CN115733530B - 一种可重构智能表面辅助毫米波通信的联合预编码方法 - Google Patents
一种可重构智能表面辅助毫米波通信的联合预编码方法 Download PDFInfo
- Publication number
- CN115733530B CN115733530B CN202211453462.XA CN202211453462A CN115733530B CN 115733530 B CN115733530 B CN 115733530B CN 202211453462 A CN202211453462 A CN 202211453462A CN 115733530 B CN115733530 B CN 115733530B
- Authority
- CN
- China
- Prior art keywords
- channel
- matrix
- ris
- representing
- precoding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Radio Transmission System (AREA)
Abstract
本发明提供了一种可重构智能表面辅助毫米波通信的联合预编码方法。针对可重构智能表面辅助的毫米波多输入多输出正交频分复用无线通信系统中可重构智能表面反射系数参数、发射端预编码器及接收端信号混合器的系统参数设计问题,本发明所提出的设计方案基于已知信道信息,充分利用毫米波系统信道的稀疏散射特性,快速有效地完成智能表面的无源预编码设计与收发端的有源预编码设计。在提高系统传输频谱效率的同时,具有低计算复杂度的优势。仿真实验表明,本发明提出的设计方案在较低的计算开销下,能显著优化通信系统的频谱效率性能指标,并且优于传统的设计方案。
Description
技术领域
本发明涉及无线通信技术领域,尤其涉及一种可重构智能表面辅助毫米波通信的联合预编码方法。
背景技术
可重构智能表面(Reconfigurable Intelligent Surface,简称RIS)是面向6G无线移动通信的重要技术,通过引入该设备,通信系统可以通过主动调节RIS的反射单元参数实现智能化地改善无线信道条件环境。在RIS的辅助下,毫米波通信系统可以有效弥补毫米波(Millimeter Wave,简称mmWave)频段电磁信号高损耗、弱穿透的固有缺陷,增强信号强度,提高无线通信的覆盖范围。RIS的辅助下的通信系统的无源及有源联合预编码设计是指基于信道信息,完成RIS反射系数参数、发射端预编码器及接收端信号混合器的参数设计,优化系统传输性能指标。由于RIS具有大量反射单元,且RIS属于无源器件,本身不使用射频(Radio Frequency,简称RF)链路,需要进行无源预编码设计的系统参数激增,同时RIS反射系数的优化设计与有源预编码的优化设计相耦合,因此如何以较低的计算复杂度,完成对RIS辅助下的通信系统的系统优化设计是RIS辅助毫米波系统中的关键问题之一。为降低计算复杂度,传统方法通过简单的空间域对准主径的准则进行快速预编码设计,这类方法往往不能充分利用信道信息,建立的通信链路性能损失较大,且稳定性不佳。同时,基于优化算法的方法虽然能较好地利用全信道信息,但往往算法复杂度高,在实际通信系统中难以应用。
发明内容
针对现有技术中所存在的不足,本发明提供了一种可重构智能表面辅助毫米波通信的联合预编码方法,充分利用毫米波系统信道的稀疏散射特性,自适应地平衡系统对直射信道与反射信道的利用率,快速有效地完成RIS端的无源预编码设计与收发端的有源预编码设计。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种可重构智能表面辅助毫米波通信的联合预编码方法,包括以下步骤:
步骤1,构建信道模型,对信道信息进行预处理;
步骤2,RIS无源预编码设计;
步骤3,收发端有源预编码设计。
本发明进一步设置为:步骤1中,构建信道模型时,采用何宽带毫米波信道模型,对于OFDM系统,为对应第p子载波的等效信道矩阵且可被表示为如下形式:
Hp=Gp+RpΦTp
其中,Φ为RIS的反射系数矩阵,与分别为BS到MS的信道矩阵(直连信道矩阵)、BS到RIS的信道矩阵与RIS到MS的信道矩阵,且有对应的毫米波频域信道的几何模型如下:
其中,fs代表采样速率;
对于直连信道Gp:Ld代表BS到MS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,代表空间域发射角,代表空间域到达角,代表发射阵列响应向量,代表接收阵列响应向量;
对于BS到RIS的信道矩阵Tp:Lt代表BS到RIS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,γl代表空间域发射角,及分别代表空间域到达方位角和到达俯仰角,aBS(γl)代表发射阵列响应向量,代表接收阵列响应向量;
对于RIS到MS的信道矩阵Rp:Lr代表RIS到MS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,χa,l及χe,l分别代表空间域发射方位角和发射俯仰角,θl代表空间域到达角,aBS(γl)代表发射阵列响应向量,代表接收阵列响应向量;
上述均匀线阵与平面阵的阵列响应向量的具体数学表达式如下(符号表示矩阵Kronecker乘积):
本发明进一步设置为:步骤1中,输入信道环境噪声功率s 2及相应必要的信道信息以完成信道信息预处理如下:
首先,计算信道的等效路径复增益参数为:
其次,分别对与进行降序排序操作,使之分别满足,
再次,基于降序结果,计算BS-RIS信道与RIS-MS信道的多径的耦合复增益:
最后,计算RIS的部分耦合阵列相应向量:(上标*表示向量/矩阵元素取共轭,°表示矩阵的Hadamard乘积)
本发明进一步设置为:步骤2中,通过两步过程分别计算用以自适应平衡系统对直连信道及反射信道利用率的算法参数K,与RIS反射系数向量v。
本发明进一步设置为:第一步,定义算法参数K为自变量的目标函数,并通过遍历方法估计K∈[1,…,Ns],给定:
其中,后续设置为:
首先,对于K=1,…,Ns,计算所有目标函数值g(K);
其次,取使目标函数值最大的参数作为输出K★,即K★=argmaxKg(K);
再次,计算
最后,获得次优反射系数向量设计,其中,arg(·)表示取复数相位操作,表示的第m元。
本发明进一步设置为:第二步,基于算法参数估计K★,计算 并给出反射系数向量优化的目标函数:
后续通过迭代优化算法求解在满足约束条件的解,包括:
(1)输入初始点v0,计算初始目标函数值f(v0);
(2)初始化迭代参数t=0,算法收敛门限∈;
(3)计算当前点在目标函数上的黎曼梯度其中欧几里得梯度 表示取复数实部;
(4)基于目标函数f(v),在数据点vt的负黎曼梯度方向上,通过最优化理论中的Armijo准则计算线搜索步长
(5)更新数据点
(6)将投影到对应约束条件的流形空间上,即
(7)计算目标函数值f(vt+1),若|f(vt+1)-f(vt)|>∈,则令t=t+1并转至步骤(2),否则跳出迭代并输出v★=vt+1;
(8)计算RIS的反射系数矩阵Φ★=diag((v★)H)。
本发明进一步设置为:步骤3中,收发端的有源预编码设计,基于已获得的RIS无源预编码矩阵Φ★。
本发明进一步设置为:收发端的有源预编码设计,包括以下步骤:
步骤(a),计算对应所有子载波的等效信道
步骤(b),完成所有等效信道的奇异值分解获得
步骤(c),获得最优化的有源预编码设计,对于p=1,…,P,计算
其中,Vp[:,1:Ns]表示右奇异向量矩阵的第1到第Ns列,Up[:,1:Ns]表示左奇异向量矩阵的第1到第Ns列,对角阵Λ为基于信道奇异值∑p及噪声功率的注水功率分配矩阵;
步骤(d),完成可用于混合波束成形架构的预编码与混合矩阵的问题转化。
本发明进一步设置为:步骤(d)中,包括:
首先,完成已知数据矩阵拼接,即
然后,构建最小化二范数误差问题:
其中,FBB=[FBB,1,…,FBB,P],WBB=[wBB,1,…,WBB,P];
最后,通过现行通用方法解出前一步步骤中的预编码问题,输出近似全数字的射频及基带混合架构预编码/混合矩阵
本发明具有以下有益效果:
本发明开发了一种可重构智能表面辅助毫米波通信的联合预编码方法。所提出的方法,利用了反射级联信道的结构特征,自适应地平衡系统对直射信道与反射信道的利用率,快速有效地完成RIS端的无源预编码设计与收发端的有源预编码设计。仿真结果表明,本发明所提出的方法只需较低的计算开销,输出的联合预编码设计使得信号传输系统达到优秀的频谱效率,同时本发明非常适用于大规模RIS阵列辅助及多数据流并行传输的通信场景。
附图说明
图1为频谱效率与传输信号功率ρ之间的关系示意图;
图2为频谱效率与信号传输并行数据流数Ns之间的关系示意图,实验中传输信号功率设置为ρ=30dBm;
图3为频谱效率与RIS阵元数M之间的关系示意图,实验中传输信号功率设置为ρ=30dBm;
图4为仿真实验程序平均运行时间(AverageRuntime),单位为秒,与RIS阵元数M之间的关系示意图;
具体实施方式
下面结合附图及实施例对本发明中的技术方案进一步说明。
本发明考虑可重构智能表面辅助毫米波通信系统的信号传输在RIS端无源预编码与收发两端有源预编码的联合设计问题,对于一个多输入多输出(Multiple-InputMultiple-Output,简称MIMO)的正交频分复用(Orthogonal Frequency DivisionMultiplexing,简称OFDM)系统,其中复用P个子载波数用以进行信号传输,基站(BaseStation,简称BS)配置均匀线阵,天线数为Nt和射频链路数为Rt,满足Rt<<Nt,移动端(Mobile Station,简称MS)亦配置均匀线阵,天线数为N和射频链路数为Rr,满足Rr<<Nr,传输数据流数为Ns,BS与MS均采用全连接结构的数模混合结构,可重构智能表面为均匀平面阵,无源智能阵元数目为M=My×Mz,其中My与Mz分别代表水平、垂直方向阵元数目,反射系数向量v∈CM具体表示为其中vi∈[0,2π]是i个阵元的相移系数,对应的反射系数矩阵记作下行信号传输时,每个子载波同时传输Ns个基带符号,即有为对应第p个子载波的基带传输信号向量,且符号向量满足独立期望约束(代表ns×Ns的单位阵),BS端设置各子载波相同的RF模拟预编码器和对应第p个子载波的基带数字预编码器且满足发射端功率约束MS端置各子载波相同的RF模拟混合和对应第p子载波基带数字混合器具体第p个子载波的基带发射符号可表示为:
zp=FRFFBB,psp
在OFDM信号传输系统中,第p子载波对应的符号sp首先经相应的基带预编码矩阵FBB,p处理,之后合并成为符号块经P点的离散傅里叶逆变换(Inverse Discrete FourierTransform,简称IDFT)变换至时域并加入循环前缀,最后公共的射频预编码矩阵FRF被用以处理该符号块。在接收机接收经过无线信道的信号后,公共的射频混合矩阵WRF被用以处理所有子载波上的接收信号,之后系统去掉信号的循环前缀并将符号块经P点的离散傅里叶变换(Inverse Discrete Fourier Transform,简称DFT)变换至频域,最后第p子载波对应的接收信号分别经相应的基带混合器WBB,p处理。综上,对应第p子载波的基带接收信号可表示为:
其中,表示零均值方差为σ2的加性高斯白噪声向量,为对应第p子载波的等效信道矩阵且可被表示为如下形式:
Hp=Gp+RpΦTp
其中,Φ为RIS的反射系数矩阵,与分别为BS到MS的信道矩阵(直连信道矩阵)、BS到RIS的信道矩阵与RIS到MS的信道矩阵,且有对应的毫米波频域信道的几何模型如下:
上述信道参数具体说明如下,fs代表采样速率,对于直连信道Gp,Ld代表BS到MS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,代表空间域发射角,代表空间域到达角,代表发射阵列响应向量,代表接收阵列响应向量;对于BS到RIS的信道矩阵Tp,Lt代表BS到RIS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,γl代表空间域发射角,及分别代表空间域到达方位角和到达俯仰角,aBS(γl)代表发射阵列响应向量,代表接收阵列响应向量;对于RIS到MS的信道矩阵Rp,Lr代表RIS到MS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,χa,l及χe,l分别代表空间域发射方位角和发射俯仰角,θl代表空间域到达角,aBS(γl)代表发射阵列响应向量,代表接收阵列响应向量。上述均匀线阵与平面阵的阵列响应向量的具体数学表达式如下(符号表示矩阵Kronecker乘积):
同时为方便起见,方案定义信道的等效路径复增益参数为
且不失一般性,通过对等效路径复增益基于模值降序排序保证方案的后续步骤在描述上的有效性,使得
本发明旨在基于已知信道Gp,Tp与Rp的参数优化上述OFDM系统信号传输的等效频谱效率R,即
其中,符号表示矩阵的Moore-Penrose广义逆。本发明方案中,首先将获取综合的RIS无源预编码与BS及MS的纯数字架构有源预编码设计,之后再基于此获得可应用于混合波束成形架构的BS及MS的有源预编码设计,即对于[=1,…,P,方案先给出Φ、Fp=FRFFBB,p与Wp=WBB,pWRF的设计,再基于Fp与Wp分别给出FBB,p、FRF、WRF与WBB,p的设计,具体而言,先将该问题转化为最优化数学模型如下:
本方案首先独立考虑对Φ的设计,通过对Φ的合理处理,对于p=1,…,P,Φ、Fp与Wp的联合最优化设计将可以通过分离Φ与{Fp,Wp}的两步方法进行近似。由于等效信道的形式满足Hp=Gp+RpΦTp,有
其中,
同时Dp为Lr×Lt的矩阵且该矩阵的第m行第n列元素记作
v=diag(ΦH)为前文定义的RIS反射系数向量,而pmn为RIS耦合阵列响应向量且表达式为(上标*表示向量/矩阵元素取共轭,表示矩阵的Hadamard乘积)
因此,等效信道可以表示为块矩阵拼接的乘积如下
其中,
基于数学理论,通过基于Dp对角元对v=diag(ΦH)的合理设计,可以使Dp近似对角化,又由于毫米波信道频段的稀疏散射特性使得与均为近似列正交矩阵,故近似于奇异值分解,基于通信信号处理理论,此时对Φ与{Fp,Wp}分离设计近似于联合最优化设计且代入最优化的{Fp,Wp}将使得目标函数中等效信道对角化且对角元等于奇异值。针对对b的最优化设计,基于通信信号处理理论,对于上述可近似奇异值分解的等效信道,Ns路并行数据流传输只需要等效信道对应最大的前Ns个奇异值的Ns个成分即可。由于BS-RIS-MS反射信道由于RIS的存在具有可重构性,本方案引入算法参数K表示选自BS-RIS-MS反射信道的成分数,则从BS-RIS-MS反射信道选出的奇异值为Dp的第ik行ik列元,即而从BS-MS直连信道选出的奇异值为为的第k行k列元,即
从而目标函数R(等效频谱效率)可写作
定义与对v的最优化设计问题可数学表达为
为解决上述问题,本方案基于信道特征引入一组近似正交基如下。基于前文中反射信道的RIS耦合阵列响应向量{pmn},首先向量归一化有
其次,划分向量集
其中,标号集
最后,由于毫米波信道的稀疏特性(LtLr<M),补充与集合的正交向量集此时,则由向量组构成空间M的一组正交基,从而有待求反射系数向量v在该正交基的线性表出为
同时,反射系数向量满足代入待求反射系数向量v在该正交基的线性表出,对v的最优化设计问题的数学表达转化为
为求解上述问题,本方案首先松弛约束条件且由于前文信道路径增益已作不失一般性的降序排序,在K固定的情况下,基于注水优化理论,可得标号集在{ik}={1,…,K}时使目标函数取最优解。同时由于RIS带来的大规模天线增益使得工程条件下等效信道路径增益一般在数值上大于相对噪声功率,基于数学理论,上述问题在K固定的情况下,{cii}有近似最优解则问题进一步简化为
本方案通过预先获取对最佳算法参数K估计,自适应地平衡整体系统对直连信道与BS-RIS/RIS-MS反射信道的利用效率。方案通过执行遍历搜索K∈[1,…,Ns]获得使目标函数值最大的参数估计K★与此时的对v的松弛估计具体而言步骤如下:
1.对于K=1,…,Ns,计算所有目标函数值;
2.取使目标函数值最大的参数作为输出K★;
3.计算
4.获得次优反射系数向量设计,(arg(·)表示取复数相位操作,表示的第m元)。
为获得性能更好的反射系数向量v的设计,基于算法参数估计K★,计算 则对v设计的原问题转化为
本方案通过如下迭代优化算法求解上述问题:
(1)输入初始点v0,计算初始目标函数值f(v0);
(2)初始化迭代参数t=0,算法收敛门限∈;
(3)计算当前点在目标函数上的黎曼梯度其中欧几里得梯度 表示取复数实部。
(4)基于目标函数f(v),在数据点vt的负黎曼梯度方向上,通过最优化理论中的Armijo准则计算线搜索步长
(5)更新数据点
(6)将投影到对应约束条件的流形空间上,即
(7)计算目标函数值f(vt+1),若|f(vt+1)-f(vt)|>∈,则令t=t+1并转至步骤(2),否则跳出迭代并输出v★=vt+1。
本方案可将前文中的次优估计v0作为迭代算法初始点以显著降低算法迭代次数,亦可采用特定具体场景下具有先验优势的初始点。
在获得Φ的设计后,由于Φ的设计充分考虑了等效信道Hp可近似奇异值分解特性,基于通信信号处理理论,基于等效信道Hp的奇异值分解,存在近似最佳的Fp与Wp联合设计。具体而言,基于已获得的RIS无源预编码矩阵φ★=diag((v★)H),通过以下步骤完成BS及MS的有源预编码设计:
a.计算对应所有子载波的等效信道
b.完成所有等效信道的奇异值分解获得
c.获得最优化的有源预编码设计,对于p=1,…,P,计算
其中,Vp[:,1:Ns]表示右奇异向量矩阵的第1到第Ns列,Up[:,1:Ns]表示左奇异向量矩阵的第1到第Ns列,对角阵Λ为基于信道奇异值Σp及噪声功率的注水功率分配矩阵。在具体工程应用中,亦可采用等功率分配的近似最优有源预编码设计
d.完成可用于混合波束成形架构的预编码与混合矩阵的问题转化:
首先,完成已知数据矩阵拼接,即
然后,构建最小化二范数误差问题:
其中,FBB=[FBB,1,…,FBB,P],WBB=[WBB,1,…,WBB,P]。
最后,通过现行通用方法解出前一步步骤中的预编码问题,输出近似全数字的射频及基带混合架构预编码/混合矩阵
至此,算法完成了RIS的无源预编码矩阵设计Φ★,BS/MS在全数字架构下的有源预编码矩阵/混合矩阵设计与与BS/MS在混合框架下的有源射频及基带预编码矩阵/混合矩阵设计
仿真中,考虑RIS辅助的宽带毫米波MIMO-OFDM系统下行链路,三维空间坐标系中,设BS天线阵列位置为(2m,0m,10m),RIS位置为(0m,148m,10m),MS位置为(5m,150m,1.5m)。基于距离的路径损耗参数模型为
其中,随机参数ξ服从高斯分布:仿真中,额外考虑BS与MS的天线增益Gt与Gr,即有因此等效信道建模变为
为符合RIS辅助通信的工程场景,仿真中设置BS-RIS信道与RIS-MS信道为视线传输信道,其主径的复增益服从高斯分布其他旁径的复增益服从高斯分布μ为莱斯系数且设置为μ=10,路径损耗参数κ中的距离由三维坐标模型计算获得,其他参数依真实世界视线传输实测结果设置为a=61.4,b=2,σξ=5.8。同时,BS-MS直连信道设置为受障碍物穿透损耗影响的非视线传输信道,其多径的复增益服从高斯分布路径损耗参数κ中的距离由三维坐标模型计算获得,其他参数依真实世界视线传输实测设置为a=72,b=2.92,σξ=8.7,穿透损耗依有色玻璃的实测数据设置为δ=40.1dB。
除另外说明外,RIS设置为采用M=My×Mz=16×16个无源阵元的均匀面阵,BS使用Nt=16的均匀线阵,MS采用Nr=16的均匀线阵。其他系统参数设置为:P=16,Rt=Rr=8,Ns=6,Lt=Lr=Ld=8,Gt=24.5dBi,Gr=0dBi,fs=2GHz。子载波带宽设置为250MHz,因此噪声功率为σ2=-174+10log10B=-90dBm。
仿真实验中计算信号传输的频谱效率(Spectral Efficiency)作为主要性能指标,单位为bits/s/Hz。下文仿真实验性能曲线图中,本发明提出的算法名称写作“Proposed”,此外,作为对比参考,仿真实验中还给出了相同信道场景下的其他方案:基于最大最小值技术的交替优化算法,图注写作“AO-MM”;RIS设置为分布主要对准BS-RIS信道与RIS-MS信道主径的简单联合设计算法,图注写作“SJD”;无RIS方案,图注写作“No RIS”。
图1描述了各方案频谱效率与传输信号功率ρ之间的关系。从图1可以观察,所提出的方案在明显优于其他方案,且在传输功率的情况下差距明显。
图2描述了各方案频谱效率与信号传输并行数据流数Ns之间的关系,实验中传输信号功率设置为ρ=30dBm。从仿真实验结果中可以观察到,本发明提出的方案明显优于其他方案,同时相较于“SJD”算法,本发明的性能随并行数据流数Ns增加更为明显,直至在Ns较高时受毫米波有限的多径影响而性能增益减缓。
图3描述了各方案频谱效率与RIS阵元数M之间的关系,实验中传输信号功率设置为ρ=30dBm。从仿真实验结果中可以观察到,本发明提出的明显优于其他方案。同时,本发明提出的方案相比与其他方案,随着RIS阵元的增加,性能的提升更为显著,更适用于大规模RIS阵列应用的辅助通信场景中。
图4描述了各方案仿真实验程序平均运行时间(AverageRuntime),单位为秒(second),与与RIS阵元数M之间的关系,实验中传输信号功率设置为ρ=30dBm。观察仿真实验结果及结合前文中仿真实验结果,本发明提出的方案在性能上显著优于其他方案的情况下计算复杂度相对较低,明显由于交替优化方案“AO-MM”,同时接近使用简化设计策略的“SJD”算法。
综上所述,本发明开发了一种新型可重构智能表面辅助毫米波通信系统的无源及有源联合预编码设计方法。所提出的方法,利用了反射级联信道的结构特征,自适应地平衡系统对直射信道与反射信道的利用率,快速有效地完成RIS端的无源预编码设计与收发端的有源预编码设计。仿真结果表明,本发明所提出的方法只需较低的计算开销,输出的联合预编码设计使得信号传输系统达到优秀的频谱效率,同时本发明非常适用于大规模RIS阵列辅助及多数据流并行传输的通信场景。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (1)
1.一种可重构智能表面辅助毫米波通信的联合预编码方法,其特征在于:包括以下步骤:
步骤1,构建信道模型,对信道信息进行预处理;
步骤2,RIS无源预编码设计;
步骤3,收发端有源预编码设计;
步骤1中,构建信道模型时,采用几何宽带毫米波信道模型,对于OFDM系统,为对应第p子载波的等效信道矩阵且可被表示为如下形式:
Hp=Gp+RpΦTp
其中,Φ为RIS的反射系数矩阵,与分别为BS到MS的信道矩阵(直连信道矩阵)、BS到RIS的信道矩阵与RIS到MS的信道矩阵,且有对应的毫米波频域信道的几何模型如下:
其中,fs代表采样速率;
对于直连信道Gp:Ld代表BS到MS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,代表空间域发射角,代表空间域到达角,代表发射阵列响应向量,代表接收阵列响应向量;
对于BS到RIS的信道矩阵Tp:Lt代表BS到RIS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,γl代表空间域发射角,及分别代表空间域到达方位角和到达俯仰角,aBS(γl)代表发射阵列响应向量,代表接收阵列响应向量;
对于RIS到MS的信道矩阵Rp:Lr代表RIS到MS之间散射路径总数,其中是第l条路径的复增益,相应地,代表时延,χa,l及χe,l分别代表空间域发射方位角和发射俯仰角,θl代表空间域到达角,aBS(γl)代表发射阵列响应向量,代表接收阵列响应向量;
上述均匀线阵与平面阵的阵列响应向量的具体数学表达式如下(符号表示矩阵Kronecker乘积):
步骤1中,输入信道环境噪声功率s2及信道信息以完成信道信息预处理如下:
首先,计算信道的等效路径复增益参数为:
其次,分别对与进行降序排序操作,使之分别满足,
再次,基于降序结果,计算BS-RIS信道与RIS-MS信道的多径的耦合复增益:
最后,计算RIS的部分耦合阵列相应向量:(上标*表示向量/矩阵元素取共轭,°表示矩阵的Hadamard乘积)
步骤2中,通过两步过程分别计算用以自适应平衡系统对直连信道及反射信道利用率的算法参数K,与RIS反射系数向量v;
第一步,定义算法参数K为自变量的目标函数,并通过遍历方法估计K∈[1,…,Ns],给定:
其中,后续设置为:
首先,对于K=1,…,Ns,计算所有目标函数值g(K);
其次,取使目标函数值最大的参数作为输出K★,即K★=argmaxKg(K);
再次,计算
最后,获得次优反射系数向量设计,其中,arg(·)表示取复数相位操作,表示的第m元;
第二步,基于算法参数估计K★,计算并给出反射系数向量优化的目标函数:
后续通过迭代优化算法求解在满足约束条件的解,包括:
(1)输入初始点v0,计算初始目标函数值f(v0);
(2)初始化迭代参数t=0,算法收敛门限∈;
(3)计算当前点在目标函数上的黎曼梯度其中欧几里得梯度表示取复数实部;
(4)基于目标函数f(v),在数据点vt的负黎曼梯度方向上,通过最优化理论中的Armijo准则计算线搜索步长
(5)更新数据点
(6)将投影到对应约束条件的流形空间上,即
(7)计算目标函数值f(vt+1),若|f(vt+1)-f(vt)|>∈,则令t=t+1并转至步骤(2),否则跳出迭代并输出V★=vt+1;
(8)计算RIS的反射系数矩阵Φ★=diag((v★)H);
步骤3中,收发端的有源预编码设计,基于已获得的RIS无源预编码矩阵Φ★;
收发端的有源预编码设计,包括以下步骤:
步骤(a),计算对应所有子载波的等效信道
步骤(b),完成所有等效信道的奇异值分解获得
步骤(c),获得最优化的有源预编码设计,对于p=1,…,P,计算
其中,Vp[:,1:Ns]表示右奇异向量矩阵的第1到第Ns列,Up[:,1:Ns]表示左奇异向量矩阵的第1到第Ns列,对角阵Λ为基于信道奇异值Σp及噪声功率的注水功率分配矩阵;
步骤(d),完成可用于混合波束成形架构的预编码与混合矩阵的问题转化;
步骤(d)中,包括:
首先,完成已知数据矩阵拼接,即
然后,构建最小化二范数误差问题:
其中,FBB=[FBB,1,…,FBB,P],WBB=[WBB,1,…,WBB,P];
最后,通过现行通用方法解出前一步步骤中的预编码问题,输出近似全数字的射频及基带混合架构预编码/混合矩阵
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211453462.XA CN115733530B (zh) | 2022-11-21 | 2022-11-21 | 一种可重构智能表面辅助毫米波通信的联合预编码方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211453462.XA CN115733530B (zh) | 2022-11-21 | 2022-11-21 | 一种可重构智能表面辅助毫米波通信的联合预编码方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115733530A CN115733530A (zh) | 2023-03-03 |
CN115733530B true CN115733530B (zh) | 2024-12-24 |
Family
ID=85296743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211453462.XA Active CN115733530B (zh) | 2022-11-21 | 2022-11-21 | 一种可重构智能表面辅助毫米波通信的联合预编码方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115733530B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116455492B (zh) * | 2023-04-04 | 2023-11-21 | 兰州交通大学 | 高速场景下ris辅助被动mimo的信道处理方法及装置 |
CN117956504B (zh) * | 2024-03-26 | 2024-06-14 | 南京邮电大学 | 一种联合优化布设位置和反射路径的ris辅助通信方法和系统 |
CN119135217A (zh) * | 2024-08-13 | 2024-12-13 | 山东大学 | 一种面向远程推理任务的通信方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113746578A (zh) * | 2021-08-18 | 2021-12-03 | 南京邮电大学 | 一种基于智能反射表面辅助的通信系统传输方法 |
CN114189408A (zh) * | 2022-01-17 | 2022-03-15 | 电子科技大学 | 一种用于智能反射面辅助毫米波系统的信道估计方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3404843B1 (en) * | 2017-05-17 | 2022-12-07 | Mitsubishi Electric R&D Centre Europe B.V. | Method for enabling both analog and digital beamforming |
-
2022
- 2022-11-21 CN CN202211453462.XA patent/CN115733530B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113746578A (zh) * | 2021-08-18 | 2021-12-03 | 南京邮电大学 | 一种基于智能反射表面辅助的通信系统传输方法 |
CN114189408A (zh) * | 2022-01-17 | 2022-03-15 | 电子科技大学 | 一种用于智能反射面辅助毫米波系统的信道估计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115733530A (zh) | 2023-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115733530B (zh) | 一种可重构智能表面辅助毫米波通信的联合预编码方法 | |
CN105959048B (zh) | 一种大规模天线的预编码方法 | |
CN108886826B (zh) | 用于无线多天线和频分双工系统的混合波束成形方法 | |
Alkhateeb et al. | Achievable rates of multi-user millimeter wave systems with hybrid precoding | |
CN104539341B (zh) | 无线宽带多天线mimo全双工系统主动式回波自干扰抑制方法 | |
CN107294590B (zh) | 一种基于上行训练的数模混合波束赋形方法 | |
Song et al. | Coordinated hybrid beamforming for millimeter wave multi-user massive MIMO systems | |
CN106559367A (zh) | 基于低秩张量分解的mimo‑ofdm系统毫米波信道估计方法 | |
CN106571858B (zh) | 一种混合波束成形传输系统 | |
CN109347529B (zh) | 一种对抗相移器不理想性的信道估计和混合波束成形方法 | |
CN107453795A (zh) | 多用户毫米波通信系统的波束分配方法及其装置和系统 | |
CN112118033B (zh) | 多用户大规模mimo系统的非线性混合预编码设计方法 | |
CN108599830B (zh) | 基于最小和均方误差混合预编码方法 | |
CN113824478B (zh) | 离散透镜天线阵列辅助的宽带毫米波多用户大规模mimo上行频谱效率优化方法 | |
CN108599825A (zh) | 一种基于mimo-ofdm毫米波结构的混合编码方法 | |
Rodríguez-Fernández et al. | A frequency-domain approach to wideband channel estimation in millimeter wave systems | |
CN104601257B (zh) | 一种时分双工通信模式下多天线系统的互易性校准方法 | |
Wang et al. | Joint pre/post-processing design for large millimeter wave hybrid spatial processing systems | |
Wang et al. | Hybrid beamforming with time delay compensation for millimeter wave MIMO frequency selective channels | |
Chen et al. | Hybrid beamforming and data stream allocation algorithms for power minimization in multi-user massive MIMO-OFDM systems | |
CN113824477B (zh) | 离散透镜天线阵列辅助的多用户大规模mimo优化方法 | |
CN109067446B (zh) | 一种多天线多用户大规模天线的混合预编码方法 | |
Du et al. | Hybrid beamforming design for multiuser massive MIMO-OFDM systems | |
CN112312569A (zh) | 一种基于透镜阵列的预编码和波束选择矩阵联合设计方法 | |
CN114759958B (zh) | 一种基于混合预编码的全局能效优化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |