包括:CGM图谱数据结构化处理单元11、血糖波动性评价单元12、夜间低血糖风险预警单元13、血糖控制周期性评价单元14、切片优先级评估单元15、可扩展单元16和数据库。The present invention provides an edge computing device based on CGM dynamic map analysis. The edge computing device uses the blood sugar analysis method based on CGM dynamic map as described in any one of the previous embodiments to perform blood sugar analysis; the edge computing device includes an MCU controller 1; MCU The controller 1 includes: a CGM map data structured processing unit 11, a blood sugar fluctuation evaluation unit 12, a nighttime hypoglycemia risk warning unit 13, a blood sugar control periodic evaluation unit 14, a slice priority evaluation unit 15, an expandable unit 16 and a database .

CGM图谱数据结构化处理单元11,将CGM动态图谱数据转化成结构化数据。The CGM atlas data structured processing unit 11 converts the CGM dynamic atlas data into structured data.

血糖波动性评价单元12预测每日血糖波动风险概率和长期血糖波动风险概率。The blood sugar fluctuation evaluation unit 12 predicts the risk probability of daily blood sugar fluctuation and the risk probability of long-term blood sugar fluctuation.

夜间低血糖风险预警单元13预测当日夜间低血糖风险概率。The nighttime hypoglycemia risk warning unit 13 predicts the probability of the nighttime hypoglycemia risk.

血糖控制周期性评价单元14,评价第二设定时间周期(不小于7天)的血糖控制效果的风险等级。The blood sugar control periodic evaluation unit 14 evaluates the risk level of the blood sugar control effect in the second set time period (not less than 7 days).

切片优先级评估单元15,根据血糖控制效果的风险等级,将用户分类至不同网速的5G网络切片,其中,血糖控制效果越差的用户分配给对应5G网络切片中网速优先等级越高的网络切片。The slice priority evaluation unit 15 classifies users into 5G network slices with different network speeds according to the risk level of the blood sugar control effect, wherein users with poorer blood sugar control effects are allocated to users with higher network speed priorities in the corresponding 5G network slices. Network slicing.

可扩展单元16,进行新增单元的接入。The expandable unit 16 is for adding new units.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are included within the protection scope of the present invention.

Claims (22)

1.一种基于CGM动态图谱的血糖分析方法,其特征在于,包括以下步骤:1. A blood sugar analysis method based on CGM dynamic graph, is characterized in that, comprises the following steps: 将用户信息和CGM动态图谱数据经过数据预处理转化成结构化数据;Convert user information and CGM dynamic map data into structured data through data preprocessing; 获取图谱信息;Obtain map information; 利用每日CGM图谱数据,并结合图谱信息预测每日血糖波动风险概率;Use the daily CGM map data and combine the map information to predict the risk probability of daily blood sugar fluctuations; 利用当日日间CGM动态图谱数据和上一日夜间CGM动态图谱数据,并结合图谱信息预测当日夜间低血糖风险概率;Use the daytime CGM dynamic map data and the previous day's nighttime CGM dynamic map data, and combine the map information to predict the risk probability of hypoglycemia at night; 将每日CGM动态图谱数据和每日分析结果转化成结构化数据;Convert daily CGM dynamic map data and daily analysis results into structured data; 根据第一设定时间周期的长期CGM动态图谱数据,并结合图谱信息预测长期血糖波动风险概率;According to the long-term CGM dynamic map data of the first set time period, combined with the map information to predict the risk probability of long-term blood sugar fluctuations; 根据长期血糖波动风险概率和第二设定时间周期的每日分析结果,给出所述第二设定时间周期的血糖控制效果的风险等级。According to the long-term blood sugar fluctuation risk probability and the daily analysis results of the second set time period, the risk level of blood sugar control effect in the second set time period is given. 2.根据权利要求1所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,每日分析结果包括每日血糖波动风险概率和当夜低血糖波动风险概率。2. A blood glucose analysis method based on CGM dynamic atlas according to claim 1, wherein the daily analysis results include the risk probability of daily blood glucose fluctuation and the risk probability of hypoglycemia fluctuation at night. 3.根据权利要求1所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述每日CGM动态图谱数据的采样时间为24h,采样间隔为5min。3. A blood glucose analysis method based on CGM dynamic atlas according to claim 1, wherein the sampling time of the daily CGM dynamic atlas data is 24 hours, and the sampling interval is 5 minutes. 4.根据权利要求1所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述第一设定时间周期不小于14天,所述第二设定时间周期不小于7天,所述当日日间为当日6点至当日24点,所述上一日夜间为当日0点至当日6点,当日日间倒数前三个小时区段为当日21点至当日24点。4. A blood glucose analysis method based on CGM dynamic atlas according to claim 1, wherein the first set time period is not less than 14 days, and the second set time period is not less than 7 days, The daytime of the day is from 6:00 to 24:00 of the day, the nighttime of the previous day is from 0:00 to 6:00 of the day, and the last three hours of the day are from 21:00 to 24:00 of the day. 5.根据权利要求4所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述图谱信息包括图谱分析信息和图谱类别;所述图谱分析信息包括:时段图谱葡萄糖最大值Max、时段图谱葡萄糖最小值Min、时段图谱斜率Slope、时段图谱葡萄糖变异系数GV、时段图谱标准偏差SD、时段图谱方差Var、时段图谱葡萄糖平均值Mean、时段图谱平均血糖波动幅度MAGE和时段图谱平均血糖绝对差MODD;所述图谱类别包括日间图谱、夜间图谱、全时段图谱和可选时段图谱。5. A blood glucose analysis method based on CGM dynamic atlas according to claim 4, wherein said atlas information includes atlas analysis information and atlas category; said atlas analysis information includes: time period atlas glucose maximum value Max, Period map glucose minimum value Min, period map slope Slope, period map glucose variation coefficient GV, period map standard deviation SD, time period map variance Var, time period map glucose mean Mean, time period map average blood glucose fluctuation range MAGE and time period map average blood glucose absolute Poor MODD; the map category includes day map, night map, full time map and optional time map. 6.根据权利要求5所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,对于所述全时段图谱,所述图谱分析信息还包括所有葡萄糖浓度区段在一天中出现的时间对应的时间百分比。6. A blood glucose analysis method based on a CGM dynamic map according to claim 5, characterized in that, for the full-time map, the map analysis information also includes the corresponding time of all glucose concentration segments appearing in a day percentage of time. 7.根据权利要求6所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述葡萄糖浓度区段按照每分升中包含的葡萄糖浓度毫克数量进行区段的划分。7. A blood glucose analysis method based on a CGM dynamic map according to claim 6, wherein the glucose concentration segments are divided into segments according to the number of mg of glucose concentration contained in each deciliter. 8.根据权利要求5所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述预测每日血糖波动风险概率由每日血糖波动性评价模型完成;所述每日血糖波动性评价模型根据输入数据x,获得每日血糖波动风险概率,x如下:8. A blood glucose analysis method based on CGM dynamic atlas according to claim 5, wherein said prediction of daily blood glucose fluctuation risk probability is completed by a daily blood glucose fluctuation evaluation model; said daily blood glucose fluctuation The evaluation model obtains the risk probability of daily blood sugar fluctuations based on the input data x, x is as follows: x=[SD,Mean,GV,MAGE,MODD]。x = [SD, Mean, GV, MAGE, MODD]. 9.根据权利要求8所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述每日血糖波动性评价模型如下式所示:9. a kind of blood sugar analysis method based on CGM dynamic atlas according to claim 8, is characterized in that, described daily blood sugar fluctuation evaluation model is as shown in the following formula:
Figure FDA0003957088570000021
Figure FDA0003957088570000021
其中,p表示每日血糖波动风险概率,y表示人工标定的风险结果,y的数值1和0分别表示血糖波动为高风险和血糖波动为低风险,F(x)包括随机森林分类模型和Logistic回归分类模型,∈表示误差项。Among them, p represents the risk probability of daily blood sugar fluctuation, y represents the risk result of manual calibration, and the values of 1 and 0 in y represent high risk and low risk of blood sugar fluctuation respectively. F(x) includes random forest classification model and Logistic For regression classification models, ∈ represents the error term.
10.根据权利要求6所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述预测当日夜间低血糖风险概率由当日夜间低血糖风险预警模型完成;所述当日夜间低血糖风险预警模型根据输入数据X,获得当日夜间低血糖风险概率,X如下:10. A blood glucose analysis method based on CGM dynamic atlas according to claim 6, wherein the prediction of the nighttime hypoglycemia risk probability is completed by the same day night hypoglycemia risk early warning model; the same day night hypoglycemia risk The early warning model obtains the risk probability of hypoglycemia at night based on the input data X, X is as follows: X=[Gpremin夜间,Gmin日间,G_max_re,Gmin-3h,Gmean-3h,Gslope-3h];X=[Gpremin at night , Gmin during the day , G_max_re, Gmin -3h , Gmean -3h , Gslope -3h ]; 其中,G_max_re表示当日日间动态图谱葡萄糖值的最大值G_max日间与上一日日间动态图谱葡萄糖值的最大值G_Pre_max日间的比值,Gpremin夜间表示上一日夜间动态图谱葡萄糖值的最小值,Gmin日间表示当日日间动态图谱葡萄糖值的最小值,以及Gmin-3h、Gmean-3h和Gslope-3h分别表示当日日间动态图谱倒数前三个小时区段葡萄糖值的最小值、平均值和斜率。Among them, G_max_re represents the ratio of the maximum value G_max of the daytime dynamic map glucose value of the day to the maximum value G_Pre_max of the daytime dynamic map glucose value of the previous day, and Gpremin night represents the minimum value of the nighttime dynamic map glucose value of the previous day , Gmin during the day indicates the minimum value of the glucose value of the daytime dynamic map of the day, and Gmin -3h , Gmean -3h and Gslope -3h respectively represent the minimum value and average value of the glucose value of the three hours before the reciprocal of the daytime dynamic map of the day and slope. 11.根据权利要求10所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述当日夜间低血糖风险预警模型如下:11. A kind of blood sugar analysis method based on CGM dynamic atlas according to claim 10, it is characterized in that, described day and night hypoglycemia risk warning model is as follows:
Figure FDA0003957088570000022
Figure FDA0003957088570000022
其中,p表示当日夜间低血糖概率,S表示人工标定数据的当日夜间低血糖结果,S的数值1和0分别表示当日夜间为低血糖和当日夜间无低血糖,F(X)包括随机森林分类模型、Logistic回归分类模型、XGboost分类模型和LightGBM分类模型,∈表示误差项。Among them, plow indicates the probability of hypoglycemia at night, S indicates the nighttime hypoglycemia result of manual calibration data, and the values of S 1 and 0 respectively indicate hypoglycemia at night and no hypoglycemia at night, F(X) includes random forest Classification model, Logistic regression classification model, XGboost classification model and LightGBM classification model, ∈ represents the error term.
12.根据权利要求6所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述预测长期血糖波动风险概率由长期血糖波动性评价模型完成;所述长期血糖波动性评价模型根据X,获得长期血糖波动风险概率,X如下:12. A blood glucose analysis method based on CGM dynamic atlas according to claim 6, wherein said prediction of long-term blood glucose fluctuation risk probability is completed by a long-term blood glucose volatility evaluation model; said long-term blood glucose fluctuation evaluation model is based on X length , to obtain the risk probability of long-term blood sugar fluctuations, X length is as follows: X=[Clu_indexmean,SDmean,MEANmean,GVmean,MAGEmean,MODDmeanl:X length = [Clu_index mean , SD mean , MEAN mean , GV mean , MAGE mean , MODD mean l: 其中,Clu_indexmean、SDmean、MEANmean、GVmean、MAGEmean和MODDmean分别为设定周期内每日CGM动态图谱数据的聚类类别指数Clu_index、SD、MEAN、GV、MAGE和MODD的平均值。Among them, Clu_index mean , SD mean , MEAN mean , GV mean , MAGE mean and MODD mean are respectively the average values of the clustering index Clu_index, SD, MEAN, GV, MAGE and MODD of the daily CGM dynamic map data within the set period . 13.根据权利要求12所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述每日CGM动态图谱数据的聚类类别指数Clu_index利用层次聚类模型获得。13 . The blood glucose analysis method based on CGM dynamic atlas according to claim 12 , wherein the cluster index Clu_index of the daily CGM dynamic atlas data is obtained using a hierarchical clustering model. 14 . 14.根据权利要求12所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述长期血糖波动性评价模型如下式所示:14. A kind of blood sugar analysis method based on CGM dynamic atlas according to claim 12, is characterized in that, described long-term blood sugar fluctuation evaluation model is shown in the following formula:
Figure FDA0003957088570000031
Figure FDA0003957088570000031
其中,p为长期血糖波动风险概率,F(X)包括随机森林分类模型和Logistic回归分类模型,∈表示误差项。Among them, p length is the risk probability of long-term blood glucose fluctuation, F(X length ) includes random forest classification model and Logistic regression classification model, and ∈ represents the error term.
15.根据权利要求1所述的一种基于CGM动态图谱的血糖分析方法,其特征在于,所述第二设定时间周期的血糖控制效果的风险等级利用决策树模型获得。15. A blood glucose analysis method based on CGM dynamic atlas according to claim 1, characterized in that, the risk level of blood glucose control effect in the second set time period is obtained by using a decision tree model. 16.一种基于CGM动态图谱分析的边缘计算装置,其特征在于,利用如权利要求1-15中任一项所述的基于CGM动态图谱的血糖分析方法进行血糖分析,所述边缘计算装置包括MCU控制器和数据通信模块,MCU控制器与数据通信模块相连;数据通信模块对边缘计算装置与终端和云端数据处理中心的数据进行传输;MCU控制器对从终端接收的CGM动态图谱数据进行数据预处理后转化为结构化数据并进行分析;其中,MCU控制器包括血糖波动性评价单元、夜间低血糖风险预警单元和血糖控制周期性评价单元;16. An edge computing device based on CGM dynamic map analysis, characterized in that the blood sugar analysis method based on CGM dynamic map according to any one of claims 1-15 is used for blood sugar analysis, and the edge computing device includes MCU controller and data communication module, the MCU controller is connected to the data communication module; the data communication module transmits the data between the edge computing device and the terminal and the cloud data processing center; the MCU controller performs data processing on the CGM dynamic map data received from the terminal After preprocessing, it is converted into structured data and analyzed; among them, the MCU controller includes a blood sugar fluctuation evaluation unit, a nighttime hypoglycemia risk warning unit, and a blood sugar control periodical evaluation unit; 所述血糖波动性评价单元预测每日血糖波动风险概率和长期血糖波动风险概率;The blood sugar fluctuation evaluation unit predicts the risk probability of daily blood sugar fluctuation and the risk probability of long-term blood sugar fluctuation; 所述夜间低血糖风险预警单元预测当日夜间低血糖风险概率;The nocturnal hypoglycemia risk warning unit predicts the probability of hypoglycemia risk at night; 所述血糖控制周期性评价单元,评价血糖控制效果的风险等级。The blood sugar control periodic evaluation unit evaluates the risk level of the blood sugar control effect. 17.根据权利要求16所述的一种基于CGM动态图谱分析的边缘计算装置,其特征在于,所述云端数据处理中心保存有图谱信息。17. An edge computing device based on CGM dynamic map analysis according to claim 16, wherein the cloud data processing center stores map information. 18.根据权利要求16所述的一种基于CGM动态图谱分析的边缘计算装置,其特征在于,所述当日夜间低血糖风险概率由数据通信模块传送至终端;所述血糖控制效果的风险等级由数据通信模块传送至终端和云端数据处理中心,由云端数据处理中心判断所述终端的用户是否需入院治疗。18. An edge computing device based on CGM dynamic map analysis according to claim 16, wherein the risk probability of hypoglycemia at night is transmitted to the terminal by the data communication module; the risk level of the blood sugar control effect is determined by The data communication module transmits to the terminal and the cloud data processing center, and the cloud data processing center judges whether the user of the terminal needs to be hospitalized for treatment. 19.根据权利要求16所述的一种基于CGM动态图谱分析的边缘计算装置,其特征在于,所述MCU控制器还包括切片优先级评估单元,根据所述血糖控制效果的风险等级,将用户分类至不同网速的5G网络切片,其中,血糖控制效果越差的用户分配给对应5G网络切片中网速优先等级越高的网络切片。19. An edge computing device based on CGM dynamic atlas analysis according to claim 16, wherein the MCU controller further includes a slice priority evaluation unit, which assigns the user 5G network slices classified into different network speeds, among which users with poorer blood sugar control effects are assigned to network slices with higher network speed priority in the corresponding 5G network slices. 20.根据权利要求16所述的一种基于CGM动态图谱分析的边缘计算装置,其特征在于,所述MCU控制器还包括CGM图谱数据结构化处理单元,将所述CGM动态图谱数据转化成结构化数据。20. The edge computing device based on CGM dynamic map analysis according to claim 16, wherein the MCU controller also includes a CGM map data structured processing unit, which converts the CGM dynamic map data into a structure data. 21.根据权利要求16所述的一种基于CGM动态图谱分析的边缘计算装置,其特征在于,所述MCU控制器还包括可扩展单元,进行新增单元的接入。21. An edge computing device based on CGM dynamic graph analysis according to claim 16, wherein the MCU controller further includes an expandable unit for adding new units. 22.根据权利要求16所述的一种基于CGM动态图谱分析的边缘计算装置,其特征在于,所述数据通信模块包括5G模组和通信接口单元,5G模组对边缘计算装置与云端数据处理中心和支持5G通信的终端之间的数据进行传输,通信接口单元对边缘计算装置与云端数据处理中心和支持非5G通信的终端之间的数据进行传输。22. An edge computing device based on CGM dynamic graph analysis according to claim 16, wherein the data communication module includes a 5G module and a communication interface unit, and the 5G module processes data between the edge computing device and the cloud The data between the center and the terminal supporting 5G communication is transmitted, and the communication interface unit transmits the data between the edge computing device and the cloud data processing center and the terminal supporting non-5G communication.
CN202211467859.4A 2022-11-22 2022-11-22 Blood glucose analysis method and edge calculation device based on CGM dynamic map Active CN115762782B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211467859.4A CN115762782B (en) 2022-11-22 2022-11-22 Blood glucose analysis method and edge calculation device based on CGM dynamic map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211467859.4A CN115762782B (en) 2022-11-22 2022-11-22 Blood glucose analysis method and edge calculation device based on CGM dynamic map

Publications (2)

Publication Number Publication Date
CN115762782A true CN115762782A (en) 2023-03-07
CN115762782B CN115762782B (en) 2025-02-18

Family

ID=85336842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211467859.4A Active CN115762782B (en) 2022-11-22 2022-11-22 Blood glucose analysis method and edge calculation device based on CGM dynamic map

Country Status (1)

Country Link
CN (1) CN115762782B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117898715A (en) * 2024-01-31 2024-04-19 北京中器华康科技发展有限公司 Three-dimensional visual map analysis technology based on CGM real-time monitoring
CN117918832A (en) * 2024-01-31 2024-04-26 北京中器华康科技发展有限公司 Real-time blood glucose hexagonal model and propeller model evaluation algorithm based on subcutaneous glucose continuous monitoring data acquisition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688244A (en) * 2002-08-13 2005-10-26 弗吉尼亚大学专利基金会 Method, system, and computer program product for the processing of self-monitoring blood glucose(smbg)data to enhance diabetic self-management
WO2013086537A1 (en) * 2011-12-08 2013-06-13 The Regents Of The University Of Michigan Dynamic stress factor for use in diagnostic and prognostic methods
CN105160199A (en) * 2015-09-30 2015-12-16 刘毅 Continuous blood sugar monitoring based method for processing and displaying diabetes management information with intervention information
US20180055452A1 (en) * 2016-08-31 2018-03-01 University Of Virginia Patent Foundation Method, System and Computer Readable Medium for Predictive Hypoglycemia Detection for Mild to Moderate Exercise
RU2723626C1 (en) * 2019-12-17 2020-06-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановская государственная медицинская академия" Министерства здравоохранения Российской Федерации Method for prediction of clinical course of type 2 diabetes mellitus with application of various types of glucose-lowering therapy on the basis of estimation of glycemia variability
RU2746830C1 (en) * 2020-06-01 2021-04-21 Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр "Институт цитологии и генетики Сибирского отделения Российской академии наук" (ИЦиГ СО РАН) Method for assessing glycemic variability to determine effectiveness of antihyperglycemic therapy in patients with mody2 diabetes
CN113080949A (en) * 2021-03-30 2021-07-09 北京京东拓先科技有限公司 Hypoglycemia early warning method and device and computer-readable storage medium
CN113447655A (en) * 2021-07-06 2021-09-28 北京大学国际医院 Blood glucose index combination for judging CPAP treatment effect

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688244A (en) * 2002-08-13 2005-10-26 弗吉尼亚大学专利基金会 Method, system, and computer program product for the processing of self-monitoring blood glucose(smbg)data to enhance diabetic self-management
WO2013086537A1 (en) * 2011-12-08 2013-06-13 The Regents Of The University Of Michigan Dynamic stress factor for use in diagnostic and prognostic methods
CN105160199A (en) * 2015-09-30 2015-12-16 刘毅 Continuous blood sugar monitoring based method for processing and displaying diabetes management information with intervention information
US20180055452A1 (en) * 2016-08-31 2018-03-01 University Of Virginia Patent Foundation Method, System and Computer Readable Medium for Predictive Hypoglycemia Detection for Mild to Moderate Exercise
RU2723626C1 (en) * 2019-12-17 2020-06-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановская государственная медицинская академия" Министерства здравоохранения Российской Федерации Method for prediction of clinical course of type 2 diabetes mellitus with application of various types of glucose-lowering therapy on the basis of estimation of glycemia variability
RU2746830C1 (en) * 2020-06-01 2021-04-21 Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр "Институт цитологии и генетики Сибирского отделения Российской академии наук" (ИЦиГ СО РАН) Method for assessing glycemic variability to determine effectiveness of antihyperglycemic therapy in patients with mody2 diabetes
CN113080949A (en) * 2021-03-30 2021-07-09 北京京东拓先科技有限公司 Hypoglycemia early warning method and device and computer-readable storage medium
CN113447655A (en) * 2021-07-06 2021-09-28 北京大学国际医院 Blood glucose index combination for judging CPAP treatment effect

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RENATA A. RAWLINGS等: "Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-GUIDE)", 《DIABETES TECHNOLOGY & THERAPEUTICS》, 12 November 2011 (2011-11-12), pages 1241 - 1248 *
中华医学会糖尿病学分会: "中国动态血糖监测临床应用指南(2012年版)", 《中国糖尿病杂志》, 31 December 2012 (2012-12-31), pages 582 - 590 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117898715A (en) * 2024-01-31 2024-04-19 北京中器华康科技发展有限公司 Three-dimensional visual map analysis technology based on CGM real-time monitoring
CN117918832A (en) * 2024-01-31 2024-04-26 北京中器华康科技发展有限公司 Real-time blood glucose hexagonal model and propeller model evaluation algorithm based on subcutaneous glucose continuous monitoring data acquisition

Also Published As

Publication number Publication date
CN115762782B (en) 2025-02-18

Similar Documents

Publication Publication Date Title
US12094613B2 (en) Method and system for cardiovascular disease assessment and management
CN115762782A (en) Blood glucose analysis method based on CGM dynamic graph and edge calculation device
KR20220016487A (en) Systems, and associated methods, for bio-monitoring and blood glucose prediction
JP6298454B2 (en) Method for evaluating hemodynamic instability index indicator information
EP2795495B1 (en) Method and system to predict physiologic and clinical status changes
CN105118010A (en) Chronic disease management method with functions of real-time data processing and real-time information sharing and life style intervention information
Daghistani et al. Diagnosis of diabetes by applying data mining classification techniques
CN105342562A (en) Monitoring method and monitoring system
CN103635908B (en) Leave ready property index
Shawqi Jaber et al. Adaptive rate energy‐saving data collecting technique for health monitoring in wireless body sensor networks
CN104951894A (en) Intelligent analysis and assessment system for disease management in hospital
CA2702042A1 (en) Multi automated severity scoring
WO2022099668A1 (en) Method and system for precise health management and risk early warning based on association between familial genetic disease and sign data
CN111292845A (en) Intelligent nursing interaction system for intelligent ward
CN113421654A (en) Dynamic early warning and deep learning system for post-traumatic hemorrhagic shock
US11640858B2 (en) Digital therapeutic platform
KR20120121086A (en) A hypertension monitoring and notification device based on context information
US20240257982A1 (en) Reducing The Risk Of Potentially Preventable Events
CN117373677A (en) Intelligent health monitoring system based on digital medical archive management
Alghatani et al. Precision clinical medicine through machine learning: using high and low quantile ranges of vital signs for risk stratification of ICU patients
CN118098606B (en) Early warning method, medium and system based on physical examination data
CN113205884A (en) Blood sugar prediction method, system and application thereof
CN117153416A (en) Diabetes screening data processing and management system
CN118467756A (en) Knowledge graph data-based health management method and device and electronic equipment
WO2023168130A1 (en) System that selects an optimal model combination to predict patient risks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant