CN115736913A - Noninvasive blood glucose detection method and system - Google Patents
Noninvasive blood glucose detection method and system Download PDFInfo
- Publication number
- CN115736913A CN115736913A CN202211422503.9A CN202211422503A CN115736913A CN 115736913 A CN115736913 A CN 115736913A CN 202211422503 A CN202211422503 A CN 202211422503A CN 115736913 A CN115736913 A CN 115736913A
- Authority
- CN
- China
- Prior art keywords
- blood glucose
- light
- acquisition module
- fingertip
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008280 blood Substances 0.000 title claims abstract description 102
- 210000004369 blood Anatomy 0.000 title claims abstract description 102
- 238000001514 detection method Methods 0.000 title claims abstract description 32
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims description 42
- 239000008103 glucose Substances 0.000 title claims description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 16
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 7
- 230000000149 penetrating effect Effects 0.000 claims abstract description 6
- 239000000523 sample Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000037149 energy metabolism Effects 0.000 description 3
- 239000013558 reference substance Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000001055 reflectance spectroscopy Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002235 transmission spectroscopy Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及血糖检测技术领域,具体涉及一种无创血糖检测方法及系统。The invention relates to the technical field of blood sugar detection, in particular to a non-invasive blood sugar detection method and system.
背景技术Background technique
糖尿病是一种复杂的慢性疾病,在患病期间50%-70%的病人没有明显症状,然而在不知不觉中它引起的慢性并发症得以发展,因此人们称其为“隐形杀手”,尤其是随着人们生活水平的提高,使糖尿病患者人数急剧增加。Diabetes is a complex chronic disease, 50%-70% of patients have no obvious symptoms during the disease, but the chronic complications it causes develop unknowingly, so people call it the "invisible killer", especially With the improvement of people's living standards, the number of diabetic patients has increased dramatically.
糖尿病人的血糖值在一天内会出现较大波动,在治疗期间为了检测到血糖值,每天至少需要进行七次标准血糖检测。在日常生活中如果糖尿病人能对血糖浓度定期进行检测,同时再配合药物,能很好的控制其血糖浓度,因此随时检测血糖值对于糖尿病人来说至关重要。但是传统的血糖检查是通过静脉抽血和微血管血进行血糖测定,该方法耗时长,成本高,虽然有一些便携式的血糖检测仪但是该仪器仍然需要指尖采血,使用不便。The blood sugar level of diabetic patients will fluctuate greatly within a day. In order to detect the blood sugar level during treatment, standard blood sugar testing needs to be carried out at least seven times a day. In daily life, if diabetics can regularly detect blood sugar concentration, and cooperate with drugs at the same time, they can control their blood sugar concentration well. Therefore, it is very important for diabetics to detect blood sugar levels at any time. However, the traditional blood glucose test is to measure blood glucose through venous blood and capillary blood. This method is time-consuming and costly. Although there are some portable blood glucose detectors, the instrument still requires fingertip blood collection, which is inconvenient to use.
近年来无创血糖检测技术的兴起使得无创血糖检测方法逐渐被人们熟知,无创血糖检测方法大多是通过测量光穿过人体时的反射、漫反射和透射光的不同而推导出血糖值,但是无创血糖检测一直存在测量精度的问题,由于光线穿透人体后,人体内处血液的其它组织也会吸收光,这就造成无创血糖检测时所获得的信号弱,干扰强。尤其是不同年龄段的人皮肤、血氧饱和度等差异非常大,这就进一步造成测量结果不准确。In recent years, the rise of non-invasive blood sugar detection technology has made non-invasive blood sugar detection methods gradually known to people. Most of the non-invasive blood sugar detection methods derive blood sugar values by measuring the reflection, diffuse reflection and transmission of light when light passes through the human body. However, non-invasive blood glucose There has always been a problem of measurement accuracy in detection. After light penetrates the human body, other blood tissues in the human body will also absorb light, which results in weak signals and strong interference during non-invasive blood glucose detection. In particular, the skin and blood oxygen saturation of people of different age groups are very different, which further leads to inaccurate measurement results.
目前已经有的无创血糖方法时通过测量不同光穿过人体后的透射率,然后再获取被检测者的心率;获取被检测者的体温;获取被检测者的体辐射热量;以及根据所述血糖指标数据、心率、体温、人体辐射热量,计算被检测者的血糖值。但是对于如何降低因素干扰,提高个体的测量精度还有待研究。The existing non-invasive blood sugar method measures the transmittance of different light through the human body, and then obtains the heart rate of the detected person; obtains the body temperature of the detected person; obtains the body radiation heat of the detected person; and according to the blood sugar Index data, heart rate, body temperature, body radiant heat, and calculate the blood sugar level of the person being tested. However, how to reduce factor interference and improve individual measurement accuracy remains to be studied.
发明内容Contents of the invention
本发明的目的在于提供一种无创血糖检测方法及系统,解决上述提到的问题。The purpose of the present invention is to provide a non-invasive blood glucose detection method and system to solve the above-mentioned problems.
本发明的目的可以通过以下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:
一种无创血糖检测方法,所述血糖检测方法包括以下步骤:A noninvasive blood glucose detection method, said blood glucose detection method comprising the following steps:
步骤1:将待测者的指尖插入检测探头中,控制光源发生器交替发射两种不同波长的光源;Step 1: Insert the fingertip of the subject into the detection probe, and control the light source generator to alternately emit light sources of two different wavelengths;
步骤2:硬件系统的光信号采集模块采集穿透指尖的透射光,利用数据采集模块采集体表温度、环境温度、血氧饱和度和体表辐射能量值;Step 2: The optical signal acquisition module of the hardware system collects the transmitted light that penetrates the fingertip, and uses the data acquisition module to collect body surface temperature, ambient temperature, blood oxygen saturation and body surface radiation energy values;
步骤3:对采集到的数据进行信号处理,去除干扰;Step 3: Perform signal processing on the collected data to remove interference;
步骤4:处理后的信号传入上位机,上位机根据预设的程序模型计算血糖值;Step 4: The processed signal is transmitted to the host computer, and the host computer calculates the blood glucose level according to the preset program model;
步骤5:将血糖值可视化显示出来。Step 5: Visually display the blood glucose value.
作为本发明方案的进一步描述,所述步骤1中两种不同波长的光源选择400nm-700nm的红光和700nm-2500nm红外光,根据两种不同波长光源计算血糖值。As a further description of the solution of the present invention, in the step 1, two light sources of different wavelengths are selected as red light of 400nm-700nm and infrared light of 700nm-2500nm, and the blood sugar level is calculated according to the two light sources of different wavelengths.
作为本发明方案的进一步描述,所述步骤2中硬件系统的工作步骤如下:As a further description of the solution of the present invention, the working steps of the hardware system in the step 2 are as follows:
步骤21:将被测者的手指放入血氧指夹仪中,夹持稳定;Step 21: Put the finger of the person under test into the blood oxygen finger clip device, and hold it stably;
步骤22:嵌入式的微处理器控制光源发生器交替发射 400nm-700nm的红光和700nm-2500nm红外光;Step 22: The embedded microprocessor controls the light source generator to alternately emit 400nm-700nm red light and 700nm-2500nm infrared light;
步骤23:光信号采集模块采集穿透指尖的光,并将光信号转换为电信号,对电信号进行信号处理,并将处理后的信号传入上位机;Step 23: The optical signal acquisition module collects the light that penetrates the fingertip, converts the optical signal into an electrical signal, performs signal processing on the electrical signal, and transmits the processed signal to the host computer;
步骤24:参数信息采集模块采集血氧饱和度、心率、指尖的体表温度和指尖的热辐射能量以及环境温度并将信号传入上位机。Step 24: The parameter information collection module collects blood oxygen saturation, heart rate, body surface temperature of fingertips, thermal radiation energy of fingertips, and ambient temperature and transmits the signals to the host computer.
作为本发明方案的进一步描述,所述硬件系统电路中既需要模拟电源也需要数字电源,因此在电源外围设计隔离电路保证电源模块稳定。As a further description of the solution of the present invention, the hardware system circuit needs both an analog power supply and a digital power supply, so an isolation circuit is designed around the power supply to ensure the stability of the power supply module.
作为本发明方案的进一步描述,所述步骤4中模型进行校准的步骤如下:As a further description of the solution of the present invention, the steps for calibrating the model in step 4 are as follows:
步骤41:有创测得的血糖标准值,获取心率、体表温度等参数;Step 41: Obtain parameters such as heart rate and body surface temperature based on the blood glucose standard value measured invasively;
步骤42:对参数和血糖标准值进行分集;Step 42: Diversify parameters and blood glucose standard values;
步骤43:训练集对模型进行训练校准,得到校准后的模型;Step 43: The training set is used to train and calibrate the model to obtain a calibrated model;
步骤44:用验证集对校准后的模型进行验证;Step 44: Verify the calibrated model with a verification set;
步骤45:验证结果符合标准则可以进行无创血糖检测,不满足标准则重复步骤41-步骤44。Step 45: If the verification result meets the standard, non-invasive blood glucose testing can be performed; if the standard is not met, repeat steps 41-44.
作为本发明方案的进一步描述,所述步骤44中采用相关系数、预测标准差和校正标准差对模型进行质量评价。As a further description of the solution of the present invention, in the step 44, the correlation coefficient, the prediction standard deviation and the correction standard deviation are used to evaluate the quality of the model.
一种无创血糖检测系统,所述系统包括:嵌入式的微处理器、光源发生器、光信号采集模块、参数信息采集模块和通讯模块。A non-invasive blood sugar detection system, the system includes: an embedded microprocessor, a light source generator, an optical signal acquisition module, a parameter information acquisition module and a communication module.
作为本发明方案的进一步描述,所述嵌入式的微处理器:与光源发生器、光信号采集模块、参数信息采集模块和通讯模块,用于控制整个系统正常运行;As a further description of the solution of the present invention, the embedded microprocessor: together with the light source generator, optical signal acquisition module, parameter information acquisition module and communication module, is used to control the normal operation of the entire system;
光源发生器:与嵌入式的微处理器连接,用于交替发射两种不同波长的光源;Light source generator: connected with the embedded microprocessor, it is used to alternately emit light sources of two different wavelengths;
光信号采集模块:与嵌入式的微处理器连接,用于采集穿透指尖的透射光;Optical signal acquisition module: connected with the embedded microprocessor, used to collect the transmitted light penetrating the fingertip;
参数信息采集模块:与嵌入式的微处理器连接,用于采集体表温度、环境温度、血氧饱和度和体表辐射能量值;Parameter information collection module: connected with the embedded microprocessor, used to collect body surface temperature, ambient temperature, blood oxygen saturation and body surface radiation energy value;
通讯模块:与嵌入式的微处理器连接,用于将采集到的数据发送给上位机进行分析。Communication module: connected with the embedded microprocessor, used to send the collected data to the host computer for analysis.
有益效果:1、本发明是通过多种400nm-700nm的红光和 700nm-2500nm红外光多种光源交替照射,采用透射式或者反射式光谱法,嵌入式微处理器分别驱动红光及红外光发射端照射人体指尖部位,光电接收端负责收集透射光,再通过信息处理模块进行信号的放大滤波及光电转换,并通过公式计算出两种不同波长光的透射比例和初始血糖值。Beneficial effects: 1. The present invention alternately irradiates various light sources of 400nm-700nm red light and 700nm-2500nm infrared light, adopts transmission or reflection spectroscopy, and embedded microprocessor drives red light and infrared light emission respectively The end irradiates the fingertips of the human body, and the photoelectric receiving end is responsible for collecting the transmitted light, and then the signal is amplified and filtered and photoelectrically converted through the information processing module, and the transmission ratio of two different wavelengths of light and the initial blood sugar level are calculated by the formula.
2、本方法还通过能量代谢守恒法进行血糖测量值的修正,通过硬件系统获取修正参数,并利用修正参数对血糖值进行修正获取更准确的血糖值,修正参数包括人体血氧饱和度、人体心率值、手指指尖体表温度值、环境温度值及体辐射能量值,修正方法采用人工神经网络,可以在输入待测者的数据后,矫正模型,得到适用于个人的血糖检测模型,进而提升血糖检测精度。2. This method also uses energy metabolism conservation method to correct the blood glucose measurement value, obtains the correction parameters through the hardware system, and uses the correction parameters to correct the blood glucose value to obtain a more accurate blood glucose value. The correction parameters include human blood oxygen saturation, human body Heart rate value, fingertip body surface temperature value, ambient temperature value and body radiation energy value, the correction method adopts artificial neural network, after inputting the data of the subject to be tested, the model can be corrected to obtain a blood sugar detection model suitable for individuals, and then Improve the accuracy of blood sugar detection.
3、本文设计的无创血糖检测系统集光电、化学、医学和人工智能等技术为一体,可靠性强且具有强大的理论基础。且该系统可以满足广大的糖尿病患者在家中进行无创、实时、连续的高精度血糖浓度自测,并且成本更低,体积更小。3. The non-invasive blood glucose detection system designed in this paper integrates technologies such as photoelectricity, chemistry, medicine and artificial intelligence, and has strong reliability and a strong theoretical basis. Moreover, the system can satisfy the majority of diabetic patients to perform non-invasive, real-time, continuous high-precision self-testing of blood sugar concentration at home, and the cost is lower and the volume is smaller.
附图说明Description of drawings
下面结合附图对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1为本发明提供的一种无创血糖检测方法部分流程示意图;Fig. 1 is a schematic flow diagram of a part of a non-invasive blood sugar detection method provided by the present invention;
图2为本发明硬件系统的工作示意图;Fig. 2 is the working schematic diagram of hardware system of the present invention;
图3为本发明上位机模型的校准流程图。Fig. 3 is a calibration flowchart of the host computer model of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
请参阅图1所示,本发明为一种无创血糖检测方法,其特征在于,所述血糖检测方法包括以下步骤:Please refer to Fig. 1, the present invention is a non-invasive blood glucose detection method, characterized in that the blood glucose detection method comprises the following steps:
步骤1:将待测者的指尖插入检测探头中,控制光源发生器交替发射两种不同波长的光源;Step 1: Insert the fingertip of the subject into the detection probe, and control the light source generator to alternately emit light sources of two different wavelengths;
步骤2:硬件系统的光信号采集模块采集穿透指尖的透射光,利用数据采集模块采集体表温度、环境温度、血氧饱和度和体表辐射能量值;Step 2: The optical signal acquisition module of the hardware system collects the transmitted light that penetrates the fingertip, and uses the data acquisition module to collect body surface temperature, ambient temperature, blood oxygen saturation and body surface radiation energy values;
步骤3:对采集到的数据进行信号处理,去除干扰;Step 3: Perform signal processing on the collected data to remove interference;
步骤4:处理后的信号传入上位机,上位机根据预设的程序模型计算血糖值;Step 4: The processed signal is transmitted to the host computer, and the host computer calculates the blood glucose level according to the preset program model;
步骤5:将血糖值可视化显示出来。Step 5: Visually display the blood glucose value.
其中的关键参数分别是透射光,体表温度、环境温度、血氧饱和度和体辐射能量值是计算血糖的修正参数。本方法的流程图如图1 所示。The key parameters are transmitted light, body surface temperature, ambient temperature, blood oxygen saturation and body radiant energy values are correction parameters for calculating blood sugar. The flowchart of this method is shown in Fig. 1 .
所述步骤1中,通过透射光获取血糖浓度的公式如下:In the step 1, the formula for obtaining blood glucose concentration through transmitted light is as follows:
其中ε0为组织内的总吸收率、c0为光吸收物质浓度、L为光路径长度;ε1为动脉血液中血糖的吸光系数、c1为动脉血液中血糖的光吸收物质浓度;ε2为动脉血液中参考物质的吸光系数、c2为动脉血液中参考物质的光吸收物质浓度。Where ε 0 is the total absorption rate in the tissue, c 0 is the concentration of light-absorbing substances, and L is the length of the light path; ε 1 is the absorption coefficient of blood sugar in arterial blood, and c 1 is the concentration of light-absorbing substances in blood sugar in arterial blood; ε 2 is the absorption coefficient of the reference substance in the arterial blood, and c 2 is the light-absorbing substance concentration of the reference substance in the arterial blood.
由于心脏跳动时血管内的血液容积会发生变化,进而引起光路径长度发生变化,用ΔL表示光路径长度的变量。将ΔL引入公式1 会引起光强I变为I+ΔI,由于ΔI远小于I,因此经过变换可以得到:Since the blood volume in the blood vessel will change when the heart beats, which will cause the change of the optical path length, ΔL is used to represent the variable of the optical path length. Introducing ΔL into formula 1 will cause the light intensity I to become I+ΔI. Since ΔI is much smaller than I, it can be obtained after transformation:
由于单波长光谱测血糖时容易出现干扰造成偏差,因此本方法中采用双波长进行血糖无创检测,波长分别为λ1和λ2,将公式2表述为Since the single-wavelength spectrum is prone to interference and cause deviation when measuring blood glucose, this method adopts dual wavelengths for non-invasive detection of blood glucose, the wavelengths are λ 1 and λ 2 respectively, and the formula 2 is expressed as
由于选择的参考物质在两种不同波长下吸光系数相同,因此公Since the selected reference substance has the same absorption coefficient at two different wavelengths, it is known that
式3和4相减,并变换公式得到Subtract formulas 3 and 4, and transform the formula to get
将记为R,则 Will denoted as R, then
本方法选用的λ1为400nm-700nm的红光作为参考波长,λ2为 700nm-2500nm红外光作为血糖敏感波长,HbO2为参考物质保证两种不同波长的吸光系数相同。The λ 1 that this method selects is the red light of 400nm-700nm as reference wavelength, and λ 2 is 700nm-2500nm infrared light as blood sugar sensitive wavelength, HbO for reference material guarantees that the absorption coefficient of two different wavelengths is identical.
本方法采用能量代谢守恒法对无创血糖值进行修正,采用能量代谢守恒法对无创血糖值修正所需的参数有血氧饱和度、心率(血液流速)、测量部位的体表温度、测量部位的热辐射量和环境温度。In this method, the energy metabolism conservation method is used to correct the non-invasive blood glucose value, and the energy metabolism conservation method is used to correct the non-invasive blood glucose value. Thermal radiation and ambient temperature.
本方法的测量部位选择指尖,指尖相比与其它部位毛细血管更加丰富,不同年龄性别的个体指尖差异小。The fingertip is selected as the measurement site of this method, and the fingertip is richer in capillaries than other parts, and the individual fingertips of different ages and genders have little difference.
请参阅图2所示,为完成该方法所需的硬件系统工作示意图,一种无创血糖检测系统,其特征在于,所述系统包括:嵌入式的微处理器、光源发生器、光信号采集模块、参数信息采集模块和通讯模块。Please refer to Fig. 2, a schematic diagram of the hardware system required for completing the method, a non-invasive blood glucose detection system, characterized in that the system includes: an embedded microprocessor, a light source generator, and an optical signal acquisition module , parameter information collection module and communication module.
所述嵌入式的微处理器:与光源发生器、光信号采集模块、参数信息采集模块和通讯模块,用于控制整个系统正常运行;The embedded microprocessor: together with the light source generator, optical signal acquisition module, parameter information acquisition module and communication module, is used to control the normal operation of the entire system;
光源发生器:与嵌入式的微处理器连接,用于交替发射两种不同波长的光源;Light source generator: connected with the embedded microprocessor, it is used to alternately emit light sources of two different wavelengths;
光信号采集模块:与嵌入式的微处理器连接,用于采集穿透指尖的透射光;Optical signal acquisition module: connected with the embedded microprocessor, used to collect the transmitted light penetrating the fingertip;
参数信息采集模块:与嵌入式的微处理器连接,用于采集体表温度、环境温度、血氧饱和度和体表辐射能量值;Parameter information collection module: connected with the embedded microprocessor, used to collect body surface temperature, ambient temperature, blood oxygen saturation and body surface radiation energy value;
通讯模块:与嵌入式的微处理器连接,用于将采集到的数据发送给上位机进行分析。Communication module: connected with the embedded microprocessor, used to send the collected data to the host computer for analysis.
本方法的硬件系统需要完成信号采集、信号放大滤波、模数转换和通信功能,硬件系统工作步骤如下:The hardware system of this method needs to complete signal acquisition, signal amplification filtering, analog-to-digital conversion and communication functions, and the hardware system working steps are as follows:
步骤21:将被测者的手指放入血氧指夹仪中,夹持稳定;Step 21: Put the finger of the person under test into the blood oxygen finger clip device, and hold it stably;
步骤22:嵌入式的微处理器控制光源发生器交替发射 400nm-700nm的红光和700nm-2500nm红外光;Step 22: The embedded microprocessor controls the light source generator to alternately emit 400nm-700nm red light and 700nm-2500nm infrared light;
步骤23:光信号采集模块采集穿透指尖的光,并将光信号转换为电信号,对电信号进行信号处理,并将处理后的信号传入上位机;Step 23: The optical signal acquisition module collects the light that penetrates the fingertip, converts the optical signal into an electrical signal, performs signal processing on the electrical signal, and transmits the processed signal to the host computer;
步骤24:参数信息采集模块采集血氧饱和度、心率、指尖的体表温度和指尖的热辐射能量以及环境温度并将信号传入上位机。Step 24: The parameter information collection module collects blood oxygen saturation, heart rate, body surface temperature of fingertips, thermal radiation energy of fingertips, and ambient temperature and transmits the signals to the host computer.
由于硬件系统中的电路在电源模块中既需要数字电源也需要模拟电源,因此电源模块稳定性非常重要,在本硬件系统中还需要设计隔离电路保证电源模块稳定。Because the circuits in the hardware system need both digital power and analog power in the power module, the stability of the power module is very important. In this hardware system, an isolation circuit needs to be designed to ensure the stability of the power module.
参阅图3所示,本方法的无创血糖检测方法需要输入特征信息,训练上位机中的模型对模型进行校准,使模型自动输出准确可靠的预测结果,所述步骤4中模型进行校准的步骤如下:Referring to Figure 3, the non-invasive blood glucose detection method of this method needs to input characteristic information, train the model in the host computer to calibrate the model, so that the model automatically outputs accurate and reliable prediction results, and the steps for calibrating the model in step 4 are as follows :
步骤41:有创测得的血糖标准值,获取心率、体表温度等参数;Step 41: Obtain parameters such as heart rate and body surface temperature based on the blood glucose standard value measured invasively;
步骤42:对参数和血糖标准值进行分集;Step 42: Diversify parameters and blood glucose standard values;
步骤43:训练集对模型进行训练校准,得到校准后的模型;Step 43: The training set is used to train and calibrate the model to obtain a calibrated model;
步骤44:用验证集对校准后的模型进行验证;Step 44: Verify the calibrated model with a verification set;
步骤45:验证结果符合标准则可以进行无创血糖检测,不满足标准则重复步骤41-步骤44。Step 45: If the verification result meets the standard, non-invasive blood glucose testing can be performed; if the standard is not met, repeat steps 41-44.
步骤44中采用相关系数(R2)、预测标准差(RMSEP)和校正标准差(RMSEC)对模型进行质量评价。In step 44, the correlation coefficient (R 2 ), predicted standard deviation (RMSEP) and corrected standard deviation (RMSEC) are used to evaluate the quality of the model.
本发明可以通过硬件系统采集两种波长的透射光和参数信息,并将采集到的信息输送至上位机,上位机内预设的模型可以根据输入的参数预测待测者的血糖,实现无创血糖检测。其中上位机预设的模型采用黑匣子的操作方式,使用者无需了解内部模型结构,只需要按照要求输入数据即可自动完成训练,当模型训练符合质量评价标准即可进行实际应用。The present invention can collect two wavelengths of transmitted light and parameter information through the hardware system, and transmit the collected information to the host computer, and the preset model in the host computer can predict the blood sugar of the subject according to the input parameters, realizing non-invasive blood sugar detection. Among them, the preset model of the upper computer adopts the operation method of black box. The user does not need to understand the internal model structure, and only needs to input the data according to the requirements to complete the training automatically. When the model training meets the quality evaluation standards, it can be used in practice.
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。An embodiment of the present invention has been described in detail above, but the content described is only a preferred embodiment of the present invention, and cannot be considered as limiting the implementation scope of the present invention. All equivalent changes and improvements made according to the application scope of the present invention shall still belong to the scope covered by the patent of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211422503.9A CN115736913A (en) | 2022-11-14 | 2022-11-14 | Noninvasive blood glucose detection method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211422503.9A CN115736913A (en) | 2022-11-14 | 2022-11-14 | Noninvasive blood glucose detection method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115736913A true CN115736913A (en) | 2023-03-07 |
Family
ID=85370576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211422503.9A Pending CN115736913A (en) | 2022-11-14 | 2022-11-14 | Noninvasive blood glucose detection method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115736913A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117503123A (en) * | 2023-10-23 | 2024-02-06 | 兰州大学 | Near infrared noninvasive blood glucose detection system and method based on multiple wavelengths |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160256114A1 (en) * | 2015-03-02 | 2016-09-08 | Guilin Medicine Electronic Technology Co., Ltd. | Non-invasive blood sugar measuring method and fingertip measuring probe |
CN107174259A (en) * | 2017-06-26 | 2017-09-19 | 上海理工大学 | Woundless blood sugar value harvester and computational methods based on multi-wavelength conservation of energy |
CN107714049A (en) * | 2017-09-08 | 2018-02-23 | 上海乐糖信息科技有限公司 | Noninvasive Blood Glucose Detection Methods, system and device based on Multi-information acquisition |
CN109330607A (en) * | 2018-08-29 | 2019-02-15 | 桂林永成医疗科技有限公司 | Noninvasive Blood Glucose Detection Methods and its detection device based on minimally invasive blood glucose value calibration |
CN109758160A (en) * | 2019-01-11 | 2019-05-17 | 南京邮电大学 | A non-invasive blood glucose prediction method based on LSTM-RNN model |
CN110123339A (en) * | 2019-05-10 | 2019-08-16 | 湖南龙罡智能科技有限公司 | A kind of Woundless blood sugar measuring device and method |
CN111466921A (en) * | 2020-04-23 | 2020-07-31 | 中国科学院上海技术物理研究所 | Non-invasive blood glucose detector and detection method based on multi-source information perception and fusion |
CN111700628A (en) * | 2020-07-24 | 2020-09-25 | 合肥铭源鸿医疗科技有限公司 | Noninvasive blood glucose detection system based on infrared transmission light path |
-
2022
- 2022-11-14 CN CN202211422503.9A patent/CN115736913A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160256114A1 (en) * | 2015-03-02 | 2016-09-08 | Guilin Medicine Electronic Technology Co., Ltd. | Non-invasive blood sugar measuring method and fingertip measuring probe |
CN107174259A (en) * | 2017-06-26 | 2017-09-19 | 上海理工大学 | Woundless blood sugar value harvester and computational methods based on multi-wavelength conservation of energy |
CN107714049A (en) * | 2017-09-08 | 2018-02-23 | 上海乐糖信息科技有限公司 | Noninvasive Blood Glucose Detection Methods, system and device based on Multi-information acquisition |
CN109330607A (en) * | 2018-08-29 | 2019-02-15 | 桂林永成医疗科技有限公司 | Noninvasive Blood Glucose Detection Methods and its detection device based on minimally invasive blood glucose value calibration |
CN109758160A (en) * | 2019-01-11 | 2019-05-17 | 南京邮电大学 | A non-invasive blood glucose prediction method based on LSTM-RNN model |
CN110123339A (en) * | 2019-05-10 | 2019-08-16 | 湖南龙罡智能科技有限公司 | A kind of Woundless blood sugar measuring device and method |
CN111466921A (en) * | 2020-04-23 | 2020-07-31 | 中国科学院上海技术物理研究所 | Non-invasive blood glucose detector and detection method based on multi-source information perception and fusion |
CN111700628A (en) * | 2020-07-24 | 2020-09-25 | 合肥铭源鸿医疗科技有限公司 | Noninvasive blood glucose detection system based on infrared transmission light path |
Non-Patent Citations (1)
Title |
---|
耿壮壮: "无创血糖检测技术研究及其在医疗服务中的应用", 中国优秀硕士学位论文全文数据库 医药卫生科技辑, no. 4, 15 April 2022 (2022-04-15), pages 053 - 136 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117503123A (en) * | 2023-10-23 | 2024-02-06 | 兰州大学 | Near infrared noninvasive blood glucose detection system and method based on multiple wavelengths |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104586407B (en) | Multi-parameter physiological indication detection device and detection method thereof | |
CN105307568B (en) | non-invasive blood analysis | |
CN102293654B (en) | Non-invasive blood glucose detector based on metabolic heat-optical method | |
CN110123339B (en) | Noninvasive blood glucose measuring device and method | |
US5086229A (en) | Non-invasive measurement of blood glucose | |
CN101467884B (en) | Method and device for non-invasive blood sugar rapid detection | |
CN103006236B (en) | The method and system of noninvasive Optical blood glucose detection is carried out with spectral data analysis | |
JP5216709B2 (en) | Blood glucose level measuring device | |
JP2011062335A (en) | Blood sugar level monitoring apparatus | |
CN108324286B (en) | Infrared noninvasive blood glucose detection device based on PCA-NARX correction algorithm | |
Li et al. | Research on non-invasive glucose concentration measurement by NIR transmission | |
CN107174259A (en) | Woundless blood sugar value harvester and computational methods based on multi-wavelength conservation of energy | |
CN111466921A (en) | Non-invasive blood glucose detector and detection method based on multi-source information perception and fusion | |
CN112022167A (en) | Noninvasive blood glucose detection method based on spectral sensor | |
CN112568902A (en) | Noninvasive blood glucose calibration method based on blood glucose value | |
CN108634964A (en) | A kind of non-invasive blood sugar instrument based on spectrum | |
CN116965810A (en) | Blood sugar detecting system | |
CN115736913A (en) | Noninvasive blood glucose detection method and system | |
CN108261202B (en) | System for measuring blood sugar and using method thereof | |
CN105232055A (en) | Noninvasive glucometer | |
CN112587134A (en) | Noninvasive blood glucose detection method | |
CN111803085A (en) | Noninvasive hemoglobin concentration level measuring device based on color characteristics | |
CN112485206B (en) | Correction method of contact type measuring device and percutaneous jaundice instrument | |
CN108784712A (en) | A kind of optical detecting method of the dynamic Woundless blood sugar concentration based near infrared band | |
CN220572189U (en) | Capacitive detection equipment for detecting human body blood circulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |