CN115740792A - Method for generating high-stability supercontinuum light source based on solid sheet - Google Patents
Method for generating high-stability supercontinuum light source based on solid sheet Download PDFInfo
- Publication number
- CN115740792A CN115740792A CN202211510541.XA CN202211510541A CN115740792A CN 115740792 A CN115740792 A CN 115740792A CN 202211510541 A CN202211510541 A CN 202211510541A CN 115740792 A CN115740792 A CN 115740792A
- Authority
- CN
- China
- Prior art keywords
- solid sheet
- solid
- power
- laser pulse
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title claims abstract description 312
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000033001 locomotion Effects 0.000 claims abstract description 152
- 238000006073 displacement reaction Methods 0.000 claims abstract description 96
- 230000032683 aging Effects 0.000 claims abstract description 83
- 238000005070 sampling Methods 0.000 claims abstract description 41
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 239000000523 sample Substances 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 26
- 230000006378 damage Effects 0.000 claims description 21
- 238000001228 spectrum Methods 0.000 claims description 20
- 238000012544 monitoring process Methods 0.000 claims description 13
- 238000011156 evaluation Methods 0.000 claims description 11
- 238000013519 translation Methods 0.000 claims description 11
- 238000002679 ablation Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000005457 optimization Methods 0.000 claims description 8
- 230000001276 controlling effect Effects 0.000 claims description 6
- 238000011158 quantitative evaluation Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims 2
- 230000003595 spectral effect Effects 0.000 abstract description 55
- 230000008859 change Effects 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 description 28
- 230000007774 longterm Effects 0.000 description 28
- 230000005855 radiation Effects 0.000 description 24
- 239000000463 material Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 230000000875 corresponding effect Effects 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000004643 material aging Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 230000005374 Kerr effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009123 feedback regulation Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011549 displacement method Methods 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000011278 mitosis Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种基于固体薄片的高稳定性超连续谱光源的产生方法,如下:S1:在二维或多维微位移平台上放置至少一个固体薄片;S2:超短激光脉冲会聚入射固体薄片前表面的某一辐照区域后,在固体薄片内传播过程中产生非线性光学作用而实现光谱展宽;S3:同时采用光功率探头对与固体薄片作用后的超短激光脉冲进行采样探测,实现对采样光束功率的实时测量及记录;S4:基于探测到的功率值,计算实时功率相对于初始功率的变化幅度,由此获得对固体薄片老化情况的定量评估;S5:主控系统发出控制指令控制微位移平台按预先设定运动模式进行运动,实现对固体薄片辐照区域的持续更新,由此实现产生高稳定性超连续谱的超短脉冲光源。
The invention discloses a method for generating a high-stability supercontinuum light source based on a solid sheet, as follows: S1: placing at least one solid sheet on a two-dimensional or multi-dimensional micro-displacement platform; S2: converging an ultrashort laser pulse into the incident solid sheet After a certain irradiated area on the front surface, nonlinear optical effects are generated during the propagation process in the solid sheet to realize spectral broadening; S3: At the same time, the optical power probe is used to sample and detect the ultrashort laser pulses after interacting with the solid sheet to realize Real-time measurement and recording of the power of the sampling beam; S4: Based on the detected power value, calculate the change range of the real-time power relative to the initial power, thereby obtaining a quantitative assessment of the aging of the solid sheet; S5: The main control system issues control commands The micro-displacement platform is controlled to move according to the preset movement mode to realize the continuous update of the irradiation area of the solid sheet, thereby realizing the ultrashort pulse light source that generates a high-stability supercontinuum.
Description
技术领域technical field
本发明涉及超短激光脉冲技术领域,更具体的,涉及一种基于固体薄片的高稳定性超连续光源的产生方法。The invention relates to the technical field of ultrashort laser pulses, and more specifically, to a method for generating a high-stability supercontinuum light source based on a solid sheet.
背景技术Background technique
对于超短激光脉冲领域而言,实现更短的脉冲时间宽度一直是领域发展的重点及难点。由傅立叶变换极限脉冲的时间带宽积关系可知,要获得更短的脉冲时间宽度,必然要更宽的光谱带宽来支持。通常,在保持不同光谱成份具有高相干度的前提下,通过一定技术方法显著展宽激光脉冲光谱带宽,再通过一定技术方法进行脉冲的色散补偿,可实现对超短激光脉冲时间宽度的显著压缩。也即,如何尽可能相干地扩展超短脉冲的光谱带宽,是使超短脉冲获得更窄时间宽度的核心技术问题。一般而言,由于激光增益介质的增益带宽是较为固定的,基于特定激光增益介质的超短激光脉冲的极限脉冲宽度也是基本一致的。但事实上,超短激光脉冲的能量要获得明显放大,往往需以牺牲脉冲的时间宽度为代价。如啁啾脉冲放大技术中,啁啾超短激光脉冲在激光晶体中受高强度泵浦放大时,会出现显著的增益带宽窄化,进而导致超短激光放大器输出的高能量超短脉冲的极限宽度要显著大于超短激光振荡器输出的小能量超短脉冲的极限宽度。例如,钛(Ti)宝石超短脉冲振荡器的极限脉冲宽度可小于10fs,而钛宝石超短脉冲放大器的极限脉冲宽度一般均大于20fs。另外,掺镱(Yb)晶体相较钛宝石晶体具有窄得多的增益带宽,导致基于掺镱晶体的超短激光脉冲较难获得100fs以下的脉冲宽度。因此,不论是对于钛宝石超短脉冲激光器还是掺镱超短脉冲激光器,这两种主流超短脉冲激光器要获得少周期高能量超短脉冲激光输出,均需在激光器谐振腔外部进行进一步针对脉冲光谱带宽的显著相干展宽,然后再进行时域压缩以获得极窄的、甚至接近单周期的脉冲时间宽度。For the field of ultrashort laser pulses, realizing shorter pulse time width has always been the focus and difficulty of the development of the field. From the time-bandwidth product relationship of the Fourier transform limit pulse, it can be seen that to obtain a shorter pulse time width, a wider spectral bandwidth must be supported. Usually, under the premise of maintaining high coherence of different spectral components, the spectral bandwidth of laser pulses can be significantly broadened through certain technical methods, and then the pulse dispersion compensation can be performed through certain technical methods to achieve significant compression of the ultrashort laser pulse time width. That is, how to extend the spectral bandwidth of ultrashort pulses as coherently as possible is the core technical issue for obtaining narrower time widths of ultrashort pulses. Generally speaking, since the gain bandwidth of the laser gain medium is relatively fixed, the limit pulse width of the ultrashort laser pulse based on the specific laser gain medium is basically the same. But in fact, the energy of ultrashort laser pulses needs to be significantly amplified at the cost of sacrificing the time width of the pulses. For example, in the chirped pulse amplification technology, when the chirped ultrashort laser pulse is amplified by high-intensity pumping in the laser crystal, there will be a significant narrowing of the gain bandwidth, which will lead to the limit of the high-energy ultrashort pulse output by the ultrashort laser amplifier. The width should be significantly larger than the limit width of the small energy ultrashort pulse output by the ultrashort laser oscillator. For example, the limit pulse width of a titanium (Ti) sapphire ultrashort pulse oscillator can be less than 10 fs, while the limit pulse width of a Ti sapphire ultrashort pulse amplifier is generally greater than 20 fs. In addition, ytterbium-doped (Yb) crystals have a much narrower gain bandwidth than Ti:sapphire crystals, making it difficult to obtain pulse widths below 100 fs for ultrashort laser pulses based on ytterbium-doped crystals. Therefore, whether it is for Ti:Sapphire ultrashort pulse laser or Ytterbium-doped ultrashort pulse laser, in order to obtain a few-period high-energy ultrashort pulse laser output for these two mainstream ultrashort pulse lasers, it is necessary to further target the pulse outside the laser cavity. Significant coherent broadening of the spectral bandwidth, followed by temporal compression to obtain extremely narrow, even close to single-period, pulse time widths.
目前,对超短脉冲进行光谱展宽主要还是基于强超短脉冲在透明介质中诱导三阶非线性效应,特别是诱导光学克尔效应(如自相位调制及交叉相位调制)引起脉冲光谱展宽来实现。典型地,强超短脉冲在透明固体介质中传输便可实现超短脉冲光谱的显著展宽,从而形成超连续谱输出。如在上世纪80年代,研究人员已用块状熔融石英实现超短脉冲的显著光谱展宽,使脉冲时间宽度由100fs压缩到20fs。然而,虽然后面较长一段时间也有相关的研究跟进,但这种技术并未获广泛应用,特别是在商业应用方面。At present, the spectral broadening of ultrashort pulses is mainly based on the third-order nonlinear effects induced by strong ultrashort pulses in transparent media, especially the induced optical Kerr effect (such as self-phase modulation and cross-phase modulation) to cause pulse spectral broadening. . Typically, a strong ultrashort pulse transmitted in a transparent solid medium can achieve a significant broadening of the ultrashort pulse spectrum, thereby forming a supercontinuum output. For example, in the 1980s, researchers have used bulk fused silica to achieve significant spectral broadening of ultrashort pulses, compressing the pulse time width from 100fs to 20fs. However, although there have been related research follow-ups for a long period of time later, this technology has not been widely used, especially in commercial applications.
一方面,这是因为透明固体介质具有较高的三阶非线性系数,其自聚焦阈值较小,对高能量超短脉冲进行光谱展宽时易诱导自聚焦形成多丝传输状态,最终导致激光横模的紊乱及透明介质的光学损伤。因此,用透明固体介质进行超短脉冲光谱展宽时必需根据激光脉冲的能量控制好入射到介质表面的激光光斑尺寸,以及选择合适的介质厚度,使自聚焦的影响还不足以破坏光束的传输模式特征。也即,这里宽光谱展宽与良好输出模式之间是强的竞争关系,要平衡两者关系获得好的光谱展宽效果是非常困难的——这需要根据每种样品(甚至每片样品)的特性进行仔细的实验摸索以获得合适的激光辐射条件,对非专业研究人员而言该技术不具备实际应用条件。On the one hand, this is because the transparent solid medium has a high third-order nonlinear coefficient, and its self-focusing threshold is small. When the spectrum of high-energy ultrashort pulses is broadened, it is easy to induce self-focusing to form a multi-filament transmission state, which eventually leads to laser transverse Disturbance of the mode and optical damage of the transparent medium. Therefore, when using a transparent solid medium for ultrashort pulse spectrum broadening, it is necessary to control the laser spot size incident on the surface of the medium according to the energy of the laser pulse, and to select an appropriate medium thickness, so that the influence of self-focusing is not enough to destroy the transmission mode of the beam feature. That is to say, there is a strong competitive relationship between wide spectral broadening and good output mode. It is very difficult to balance the relationship between the two to obtain a good spectral broadening effect-this needs to be based on the characteristics of each sample (or even each sample) Careful experimentation is carried out to obtain suitable laser radiation conditions, and this technology does not have practical application conditions for non-professional researchers.
另一方面,更为严重的问题是,长时间高能量的超短脉冲辐射会导致透明固体介质出现显著的材料老化现象:强激光辐射会导致介质材料因缺陷增多而对激光的吸收大大增强,同时也会导致成丝及丝分裂等横模不稳定现象的出现,且随辐射时间的增加这些现象会形成正反馈(孵化效应)而变得越来越显著,使得脉冲光谱展宽显著减小、光束模式恶化、能量显著降低,且伴随着孵化效应介质内部逐渐出现永久性光学损伤,甚至由于热累积而最终导致表面出现剧烈的烧蚀破坏。这种强激光辐射导致的材料老化现象随脉冲辐射功率密度趋近材料激光破坏阈值而加强,也即随脉冲能量提高,透明固体介质越迅速地老化,越快出现永久性光学损伤。然而,脉冲的光谱展宽程度与脉冲的辐射功率密度成显著的正相关关系,为追求更宽的光谱展宽,必然导致辐射功率密度逼近材料破坏阈值。因此,对于常规基于透明固体介质的光谱展宽技术而言,光谱展宽的高性能与其输出的长时间高稳定性是不可兼得的:要获得优异的光谱展宽特性,必然需以牺牲材料的使用寿命为代价,这是阻碍这种技术推广应用,特别是商业应用最为重要的障碍。On the other hand, a more serious problem is that long-term high-energy ultrashort pulse radiation will cause significant material aging in transparent solid media: strong laser radiation will cause the dielectric material to greatly enhance the absorption of laser light due to the increase in defects, At the same time, it will also lead to the appearance of transverse mode instability such as mitosis and mitosis, and these phenomena will form positive feedback (incubation effect) with the increase of radiation time and become more and more significant, making the pulse spectrum broadening significantly reduced, The beam mode deteriorates, the energy is significantly reduced, and with the incubation effect, permanent optical damage gradually occurs inside the medium, and even the surface is severely ablated due to heat accumulation. The material aging phenomenon caused by this strong laser radiation is strengthened as the pulse radiation power density approaches the laser damage threshold of the material, that is, as the pulse energy increases, the transparent solid medium ages more rapidly and permanent optical damage occurs sooner. However, the degree of spectral broadening of the pulse is significantly positively correlated with the radiation power density of the pulse. In order to pursue wider spectral broadening, the radiation power density must approach the material destruction threshold. Therefore, for the conventional spectral broadening technology based on transparent solid media, the high performance of spectral broadening and the long-term high stability of output are incompatible: to obtain excellent spectral broadening characteristics, it is necessary to sacrifice the service life of the material At the expense, this is the most important obstacle hindering the popularization and application of this technology, especially the commercial application.
由于基于体块固体介质的超短脉冲光谱展宽技术所存在的上述问题,这种技术并未展现出明确的应用前景,因此长期以来也并未受到领域重点关注。近年来,一种基于固体薄片(薄片组)的超短脉冲光谱展宽技术又重新燃起了研究人员对固体介质光谱展宽技术的研究热情。不同于基于体块固体介质的方法,这种基于固体薄片组的方法采用多片约0.1mm厚度的宽带隙透明电介质薄片(如熔融石英薄片)间隔一定距离放置在超短脉冲会聚焦点附近来实现超短脉冲与固体薄片组的强场非线性光学作用,从而实现光谱展宽。不同于块状固体,固体薄片可实现光谱展宽作用过程与自聚焦成丝(包括多丝分裂)作用过程的分离,使超短脉冲与薄片的作用只诱导显著的光谱展宽而不会导致自聚焦成丝及多丝分裂:光谱展宽主要来源于时域的光克尔效应导致的自相位及交叉相位调制,在辐射功率密度足够高的条件下超短脉冲入射介质薄片不需要通过自聚焦过程便可直接产生强自相位及交叉相位调制诱导光谱显著展宽;而自聚焦来源于空域的光克尔效应导致的介质折射率变化空间分布,需要一定作用距离的累积才能产生显著的效果。因此,当薄片的厚度足够小时,超短脉冲穿过薄片可产生显著光谱展宽的同时不会产生显著的自聚焦及成丝效应。除了可避免自聚焦效应所带来的问题,固体薄片组光谱展宽技术还提供了比块状透明介质更为丰富且灵活的调节维度。例如,当单固体薄片不足以产生足够的光谱展宽时,可通过在激光焦点附近按需以特定间隔放置多片固体薄片来产生累加的光谱展宽效果,最终可形成宽带超连续光谱,其经时域压缩后可得到周期量级的超短脉冲输出。Due to the above-mentioned problems in the ultrashort pulse spectrum broadening technology based on bulk solid media, this technology has not shown a clear application prospect, so it has not received much attention in the field for a long time. In recent years, an ultrashort pulse spectrum broadening technology based on solid thin slices (thin slice groups) has rekindled researchers' enthusiasm for research on solid medium spectrum broadening technology. Different from the method based on the bulk solid medium, this method based on the solid sheet group adopts multiple sheets of wide-bandgap transparent dielectric sheets (such as fused silica sheets) with a thickness of about 0.1 mm to be placed at a certain distance near the focal point of the ultrashort pulse to achieve ultra-short pulses. The short pulse interacts with the strong-field nonlinear optics of the solid flake group to achieve spectral broadening. Unlike bulk solids, solid flakes can separate the process of spectral broadening from the process of self-focusing into filaments (including multimitosis), so that the interaction of ultrashort pulses with thin flakes only induces significant spectral broadening without causing self-focusing Filtration and multimitosis: Spectral broadening mainly comes from the self-phase and cross-phase modulation caused by the optical Kerr effect in the time domain. Under the condition of high enough radiation power density, the ultrashort pulse incident on the dielectric sheet does not need to go through the self-focusing process. It can directly produce strong self-phase and cross-phase modulation to induce significant broadening of the spectrum; while self-focusing comes from the spatial distribution of medium refractive index changes caused by the optical Kerr effect in the airspace, and requires accumulation of a certain operating distance to produce significant effects. Therefore, when the thickness of the thin sheet is small enough, ultrashort pulses passing through the thin sheet can produce significant spectral broadening without significant self-focusing and filamentation effects. In addition to avoiding the problems caused by the self-focusing effect, the spectral broadening technology of the solid sheet group also provides a richer and more flexible adjustment dimension than bulk transparent media. For example, when a single solid sheet is not enough to produce sufficient spectral broadening, the cumulative spectral broadening effect can be produced by placing multiple solid sheets at specific intervals near the laser focus, and finally a broadband supercontinuum can be formed, which can be extended over time. After the domain is compressed, the ultrashort pulse output of period level can be obtained.
固体薄片(薄片组)光谱展宽技术的上述显著优点引起了相关领域研究人员广泛兴趣。近年来,更多相关研究的开展及成果的呈现在促进对超短脉冲与固体薄片作用特性理解的同时也使该技术的一些不足之处呈现出来。其中,较为显著的是,虽然固体薄片技术实现了光谱展宽与成丝过程的分离,但薄片固体介质与体块固体介质本质上是同一种基体材料,因此两者在相同的强超短脉冲辐射下具有相似的老化特征,也即体块固体介质系统所需面对的上述老化问题也同样会在薄片固体介质系统中遇到,这是固体介质薄片光谱展宽技术无法回避的一个重要技术问题。实际上,相较体块固体,超短脉冲传输通过固体薄片对应更短的非线性作用距离,所以在应用固体薄片进行光谱展宽时需要施加更高的脉冲辐射功率密度以获得显著的光谱展宽。因此,要获得相似的光谱展宽效果,薄片介质需承受比体块固体介质更强的辐射,进而在辐射过程中会更快老化。对基于固体薄片的超短激光脉冲光谱展宽技术而言,这种高辐射功率密度下材料发生持续、快速老化的特性会使其输出超连续谱的稳定性受到重要不利影响,如导致超连续谱输出功率持续下降、光谱展宽宽度不断变窄、输出光束基横模特性逐渐变差等现象。The above-mentioned remarkable advantages of the solid sheet (sheet group) spectral broadening technology have aroused extensive interest of researchers in related fields. In recent years, the development of more related research and the presentation of results have not only promoted the understanding of the interaction between ultrashort pulses and solid sheets, but also revealed some shortcomings of this technology. Among them, it is notable that although the solid sheet technology realizes the separation of spectral broadening and filamentation process, the thin sheet solid medium and the bulk solid medium are essentially the same matrix material, so the two are irradiated by the same strong ultrashort pulse. It has similar aging characteristics, that is, the above-mentioned aging problem that the bulk solid medium system needs to face will also be encountered in the thin solid medium system, which is an important technical problem that cannot be avoided by the solid medium thin slice spectral broadening technology. In fact, compared with bulk solids, ultrashort pulse transmission through solid sheets corresponds to a shorter nonlinear action distance, so when using solid sheets for spectral broadening, a higher pulse radiation power density needs to be applied to obtain significant spectral broadening. Therefore, to obtain a similar spectral broadening effect, thin-sheet media need to withstand stronger radiation than bulk solid media, and thus age faster during the irradiation process. For the ultrashort laser pulse spectrum broadening technology based on solid sheets, the continuous and rapid aging of materials under high radiation power density will have an important adverse effect on the stability of the output supercontinuum, such as causing supercontinuum The output power continues to decrease, the spectral broadening width continues to narrow, and the fundamental transverse mode characteristics of the output beam gradually deteriorate.
简而言之,强超短脉冲辐射下介质材料持续、快速老化的特性对基于固体薄片(薄片组)光谱展宽技术实现实际的长时间稳定工业化应用而言是一个无法回避的固有技术难题,其为阻碍该技术实现商业化应用的直接技术瓶颈,亟待新技术实现突破。In short, the continuous and rapid aging characteristics of dielectric materials under strong ultrashort pulse radiation is an inherent technical problem that cannot be avoided for the actual long-term stable industrial application based on solid sheet (sheet group) spectral broadening technology. In order to hinder the direct technical bottleneck of the commercial application of this technology, a new technology breakthrough is urgently needed.
发明内容Contents of the invention
本发明为了解决以上现有固体薄片超连续谱技术中由于强激光辐射导致材料老化的问题,提供了一种基于固体薄片的高稳定性超连续谱光源的产生方法。In order to solve the problem of material aging caused by strong laser radiation in the existing solid sheet supercontinuum technology, the present invention provides a method for generating a high-stability supercontinuum light source based on solid sheet.
为实现上述本发明目的,采用的技术方案如下:For realizing above-mentioned object of the present invention, the technical scheme that adopts is as follows:
一种基于固体薄片的高稳定性超连续谱光源的产生方法,所述的方法步骤如下:A method for producing a high-stability supercontinuum light source based on a solid sheet, the steps of the method are as follows:
S1:在二维或多维微位移平台上放置至少一个固体薄片;S1: Place at least one solid thin slice on a two-dimensional or multi-dimensional micro-displacement platform;
S2:超短激光脉冲会聚入射固体薄片前表面的某一辐照区域后,在固体薄片内传播过程中产生非线性光学作用而实现光谱展宽;S2: After the ultrashort laser pulse is converged into a certain irradiation area on the front surface of the solid sheet, nonlinear optical effects are generated during the propagation process in the solid sheet to achieve spectral broadening;
S3:同时采用光功率探头对与固体薄片作用后的超短激光脉冲进行采样探测,实现对采样光束功率的实时测量及记录;S3: At the same time, the optical power probe is used to sample and detect the ultrashort laser pulse after interacting with the solid sheet, so as to realize the real-time measurement and recording of the sampling beam power;
S4:基于探测到的功率值,计算实时功率相对于初始功率的变化幅度,由此获得对固体薄片老化情况的定量评估;S4: Based on the detected power value, calculate the change range of the real-time power relative to the initial power, thereby obtaining a quantitative assessment of the aging of the solid sheet;
S5:主控系统发出控制指令控制微位移平台按预先设定运动模式进行运动,实现对固体薄片辐照区域的持续更新,由此实现产生高稳定性超连续谱的超短脉冲光源。S5: The main control system sends out control instructions to control the micro-displacement platform to move according to the preset movement mode to realize continuous updating of the irradiation area of the solid sheet, thereby realizing the ultrashort pulse light source that generates a high-stability supercontinuum.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
在超短脉冲辐照固体薄片产生超连续谱过程中,长时间高强度的超短激光脉冲辐照会导致固体薄片电介质出现显著的老化现象:强光辐照诱导材料晶格缺陷的随机产生以及折射率的非均匀改变,其导致材料对激光吸收显著增强的同时也易导致激光成丝现象出现,且随强激光辐照时间的增加由于孵化效应这些现象越来越显著,进而在固体薄片介质内部或表面导致永久性光学损伤,甚至由于吸收所引起的热累积而最终导致介质表面出现剧烈烧蚀破坏。上述强光辐照所导致的透明电介质材料的持续老化将使超短脉冲辐照固体薄片产生的超连续谱的光谱展宽显著减小、光束横模模式恶化、脉冲能量显著降低,从而极大阻碍基于固体薄片技术的超连续谱光源的长时间高稳定工作。本发明方法针对固体薄片超连续谱源的上述技术难题,通过实时监控超短激光脉冲辐照固体薄片产生超连续谱过程中光束功率的变化幅度,获得对固体薄片老化情况的定量评估,并基于该评估控制固体薄片按预先设定运动模式进行运动,实现强激光长时间辐照过程中对固体薄片辐照区域的持续更新,从而有效避免了辐照区域介质材料老化过程在时间及空间上的不断累积,为超连续谱的长时间稳定输出创造合适的物质及物理条件。也即,本发明通过实时、定量评估强超短激光脉冲辐照固体薄片的老化情况,引入自动控制技术实现薄片辐照区域的持续更新,有效避免了辐照区域介质材料出现严重老化,从而极大降低材料老化现象对超连续谱产生过程中功率稳定性、光谱展宽程度、以及横模特性的影响,最终实现基于固体薄片技术的超连续谱光源的长时间高稳定性输出。In the process of ultrashort pulse irradiating solid thin slices to produce supercontinuum, long-term high-intensity ultrashort laser pulse irradiation will cause significant aging phenomena in solid thin slice dielectrics: strong light irradiation induces random generation of lattice defects and The non-uniform change of the refractive index, which leads to the significant enhancement of the laser absorption of the material, also easily leads to the phenomenon of laser filamentation, and with the increase of the intense laser irradiation time, these phenomena become more and more significant due to the incubation effect, and then in the solid sheet medium The internal or surface causes permanent optical damage, and even causes severe ablation damage on the surface of the medium due to heat accumulation caused by absorption. The continuous aging of the transparent dielectric material caused by the above-mentioned strong light irradiation will significantly reduce the spectral broadening of the supercontinuum generated by the ultrashort pulse irradiation of the solid sheet, deteriorate the beam transverse mode mode, and significantly reduce the pulse energy, thus greatly hindering Long-term high-stable operation of supercontinuum light source based on solid sheet technology. The method of the present invention aims at the above-mentioned technical problems of the solid sheet supercontinuum source, and obtains a quantitative evaluation of the aging of the solid sheet by real-time monitoring of the beam power variation range during the process of irradiating the solid sheet with ultrashort laser pulses to generate the supercontinuum, and based on This evaluation controls the movement of the solid sheet according to the preset movement mode, and realizes the continuous update of the irradiation area of the solid sheet during the long-term irradiation of the strong laser, thus effectively avoiding the time and space of the aging process of the medium material in the irradiation area. Continuously accumulate to create suitable material and physical conditions for the long-term stable output of supercontinuum. That is to say, the present invention real-time and quantitatively evaluates the aging of solid thin slices irradiated by strong ultra-short laser pulses, and introduces automatic control technology to realize the continuous update of the thin slice irradiation area, effectively avoiding severe aging of the dielectric material in the irradiation area, thereby extremely Greatly reduce the impact of material aging on power stability, spectral broadening, and transverse mode characteristics during supercontinuum generation, and finally achieve long-term high-stability output of supercontinuum light sources based on solid sheet technology.
附图说明Description of drawings
图1是本发明所述的基于固体薄片的高稳定性超连续谱光源的产生方法的流程步骤图。Fig. 1 is a flow chart of the method for producing a solid sheet-based high-stability supercontinuum light source according to the present invention.
图2是本发明所述高稳定性超连续谱光源的产生方法的一种光路原理图。Fig. 2 is a schematic diagram of an optical path of the method for generating a high-stability supercontinuum light source according to the present invention.
图3是本发明所述高稳定性超连续谱光源的产生方法的另一种光路原理图。Fig. 3 is another optical path schematic diagram of the method for generating a high-stability supercontinuum light source according to the present invention.
图4是在固体薄片上进行超短脉冲辐照区域更新的三种预先设定运动模式。Figure 4 shows three preset motion modes for updating the ultrashort pulse irradiation area on a solid sheet.
图5是在方形固体薄片上进行超短脉冲辐照区域更新的一种运动轨迹。Fig. 5 is a kind of trajectory of updating the ultrashort pulse irradiation area on the square solid sheet.
图6是在方形固体薄片上进行超短脉冲辐照区域更新的另一种运动轨迹。Fig. 6 is another trajectory of updating the ultrashort pulse irradiation area on a square solid sheet.
图7是在方形固体薄片上进行超短脉冲辐照区域更新的又一种运动轨迹。Fig. 7 is another movement trajectory for updating the ultrashort pulse irradiation area on a square solid sheet.
图8是在圆形固体薄片上进行超短脉冲辐照区域更新的一种运动轨迹。Fig. 8 is a kind of trajectory of updating the ultrashort pulse irradiation area on the circular solid slice.
图9是在圆形固体薄片上进行超短脉冲辐照区域更新的另一种运动轨迹。Fig. 9 is another motion trajectory for updating the ultrashort pulse irradiation area on a circular solid sheet.
图中,1-飞秒激光器;2-连续衰减片;3-可变光阑;4-平凸透镜;5-固体薄片;6-光功率探头;7-主控系统;8-微位移平台;9-分束片。In the figure, 1-femtosecond laser; 2-continuous attenuation film; 3-variable diaphragm; 4-plano-convex lens; 5-solid sheet; 6-optical power probe; 7-main control system; 8-micro-displacement platform; 9- Beam splitter.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
对基于超短激光脉冲辐照固体薄片(薄片组)产生超连续谱的技术而言,高激光辐照强度下介质材料发生持续老化的特性会对其超连续谱输出的稳定性产生重要不利影响,如导致输出功率持续下降、光谱展宽不断变窄、输出光束横模特性持续变差等现象。也即,强激光辐照所导致介质材料不可避免的老化是阻碍这种超连续谱产生技术实现长时间稳定工业化应用的重要原因。本发明围绕固体薄片超连续谱技术所存在的这个固有问题,提出一种基于固体薄片的高稳定性超连续谱光源的产生方法,如图1所示,具体如下:For the supercontinuum generation technology based on ultrashort laser pulse irradiation of solid thin slices (flake groups), the continuous aging of dielectric materials under high laser irradiation intensity will have an important adverse effect on the stability of the supercontinuum output. , such as the continuous decline in output power, the continuous narrowing of spectral broadening, and the continuous deterioration of the transverse mode characteristics of the output beam. That is to say, the inevitable aging of dielectric materials caused by strong laser irradiation is an important reason that hinders the long-term and stable industrial application of this supercontinuum generation technology. The present invention revolves around the inherent problem of solid sheet supercontinuum technology, and proposes a method for generating a high-stability supercontinuum light source based on solid sheet, as shown in Figure 1, specifically as follows:
S1:在二维或多维微位移平台上放置至少一个固体薄片;S1: Place at least one solid thin slice on a two-dimensional or multi-dimensional micro-displacement platform;
S2:超短激光脉冲会聚入射固体薄片前表面的某一辐照区域后,在固体薄片内传播过程中产生非线性光学作用而实现光谱展宽;S2: After the ultrashort laser pulse is converged into a certain irradiation area on the front surface of the solid sheet, nonlinear optical effects are generated during the propagation process in the solid sheet to achieve spectral broadening;
S3:同时采用光功率探头对与固体薄片作用后的超短激光脉冲进行采样探测,实现对采样光束功率的实时测量及记录;S3: At the same time, the optical power probe is used to sample and detect the ultrashort laser pulse after interacting with the solid sheet, so as to realize the real-time measurement and recording of the sampling beam power;
S4:基于探测到的功率值,计算实时功率相对于初始功率的变化幅度,由此获得对固体薄片老化情况的定量评估;S4: Based on the detected power value, calculate the change range of the real-time power relative to the initial power, thereby obtaining a quantitative assessment of the aging of the solid sheet;
S5:主控系统发出控制指令控制微位移平台按预先设定运动模式进行运动,实现对固体薄片辐照区域的持续更新,由此实现产生高稳定性超连续谱的超短脉冲光源。S5: The main control system sends out control instructions to control the micro-displacement platform to move according to the preset movement mode to realize continuous updating of the irradiation area of the solid sheet, thereby realizing the ultrashort pulse light source that generates a high-stability supercontinuum.
在一个具体的实施例中,如图2所示,所述的飞秒激光器1输出超短激光脉冲依次通过用于控制超短激光脉冲单脉冲能量的连续衰减片2、用于控制入射超短激光脉冲光束直径的可变光阑3和用于聚焦作用的平凸透镜4进行会聚后,入射固体薄片5前表面的某一辐照区域。所述的超短激光脉冲在固体薄片5表面产生的辐照光强可使入射超短激光脉冲与固体薄片5产生显著非线性光学作用,同时可使固体薄片5的老化时间常数处于“小时”时间尺度。本实施例中,飞秒激光器1输出的超短激光脉冲经平凸透镜4会聚后辐照在固体薄片5的前表面,所产生的辐照光强可使入射超短激光脉冲与固体薄片产生显著非线性光学作用。具体地,本实施例所使用的飞秒激光器1的中心波长为800nm,脉冲宽度为50fs,重复频率为1KHz,光束直径为8.5mm(1/e2宽度),偏振为沿水平方向的线偏振。所使用的固体薄片5为前后表面经光学抛光的石英玻璃薄片,其厚度为0.1mm,方形通光面尺寸为10mm×10mm。其中,飞秒激光输出的超短激光脉冲可通过连续衰减片2进行单脉冲能量控制,其具有高斯分布的光束横模可通过相对于激光光束居中放置的可变光阑3进行进一步的直径控制,而后续会聚操作应根据超连续谱产生的辐照条件选择具有合适焦距的平凸透镜4来实现。一般而言,准直光束会聚焦斑的光束直径与会聚透镜的焦距成正比,与入射光束直径成反比。因此,通过调节连续衰减片2控制入射超短脉冲单脉冲能量,调节可变光阑3控制入射超短脉冲光束直径,以及选择不同焦距的平凸透镜4,辐照在固体薄片5上的瞬时光强可得到灵活控制,从而获得超短激光脉冲辐照固体薄片产生超连续谱的合适条件:会聚超短激光脉冲可与固体薄片产生强非线性光学作用使自身光谱获得显著展宽,同时其辐照强度也不会导致固体薄片发生迅速的激光诱导破坏(虽然在这种强度激光的长时间辐照下介质材料仍会产生累积结构改变甚至于烧蚀破坏)。In a specific embodiment, as shown in FIG. 2 , the ultrashort laser pulse output by the femtosecond laser 1 sequentially passes through the
例如,在一种典型辐照参数设置中,让可变光阑3全开,即飞秒激光高斯光束不受可变光阑3的影响,而平凸透镜4的焦距选择为2.0m,此时会聚高斯光束束腰的直径约为0.24mm。在这种会聚条件下,典型地,当激光辐照功率为370mW时,虽然超短激光脉冲在空气中传播并未出现自聚焦成丝现象,且超短激光脉冲辐照固体薄片5可产生显著光谱展宽,但固体薄片5被辐照区域会在接近1分钟的时间尺度迅速出现烧蚀破坏(若定义初始辐照到出现烧蚀破坏的时间间隔为老化时间常数,此时老化时间常数接近1分钟)。然而,通过调节连续衰减片2使激光辐照功率下降到250mW,固体薄片5可在超过1小时时间尺度激光辐照下不出现烧蚀破坏(老化时间常数大于1小时),而只会出现累积结构改变所导致的激光透过率下降,也即出现超连续谱输出功率的下降。并且,在这种会聚条件下当辐照功率为250mW时,超短激光脉冲辐照固体薄片产生超连续谱的谱宽展宽已接近饱和。因此,该辐照条件可作为超短激光脉冲辐照固体薄片产生超连续谱的一种合适条件。For example, in a typical irradiation parameter setting, the iris 3 is fully opened, that is, the femtosecond laser Gaussian beam is not affected by the iris 3, and the focal length of the plano-convex lens 4 is selected as 2.0m, at this time The diameter of the waist of the converging Gaussian beam is about 0.24 mm. Under such converging conditions, typically, when the laser irradiation power is 370mW, although the ultrashort laser pulse propagates in the air, there is no self-focusing filament phenomenon, and the
又如,在另一种典型辐照参数设置中,让可变光阑3调整为2mm通光孔径,而平凸透镜4的焦距选择为0.10m,此时平顶光束会聚形成的艾里斑的直径约为0.10mm。在这种会聚条件下,典型地,当激光辐照功率为68mW时,超短激光脉冲辐照固体薄片5可产生显著光谱展宽,但固体薄片5被辐照区域会在接近1分钟的时间尺度迅速出现烧蚀破坏(老化时间常数接近1分钟)。然而,通过调节连续衰减片2使激光辐照功率下降到46mW,固体薄片5可在超过1小时时间尺度激光辐照下不出现烧蚀破坏(老化时间常数大于1小时),而只会出现累积结构改变所导致的透过率下降,也即出现超连续谱输出功率的下降。并且,在这种会聚条件下当辐照功率为46mW时,超短激光脉冲辐照石英薄片产生超连续谱的谱宽展宽也已接近饱和。因此,该辐照条件同样可作为超短激光脉冲辐照固体薄片产生超连续谱的一种合适条件。As another example, in another typical irradiation parameter setting, let the iris 3 be adjusted to a clear aperture of 2 mm, and the focal length of the plano-convex lens 4 is selected to be 0.10 m. The diameter is about 0.10mm. Under such converging conditions, typically, when the laser irradiation power is 68mW, ultrashort laser pulse irradiation of the
在一个具体的实施例中,在步骤S1中,一个固体薄片5放置在二维微位移平台8上,以实现强激光长时间辐照薄片过程中系统持续自动更新激光辐照区域的目的。在本实施例中,二维微位移平台8或多维微位移平台的位移范围应能覆盖固体薄片5的整个通光面,且所述的二维或多维微位移平台的位移路径可预先设定并存储在主控系统中,从而可实现对固体薄片5进行按设定路径的超短激光脉冲扫描辐照。另一方面,由于本实施例中对与固体薄片作用后的超短激光脉冲进行采样探测是通过直接对与固体薄片5作用后的反射激光光束功率进行探测来实现,因此固体薄片5的表面法线需与入射的超短激光脉冲传输方向形成非0度的夹角,以使反射的超短激光脉冲光束与入射的超短激光脉冲光束实现空间分离,进而可实现对反射的超短激光脉冲光束的探测。事实上,一般固体薄片5的激光辐照条件会设置成布儒斯特角,以尽量降低固体薄片5的反射损失。综合考虑采样功率的要求以及上述减反的要求,本实施例中固体薄片5的表面法线与入射光传输方向间的夹角设置成接近布儒斯特角,而非布儒斯特角,以保留合适的反射光功率供采样监控。在这种激光入射角设置下,为保证固体薄片5更新到新辐照区域时在光束传播方向上激光辐照薄片的空间位置不变(以使固体薄片5更新辐照区域后激光辐照光强保持一致),具有二维平移功能的微位移平台的两相互垂直位移轴方向应设置为处于固体薄片5通光面面内,在本实施例中分别沿着水平方向(水平轴)和竖直方向(竖直轴或y轴),以匹配沿水平方向的激光偏振条件。对于本实施例中具有方形通光面的固体薄片5,其放置在微位移平台上时,满足上述要求的理想放置方案是使固体薄片5两相互垂直侧边方向分别沿着微位移平台两相互垂直位移方向,以使后续辐照区域更新操作能充分利用固体薄片5的通光面积。然后,固体薄片5调整激光入射角的操作通过直接沿y轴旋转微位移平台来实现。In a specific embodiment, in step S1, a solid
本实施例中的二维微位移平台也可扩展为三维微位移平台。对于三维微位移平台,典型地,其三个两两相互垂直位移轴方向可设置为分别沿着入射光传输方向(z轴),以及沿着垂直入射光传输方向面内的水平方向(x轴)和竖直方向(y轴)。在具有三维运动能力的条件下,微位移平台可通过一轴、二轴或三轴运动确保在微位移平台上任意放置的固体薄片5更新辐照区域时,在光束传播方向上激光辐照薄片的空间位置不变,而无需考虑二维微位移平台放置固体薄片时两者间的上述特殊方向关联要求,因此固体薄片具有更大的调节灵活度。比如,在三维微位移平台8上放置的固体薄片5调整激光入射角的操作可通过保持微位移平台固定,沿y轴旋转固体薄片来实现。The two-dimensional micro-displacement platform in this embodiment can also be extended to a three-dimensional micro-displacement platform. For a three-dimensional micro-displacement platform, typically, its three two-by-two mutual vertical displacement axis directions can be set to be along the incident light transmission direction (z axis), and along the horizontal direction (x axis) in the plane perpendicular to the incident light transmission direction. ) and the vertical direction (y-axis). Under the condition of having three-dimensional motion capability, the micro-displacement platform can move through one-axis, two-axis or three-axis to ensure that when the
本实施例中的一个固体薄片5也可扩展为固体薄片组,即除了在超短激光脉冲会聚焦点附近放置一个固体薄片5的情形,也可在超短激光脉冲会聚焦点附近按一定间隔放置两个或多个固体薄片,以实现超短激光脉冲辐照固体薄片的两级或多级光谱展宽,从而大大提升固体薄片光谱展宽技术的光谱展宽能力。对于这种固体薄片组的情形,微位移平台的设置有两种典型形式:一种是所有的固体薄片都放置在同一个微位移平台上,也即所有固体薄片同时进行辐射区域位置的更新;二是每个固体薄片分别放置在一个微位移平台上,这样可通过分别监控每一片薄片的老化情况,实现对每一个固体薄片辐照区域的单独更新。A
在一个具体的实施例中,在步骤S2中,高能量的超短激光脉冲在固体薄片5内传播过程中由于非线性光学效应而产生光谱展宽,形成超连续谱超短脉冲输出。具体地,超短激光脉冲入射固体薄片5前表面的某一辐照区域后,将在固体薄片介质内传播。如上所述,通过调节连续衰减片2和可变光阑3,以及选择不同焦距的平凸透镜4,可控制辐照在固体薄片5上的瞬时光强处于超短激光脉冲与固体薄片相互作用产生超连续谱的合适辐照条件窗口,如上述所列出的两种典型辐照参数设置。在这些辐照条件下,由于激光辐照强度处于自相位调制、交叉相位调制、四波混频、受激拉曼散射等三阶非线性光学效应显著发生的物理作用强度窗口,入射的超短激光脉冲在固体薄片内传播过程中将与固体薄片介质发生上述三阶非线性光学作用而产生显著的频谱展宽,在透过固体薄片后形成超连续谱超短脉冲输出。In a specific embodiment, in step S2, the high-energy ultrashort laser pulse propagates in the
在本实施例中,可以利用上述两种典型辐照参数设置,使入射超短激光脉冲与一片固体薄片初始作用后实现超短激光脉冲的光谱带宽(半高全宽)由30nm扩展到60nm,且脉冲能量利用率可接近95%。但在辐照区域固定的条件下,随着辐照时间的增加,输出超连续谱超短脉冲的上述光谱带宽扩展幅度及脉冲能量利用率均会出现逐渐下降。而当移动固体薄片对辐照区域进行更新后,输出超连续谱超短脉冲的光谱带宽扩展幅度及脉冲能量利用率将回到初始值。In this embodiment, the above two typical irradiation parameter settings can be used to expand the spectral bandwidth (full width at half maximum) of the ultrashort laser pulse from 30nm to 60nm after the initial interaction between the incident ultrashort laser pulse and a solid sheet, and the pulse The energy utilization rate can be close to 95%. However, under the condition of a fixed irradiation area, as the irradiation time increases, the above-mentioned spectral bandwidth expansion and pulse energy utilization rate of the output supercontinuum ultrashort pulse will gradually decrease. When the solid sheet is moved to update the irradiation area, the spectral bandwidth expansion and pulse energy utilization rate of the output supercontinuum ultrashort pulse will return to the initial value.
在一个具体的实施例中,在步骤S3中,会聚高能量超短激光脉冲在固体薄片5的前后表面所产生的反射光束被光功率探头6采集,经光电转换后传输到主控系统7,实现对反射激光光束功率的实时测量、记录及监控。在本实施例中,需对与固体薄片5作用后的高能量超短激光脉冲进行采样探测,以实现对采样超短激光脉冲光束功率的实时测量监控。事实上,超短激光脉冲辐照固体薄片会在固体薄片的前、后表面产生反射,该反射光束即可作为采样光束用于监控与固体薄片5作用后的激光功率的变化。也即,本实施例的采样探测是通过对与固体薄片5作用后反射的超短激光脉冲光束进行探测来实现。In a specific embodiment, in step S3, the reflected light beam generated by the convergent high-energy ultrashort laser pulse on the front and rear surfaces of the
需注意的是,在本实施例中所探测的反射光束包括固体薄片5前表面和后表面的反射光。前表面反射光反映了入射的超短激光脉冲与固体薄片的前表面作用过程中产生的反射,而后表面的反射光反映了频谱展宽后的超连续谱超短脉冲与固体薄片的后表面作用过程中产生的反射,两者都会由于固体薄片在表面及内部的老化或破坏而出现反射率的下降。在对反射光束进行功率监控过程中,具有足够大探测面积的光功率探头6对前、后表面反射光均进行完整采集,以保证测量功率数据在长时间探测过程中的稳定性,减小光束抖动对数据准确性的影响。It should be noted that the detected reflected light beams in this embodiment include the reflected light from the front surface and the back surface of the
在本实施例中,所述的固体薄片5的表面法线与入射光传输方向间的夹角设置成45度,接近但非等于石英玻璃的布儒斯特角(56度),以保证在上述典型辐照参数设置条件下均可保留合适的反射光功率供探头6实现稳定的低噪声探测。In this embodiment, the angle between the surface normal of the
例如,在上述激光入射角及第一种辐照参数设置的条件下,250mW功率值的入射激光辐照固体薄片5产生的反射光束功率值约为85μW;在上述激光入射角及第二种辐照参数设置的条件下,46mW功率值的入射激光辐照固体薄片5产生的反射光束功率值约为16μW:这两个反射光束功率值均可确保本实施例所使用的光功率探头6处于高灵敏低噪声探测区间。For example, under the conditions of the above-mentioned laser incident angle and the setting of the first irradiation parameter, the incident laser with a power value of 250 mW irradiates the
在本实施例的探测设置中,采用一个具有10mm×10mm有效探测面积的硅光电功率探头实现对反射光束的完整采集。另外,由于反射光束由接近光束束腰处的会聚光束发出,其具有发散的特性,硅光电探头应放置在离固体薄片合适距离处,以避免由于探头表面超短脉冲瞬时辐照光强过高而导致探测信号出现非线性甚至饱和特性,或者出现光束发散过大而无法实现完整采集的情况。另外,为避免由于瞬时辐照光强过高而导致探头出现非线性甚至饱和特性,在反射的超短激光脉冲入射探头之前,可先通过中性滤光片对反射的超短激光脉冲进行衰减后,再入射到探头。In the detection setup of this embodiment, a silicon photoelectric power sensor with an effective detection area of 10 mm×10 mm is used to realize complete collection of reflected light beams. In addition, since the reflected beam is emitted by a converging beam close to the beam waist, which has divergent characteristics, the silicon photoelectric probe should be placed at an appropriate distance from the solid sheet to avoid excessively high instantaneous irradiating light intensity due to ultrashort pulses on the probe surface As a result, the detection signal has nonlinear or even saturation characteristics, or the beam divergence is too large to achieve complete acquisition. In addition, in order to avoid nonlinear or even saturation characteristics of the probe due to excessive instantaneous irradiated light intensity, the reflected ultrashort laser pulse can be attenuated by a neutral filter before the reflected ultrashort laser pulse enters the probe Then, it is incident on the probe.
例如,对应第一种辐照参数设置,硅光电探头6相对反射光束居中放置于距离固体薄片5辐照点50cm处,且探头前配置合适的中性滤光片对入射的超短激光脉冲进行衰减(令滤光片紧贴探头放置也可减弱环境光的影响),以避免探头探测的信号出现非线性特性。For example, corresponding to the first irradiation parameter setting, the silicon
探头6把采集到的光信号转化为电信号后传输到主控系统7,然后主控系统7对实时采集功率数据进行记录及呈现,从而实现对反射的超短激光脉冲光束功率的实时测量、记录及监控。The
在一个具体的实施例中,在步骤S4中,主控系统7基于所探测到的反射激光光束功率值,进一步计算所探测实时功率相对于初始功率的实时变化幅度,获得对超短激光脉冲辐照的固体薄片5老化情况的实时、定量评估。一般而言,随着强超短激光脉冲辐照时间的增加,固体薄片被辐照区域将逐渐老化,从而导致材料对辐照激光吸收的逐渐增加。这种对辐照激光吸收的逐渐增加反馈到反射光束上,会导致探测到的反射光束的功率出现逐渐的下降,并且这种反射光的下降幅度与辐照光吸收的增加幅度呈正相关关系。因此,通过探测反射光的实时下降幅度,固体薄片的老化情况可得到实时的、定量的评估。In a specific embodiment, in step S4, the
理论上,固体薄片的老化速度与辐照激光光强直接关联,并呈现显著的非线性演化特征:随着辐照激光光强逐渐提高并趋近单脉冲破坏阈值,固体薄片的老化速度会越来越快,从初始辐照到出现烧蚀破坏的时间间隔,也即老化时间常数(Δtd)会越来越短。事实上,当固体薄片的老化速度处于较为快速的区间时(如Δtd在“分钟”时间尺度时),固体薄片的老化过程随机性会变大(如Δtd的不确定性会提高),不利于超连续谱的稳定输出及系统的闭环反馈控制。因此,为避免固体薄片在超连续谱产生过程中出现过快老化而导致各种不良效应,在实际的应用中激光辐照光强应控制在令固体薄片老化速度处于较为缓慢的区间。如上述两种例典型辐照参数设置所对应的激光功率选择,可使固体薄片处于缓慢老化区间,其Δtd在“小时”时间尺度。Theoretically, the aging speed of solid thin slices is directly related to the irradiated laser light intensity, and presents a significant nonlinear evolution feature: as the irradiated laser light intensity gradually increases and approaches the single-pulse damage threshold, the aging speed of solid thin slices will increase. The faster and faster the time interval from the initial irradiation to the occurrence of ablation damage, that is, the aging time constant (Δt d ) will be shorter and shorter. In fact, when the aging rate of the solid sheet is in a relatively fast interval (such as when Δt d is on the "minute" time scale), the randomness of the aging process of the solid sheet will become larger (such as the uncertainty of Δt d will increase), It is not conducive to the stable output of the supercontinuum and the closed-loop feedback control of the system. Therefore, in order to avoid various adverse effects caused by the rapid aging of solid flakes during supercontinuum generation, the intensity of laser irradiation should be controlled in a range where the aging speed of solid flakes is relatively slow in practical applications. The laser power selection corresponding to the typical irradiation parameter settings of the above two examples can make the solid sheet in the slow aging interval, and its Δt d is on the "hour" time scale.
在一个具体的实施例中,在步骤S5中,基于对固体薄片老化情况的评估,主控系统7发出控制微位移平台运动的指令,使微位移平台8按预先设定模式进行运动,实现强激光长时间辐照固体薄片5过程中对薄片辐照区域的持续更新。In a specific embodiment, in step S5, based on the evaluation of the aging condition of the solid sheet, the
在本实施例中,基于对固体薄片老化情况的评估,本实施例可采取以下一种预设固体薄片运动控制模式实现对固体薄片辐照区域的持续位置更新,如图4中的预设运动模式1所示:主控系统监控采样光束功率的下降幅度,当光束功率下降幅度大于预先设定的第一阈值时,主控系统控制微位移平台以大于辐照光斑直径的更新运动间距沿预先设定的路径运动。In this embodiment, based on the evaluation of the aging of the solid sheet, the following preset motion control mode of the solid sheet can be adopted in this embodiment to realize the continuous position update of the irradiated area of the solid sheet, as shown in the preset motion in Figure 4 Mode 1: the main control system monitors the decline of the sampling beam power. When the beam power decline is greater than the preset first threshold, the main control system controls the micro-displacement platform to update the movement distance along the preset distance greater than the diameter of the irradiation spot. Set path movement.
具体地,可按照固体薄片的尺寸大小、超短激光脉冲的辐照光斑直径大小、入射超短激光脉冲与固体薄片形成的入射角,将固体薄片均匀划分为若干个辐射区域;通过设置光束功率下降幅度的第一阈值作为固体薄片运动的触发条件,当光束功率下降幅度大于预先设定的第一阈值时,主控系统控制微位移平台进行相应的运动,使得超短激光脉冲的辐射区域由当前辐射区域切换到相邻辐射区域,实现固体薄片辐照区域空间定点、时间离散式更新。Specifically, the solid sheet can be evenly divided into several irradiation regions according to the size of the solid sheet, the diameter of the irradiation spot of the ultrashort laser pulse, and the incident angle formed by the incident ultrashort laser pulse and the solid sheet; by setting the beam power The first threshold value of the drop range is used as the trigger condition for the movement of the solid sheet. When the drop range of the beam power is greater than the preset first threshold value, the main control system controls the micro-displacement platform to move accordingly, so that the radiation area of the ultrashort laser pulse is The current radiation area is switched to the adjacent radiation area to realize spatial fixed-point and time-discrete updating of the solid sheet irradiation area.
在本实施例所述的固体薄片运动控制模式中,当探测激光功率实时下降幅度大于预先设定的第一阈值时,主控系统7将发出控制微位移平台8运动的指令,通过微位移平台按预先设定的路径运动设定的距离使固体薄片辐照区域获得更新。具体地,第一阈值的设定需重点考虑两方面的因素。In the solid sheet motion control mode described in this embodiment, when the real-time drop of the detection laser power is greater than the preset first threshold, the
首先,第一阈值不应设置得过小,因为入射的超短脉冲激光的光束功率并非绝对稳定,其必然会随时间出现一定的随机或系统性起伏,而这种本征的光束功率噪声可能会引起阈值条件的误触发。其中,对于随机噪声的情形,测量的功率值在统计上呈现具有特定平均功率及功率标准差的正态分布。根据正态分布的特性,1倍标准差的概率为68.26895%,2倍标准差的概率为95.44997%,3倍标准差的概率为99.73002%,4倍标准差的概率为99.99367%,5倍标准差的概率为99.99994%。考虑具有“小时”时间尺度的探测时长和千次量级的采样探测次数,由上述数据可知,当第一阈值设定为等于或大于入射光束功率4倍标准差时,可得到较低的激光功率误触发几率;而当第一阈值设定为等于或大于入射光束功率5倍标准差时,可确保触发功率第一阈值的原因几乎都是由固体薄片老化所致,而非激光器的功率噪声引起。因此,为了尽量避免第一阈值条件的误触发,在本实施例中所述的第一阈值设置为等于或大于5倍超短脉冲激光功率的标准差。First of all, the first threshold should not be set too small, because the beam power of the incident ultrashort pulse laser is not absolutely stable, it will inevitably fluctuate randomly or systematically with time, and this intrinsic beam power noise may Can cause false triggering of threshold conditions. Wherein, for the case of random noise, the measured power values statistically present a normal distribution with a specific mean power and power standard deviation. According to the characteristics of the normal distribution, the probability of 1 standard deviation is 68.26895%, the probability of 2 standard deviations is 95.44997%, the probability of 3 standard deviations is 99.73002%, the probability of 4 standard deviations is 99.99367%, and 5 times the standard deviation The probability of being bad is 99.99994%. Considering the detection duration with the "hour" time scale and the number of sampling detections on the order of a thousand, it can be known from the above data that when the first threshold is set to be equal to or greater than 4 times the standard deviation of the incident beam power, a lower laser can be obtained Probability of false triggering of power; while setting the first threshold equal to or greater than 5 standard deviations of the incident beam power ensures that triggering of the first threshold of power is almost always due to aging of the solid sheet rather than power noise of the laser cause. Therefore, in order to avoid false triggering of the first threshold condition as much as possible, the first threshold described in this embodiment is set to be equal to or greater than 5 times the standard deviation of the ultrashort pulse laser power.
具体地,当第一阈值设置为5倍超短脉冲激光功率的标准差时,考虑单次测量,随机噪声触发第一阈值条件的概率只有0.00006%,小于百万分之一的几率。而考虑1000次测量,随机噪声触发第一阈值条件的概率也只有0.06%,小于千分之一的几率。也即,对于本实施例所使用的功率均方根误差<0.5%(RMSE,24小时连续测量)的超短激光脉冲光源,当设定的第一阈值为功率下降幅度等于2.5%时,也即近似等于激光功率5倍标准差时,激光器功率噪声触发第一阈值条件的几率几乎可忽略不计。Specifically, when the first threshold is set to 5 times the standard deviation of the ultrashort pulse laser power, considering a single measurement, the probability of random noise triggering the first threshold condition is only 0.00006%, less than one in a million. Considering 1000 measurements, the probability of random noise triggering the first threshold condition is only 0.06%, which is less than one in a thousand. That is, for the ultrashort laser pulse light source of the power root mean square error <0.5% (RMSE, 24-hour continuous measurement) used in this embodiment, when the first threshold set is equal to 2.5% of the power drop range, also That is, when approximately equal to 5 times the standard deviation of the laser power, the probability of the laser power noise triggering the first threshold condition is almost negligible.
另外,为进一步降低输入激光功率噪声,特别是由于环境变化引起的激光功率长时间系统性起伏对功率测量稳定性的影响,从而进一步降低误触发第一阈值条件的几率,可对与固体薄片作用前的输入激光光束功率进行实时分束采样探测。基于实时测量的作用前输入激光采样光束功率WI(t),通过把探头6实时测量的作用后激光采样功率WR(t)与作用前初始输入激光采样功率WI(0)与实时输入激光采样功率的WI(t)的比相乘的方法获得修正的作用后激光采样功率:WRr(t)=WR(t)·WI(0)/WI(t),实现激光功率噪声相消而显著降低输入激光功率噪声对作用后测量功率的影响,使作用后实时测量功率更真实反映固体薄片老化的程度。In addition, in order to further reduce the noise of input laser power, especially the influence of long-term systematic fluctuation of laser power caused by environmental changes on the stability of power measurement, so as to further reduce the probability of false triggering of the first threshold condition, the The current input laser beam power is used for real-time beam split sampling detection. Based on the real-time measurement of the input laser sampling beam power W I (t) before the action, the laser sampling power W R (t) after the action measured in real time by the
另一方面,采用探头6对激光功率进行探测时通过增加采样积分时间,也可有效降低激光功率短时间随机噪声的影响,获得更为稳定的激光功率数据。On the other hand, when the
其次,在满足上述阈值设定下限要求的条件下,阈值应设置在下限值附近的区间,如下限值1.0到1.5倍的区间,以避免阈值过大导致辐照区域更新之前系统输出的超连续谱的特性(功率及光谱展宽)已发生显著的变化。对于实施例自动更新固体薄片辐照区域的高稳定性超连续谱光源技术而言,超连续谱长时间输出的稳定性是由所设定的阈值所决定的。例如,如上述设定的阈值为光束功率下降幅度大于2.5%,超连续谱长时间输出的功率曲线最大下降幅度将锚定在2.5%,且会呈现近似周期性出现的特征,反映系统性原因所导致的曲线周期起伏。也即,阈值设定越大,这种周期性起伏也就越大,超连续谱光源也就越偏离高稳定工作特性;阈值设定越小,这种周期性起伏也就越小,超连续谱光源也就能获得越小的系统性偏差,实现更好的高稳定工作特性。Secondly, under the condition of meeting the lower limit requirements of the above threshold setting, the threshold should be set in the range near the lower limit, 1.0 to 1.5 times the lower limit, so as to avoid the super-continuity of the system output before the irradiation area is updated due to the excessive threshold Spectral characteristics (power and spectral broadening) have changed significantly. For the high-stability supercontinuum light source technology that automatically updates the irradiated area of the solid sheet in the embodiment, the stability of the supercontinuum output for a long time is determined by the set threshold. For example, if the threshold set above is greater than 2.5% of the beam power drop, the maximum drop of the supercontinuum long-term output power curve will be anchored at 2.5%, and will appear approximately periodically, reflecting systemic causes The resulting curve cycle fluctuations. That is to say, the larger the threshold setting, the greater the periodic fluctuation, and the more the supercontinuum light source deviates from the high-stable operating characteristics; the smaller the threshold setting, the smaller the periodic fluctuation, and the supercontinuum Spectrum light sources can also obtain smaller systematic deviations and achieve better high-stable operating characteristics.
因此,综合考虑阈值设定的上述两方面因素,本实施例中第一阈值直接设置为上述几乎可完全避免噪声误触发所要求的阈值下限,即阈值为5倍超短脉冲激光功率的标准差。Therefore, considering the above two aspects of threshold setting, the first threshold in this embodiment is directly set to the lower limit of the threshold required to almost completely avoid noise false triggering, that is, the threshold is 5 times the standard deviation of the ultrashort pulse laser power .
在本实施例中,预先设定好的阈值存储于主控系统中,当主控系统监控到探测光束功率的下降幅度大于该阈值时,主控系统7将发出控制微位移平台8运动的指令。该指令包含二维或三维微位移平台中的一个或二个或三个位移轴的位移运动指令,具体涉及每一需要运动的位移轴的运动方向(正向或反向)及运动距离。基于固体薄片通光面积、辐照光斑直径、超短激光脉冲入射角,固体薄片的运动路径可被提前合理规划,以使固体薄片通光面积得到有效利用;该提前规划的运动路径被存储于主控系统中,以实现对固体薄片进行按设定路径实施的超短激光脉冲辐照区域更新。一般而言,激光辐照点在固体薄片中的分布可设置成矩形点阵的形式,以方便扫描路径规划。In this embodiment, the pre-set threshold is stored in the main control system. When the main control system monitors that the power of the probe beam has dropped more than the threshold, the
具体地,根据上述的两种典型辐照参数设置所确定的辐照光斑大小,以及激光入射角大小,可获得两相邻辐照区域中心点的合适水平及竖直间隔,以使固体薄片的通光面积得到充分利用,且后辐照区域不会被前相邻辐照区域的老化所影响。在确定相邻辐照区域中心点的水平及竖直间隔后,便可根据固体薄片的尺寸及激光入射角设定长时间辐照过程中固体薄片辐照区域的运动路径,以及每一次辐照区域更新时各微位移轴分别的运动参数。Specifically, according to the irradiation spot size determined by the above two typical irradiation parameter settings, and the laser incident angle, the appropriate horizontal and vertical intervals between the center points of two adjacent irradiation areas can be obtained, so that the solid sheet The light passing area is fully utilized, and the rear irradiated area will not be affected by the aging of the front adjacent irradiated area. After determining the horizontal and vertical intervals of the center points of adjacent irradiation areas, the movement path of the irradiation area of the solid sheet during the long-term irradiation process can be set according to the size of the solid sheet and the laser incident angle, and each irradiation The motion parameters of each micro-displacement axis when the area is updated.
比如,对于本实施例所使用的10mm×10mm石英玻璃,当辐照光斑直径为0.10mm,入射角为45度时,可设置成靠近固体薄片左上角处的点开始辐照(如距离左侧及上侧边缘分别为0.24mm和0.20mm处的点),然后先沿水平方向在薄片表面以0.28mm间隔更新辐照点(对应上述二维平台的设置,水平方向位移轴运动0.28mm;对应上述三维平台的设置,x和z位移轴分别运动0.20mm)。在水平方向扫描35个辐照点后,此时辐照点到达靠近固体薄片的右上角位置,此时更新下一辐照点需通过沿竖直方向在薄片表面向下运动0.20mm间隔完成(对应上述二维或三维平台的设置,y位移轴均运动0.20mm)。接着,第二行辐照点的更新操作可类似第一行的情形,沿相反方向运动直到接近固体薄片的左侧边缘。此时,沿竖直方向向下运动0.20mm间隔,辐照点更新的操作将重新回到第一行的情形。通过重复上述扫描操作,整个固体薄片的通光面积将得到有效利用,最终可获得35×49=1715个辐照点。上述固体薄片辐照区域的运动路径示意图如图5所示,其被预先设定并存储在主控系统中。事实上,若改变固体薄片辐照区域的运动方向或初始位置,可得到对本实施例而言具有相同技术效果的不同运动路径,如图6、7所示,所述的运动路径存在多种可能,在此不再一一列举。For example, for the 10mm × 10mm quartz glass used in this embodiment, when the irradiation spot diameter is 0.10mm and the incident angle is 45 degrees, it can be set to start irradiation near the point at the upper left corner of the solid sheet (such as from the left side and the points at 0.24mm and 0.20mm on the upper edge respectively), and then update the irradiation points along the horizontal direction at intervals of 0.28mm on the sheet surface (corresponding to the setting of the above-mentioned two-dimensional platform, the displacement axis in the horizontal direction moves 0.28mm; corresponding to For the setup of the above-mentioned three-dimensional platform, the x and z displacement axes move 0.20mm respectively). After scanning 35 irradiation points in the horizontal direction, the irradiation point reaches the position close to the upper right corner of the solid sheet at this time. At this time, updating the next irradiation point needs to be completed by moving down the sheet surface in the vertical direction at an interval of 0.20mm ( Corresponding to the setting of the above-mentioned two-dimensional or three-dimensional platform, the y displacement axis moves 0.20mm). Then, the updating operation of the irradiation points of the second row can be similar to the case of the first row, moving in the opposite direction until approaching the left edge of the solid sheet. At this point, move downwards at an interval of 0.20mm in the vertical direction, and the operation of updating the irradiation point will return to the situation of the first row. By repeating the above scanning operation, the light-transmitting area of the entire solid sheet will be effectively utilized, and finally 35×49=1715 irradiation points can be obtained. The schematic diagram of the moving path of the irradiation area of the above-mentioned solid sheet is shown in FIG. 5 , which is preset and stored in the main control system. In fact, if the direction of motion or the initial position of the irradiated area of the solid sheet is changed, different motion paths with the same technical effect for this embodiment can be obtained, as shown in Figures 6 and 7, there are many possibilities for the motion path , will not be listed here.
在本实施例中,主控系统7将发出控制微位移平台8运动的指令后,微位移平台将按上述预先设定的路径运动特定距离,使固体薄片辐照区域获得更新。对于所述的固体薄片,若控制每个辐照点平均使用时间大于1小时,这个固体薄片的总使用时间将可超过1715小时,也即本超连续光源长时间高稳定性输出的时间可超过1715小时,远远大于无闭环控制辐照区域更新、单点辐照的这类固体薄片超连续谱光源。事实上,若保持辐照及运动参数不变,只是令固体薄片的尺寸扩大为30mm×30mm,也即有效表面积变为原来的9倍,则相应薄片的总使用时间将可超过1715×9=15435小时,也即此时超连续光源长时间高稳定性输出的时间可超过15435小时,其可满足一般光源设备整个运行周期的使用寿命要求。也即,基于本实施例所述的方法产生的固体薄片超连续光源在整个运行寿命周期不需对超连续谱产生介质进行更换,从而可显著降低其运行及维护的成本。In this embodiment, after the
一般地,在确定的辐照参数设置条件下,上述每个辐照点平均使用时间由激光辐照功率(决定固体薄片老化速度,也即作用后采样功率的下降速率)和功率下降阈值(决定固体薄片极限老化程度,也即作用后采样功率的极限下降幅度)所决定。因此,当功率下降阈值设置为固定值时,如上述等于5倍超短脉冲激光功率的标准差时,辐照点平均使用时间只由激光辐照功率所决定。对于本实施例的上述两种典型辐照参数设置,激光辐照功率均设置在使脉冲光谱展宽接近饱和的功率区间。事实上,在该激光辐照功率区间,激光辐照功率的变化会导致固体薄片老化速度(老化时间常数)发生显著变化,也即辐照点平均使用时间发生显著变化,但相对地脉冲光谱展宽变化却并不显著。因此,本实施例可通过在上述激光辐照功率区间适当调节激光辐照功率以获得满足上述要求的辐照点平均使用时间,同时也能兼顾脉冲光谱展宽的要求。Generally, under certain irradiation parameter setting conditions, the average use time of each irradiation point above is determined by the laser irradiation power (determining the aging speed of the solid sheet, that is, the decline rate of the sampling power after the action) and the power drop threshold (determining The limit aging degree of the solid sheet, that is, the limit drop of the sampling power after the action) is determined. Therefore, when the power drop threshold is set to a fixed value, equal to 5 times the standard deviation of the ultrashort pulse laser power, the average use time of the irradiation point is only determined by the laser irradiation power. For the above two typical irradiation parameter settings in this embodiment, the laser irradiation power is set in a power range where the pulse spectrum broadening is close to saturation. In fact, in this range of laser irradiation power, the change of laser irradiation power will lead to a significant change in the aging speed (aging time constant) of the solid sheet, that is, the average service time of the irradiation point will change significantly, but the relative pulse spectrum broadens The changes are not significant. Therefore, in this embodiment, the average use time of the irradiation point that meets the above requirements can be obtained by properly adjusting the laser irradiation power in the above laser irradiation power range, and at the same time, the requirement of pulse spectrum broadening can also be taken into account.
本实施例所述的二维或三维微位移平台的位移运动方式不只限于上述的平移运动方式,也包括旋转运动方式,或者平移和旋转两种位移运动方式的组合。例如,由一维平移台和一维旋转台所组成的二维微位移台也可通过两个位移维度的组合运动实现固体薄片辐照区域的持续位置更新。特别是,当固体薄片具有圆形通光表面,而非上述方形通光表面时,一维平移台和一维旋转台所组成的二维微位移台可通过设置合适的二维运动方案,使辐照光斑在圆片上形成螺旋线式扫描线而实现对固体薄片圆形通光面辐照面积的充分利用,如图8、9所示。也即,对圆形固体薄片而言,相比纯平移的二维位移方式,这种旋转与平移组合的二维位移方式是与圆片更为匹配的位移运动方式。The displacement motion mode of the two-dimensional or three-dimensional micro-displacement platform described in this embodiment is not limited to the above-mentioned translation motion mode, but also includes a rotation motion mode, or a combination of translation and rotation displacement motion modes. For example, a two-dimensional micro-displacement stage composed of a one-dimensional translation stage and a one-dimensional rotation stage can also achieve continuous position update of the solid sheet irradiation area through the combined motion of the two displacement dimensions. In particular, when the solid sheet has a circular light-transmitting surface instead of the above-mentioned square light-transmitting surface, the two-dimensional micro-translation stage composed of a one-dimensional translation stage and a one-dimensional rotation stage can make the radiation The irradiation spot forms a helical scanning line on the wafer to fully utilize the irradiation area of the circular light-transmitting surface of the solid sheet, as shown in Figures 8 and 9. That is to say, for a circular solid sheet, compared with the two-dimensional displacement method of pure translation, the two-dimensional displacement method of the combination of rotation and translation is a displacement motion method that is more suitable for the disc.
另外,本实施例所述的固体薄片的材料不只限于石英玻璃,也包括其它各种可应用于超连续谱产生的透明固体介质,如各种常见的宽带隙晶体或非晶材料。本实施例所述的固体薄片的厚度也不只限于0.10mm,根据实际应用要求其厚度可作灵活调整。本实施例所述的固体薄片的数目也不只限于1片,根据实际应用要求固体薄片的数目可作灵活设置。In addition, the material of the solid sheet described in this embodiment is not limited to quartz glass, but also includes various other transparent solid media applicable to supercontinuum generation, such as various common wide band gap crystals or amorphous materials. The thickness of the solid sheet described in this embodiment is not limited to 0.10 mm, and its thickness can be flexibly adjusted according to actual application requirements. The number of solid flakes described in this embodiment is not limited to one, and the number of solid flakes can be flexibly set according to actual application requirements.
实施例2Example 2
在本实施例中,在步骤S3中,不同于实施例1对与固体薄片作用后反射的超短激光脉冲进行采样探测,本实施例对与固体薄片作用后透过固体薄片的超短激光脉冲进行分束采样探测,如图3所示。具体地,当对透过固体薄片的超短激光脉冲进行进一步分束采样探测时,在固体薄片5后方设置用于分束的分束片9,将出射的超短激光脉冲分为两部分,其中一部分作为超连续谱超短脉冲输出,另一部分作为采样光束,通过光功率探头采集及光电转换后传输到主控系统,实现对超短激光脉冲采样光束功率的实时测量及监控,进而获得固体薄片老化情况。In this embodiment, in step S3, different from the sampling detection of the ultrashort laser pulse reflected after interacting with the solid sheet in the embodiment 1, this embodiment samples and detects the ultrashort laser pulse transmitted through the solid sheet after interacting with the solid sheet Perform beam split sampling detection, as shown in Figure 3. Specifically, when performing further beam splitting and sampling detection on the ultrashort laser pulse passing through the solid sheet, a beam splitter 9 for beam splitting is arranged behind the
实施例1采用与固体薄片作用后的高能量超短激光脉冲的反射光束功率进行实时探测监控。相比于实施例2,实施例1可直接利用固体薄片自身的反射光束实现对与固体薄片作用后的高能量超短激光脉冲光束功率的实时监控,而不需要增加额外的光学元件(实施例2需在光路中增加额外的分束片9),在光路设计上而言更为简洁高效;同时,实施例1采用固体薄片反射光束进行采样探测监控不会对输出超连续谱的特性(输出功率及频谱啁啾特性)造成影响,有效避免了实施例2由于在出射光路中插入光学元件所造成的对输出超连续谱超短脉冲特性的必然影响,具有更高的实用性。因此,实施例1采用与固体薄片作用后反射的超短激光脉冲进行采样探测是更优的一种选择。Embodiment 1 uses the reflected beam power of the high-energy ultrashort laser pulse after interacting with the solid sheet for real-time detection and monitoring. Compared with
实施例3Example 3
基于实施例1或实施例2,对于实施例1在步骤S5中采用的预设固体薄片运动控制模式,本实施例提供了另一种预设固体薄片运动控制模式,如图4中的预设运动模式2所示:具体地,主控系统控制微位移平台准连续性运动,使得超短激光脉冲按预设的扫描路径对固体薄片进行准连续性扫描,实现强激光长时间辐照固体薄片过程中对薄片辐照区域的持续更新,由此实现超连续谱超短脉冲的高稳定性输出。Based on embodiment 1 or
本实施例所述的主控系统7按远小于老化时间常数的时间间隔准连续地发出控制微位移平台8运动的指令,使微位移平台8沿预先设定的路径按特定的、显著小于辐照光斑直径的运动间距沿预先设定的路径准连续运动,从而使固体薄片辐照区域获得在空间及时间上的近连续扫描式更新。在平台运动过程中,基于对实时采样功率下降幅度的监控,平台的平均运动速度(平均运动速度=更新运动间距/更新时间间隔)将受到主控系统7的闭环优化反馈调控,以使固体薄片在长时间辐照过程中相对于初始采样功率,实时采样功率的下降幅度稳定趋近于0或一个较小的预设值,从而提高超连续谱超短脉冲输出的长时间稳定性。具体地,调控平均运动速度可通过单独调控更新运动间距,或单独调控更新时间间隔,或同时调控更新运动间距和更新时间间隔实现。The
由于实施例1所述的预设固体薄片运动控制模式,其辐照区域更新由功率下降阈值所触发,因此具有空间定点、时间离散的特征,会导致超连续谱输出的功率曲线呈现由阈值下降幅度所决定的周期性跳变。此外,由于该阈值应设置为大于多倍入射激光功率的标准差,这种决定了超连续谱光源工作稳定性的周期性起伏将导致输出的超连续谱稳定性仍较显著地低于入射激光的稳定性。Due to the preset solid sheet motion control mode described in Embodiment 1, the update of the irradiated area is triggered by the power drop threshold, so it has the characteristics of spatial fixed point and time discrete, which will cause the power curve of the supercontinuum output to show a drop by the threshold A periodic jump determined by the amplitude. In addition, since the threshold should be set to be greater than the standard deviation of the incident laser power, the periodic fluctuations that determine the stability of the supercontinuum light source will cause the output supercontinuum stability to be significantly lower than that of the incident laser stability.
相对地,本实施例所述的预设固体薄片运动控制模式,其辐照区域更新并非由阈值条件所触发,因此实施例1中由于阈值的存在所导致的功率周期性跳变的问题,在本实施例中将得到很好地解决。由此可以看出,本实施例的辐照区域更新模式可为输出超连续谱带来更高的稳定性表现。事实上,由于本实施例中的微位移平台运动速度将受到主控系统7的闭环优化反馈调控,其可使所监控功率下降幅度小于第二阈值,也即可使超连续谱的输出获得非常高的稳定度。In contrast, in the preset solid sheet motion control mode described in this embodiment, the update of the irradiated area is not triggered by the threshold condition, so the problem of periodic power jumps caused by the existence of the threshold in Embodiment 1 is not solved in This example will be well resolved. It can be seen from this that the irradiation area update mode of this embodiment can bring higher stability to the output supercontinuum. In fact, since the movement speed of the micro-displacement platform in this embodiment will be regulated by the closed-loop optimization feedback of the
在本实施例的预设固体薄片运动控制模式中,初始平均运动速度基于对固体薄片老化情况的探测评估获得。具体地,通过步骤S3和步骤S4,可测量得到固体薄片定点辐照功率随时间变化的数据,获得关于固体薄片老化速度的定量评估,如得到定量的老化时间常数,进而基于该评估设定合适的初始平均运动速度(合适的辐照更新运动间距和辐照更新时间间隔)。一般而言,所设定的初始平均运动速度应至少满足在老化时间常数的时间间隔,辐照区域的运动间距大于激光辐照光斑直径,以避免在近连续扫描过程中辐照区域的老化累积过于严重,甚至于出现烧蚀破坏。例如,与实施例1每个辐照点平均使用时间为1小时相对应(老化时间常数大于1小时),当在本实施例中设置初始平均运动速度的值满足微位移平台在1小时的时间沿水平方向准连续运动0.28mm时,也即水平方向初始平均运动速度设置为0.28mm/小时,在辐照效果上本实施例与实施例1可以获得相近的固体薄片老化特征,因此这样设置的初始平均运动速度可有效避免固体薄片出现严重老化的情形。In the preset solid sheet motion control mode of this embodiment, the initial average motion speed is obtained based on the detection and evaluation of the aging of the solid sheet. Specifically, through steps S3 and S4, the data of the fixed-point irradiation power of the solid sheet changing with time can be measured, and a quantitative evaluation of the aging speed of the solid sheet can be obtained, such as a quantitative aging time constant, and then based on this evaluation, an appropriate setting can be made. The initial average movement speed of (the appropriate irradiation update movement interval and irradiation update time interval). Generally speaking, the set initial average moving speed should at least meet the time interval of the aging time constant, and the moving distance of the irradiated area is larger than the diameter of the laser irradiation spot, so as to avoid the aging accumulation of the irradiated area during the near-continuous scanning process. Too serious, even ablative damage occurs. For example, corresponding to the average use time of each irradiation point in Embodiment 1 being 1 hour (the aging time constant is greater than 1 hour), when the value of the initial average motion speed is set in this embodiment to meet the requirements of the micro-displacement platform in the time of 1 hour When quasi-continuously moving 0.28mm along the horizontal direction, that is, the initial average moving speed in the horizontal direction is set to 0.28mm/hour, this embodiment and embodiment 1 can obtain similar aging characteristics of the solid sheet in terms of irradiation effect, so the set The initial average movement speed can effectively avoid the severe aging of solid flakes.
事实上,由于本实施例所采用的准连续扫描辐照方式(前后辐照光斑区域显著重叠)比实施例1所采用的间隔定点辐照方式(前后辐照光斑区域避免重叠)能更为充分地利用扫描路径所覆盖的区域,从而获得更大的有效辐照面积。因此,若两种固体薄片运动控制模式采用同样的平均运动速度,本实施例的材料将呈现更弱的老化特征。也即,本实施例在充分利用薄片表面积、减缓材料老化方面更具优势。In fact, since the quasi-continuous scanning irradiation method adopted in this embodiment (significant overlap of front and rear irradiation spot areas) is more sufficient than the interval fixed-point irradiation method adopted in Example 1 (front and rear irradiation spot areas avoid overlapping) The area covered by the scanning path can be fully utilized to obtain a larger effective irradiation area. Therefore, if the same average motion speed is adopted for the two solid sheet motion control modes, the material of this embodiment will exhibit weaker aging characteristics. That is to say, this embodiment has more advantages in making full use of the surface area of the sheet and slowing down the aging of the material.
值得注意的是,本实施例中固体薄片采用准连续运动模式,而非真正的连续运动模式。具体地,主控系统7按远小于老化时间常数的更新时间间隔发出控制微位移平台8运动的指令,使微位移平台8按远小于辐照光斑直径的更新运动间距运动。由于更新运动间距设置成远小于辐照光斑直径,更新时间间隔设置成远小于老化时间常数,因此从辐照光斑的空间尺度或老化时间常数的时间尺度观察,这种运动可看成准连续的运动。It should be noted that in this embodiment, the solid sheet adopts a quasi-continuous motion mode rather than a true continuous motion mode. Specifically, the
虽然实施例1和本实施例的运动模式本质上都为时间和空间上的离散运动,但其辐照区域更新的时间间隔与老化时间常数的关系,以及辐照区域更新的运动间距与辐照光斑直径的关系决定其具有明显不同的运动模式特性和辐照效果,最终对超连续谱输出稳定度的影响带来显著差别。例如,在实施例1中辐照区域位置更新的时间间隔由阈值触发条件所决定,其典型值为1小时,而对应的水平方向运动间距0.28mm为两倍辐照光斑直径(辐照激光45度斜入射条件下),因此这种运动模式为典型的时间及空间上的离散运动,其导致的辐照区域更新突变性会带来超连续谱超短脉冲输出曲线的显著周期性起伏。而对于本实施例中的辐照区域位置更新的初始时间间隔和初始运动间距(共同决定初始平均运动速度)由主控系统7所设置运动参数(参数通过步骤S3和S4对固体薄片老化情况的评估获得)决定:典型地,当设置更新时间间隔为45秒,初始运动间距为0.0035mm时,本实施例不但可获得与实施例1一致的平均运动速度(0.28mm/小时),还可获得近似准连续的运动模式。因为时间间隔(45秒)远小于老化时间常数(大于1小时),且运动间距(0.0035mm)也远小于辐照光斑直径(0.10mm)。本实施例中的这种准连续运动模式使辐照区域的材料老化特性能沿着运动路径均匀、缓慢延伸,避免了实施例1中辐照区域更新过程中的材料特性突变,因此更有利于获得超连续谱的长时间高稳定性输出。Although the motion patterns of Embodiment 1 and this embodiment are essentially discrete motions in time and space, the relationship between the time interval of the irradiation area update and the aging time constant, and the relationship between the motion interval of the irradiation area update and the irradiation The relationship between the diameter of the spot determines that it has significantly different motion mode characteristics and irradiation effects, and finally has a significant difference in the impact on the stability of the supercontinuum output. For example, in Embodiment 1, the time interval for updating the position of the irradiation area is determined by the threshold trigger condition, and its typical value is 1 hour, and the corresponding horizontal movement distance of 0.28 mm is twice the diameter of the irradiation spot (irradiation laser 45 Under the condition of oblique incidence), this movement mode is a typical discrete movement in time and space, and the abrupt update of the irradiation area caused by it will bring significant periodic fluctuations in the supercontinuum ultrashort pulse output curve. And for the initial time interval and the initial motion interval (co-determining the initial average motion speed) of the irradiated area position update in the present embodiment, the motion parameters are set by the main control system 7 (parameters pass through steps S3 and S4 to determine the aging condition of the solid sheet) Evaluation (obtained) decision: typically, when the update time interval is set to 45 seconds and the initial motion distance is 0.0035mm, this embodiment can not only obtain the average motion speed (0.28mm/hour) consistent with Embodiment 1, but also obtain Approximate quasi-continuous motion patterns. Because the time interval (45 seconds) is much smaller than the aging time constant (greater than 1 hour), and the movement distance (0.0035mm) is also much smaller than the irradiation spot diameter (0.10mm). This quasi-continuous motion mode in this embodiment enables the material aging characteristics of the irradiated area to extend uniformly and slowly along the motion path, avoiding the sudden change in material properties during the renewal process of the irradiated area in Embodiment 1, and thus more favorable Obtain long-term high-stability output of supercontinuum.
本实施例中固体薄片采用准连续运动模式而非连续运动模式,一方面有利于降低微位移平台及控制系统的运行负荷,另一方面也有利于闭环控制过程中反馈信号的实时处理及闭环控制的时序稳定。首先,对于本实施例所使用的基于步进电机的微位移平台,相比于长时间连续运行,周期间歇运行更有利于平台步进电机的长时间稳定工作。例如,对于上述具有45秒时间间隔和0.0035mm运动间距的准连续运动,本实施例中的步进电机微位移台可以以0.0005mm的步进量,在1秒时间内连续运行7步来实现0.0035mm的运动间距。也即,在45秒的辐照区域更新时间间隔中,只有小于1秒的时间微位移平台处于运行的状态,而超过44秒的时间微位移平台处于静止的状态,因此可以显著降低平台步进电机长时间连续运行所导致的发热问题,提高其工作稳定性及寿命。另一方面,由于大部分时间微位移平台的控制模块处于待命状态,准连续运动模式下系统控制程序的运行负荷也较低,易于实现闭环控制过程中控制程序对反馈信号的实时处理,以及保证闭环控制过程的时序稳定。In this embodiment, the solid sheet adopts the quasi-continuous motion mode instead of the continuous motion mode. On the one hand, it is beneficial to reduce the operating load of the micro-displacement platform and the control system, and on the other hand, it is also beneficial to the real-time processing and closed-loop control of the feedback signal in the closed-loop control process. The timing is stable. First of all, for the micro-displacement platform based on the stepping motor used in this embodiment, compared with the long-term continuous operation, the periodic intermittent operation is more conducive to the long-term stable operation of the stepping motor of the platform. For example, for the aforementioned quasi-continuous motion with a time interval of 45 seconds and a motion distance of 0.0035 mm, the stepping motor micro-translation stage in this embodiment can continuously run 7 steps within 1 second with a step of 0.0005 mm. 0.0035mm motion spacing. That is, in the irradiated area update time interval of 45 seconds, the micro-displacement platform is in the running state only for less than 1 second, and the micro-displacement platform is in a static state for more than 44 seconds, so the platform step can be significantly reduced The heating problem caused by the continuous operation of the motor for a long time can improve its working stability and life. On the other hand, since the control module of the micro-displacement platform is in the standby state most of the time, the operating load of the system control program in the quasi-continuous motion mode is also low, and it is easy to realize the real-time processing of the feedback signal by the control program in the closed-loop control process, and to ensure The timing stability of the closed-loop control process.
本实施例中的平均运动速度参数是决定超连续谱源输出功率和光谱展宽稳定程度的一个重要参数。理论上,若固体薄片平均运动速度过慢,每一单位面积所受的激光辐照通量过高,就会导致材料过度老化,影响超连续谱的输出质量和稳定性;若固体薄片平均运动速度过快,辐照区域更新过快,就会导致固体薄片在较短时间被全域扫描而需更换,缩短其使用寿命。如上所述,本实施例中的初始平均运动速度通过对固体薄片进行老化情况的探测评估,由定点辐照功率随时间变化数据获得。这种探测评估可确保初始平均运动速度处于一个相对合适的范围,为系统的初始运行提供参数基础。然后,在微位移平台准连续运动过程中,基于对功率下降幅度的监控,平台的平均运动速度将进一步受到主控系统7的闭环优化反馈调控,以使固体薄片在长时间辐照过程中功率下降幅度稳定趋近于0或一个较小的预设值。若功率下降幅度逐渐增大或保持一个较大数值,说明材料老化加剧或较为严重,也即辐照区域更新过慢,因此主控系统7将提高位移平台的平均运动速度(在保持更新时间间隔不变的条件下,通过提高更新运动间距实现,或在保持更新运动间距不变的条件下,通过缩小时间间隔实现),以加快固体薄片辐照区域的更新,使功率下降幅度减小到接近0或一个较小的预设值。通过这种闭环优化反馈调控,基于固体薄片的超连续谱源可获得长时间稳定输出,其稳定性可接近输入超短脉冲激光的水平。The average moving speed parameter in this embodiment is an important parameter to determine the output power of the supercontinuum source and the stability of spectrum broadening. Theoretically, if the average movement speed of solid flakes is too slow and the laser irradiation flux per unit area is too high, it will lead to excessive aging of materials and affect the output quality and stability of supercontinuum; if the average movement of solid flakes If the speed is too fast and the irradiated area is updated too fast, it will cause the solid sheet to be scanned in a short period of time and need to be replaced, shortening its service life. As mentioned above, the initial average moving speed in this embodiment is obtained from the time-varying data of fixed-point irradiation power by detecting and evaluating the aging condition of the solid sheet. This detection evaluation can ensure that the initial average motion velocity is in a relatively appropriate range, and provide a parameter basis for the initial operation of the system. Then, during the quasi-continuous movement of the micro-displacement platform, based on the monitoring of the power drop, the average movement speed of the platform will be further regulated by the closed-loop optimization feedback of the
进一步,若直接设定初始平均运动速度使近连续扫描过程中固体薄片的老化程度(功率下降幅度)处于轻微的范围,例如使实时激光功率相比初始激光功率的下降幅度小于1倍超短脉冲激光功率的标准差,这时薄片老化对输出超连续谱超短脉冲功率稳定性和光谱展宽特性的影响几乎可忽略不计,输出超连续谱超短脉冲的噪声主要由输入超短脉冲的噪声所决定,因此可获得接近输入超短激光脉冲的稳定度,以及接近薄片在初始辐照下的光谱展宽。事实上,处于这种近连续扫描、弱辐照老化条件下,并不需要实施上述闭环优化反馈调控也可获得具有高稳定度的超连续谱超短脉冲输出。Furthermore, if the initial average motion speed is directly set so that the aging degree (power drop) of the solid sheet during the near-continuous scanning process is in a slight range, for example, the drop of the real-time laser power compared with the initial laser power is less than 1 times the ultrashort pulse The standard deviation of the laser power, at this time, the influence of sheet aging on the power stability and spectral broadening characteristics of the output supercontinuum ultrashort pulse is almost negligible, and the noise of the output supercontinuum ultrashort pulse is mainly caused by the noise of the input ultrashort pulse decision, thus obtaining a stability close to that of an input ultrashort laser pulse, and a spectral broadening close to that of a flake under initial irradiation. In fact, under the conditions of near-continuous scanning and weak irradiation aging, the supercontinuum ultrashort pulse output with high stability can be obtained without implementing the above-mentioned closed-loop optimization feedback regulation.
在相同的激光辐照参数设置下,本实施例的运动路径可完全依照实施例1的运动路径实施。因此,在相同的平均运动速度条件下,对两种运动模式而言,同样面积的固体薄片具有相同的使用寿命。也即,对于本实施例,一片30mm×30mm的固体薄片同样可获得超过15435小时的使用寿命,可实现系统全运行寿命周期对超连续谱产生材料的免更换。Under the same laser irradiation parameter setting, the motion path of this embodiment can be completely implemented according to the motion path of Embodiment 1. Therefore, under the condition of the same average motion speed, the same area of solid sheet has the same service life for the two motion modes. That is to say, for this embodiment, a 30mm×30mm solid sheet can also obtain a service life of more than 15435 hours, which can realize the replacement of the supercontinuum generation material during the whole operating life cycle of the system.
实施例4Example 4
对于实施例1或实施例3在步骤S5中采用的预设固体薄片运动控制模式,本实施例提供了又一种预设固体薄片运动控制模式,如图4中的预设运动模式3所示:具体地,主控系统控制微位移平台沿预先设定的路径连续性运动,使得超短激光脉冲按预设的扫描路径对固体薄片进行连续扫描,实现强激光长时间辐照固体薄片过程中对薄片辐照区域的持续更新,由此实现超连续谱超短脉冲的高稳定性输出。For the preset solid sheet motion control mode adopted in step S5 in embodiment 1 or embodiment 3, this embodiment provides another preset solid sheet motion control mode, as shown in preset motion mode 3 in FIG. 4 : Specifically, the main control system controls the micro-displacement platform to move continuously along the preset path, so that the ultra-short laser pulse continuously scans the solid sheet according to the preset scanning path, and realizes the long-term irradiation of the strong laser on the solid sheet. The irradiated area of the sheet is continuously updated, thereby realizing the high stability output of supercontinuum ultrashort pulses.
在实施例3中,在步骤S5中,固体薄片采用准连续运动模式,而非真正的连续运动模式。如实施例3所述,这种运动模式与实施例3基于步进电机的位移平台的运动特性相契合(步进电机即使连续运转,其运动本质仍为离散的),也有利于闭环优化反馈调控的实施。事实上,若使用具有连续位移能力的微位移平台,如基于直线电机、音圈电机、压电促动器等技术的微位移平台,放置在微位移平台上的固体薄片可以实现真正的连续运动,从而实现超短激光脉冲对固体薄片在空间及时间上的连续扫描辐照。在本实施例中,通过把实施例3中基于步进电机的微位移平台替换为基于直线电机的微位移平台,主控系统7可控制微位移平台8按预设的路径连续性运动,使超短激光脉冲沿预设扫描路径对固体薄片进行连续扫描,实现薄片辐照区域的连续更新,进而实现超连续谱超短脉冲的高稳定性输出。In Embodiment 3, in step S5, the solid sheet adopts a quasi-continuous motion mode instead of a true continuous motion mode. As described in Embodiment 3, this motion mode matches the motion characteristics of the displacement platform based on the stepper motor in Embodiment 3 (even if the stepper motor runs continuously, its motion is still discrete in nature), and it is also conducive to closed-loop optimization feedback Implementation of regulation. In fact, if a micro-displacement platform with continuous displacement capability is used, such as a micro-displacement platform based on technologies such as linear motors, voice coil motors, and piezoelectric actuators, the solid sheet placed on the micro-displacement platform can achieve true continuous motion. , so as to realize the continuous scanning irradiation of ultrashort laser pulses on the solid sheet in space and time. In this embodiment, by replacing the stepper motor-based micro-displacement platform in Embodiment 3 with a linear motor-based micro-displacement platform, the
在本实施例中,在步骤S5中,固体薄片在长时间连续运动过程中保持恒定的运动速度,按预设的路径进行连续匀速运动。也即,薄片在长时间运动过程中不通过闭环优化反馈调控来实现运动速度的调整。相比实施例1和实施例3,本实施例的固体薄片运动控制模式更为简单,其运动特性完全由初始设置的运动参数所决定,而不依赖于反馈控制,因此本实施例对主控系统中控制模块的设备和技术要求显著降低。In this embodiment, in step S5, the solid sheet maintains a constant movement speed during the long-term continuous movement, and performs continuous and uniform movement according to a preset path. That is to say, during the long-term movement of the sheet, the adjustment of the movement speed is not realized through closed-loop optimization feedback regulation. Compared with Embodiment 1 and Embodiment 3, the motion control mode of the solid sheet in this embodiment is simpler, and its motion characteristics are completely determined by the motion parameters initially set, rather than relying on feedback control. The equipment and technical requirements of the control modules in the system are significantly reduced.
另一方面,由于在超短脉冲长时间辐照过程中不实施闭环反馈控制,在辐照参数设置一致的条件下本实施例中固体薄片在长时间辐照过程中的老化程度完全由微位移平台运动参数所决定。因此,获得合适的微位移平台运动参数对本实施例而言显得尤为重要。与实施例3相似,本实施例中固体薄片运动速度基于对固体薄片老化情况的探测评估获得:通过步骤S3和步骤S4,可测量得到固体薄片定点辐照功率随时间变化的数据,获得关于固体薄片老化速度的定量评估,如得到定量的老化时间常数,进而基于该评估设定合适的运动速度。一般而言,所设定的运动速度应至少满足在老化时间常数的时间间隔,辐照区域的运动间距大于激光辐照光斑直径,以避免在连续扫描过程中辐照区域的老化累积过于严重,甚至于出现烧蚀破坏。例如,根据实施例1和实施例3中对固体薄片老化情况的评估,在本实施例中设置微位移平台运动速度为0.28mm/小时(与实施例1和实施例3的平均运动速度一致),当辐照参数设置和运动路径与实施例3保持一致的条件下,本实施例便可有效避免固体薄片出现严重老化的情形,获得与实施例3相近的固体薄片辐照老化特征以及超连续谱超短脉冲输出特性。事实上,本实施例所采用的连续运动模式可完全避免实施例3准连续运动模式在辐照区域更新时仍存在的辐照特性跳变(即使跳变幅度很小),因此理论上而言可消除上述准连续运动模式所带来的超连续谱输出功率的微小系统噪声。On the other hand, since the closed-loop feedback control is not implemented during the long-time irradiation of ultrashort pulses, the aging degree of the solid sheet in this example during the long-time irradiation is completely determined by the micro-displacement Determined by the platform motion parameters. Therefore, it is particularly important for this embodiment to obtain suitable motion parameters of the micro-displacement platform. Similar to Example 3, the moving speed of the solid sheet in this embodiment is obtained based on the detection and evaluation of the aging of the solid sheet: through steps S3 and S4, the data of the fixed-point irradiation power of the solid sheet changing with time can be measured, and the information about the solid sheet can be obtained. Quantitative evaluation of the aging speed of the slice, such as obtaining a quantitative aging time constant, and then setting an appropriate movement speed based on the evaluation. Generally speaking, the set movement speed should at least meet the time interval of the aging time constant, and the movement distance of the irradiation area is greater than the diameter of the laser irradiation spot, so as to avoid excessive aging accumulation of the irradiation area during continuous scanning. Even ablative damage occurs. For example, according to the evaluation of the aging situation of the solid sheet in Embodiment 1 and Embodiment 3, the motion speed of the micro-displacement platform is set to be 0.28mm/hour in this embodiment (consistent with the average motion speed of Embodiment 1 and Embodiment 3) , when the irradiation parameter setting and motion path are consistent with Example 3, this example can effectively avoid the serious aging of the solid sheet, and obtain the radiation aging characteristics of the solid sheet similar to Example 3 and the supercontinuity Spectral ultrashort pulse output characteristics. In fact, the continuous motion mode adopted in this embodiment can completely avoid the radiation characteristic jump (even if the jump range is small) that still exists in the quasi-continuous motion mode of embodiment 3 when the irradiation area is updated, so theoretically It can eliminate the tiny system noise of the supercontinuum output power brought by the quasi-continuous motion mode mentioned above.
在本实施例中,在上述运动速度的基础上进一步提高运动速度,可使连续扫描过程中固体薄片的老化程度(功率下降幅度)处于更为轻微的范围。例如,类似实施例3中弱辐照老化的情形,设置更高的运动速度使实时激光功率相比初始激光功率的下降幅度小于1倍超短脉冲激光功率的标准差,这时薄片老化对输出超连续谱超短脉冲功率稳定性和光谱展宽特性的影响几乎可忽略不计,输出超连续谱超短脉冲的噪声主要由输入超短脉冲的噪声所决定,因此可获得接近输入超短激光脉冲的稳定度,以及接近薄片在初始辐照下的光谱展宽。值得注意的是,提高固体薄片运动速度需以牺牲固体薄片的使用寿命为代价,因此在实际应用中可权衡两方面的利弊设置合适的运动速度,在满足超连续谱输出功率稳定性和光谱展宽特性技术要求的同时也可获得适宜的应用经济性和使用寿命。In this embodiment, further increasing the moving speed on the basis of the above-mentioned moving speed can keep the aging degree (power drop) of the solid sheet in a more slight range during the continuous scanning process. For example, similar to the case of weak irradiation aging in Example 3, a higher motion speed is set to make the real-time laser power drop less than 1 times the standard deviation of the ultrashort pulse laser power compared to the initial laser power. The influence of supercontinuum ultrashort pulse power stability and spectral broadening characteristics is almost negligible, and the noise of the output supercontinuum ultrashort pulse is mainly determined by the noise of the input ultrashort pulse, so it can be obtained close to the input ultrashort laser pulse stability, and close to the spectral broadening of the flakes under initial irradiation. It is worth noting that increasing the motion speed of the solid sheet needs to be at the cost of sacrificing the service life of the solid sheet. Therefore, in practical applications, the advantages and disadvantages of the two aspects can be weighed to set an appropriate motion speed. Appropriate application economy and service life can be obtained while meeting the technical requirements of the characteristics.
在相同的激光辐照参数设置下,本实施例的运动路径也可完全依照实施例1的运动路径实施。因此,在与实施例1和实施例3具有相近运动速度条件下,本实施例采用一片30mm×30mm固体薄片同样可获得超过1万小时的使用寿命,实现系统全运行寿命周期对超连续谱产生材料的免更换。Under the same laser irradiation parameter setting, the motion path of this embodiment can also be completely implemented according to the motion path of Embodiment 1. Therefore, under the condition of similar motion speed to that of Embodiment 1 and Embodiment 3, this embodiment can also obtain a service life of more than 10,000 hours by using a 30mm×30mm solid sheet, and realize the full operation life cycle of the system. No replacement of materials.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211510541.XA CN115740792B (en) | 2022-11-29 | 2022-11-29 | A method for generating a high-stability supercontinuum light source based on solid thin films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211510541.XA CN115740792B (en) | 2022-11-29 | 2022-11-29 | A method for generating a high-stability supercontinuum light source based on solid thin films |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115740792A true CN115740792A (en) | 2023-03-07 |
CN115740792B CN115740792B (en) | 2025-02-11 |
Family
ID=85340153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211510541.XA Active CN115740792B (en) | 2022-11-29 | 2022-11-29 | A method for generating a high-stability supercontinuum light source based on solid thin films |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115740792B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117977381A (en) * | 2024-03-29 | 2024-05-03 | 中国科学技术大学 | Mid-infrared laser source |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181661A (en) * | 2001-12-18 | 2003-07-02 | Nec Corp | Laser pulse irradiation method and ultra-short pulse laser apparatus |
US20150185492A1 (en) * | 2012-08-30 | 2015-07-02 | Sumitomo Electric Industries, Ltd. | Laser light source |
CN111755939A (en) * | 2020-06-27 | 2020-10-09 | 复旦大学 | A kind of supercontinuum generation device and supercontinuum generation method |
US20210039198A1 (en) * | 2019-08-06 | 2021-02-11 | Shibin Jiang | Laser welding utilizing broadband pulsed laser sources |
-
2022
- 2022-11-29 CN CN202211510541.XA patent/CN115740792B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181661A (en) * | 2001-12-18 | 2003-07-02 | Nec Corp | Laser pulse irradiation method and ultra-short pulse laser apparatus |
US20150185492A1 (en) * | 2012-08-30 | 2015-07-02 | Sumitomo Electric Industries, Ltd. | Laser light source |
US20210039198A1 (en) * | 2019-08-06 | 2021-02-11 | Shibin Jiang | Laser welding utilizing broadband pulsed laser sources |
CN111755939A (en) * | 2020-06-27 | 2020-10-09 | 复旦大学 | A kind of supercontinuum generation device and supercontinuum generation method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117977381A (en) * | 2024-03-29 | 2024-05-03 | 中国科学技术大学 | Mid-infrared laser source |
Also Published As
Publication number | Publication date |
---|---|
CN115740792B (en) | 2025-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mao et al. | Imaging femtosecond laser-induced electronic excitation in glass | |
RU2589270C2 (en) | High-power femtosecond laser with controlled repetition frequency | |
US6884960B2 (en) | Methods for creating optical structures in dielectrics using controlled energy deposition | |
Bonlie et al. | Production of> 1021 W/cm2 from a large-aperture. Ti: sapphire laser system | |
RU2589268C2 (en) | High-power femtosecond laser with repetition frequency controlled according to scanning speed | |
EP1475678B1 (en) | Method for producing a hologram by picosecond laser | |
CN103698025B (en) | Based on domain wall nonlinear pulse autocorrelation measurement method and measurement apparatus | |
JP2008518488A (en) | Pulsed laser source with adjustable grating compressor | |
CN103246064A (en) | Gradual change refractive index plasma lens-based device and method for generating hollow light beam | |
TW201351504A (en) | Laser, annealing apparatus and method | |
CN115740792A (en) | Method for generating high-stability supercontinuum light source based on solid sheet | |
KR20220104810A (en) | Frequency converter for optimizing the properties of harmonics in lasers | |
CN114374135A (en) | Terahertz wave generation system based on laser coherent synthesis | |
CN109695051B (en) | Femtosecond laser-assisted protein nucleation method and system based on electronic dynamic regulation | |
CN100570464C (en) | Carrier-envelope phase-stabilized dual-wavelength output optical parametric amplification laser system | |
CN105652355A (en) | Preparation method for plasma grating based on pulse polarization rotation | |
JP4373163B2 (en) | Method for manufacturing optical structure | |
CN112421360A (en) | Integrated optical fiber resonant cavity and manufacturing method and application thereof | |
CN111934165B (en) | Ultrashort pulse generation method based on flight focus and plasma back Raman scattering | |
US20050167410A1 (en) | Methods for creating optical structures in dielectrics using controlled energy deposition | |
CN101447636A (en) | Method for generating white light with high steadiness and super-continuum used for ultra-fast photoparametric amplifier | |
CN113341628A (en) | Femtosecond ultra-continuous white light generating device | |
CN111992878A (en) | Device and method for reducing time required by femtosecond laser introduction structure | |
CN113984658B (en) | Component damage characteristic regulation and control method and damage test system based on pulse sequence | |
CN212793608U (en) | Laser scribing on-line monitoring device adopting all-optical mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |