CN115725182B - A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application - Google Patents
A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application Download PDFInfo
- Publication number
- CN115725182B CN115725182B CN202211676669.3A CN202211676669A CN115725182B CN 115725182 B CN115725182 B CN 115725182B CN 202211676669 A CN202211676669 A CN 202211676669A CN 115725182 B CN115725182 B CN 115725182B
- Authority
- CN
- China
- Prior art keywords
- phase change
- boron nitride
- nanocapsules
- silicone rubber
- hybrid filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008859 change Effects 0.000 title claims abstract description 145
- 239000002088 nanocapsule Substances 0.000 title claims abstract description 120
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 116
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 239000000945 filler Substances 0.000 title claims abstract description 103
- 229920002379 silicone rubber Polymers 0.000 title claims abstract description 77
- 239000004945 silicone rubber Substances 0.000 title claims abstract description 77
- 239000002131 composite material Substances 0.000 title claims abstract description 73
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 238000000707 layer-by-layer assembly Methods 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 36
- 238000003756 stirring Methods 0.000 claims description 29
- 239000012188 paraffin wax Substances 0.000 claims description 26
- 229920001467 poly(styrenesulfonates) Polymers 0.000 claims description 24
- 239000011257 shell material Substances 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 11
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- VHDPPDRSCMVFAV-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine;hydrobromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[NH+](C)C VHDPPDRSCMVFAV-UHFFFAOYSA-N 0.000 claims description 9
- 238000009849 vacuum degassing Methods 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011162 core material Substances 0.000 claims description 7
- 238000012643 polycondensation polymerization Methods 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 238000006068 polycondensation reaction Methods 0.000 claims description 6
- 229920001971 elastomer Polymers 0.000 claims description 5
- 239000000839 emulsion Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- -1 polysiloxane Polymers 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 230000009881 electrostatic interaction Effects 0.000 claims description 2
- 238000004945 emulsification Methods 0.000 claims description 2
- 239000003999 initiator Substances 0.000 claims description 2
- 239000000693 micelle Substances 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 3
- 125000000217 alkyl group Chemical group 0.000 claims 1
- 239000000706 filtrate Substances 0.000 claims 1
- 238000006384 oligomerization reaction Methods 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract 1
- 230000035939 shock Effects 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 116
- 238000010438 heat treatment Methods 0.000 description 14
- 229960002796 polystyrene sulfonate Drugs 0.000 description 13
- 239000011970 polystyrene sulfonate Substances 0.000 description 13
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 10
- 239000002775 capsule Substances 0.000 description 9
- 229920002545 silicone oil Polymers 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 4
- 239000011231 conductive filler Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 240000002853 Nelumbo nucifera Species 0.000 description 3
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 3
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- KYRKXFXDTJSJAV-UHFFFAOYSA-N oxane;silicon Chemical compound [Si].C1CCOCC1 KYRKXFXDTJSJAV-UHFFFAOYSA-N 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000012696 Interfacial polycondensation Methods 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料及制备方法与应用。所述含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料由以下原料制成(以质量分数计算):相变纳米胶囊/氮化硼杂化填料10%~60%、硅橡胶预聚物20%~45%和固化剂20%~45%,以上原料之和为100%。静电自组装形成的相变纳米胶囊/氮化硼杂化填料帮助降低在硅橡胶中的界面热阻,提高了热导率。该材料作为热界面材料使用,有望填补空气间隙,缓解芯片在面对高热流密度下的热冲击,帮助芯片、电子器件等更好散热。
The invention discloses a silicone rubber composite material containing phase change nanocapsule/boron nitride hybrid filler, its preparation method and application. The silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler is made of the following raw materials (calculated in mass fraction): phase change nanocapsules/boron nitride hybrid filler 10% to 60%, silicone rubber Prepolymer 20% ~ 45% and curing agent 20% ~ 45%, the sum of the above raw materials is 100%. The phase change nanocapsule/boron nitride hybrid filler formed by electrostatic self-assembly helps reduce the interface thermal resistance in silicone rubber and improves thermal conductivity. Used as a thermal interface material, this material is expected to fill the air gap, alleviate the thermal shock of the chip when facing high heat flux density, and help chips, electronic devices, etc. better dissipate heat.
Description
技术领域Technical field
本发明属于复合材料储热技术领域,具体涉及一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料及制备方法和应用。The invention belongs to the technical field of composite material heat storage, and specifically relates to a silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler, its preparation method and application.
背景技术Background technique
在聚合物基质中引入相变材料可以开发出具有潜热存储能力的柔性复合材料,在锂离子电池热管理、芯片散热等领域具有重要应用。与固体-固体相变材料相比,固体-液体相变材料具有更高的潜热和丰富的种类,因此通常被用于制备柔性相变复合材料。而液体PCM的泄漏问题是固液相变材料的固有缺陷,需要在实际应用中加以克服。一种广泛采用的解决方案是直接将有机固-液相变材料(如石蜡)与聚合物混合,然后进行融合以获得形状稳定的复合材料。在形态稳定的复合材料中,有机相变材料存在于互穿聚合物网络中,从而防止了液体相变材料的泄漏。然而,这些复合材料在长期使用过程中多次经历加热-冷却循环后仍有液体泄漏的风险。研究发现,将固-液相变材料封装到壳中合成相变胶囊是一种有效的分离外部环境及防止其液体泄漏的方法。显然,将相变胶囊与聚合物基体相结合,是开发具有良好热可靠性的柔性相变复合材料更可取的方法。通常,将相变胶囊引入聚合物基体中导热系数比较低,不足以满足大功率发热条件下的热量快速导出,引入高导热材料可以实现复合材料的导热系数的增大,但是引入的高导热填料(如氮化硼)通常与基体相容性较差,与相变胶囊直接共混引入聚合物基体中时,没有形成相互作用,容易导致复合材料填料-填料以及填料-基体的界面热阻都较大,因而导热性能得不到理想的提升,难以实现后续的脱模与最终应用。将高导热填料进行表面改性是常用的增强分散性的工艺,但是这一方法仅考虑了高导热填料,没有形成与相变胶囊之间的连接,使填料-填料间的界面热阻仍然较大,并且现有表面改性工艺的不成熟导致了填料改性效率低、产量低。Introducing phase change materials into polymer matrices can develop flexible composite materials with latent heat storage capabilities, which have important applications in lithium-ion battery thermal management, chip heat dissipation and other fields. Compared with solid-solid phase change materials, solid-liquid phase change materials have higher latent heat and rich types, so they are often used to prepare flexible phase change composites. The leakage problem of liquid PCM is an inherent defect of solid-liquid phase change materials and needs to be overcome in practical applications. One widely adopted solution is to directly mix organic solid-liquid phase change materials (such as paraffin) with polymers and then fuse them to obtain shape-stable composites. In morphologically stable composites, organic phase change materials are present in interpenetrating polymer networks, thus preventing leakage of liquid phase change materials. However, these composites still have the risk of liquid leakage after undergoing multiple heating-cooling cycles during long-term use. Research has found that encapsulating solid-liquid phase change materials into shells to synthesize phase change capsules is an effective method to separate the external environment and prevent its liquid from leaking. Clearly, combining phase change capsules with a polymer matrix is a more preferable approach to develop flexible phase change composites with good thermal reliability. Usually, the thermal conductivity of introducing phase change capsules into the polymer matrix is relatively low, which is not enough to quickly export heat under high-power heating conditions. The introduction of high thermal conductivity materials can increase the thermal conductivity of composite materials, but the introduction of high thermal conductivity fillers (such as boron nitride) usually has poor compatibility with the matrix. When directly blended with the phase change capsule and introduced into the polymer matrix, there is no interaction, which can easily lead to a decrease in the interfacial thermal resistance of the filler-filler and filler-matrix of the composite material. Larger, so the thermal conductivity cannot be improved ideally, making it difficult to achieve subsequent demoulding and final application. Surface modification of highly thermally conductive fillers is a commonly used process to enhance dispersion, but this method only considers highly thermally conductive fillers and does not form a connection with the phase change capsule, so the interfacial thermal resistance between fillers and fillers is still relatively low. Large, and the immaturity of the existing surface modification process leads to low filler modification efficiency and low output.
专利CN102241963A《高导热性定形相变储能材料及其制造方法》公开了一种由水合盐@聚合物壳的微胶囊、导热金属粉为填料的复合材料,但其填料的混合方式均为直接随机分散,这使其容易由于较高的表面能使同种填料相互团聚,难以构建良好的界面,影响材料的导热性能与力学性能。专利CN114774086A《一种导热增强的相变纳米胶囊复合材料及制备方法与应用》中提到无机壳纳米胶囊表面具有丰富的羟基,可以与聚二甲基硅氧烷的固化剂之间形成氢键,增强了与基体之间的相容性,降低了材料硬度,但与高导热填料进行混合时,仍然是以直接随机分散方式加入,这种方法使高导热填料与胶囊以及基体间的界面热阻仍然较大,难以进一步提高热导率。Patent CN102241963A "High Thermal Conductivity Shaped Phase Change Energy Storage Material and Manufacturing Method" discloses a composite material composed of microcapsules of hydrated salt@polymer shell and thermally conductive metal powder as fillers, but the mixing method of the fillers is direct Randomly dispersed, which makes it easy for the same fillers to agglomerate with each other due to high surface energy, making it difficult to build a good interface and affecting the thermal conductivity and mechanical properties of the material. Patent CN114774086A "A Thermal Conductivity Enhanced Phase Change Nanocapsule Composite Material and Preparation Method and Application" mentions that the surface of the inorganic shell nanocapsule has abundant hydroxyl groups, which can form hydrogen with the curing agent of polydimethylsiloxane. bond, which enhances the compatibility with the matrix and reduces the hardness of the material. However, when mixed with the high thermal conductive filler, it is still added in a direct random dispersion manner. This method makes the interface between the high thermal conductive filler, the capsule and the matrix The thermal resistance is still large and it is difficult to further improve the thermal conductivity.
发明内容Contents of the invention
针对现有技术的不足,本发明的目的是提供一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料及其制备方法和应用,将相变纳米胶囊与高导热材料通过静电自组装法形成杂化填料后引入聚合物基体中,解决了现有技术中相变纳米胶囊与高导热材料直接混合引入聚合物易团聚的问题,尤其是在高填料添加量时,这种做法常常会带来更大的界面热阻,使材料导热以及力学性能恶化。而形成相变纳米胶囊/氮化硼杂化填料后再加入基体中,则可以有效降低纳米胶囊与氮化硼之间的界面热阻,并且还能通过胶囊使氮化硼与基体粘接更为紧密,降低填料-基体之间的界面热阻。In view of the shortcomings of the existing technology, the purpose of the present invention is to provide a silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application. The phase change nanocapsules and high thermal conductivity materials are electrostatically The self-assembly method forms hybrid fillers and then introduces them into the polymer matrix, which solves the problem in the existing technology that the phase-change nanocapsules are directly mixed with high thermal conductivity materials and the polymer is easily agglomerated, especially when the amount of filler added is high. It often brings greater interface thermal resistance, deteriorating the thermal conductivity and mechanical properties of the material. After forming the phase change nanocapsule/boron nitride hybrid filler and then adding it to the matrix, the interface thermal resistance between the nanocapsule and boron nitride can be effectively reduced, and the boron nitride and the matrix can be bonded more effectively through the capsule. For compactness, the interfacial thermal resistance between the filler and the matrix is reduced.
本发明通过静电自组装工艺制备相变纳米胶囊/氮化硼杂化填料,然后以杂化填料为整体加入到聚合物基体中,增强相变纳米胶囊与高导热填料在基体中的分散性,降低了体系填料-填料以及填料-基体间的界面热阻,最终制备得到含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料并作为相变热界面材料使用。The present invention prepares phase change nanocapsules/boron nitride hybrid fillers through an electrostatic self-assembly process, and then adds the hybrid fillers as a whole into the polymer matrix to enhance the dispersion of the phase change nanocapsules and high thermal conductivity fillers in the matrix. The interfacial thermal resistance between the system filler-filler and filler-matrix was reduced, and a silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler was finally prepared and used as a phase change thermal interface material.
本发明的目的通过以下技术方案来实现。The object of the present invention is achieved through the following technical solutions.
一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的制备方法,包括以下步骤:A method for preparing a silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler, including the following steps:
(1)采用界面水解-缩聚法制备石蜡@二氧化硅相变纳米胶囊;(1) Use interfacial hydrolysis-condensation polymerization method to prepare paraffin@silica phase change nanocapsules;
(2)在1000mL溶剂分散下使用酸液调节pH为酸性,聚苯乙烯磺酸钠(PSS)与氮化硼搅拌6~12h,静置12~24h后过滤,使带负电聚苯乙烯磺酸钠沉积在氮化硼表面;(2) Use acid solution to adjust the pH to acidic under 1000mL solvent dispersion. Stir sodium polystyrene sulfonate (PSS) and boron nitride for 6 to 12 hours, let it stand for 12 to 24 hours and then filter to make the negatively charged polystyrene sulfonic acid Sodium is deposited on the boron nitride surface;
(3)在容器中按不同质量比例添加步骤(1)和(2)所得的石蜡@二氧化硅相变纳米胶囊、负电聚苯乙烯磺酸钠沉积的氮化硼,加入100mL溶剂分散,酸液调节pH,使二氧化硅壳带正电,搅拌6-8h进行静电自组装过程,真空抽滤,干燥后得到所述相变纳米胶囊/氮化硼杂化填料;(3) Add the paraffin@silica phase change nanocapsules obtained in steps (1) and (2) and the boron nitride deposited by negatively charged sodium polystyrene sulfonate in different mass proportions in the container, add 100 mL of solvent to disperse, and acid The pH of the liquid is adjusted to make the silica shell positively charged, stirred for 6-8 hours to perform the electrostatic self-assembly process, vacuum filtered, and dried to obtain the phase change nanocapsule/boron nitride hybrid filler;
(4)将步骤(3)所得杂化填料、硅橡胶基体预聚物和固化剂加入行星式搅拌机进行搅拌,搅拌程序设置500~1000rpm,时间3~6min;(4) Add the hybrid filler, silicone rubber matrix prepolymer and curing agent obtained in step (3) to a planetary mixer for stirring. The stirring program is set to 500 to 1000 rpm and the time is 3 to 6 minutes;
(5)将步骤(4)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在25℃~40℃、80kPa~100kPa下脱泡20~30min;取出后于25℃静置48h固化成型,脱模后得到所述含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料。(5) Coat the glue obtained in step (4) into a 20×20×1mm mold, place it in a vacuum degassing barrel, and degas at 25°C to 40°C and 80kPa to 100kPa for 20 to 30 minutes; take it out Then, it is left to stand at 25° C. for 48 hours to solidify and form. After demoulding, the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler is obtained.
优选的,步骤(1)所述界面水解-缩聚法具体为:无水乙醇、去离子水、十六烷基二甲基溴化铵(CTAB)构成水相,芯材物质、壳材前驱体构成油相,水相和油相先各自在60℃充分溶解,然后混合在一起通过乳化工艺形成稳定的O/W乳液;加入氨水引发剂,壳材前驱体在界面处通过氨催化水解-缩聚反应形成壳材低聚体,并带负电荷,其立即通过静电相互作用吸附在带正电荷的胶束表面,随着界面缩聚反应的进行,壳材低聚体不断从油滴内向界面处迁移,最终在芯材液滴表面逐渐缩聚形成无机外壳。Preferably, the interfacial hydrolysis-polycondensation method in step (1) is specifically: anhydrous ethanol, deionized water, and cetyldimethylammonium bromide (CTAB) constitute the aqueous phase, and the core material and shell material precursors To form an oil phase, the water phase and the oil phase are first fully dissolved at 60°C, and then mixed together to form a stable O/W emulsion through the emulsification process; an ammonia initiator is added, and the shell material precursor is hydrolyzed and polycondensed at the interface through ammonia catalysis The reaction forms shell oligomers, which are negatively charged. They are immediately adsorbed on the surface of positively charged micelles through electrostatic interactions. As the interfacial polycondensation reaction proceeds, the shell oligomers continue to migrate from the inside of the oil droplet to the interface. , and finally gradually condense to form an inorganic shell on the surface of the core material droplet.
优选的,步骤(1)所述石蜡@二氧化硅相变纳米胶囊的粒径为800~1000nm,相变温度42℃~48℃,相变潜热120~180J/g。Preferably, the particle size of the paraffin@silica phase change nanocapsules described in step (1) is 800-1000nm, the phase-change temperature is 42°C-48°C, and the latent heat of phase-change is 120-180J/g.
优选的,步骤(2)(3)所述溶剂为去离子水、乙醇的一种或以上。Preferably, the solvent described in steps (2) and (3) is one or more of deionized water and ethanol.
优选的,步骤(2)(3)所述酸液为1mol·L-1稀盐酸、稀硫酸的一种或以上。Preferably, the acid solution in steps (2) and (3) is one or more of 1 mol·L -1 dilute hydrochloric acid and dilute sulfuric acid.
优选的,步骤(3)所采用的质量比例为石蜡@二氧化硅相变纳米胶囊:负电聚苯乙烯磺酸钠沉积的氮化硼=2:1或1:1或1:2。Preferably, the mass ratio used in step (3) is paraffin @ silica phase change nanocapsules: boron nitride deposited with negatively charged sodium polystyrene sulfonate = 2:1 or 1:1 or 1:2.
优选的,步骤(3)所述的pH为1~5。Preferably, the pH in step (3) is 1-5.
优选的,步骤(4)所述固化剂为含氢硅油、含氢硅氧烷、甲基含氢硅油的一种或几种的混合物。Preferably, the curing agent in step (4) is one or a mixture of hydrogen-containing silicone oil, hydrogen-containing silicone oil, and methyl hydrogen-containing silicone oil.
由上述制备方法得到的一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料,以质量分数计,所述含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料包括相变纳米胶囊/氮化硼杂化填料10%~60%、硅橡胶预聚物20%~45%和固化剂20%~45%,以上原料之和为100%。A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler obtained by the above preparation method, in terms of mass fraction, the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler It includes phase change nanocapsule/boron nitride hybrid filler 10% to 60%, silicone rubber prepolymer 20% to 45% and curing agent 20% to 45%. The sum of the above raw materials is 100%.
优选的,所述含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的储热性能表现为相变焓值12~54J/g,导热性能表现为热导率0.44~1.28W/(m·K),常温(25℃)硬度为25~50HA。Preferably, the heat storage performance of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler is a phase change enthalpy value of 12-54J/g, and the thermal conductivity performance is a thermal conductivity of 0.44-1.28W/ (m·K), the hardness at normal temperature (25℃) is 25~50HA.
本发明还提供了上述的一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料作为热界面材料的应用。通过将所述含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料作为导热垫片放置于芯片与散热器热沉之间,柔软的复合材料将填补芯片与散热器热沉之间的空气间隙,更好地将芯片产生热量及时导出,并且起到一定的热缓冲作用,使芯片在不同工况下均呈现良好的散热性能。The present invention also provides the application of the above-mentioned silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler as a thermal interface material. By placing the silicone rubber composite containing phase change nanocapsules/boron nitride hybrid filler as a thermal pad between the chip and the radiator heat sink, the soft composite material will fill the gap between the chip and the radiator heat sink. The air gap can better dissipate the heat generated by the chip in a timely manner, and play a certain thermal buffering role, so that the chip shows good heat dissipation performance under different working conditions.
本发明技术方案采用原理如下:The technical solution of the present invention adopts the following principles:
(1)二氧化硅表面等电点原理:利用二氧化硅特有的等电点性质,其在pH=2左右会存在一个等电点,当pH小于此等电点时,二氧化硅将带上正电,反之,pH大于此等电点时,二氧化硅将带上负电,所以可通过调节pH使其低于等电点,来调控相变纳米胶囊二氧化硅壳表面的较大的正电位。(1) Principle of isoelectric point on the surface of silica: Taking advantage of the unique isoelectric point properties of silica, there will be an isoelectric point around pH=2. When the pH is less than this isoelectric point, the silica will On the other hand, when the pH is greater than the isoelectric point, the silica will be negatively charged. Therefore, the larger size of the phase change nanocapsule silica shell surface can be controlled by adjusting the pH to be lower than the isoelectric point. Positive potential.
(2)静电自组装原理:本发明利用静电吸附力使得两个分别带有正负Zeta电位的物质(即带正电的石蜡@二氧化硅相变纳米胶囊以及带负电的聚苯乙烯磺酸钠沉积的氮化硼)紧密结合,在这个过程中,可以改变pH、盐离子、溶剂,改变Zeta电位从而改变填料的吸附力,Zeta电位的绝对值越大,结合力越牢固,体系越稳定。(2) Electrostatic self-assembly principle: The present invention uses electrostatic adsorption force to make two substances with positive and negative Zeta potentials (i.e., positively charged paraffin@silica phase change nanocapsules and negatively charged polystyrene sulfonic acid Sodium-deposited boron nitride) is tightly combined. In this process, the pH, salt ions, solvents, and Zeta potential can be changed to change the adsorption force of the filler. The greater the absolute value of the Zeta potential, the stronger the binding force and the more stable the system. .
与现有技术相比,本发明具有以下优点和有益效果:Compared with the existing technology, the present invention has the following advantages and beneficial effects:
(1)本发明直接采用二氧化硅等电点调控的方法使相变纳米胶囊的二氧化硅壳带上正电,避免了在二氧化硅壳表面多次沉积正电涂层使其带正电的复杂过程,使其与带负电的沉积聚苯乙烯磺酸钠涂层的氮化硼能够进行有效静电自组装。(1) The present invention directly uses the method of controlling the isoelectric point of silica to make the silica shell of the phase change nanocapsule positively charged, avoiding the repeated deposition of a positively charged coating on the surface of the silica shell to make it positively charged. The complex process of electricity enables effective electrostatic self-assembly with negatively charged deposited sodium polystyrene sulfonate-coated boron nitride.
(2)本发明采用反应条件温和的静电自组装法构建相变纳米胶囊/氮化硼杂化填料,该杂化填料具有新型的莲子-莲蓬结构,片-球相接,这种结构有利于减少纳米胶囊-氮化硼间的界面热阻,并且这种方法制备的材料较为均匀并且不会造成填料本身热导率的损失,利于提高热导率。(2) The present invention uses an electrostatic self-assembly method with mild reaction conditions to construct a phase change nanocapsule/boron nitride hybrid filler. The hybrid filler has a new lotus seed-lotus pod structure, with slices and balls connected. This structure is beneficial to The interface thermal resistance between nanocapsules and boron nitride is reduced, and the material prepared by this method is more uniform and does not cause the loss of the thermal conductivity of the filler itself, which is beneficial to improving the thermal conductivity.
(3)本发明制备的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料具有良好的界面相容性,一方面静电自组装降低了填料-填料间的界面热阻;另一方面,二氧化硅纳米胶囊表面具有丰富的羟基,可以与固化剂之间形成氢键,与基体界面热阻较低,相反,氮化硼与基体界面热阻很大,将纳米胶囊自组装结合在氮化硼上,将有利于降低填料-基体间的界面热阻。以上由于具有良好的填料-填料以及填料-基体界面状态,所以可以在更高的填充量下完整将垫片脱模,进一步提高了复合材料的热导率。(3) The silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler prepared by the present invention has good interface compatibility. On the one hand, electrostatic self-assembly reduces the interfacial thermal resistance between fillers; on the other hand, On the other hand, the surface of silica nanocapsules is rich in hydroxyl groups, which can form hydrogen bonds with the curing agent, and the thermal resistance at the interface with the matrix is low. On the contrary, the thermal resistance at the interface between boron nitride and the matrix is very large, which combines the self-assembly of the nanocapsules. On boron nitride, it will be beneficial to reduce the interfacial thermal resistance between the filler and the matrix. Due to the good filler-filler and filler-matrix interface states, the gasket can be completely demoulded at a higher filling amount, further improving the thermal conductivity of the composite material.
附图说明Description of drawings
图1为本发明含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的制备流程图。Figure 1 is a flow chart for the preparation of silicone rubber composite materials containing phase change nanocapsules/boron nitride hybrid fillers of the present invention.
图2为本发明实施例1的自组装的相变纳米胶囊/氮化硼杂化填料与直接混合的相变纳米胶囊/氮化硼填料的微观形貌对比图。Figure 2 is a comparative view of the micromorphology of self-assembled phase change nanocapsules/boron nitride hybrid fillers and directly mixed phase change nanocapsules/boron nitride fillers in Example 1 of the present invention.
图3为本发明实施例1的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料作为热界面材料的应用示例图。Figure 3 is a diagram showing an application example of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler as a thermal interface material according to Embodiment 1 of the present invention.
图4为本发明实施例1的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料作为热界面材料与直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料作为热界面材料的芯片温度变化曲线对比图。Figure 4 shows the silicone rubber composite material containing phase change nanocapsule/boron nitride hybrid filler as the thermal interface material and the directly mixed phase change nanocapsule/boron nitride/silicone rubber composite material as the thermal interface in Embodiment 1 of the present invention. Comparison chart of chip temperature change curves of materials.
具体实例方式Specific example method
下面结合实施例和附图对本发明的实施方式作进一步详细的说明,但本发明的实施方式不限于此。The embodiments of the present invention will be described in further detail below with reference to the examples and drawings, but the embodiments of the present invention are not limited thereto.
本发明的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的制备流程图如图1所示。首先采用界面水解-缩聚法制备得到石蜡@二氧化硅相变纳米胶囊。然后在溶剂分散下使用酸液调节pH,加入聚苯乙烯磺酸钠(PSS)与氮化硼搅拌,静置后过滤,使带负电PSS沉积在氮化硼表面。在容器中按不同比例添加所得的石蜡@二氧化硅相变纳米胶囊、负电PSS沉积的氮化硼,加入溶剂分散,酸液调节pH,使二氧化硅壳带正电,搅拌,真空过滤,干燥后得到相变纳米胶囊/氮化硼杂化填料。将相变纳米胶囊/氮化硼杂化填料、硅橡胶预聚物和固化剂放入行星式搅拌机搅拌。所得的胶料涂覆于模具中,静置于真空脱泡桶,脱泡处理。最后取出,静置固化成型,脱模后得到所述含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料。The preparation flow chart of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler of the present invention is shown in Figure 1. First, the paraffin@silica phase change nanocapsules were prepared by interfacial hydrolysis-condensation polymerization method. Then use acid solution to adjust the pH under solvent dispersion, add polystyrene sulfonate (PSS) and boron nitride, stir, let stand and then filter, so that the negatively charged PSS is deposited on the surface of boron nitride. Add the obtained paraffin@silica phase change nanocapsules and negatively charged PSS-deposited boron nitride in different proportions in the container, add solvent to disperse, adjust pH with acid solution to make the silica shell positively charged, stir, and vacuum filter. After drying, the phase change nanocapsule/boron nitride hybrid filler is obtained. Put the phase change nanocapsule/boron nitride hybrid filler, silicone rubber prepolymer and curing agent into a planetary mixer and stir. The obtained rubber material is coated in the mold, placed in a vacuum degassing barrel, and degassed. Finally, it is taken out, left to solidify and molded, and the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler is obtained after demoulding.
实施例1Example 1
一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料,以质量分数计,由以下原料制成:相变纳米胶囊/氮化硼杂化填料60%、硅橡胶预聚物20%和含氢硅油20%。A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler, made of the following raw materials in terms of mass fraction: phase change nanocapsules/boron nitride hybrid filler 60%, silicone rubber prepolymer 20% and hydrogenated silicone oil 20%.
所述一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的制备方法,包括如下步骤:The preparation method of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler includes the following steps:
(1)采用界面水解-缩聚法制备石蜡为芯材,二氧化硅为壳材的相变纳米胶囊:石蜡(15.0g),正硅酸乙酯TEOS(7.5g)在250mL三颈烧瓶中以60℃搅拌混合,形成透明的溶液。然后,同时将十六烷基三甲基溴化铵CTAB(0.82g)、去离子水(35.5mL)和无水乙醇(71.25mL)加入250mL烧杯中,并保温至60℃。在60℃下将以无水乙醇、去离子水、CTAB组成的水相加入以石蜡、TEOS组成的油相中,以350rpm的转速机械搅拌4h,形成稳定的O/W乳液。加入1.5mL 25wt%氨水,并保持在60℃下继续搅拌16h以催化TEOS的界面水解-缩聚反应。最后,经过滤、去离子水洗涤、石油醚洗涤、干燥,得到约8g白色粉末即石蜡@二氧化硅相变纳米胶囊。(1) Use the interfacial hydrolysis-polycondensation method to prepare phase change nanocapsules with paraffin as the core material and silica as the shell material: paraffin (15.0g), ethyl orthosilicate TEOS (7.5g) in a 250mL three-neck flask. Stir and mix at 60°C to form a transparent solution. Then, cetyltrimethylammonium bromide CTAB (0.82g), deionized water (35.5mL) and absolute ethanol (71.25mL) were added to a 250mL beaker at the same time, and kept warm to 60°C. Add the aqueous phase composed of absolute ethanol, deionized water, and CTAB to the oil phase composed of paraffin and TEOS at 60°C, and mechanically stir at 350 rpm for 4 hours to form a stable O/W emulsion. Add 1.5 mL of 25 wt% ammonia water and keep stirring at 60°C for 16 h to catalyze the interfacial hydrolysis-condensation polymerization reaction of TEOS. Finally, after filtering, washing with deionized water, washing with petroleum ether, and drying, about 8 g of white powder, namely paraffin@silica phase change nanocapsules, was obtained.
(2)在1000mL去离子水分散下使用1mol·L-1稀盐酸调节pH为3,3g聚苯乙烯磺酸钠(PSS)与10g氮化硼搅拌12h,静置24h后过滤,使带负电PSS沉积在氮化硼表面。(2) Use 1 mol·L -1 dilute hydrochloric acid to adjust the pH to 3 while dispersed in 1000 mL deionized water. Stir 3 g sodium polystyrene sulfonate (PSS) and 10 g boron nitride for 12 hours, let it stand for 24 hours and then filter to make it negatively charged. PSS is deposited on the boron nitride surface.
(3)在容器中按1:1质量比例添加10g步骤(1)和(2)所得的石蜡@二氧化硅相变纳米胶囊(平均粒径800nm,相变温度为42℃,潜热值160J/g)、负PSS沉积的氮化硼,加入100mL去离子水分散,盐酸调节pH为2,使二氧化硅壳带正电,搅拌6h,真空过滤,干燥后得到所述相变纳米胶囊/氮化硼杂化填料;(3) Add 10g of the paraffin@silica phase change nanocapsules obtained in steps (1) and (2) (average particle size 800nm, phase change temperature 42°C, latent heat value 160J/ g), add 100 mL of deionized water to disperse the boron nitride deposited by negative PSS, adjust the pH to 2 with hydrochloric acid to make the silica shell positively charged, stir for 6 hours, vacuum filter, and dry to obtain the phase change nanocapsules/nitrogen Boron hybrid filler;
(4)称取1.2g相变纳米胶囊/氮化硼杂化填料,0.4g硅橡胶预聚体,0.4g含氢硅油。(4) Weigh 1.2g phase change nanocapsule/boron nitride hybrid filler, 0.4g silicone rubber prepolymer, and 0.4g hydrogen-containing silicone oil.
(5)在容器中添加称量好的相变纳米胶囊/氮化硼杂化填料硅橡胶预聚物和含氢硅油进行行星式搅拌机搅拌,搅拌程序设置为2000rpm,时间3min。(5) Add the weighed phase change nanocapsule/boron nitride hybrid filler silicone rubber prepolymer and hydrogen-containing silicone oil into the container and stir with a planetary mixer. The stirring program is set to 2000 rpm and the time is 3 minutes.
(6)将步骤(5)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在30℃、100kPa下脱泡20min;取出后于25℃静置48h固化成型,脱模后得到白色光滑垫片,相变焓值54J/g,热导率为1.28W/(m·K),常温(25℃)硬度为40HA。(6) Coat the glue obtained in step (5) into a 20×20×1mm mold, place it in a vacuum degassing barrel, and degas at 30°C and 100kPa for 20 minutes; take it out and let it stand at 25°C for 48 hours. After curing and molding, a white smooth gasket is obtained after demoulding, with a phase change enthalpy value of 54J/g, a thermal conductivity of 1.28W/(m·K), and a hardness of 40HA at room temperature (25°C).
为了对比,同时制备了直接混合的纳米胶囊/氮化硼填料,操作过程为:称取0.6g相变纳米胶囊、0.6g氮化硼,0.4g硅橡胶预聚体,0.4g含氢硅油,放于行星式搅拌机搅拌,搅拌程序设置为2000rpm,时间3min,将步骤(5)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在30℃、100kPa下脱泡20min;取出后于25℃静置48h固化成型,脱模后得到白色光滑垫片,相变焓值52.3J/g,热导率为0.98W/(m·K),常温(25℃)硬度为40.8HA。For comparison, directly mixed nanocapsules/boron nitride fillers were prepared at the same time. The operation process was as follows: weigh 0.6g phase change nanocapsules, 0.6g boron nitride, 0.4g silicone rubber prepolymer, and 0.4g hydrogen-containing silicone oil. Place it in a planetary mixer and stir. The stirring program is set to 2000rpm and the time is 3 minutes. Coat the glue obtained in step (5) into a 20×20×1mm mold and place it in a vacuum degassing barrel at 30°C and 100kPa. Degas for 20 minutes; take it out and let it stand for 48 hours at 25°C to solidify. After demoulding, a white smooth gasket is obtained. The phase change enthalpy value is 52.3J/g, the thermal conductivity is 0.98W/(m·K), and the temperature is 0.98W/(m·K) at room temperature (25 ℃) hardness is 40.8HA.
图2为实施例1相变纳米胶囊/氮化硼杂化填料的微观形貌图,通过对比可以看到,直接混合的样品片-球容易分离,而静电自组装杂化填料则使氮化硼片与相变纳米胶囊球紧密地结合在一起,形成了具有莲子-莲蓬状的新型填料结构。加入硅橡胶基体后,如表1所示,相比于该质量分数下直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料,含相变纳米胶囊/氮化硼杂化填料硅橡胶复合材料的热导率增大了30.61%。Figure 2 is a microscopic morphology diagram of the phase change nanocapsule/boron nitride hybrid filler in Example 1. By comparison, it can be seen that the directly mixed sample pieces and balls are easy to separate, while the electrostatic self-assembled hybrid filler makes the nitride The boron sheets are tightly combined with the phase change nanocapsule balls to form a new filler structure with a lotus seed-lotus pod shape. After adding the silicone rubber matrix, as shown in Table 1, compared with the directly mixed phase change nanocapsule/boron nitride/silicone rubber composite material at this mass fraction, the silicone rubber containing phase change nanocapsule/boron nitride hybrid filler The thermal conductivity of the composite material increased by 30.61%.
本实施例所得的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料作为热界面材料的应用:The application of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler obtained in this example as a thermal interface material:
将上述所得含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料导热垫片置于氧化铝陶瓷发热片与五热管翅片式CPU散热器之间,如图3所示。测试过程中还可以连接一个双风扇强制空气冷却系统配合使用,以提取产生的热量。测试样品置于加热片与散热器铜制热沉之间,利用螺丝锁紧,使之紧密接触。氧化铝陶瓷发热片下表面中心点位置固定有校准过的T型热电偶(测温区间为-200℃~350℃,容差值为0.5℃),用于精确监测加热片的温度变化情况。使用直流稳压电源的电压来控制发热片加热功率,设定功率为18W(商用芯片发热功率),对氧化铝陶瓷发热片下表面中心点的热电偶温度利用安捷伦采集仪进行数据采集,通过稳定加热300s采集导热芯片温度变化曲线来考察导热垫片散热效果。结果如图4所示,使用该含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料导热垫片作为热界面材料比使用直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料导热垫片的芯片温度低24.5℃。由此可见,使用本发明相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料作为热界面材料可以显著提高热导率及降低芯片温度,提高散热性能。The silicone rubber composite thermal pad containing phase change nanocapsules/boron nitride hybrid filler obtained above is placed between the alumina ceramic heating plate and the five-heat pipe fin CPU radiator, as shown in Figure 3. A dual-fan forced air cooling system can also be connected to extract the heat generated during testing. The test sample is placed between the heating plate and the copper heat sink of the radiator, and is locked with screws to make them in close contact. A calibrated T-type thermocouple (temperature measurement range is -200°C ~ 350°C, tolerance value is 0.5°C) is fixed at the center point of the lower surface of the alumina ceramic heating plate, which is used to accurately monitor the temperature changes of the heating plate. Use the voltage of the DC stabilized power supply to control the heating power of the heating plate. Set the power to 18W (commercial chip heating power). Use an Agilent acquisition instrument to collect data on the thermocouple temperature at the center point of the lower surface of the alumina ceramic heating plate. Collect the temperature change curve of the thermal conductive chip after heating for 300 seconds to examine the heat dissipation effect of the thermal conductive pad. The results are shown in Figure 4. Using the silicone rubber composite thermal pad containing phase change nanocapsules/boron nitride hybrid filler as a thermal interface material is much better than using the directly mixed phase change nanocapsules/boron nitride/silicone rubber composite. The chip temperature of the material thermal pad is 24.5℃ lower. It can be seen that using the silicone rubber composite material of the phase change nanocapsule/boron nitride hybrid filler of the present invention as a thermal interface material can significantly increase the thermal conductivity, reduce the chip temperature, and improve the heat dissipation performance.
实施例2Example 2
一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料,以质量分数计,由以下原料制成:相变纳米胶囊/氮化硼杂化填料50%、聚二甲基硅氧烷预聚物25%和含氢硅氧烷25%。A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler, made of the following raw materials in terms of mass fraction: phase change nanocapsules/boron nitride hybrid filler 50%, polydimethyl silicon Oxane prepolymer 25% and hydrogenated siloxane 25%.
所述一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的制备方法,包括如下步骤:The preparation method of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler includes the following steps:
(1)采用界面水解-缩聚法制备石蜡为芯材,二氧化硅为壳材的相变纳米胶囊:石蜡(15.0g),正硅酸乙酯TEOS(7.5g)在250mL三颈烧瓶中以60℃搅拌混合,形成透明的溶液。然后,同时将十六烷基三甲基溴化铵CTAB(0.82g)、去离子水(35.5mL)和无水乙醇(71.25mL)加入250mL烧杯中,并保温至60℃。在60℃下将以无水乙醇、去离子水、CTAB组成的水相加入以石蜡、TEOS组成的油相中,以350rpm的转速机械搅拌4h,形成稳定的O/W乳液。加入1.5mL 25wt%氨水,并保持在60℃下继续搅拌16h以催化TEOS的界面水解-缩聚反应。最后,经过滤、去离子水洗涤、石油醚洗涤、干燥,得到约8g白色粉末即石蜡@二氧化硅相变纳米胶囊。(1) Use the interfacial hydrolysis-polycondensation method to prepare phase change nanocapsules with paraffin as the core material and silica as the shell material: paraffin (15.0g), ethyl orthosilicate TEOS (7.5g) in a 250mL three-neck flask. Stir and mix at 60°C to form a transparent solution. Then, cetyltrimethylammonium bromide CTAB (0.82g), deionized water (35.5mL) and absolute ethanol (71.25mL) were added to a 250mL beaker at the same time, and kept warm to 60°C. Add the aqueous phase composed of absolute ethanol, deionized water, and CTAB to the oil phase composed of paraffin and TEOS at 60°C, and mechanically stir at 350 rpm for 4 hours to form a stable O/W emulsion. Add 1.5 mL of 25 wt% ammonia water and keep stirring at 60°C for 16 h to catalyze the interfacial hydrolysis-condensation polymerization reaction of TEOS. Finally, after filtering, washing with deionized water, washing with petroleum ether, and drying, about 8 g of white powder, namely paraffin@silica phase change nanocapsules, was obtained.
(2)在1000mL去离子水分散下使用1mol·L-1稀硫酸调节pH为3,3g聚苯乙烯磺酸钠(PSS)与10g氮化硼搅拌6h,静置12h后过滤,使带负电PSS沉积在氮化硼表面;(2) Use 1mol·L -1 dilute sulfuric acid to adjust the pH to 3 while dispersed in 1000mL deionized water. Stir 3g sodium polystyrene sulfonate (PSS) and 10g boron nitride for 6 hours, let it stand for 12 hours and then filter to make it negatively charged. PSS is deposited on the boron nitride surface;
(3)在容器中按1:2质量比例添加10g步骤(1)和(2)所得的石蜡@二氧化硅相变纳米胶囊(平均粒径900nm,相变温度为48℃,潜热值180J/g)、负电PSS沉积的氮化硼,加入100mL去离子水分散,盐酸调节pH为1,使二氧化硅壳带正电,搅拌8h,真空过滤,干燥后得到所述相变纳米胶囊/氮化硼杂化填料;(3) Add 10g of the paraffin@silica phase change nanocapsules obtained in steps (1) and (2) (average particle size 900nm, phase change temperature 48°C, latent heat value 180J/ g), add 100 mL of deionized water to disperse the boron nitride deposited by negatively charged PSS, adjust the pH to 1 with hydrochloric acid to make the silica shell positively charged, stir for 8 hours, vacuum filter, and dry to obtain the phase change nanocapsules/nitrogen Boron hybrid filler;
(4)称取1.0g相变纳米胶囊/氮化硼杂化填料,0.5g硅橡胶预聚体,0.5g含氢硅氧烷。(4) Weigh 1.0g phase change nanocapsule/boron nitride hybrid filler, 0.5g silicone rubber prepolymer, and 0.5g hydrogen-containing siloxane.
(5)在容器中添加称量好的相变纳米胶囊/氮化硼杂化填料硅橡胶预聚物和含氢硅氧烷进行行星式搅拌机搅拌,搅拌程序设置为700rpm,时间6min。(5) Add the weighed phase change nanocapsule/boron nitride hybrid filler silicone rubber prepolymer and hydrogen-containing siloxane to the container and stir with a planetary mixer. The stirring program is set to 700 rpm and the time is 6 minutes.
(6)将步骤(5)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在25℃、80kPa下脱泡30min;取出后于25℃静置48h固化成型,脱模后得到白色光滑垫片,相变焓值29J/g,热导率为1.02W/(m·K),常温(25℃)硬度为50HA。(6) Coat the rubber obtained in step (5) into a 20×20×1mm mold, place it in a vacuum degassing barrel, and degas at 25°C and 80kPa for 30 minutes; take it out and let it stand at 25°C for 48 hours. After curing and molding, a white smooth gasket is obtained after demoulding. The phase change enthalpy value is 29J/g, the thermal conductivity is 1.02W/(m·K), and the hardness at normal temperature (25℃) is 50HA.
为了对比,同时制备了直接混合的纳米胶囊/氮化硼填料,操作过程为:称取0.33g相变纳米胶囊、0.67g氮化硼,0.5g硅橡胶预聚体,0.5g含氢硅氧烷,放于行星式搅拌机搅拌,搅拌程序设置为700rpm,时间6min,将步骤(5)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在25℃、80kPa下脱泡30min;取出后于25℃静置48h固化成型,脱模后得到白色光滑垫片,相变焓值28.4J/g,热导率为0.92W/(m·K),常温(25℃)硬度为50.3HA。相比于该质量分数下直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料,含相变纳米胶囊/氮化硼杂化填料硅橡胶复合材料的热导率增大了10.87%。For comparison, directly mixed nanocapsules/boron nitride fillers were prepared at the same time. The operation process was as follows: weigh 0.33g phase change nanocapsules, 0.67g boron nitride, 0.5g silicone rubber prepolymer, and 0.5g hydrogen-containing silicone. Alkane, stir in a planetary mixer, set the stirring program to 700rpm, time 6min, apply the glue obtained in step (5) to a 20×20×1mm mold, place it in a vacuum degassing barrel, and heat it at 25°C , defoaming at 80kPa for 30 minutes; take it out and let it stand at 25°C for 48 hours to solidify and form. After demoulding, a white smooth gasket is obtained, with a phase change enthalpy value of 28.4J/g, a thermal conductivity of 0.92W/(m·K), and room temperature. (25℃) hardness is 50.3HA. Compared with the phase change nanocapsule/boron nitride/silicone rubber composite directly mixed at this mass fraction, the thermal conductivity of the silicone rubber composite containing phase change nanocapsule/boron nitride hybrid filler increased by 10.87%.
本实施例所得的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的应用:Application of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler obtained in this example:
与实施例1的操作过程基本一致,区别在于:使用直流稳压电源的电压来控制发热片加热功率,设定功率为10W。测试结果:使用该含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料导热垫片作为热界面材料比使用直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料导热垫片的芯片温度低18.7℃。The operation process is basically the same as that of Embodiment 1, except that the voltage of the DC regulated power supply is used to control the heating power of the heating plate, and the power is set to 10W. Test results: Using the silicone rubber composite thermal pad containing phase change nanocapsule/boron nitride hybrid filler as a thermal interface material is better than using the directly mixed phase change nanocapsule/boron nitride/silicone rubber composite thermal pad. The chip temperature is 18.7℃ lower.
实施例3Example 3
一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料,以质量分数计,由以下原料制成:相变纳米胶囊/氮化硼杂化填料10%、聚二甲基硅氧烷预聚物45%和含氢硅氧烷45%。A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler, made of the following raw materials in terms of mass fraction: phase change nanocapsules/boron nitride hybrid filler 10%, polydimethyl silicon Oxane prepolymer 45% and hydrogenated siloxane 45%.
所述一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的制备方法,包括如下步骤:The preparation method of the silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler includes the following steps:
(1)采用界面水解-缩聚法制备石蜡为芯材,二氧化硅为壳材的相变纳米胶囊:石蜡(15.0g),正硅酸乙酯TEOS(7.5g)在250mL三颈烧瓶中以60℃搅拌混合,形成透明的溶液。然后,同时将十六烷基三甲基溴化铵CTAB(0.82g)、去离子水(35.5mL)和无水乙醇(71.25mL)加入250mL烧杯中,并保温至60℃。在60℃下将以无水乙醇、去离子水、CTAB组成的水相加入以石蜡、TEOS组成的油相中,以350rpm的转速机械搅拌4h,形成稳定的O/W乳液。加入1.5mL 25wt%氨水,并保持在60℃下继续搅拌16h以催化TEOS的界面水解-缩聚反应。最后,经过滤、去离子水洗涤、石油醚洗涤、干燥,得到约8g白色粉末即石蜡@二氧化硅相变纳米胶囊。(1) Use the interfacial hydrolysis-polycondensation method to prepare phase change nanocapsules with paraffin as the core material and silica as the shell material: paraffin (15.0g), ethyl orthosilicate TEOS (7.5g) in a 250mL three-neck flask. Stir and mix at 60°C to form a transparent solution. Then, cetyltrimethylammonium bromide CTAB (0.82g), deionized water (35.5mL) and absolute ethanol (71.25mL) were added to a 250mL beaker at the same time, and kept warm to 60°C. Add the aqueous phase composed of absolute ethanol, deionized water, and CTAB to the oil phase composed of paraffin and TEOS at 60°C, and mechanically stir at 350 rpm for 4 hours to form a stable O/W emulsion. Add 1.5 mL of 25 wt% ammonia water and keep stirring at 60°C for 16 h to catalyze the interfacial hydrolysis-condensation polymerization reaction of TEOS. Finally, after filtering, washing with deionized water, washing with petroleum ether, and drying, about 8 g of white powder, namely paraffin@silica phase change nanocapsules, was obtained.
(2)在1000mL去离子水分散下使用1mol·L-1稀盐酸调节pH为3,3g聚苯乙烯磺酸钠(PSS)与10g氮化硼搅拌10h,静置10h后过滤,使带负电PSS沉积在氮化硼表面;(2) Use 1mol·L -1 dilute hydrochloric acid to adjust the pH to 3 while dispersed in 1000mL deionized water. Stir 3g sodium polystyrene sulfonate (PSS) and 10g boron nitride for 10h, let it stand for 10h and then filter to make it negatively charged. PSS is deposited on the boron nitride surface;
(3)在容器中按2:1质量比例添加10g步骤(1)和(2)所得的石蜡@二氧化硅壳相变纳米胶囊(平均粒径900nm,相变温度为48℃,潜热值180J/g)、负电PSS沉积的氮化硼,加入100mL去离子水分散,盐酸调节pH为5,使二氧化硅壳带正电,搅拌7h,真空过滤,干燥后得到所述相变纳米胶囊/氮化硼杂化填料;(3) Add 10g of the paraffin@silica shell phase change nanocapsules obtained in steps (1) and (2) in the container at a mass ratio of 2:1 (average particle size 900nm, phase change temperature 48°C, latent heat value 180J /g), negatively charged PSS deposited boron nitride, add 100 mL deionized water to disperse, adjust the pH to 5 with hydrochloric acid, make the silica shell positively charged, stir for 7 hours, vacuum filter, and dry to obtain the phase change nanocapsules/ Boron nitride hybrid filler;
(4)称取0.2g相变纳米胶囊/氮化硼杂化填料,0.9g硅橡胶预聚体,0.9g含氢硅氧烷。(4) Weigh 0.2g phase change nanocapsule/boron nitride hybrid filler, 0.9g silicone rubber prepolymer, and 0.9g hydrogen-containing siloxane.
(5)在容器中添加称量好的相变纳米胶囊/氮化硼杂化填料硅橡胶预聚物和含氢硅氧烷进行行星式搅拌机搅拌,搅拌程序设置为1400rpm,时间5min。(5) Add the weighed phase change nanocapsule/boron nitride hybrid filler silicone rubber prepolymer and hydrogen-containing siloxane into the container and stir with a planetary mixer. The stirring program is set to 1400 rpm and the time is 5 minutes.
(6)将步骤(5)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在40℃、90kPa下脱泡25min;取出后于25℃静置48h固化成型,脱模后得到白色光滑垫片,相变焓值12J/g,热导率为0.44W/(m·K),常温(25℃)硬度为25HA。(6) Coat the rubber obtained in step (5) into a 20×20×1mm mold, place it in a vacuum degassing barrel, and degas at 40°C and 90kPa for 25 minutes; take it out and let it stand at 25°C for 48 hours. After curing and molding, a white smooth gasket is obtained after demoulding. The phase change enthalpy value is 12J/g, the thermal conductivity is 0.44W/(m·K), and the hardness at normal temperature (25℃) is 25HA.
为了对比,同时制备了直接混合的纳米胶囊/氮化硼填料,操作过程为:称取0.33g相变纳米胶囊、0.67g氮化硼,0.9g硅橡胶预聚体,0.9g含氢硅氧烷,放于行星式搅拌机搅拌,搅拌程序设置为1400rpm,时间5min,将步骤(5)所得的胶料涂覆于20×20×1mm的模具中,静置于真空脱泡桶,在40℃、90kPa下脱泡25min;取出后于25℃静置48h固化成型,脱模后得到白色光滑垫片,相变焓值11J/g,热导率为0.41W/(m·K),常温(25℃)硬度为26HA。相比于该质量分数下直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料,含相变纳米胶囊/氮化硼杂化填料硅橡胶复合材料热导率增大了7.32%。For comparison, directly mixed nanocapsules/boron nitride fillers were prepared at the same time. The operation process was as follows: weigh 0.33g phase change nanocapsules, 0.67g boron nitride, 0.9g silicone rubber prepolymer, and 0.9g hydrogen-containing silicone. alkane, put it into a planetary mixer and stir, the stirring program is set to 1400rpm, time 5min, apply the rubber obtained in step (5) to a 20×20×1mm mold, place it in a vacuum degassing barrel, and heat it at 40°C , defoaming at 90kPa for 25 minutes; take it out and let it stand at 25°C for 48 hours to solidify. After demoulding, a white smooth gasket is obtained. The phase change enthalpy value is 11J/g, the thermal conductivity is 0.41W/(m·K), and the temperature is 0.41W/(m·K) at room temperature ( 25℃) hardness is 26HA. Compared with the phase change nanocapsule/boron nitride/silicone rubber composite directly mixed at this mass fraction, the thermal conductivity of the silicone rubber composite containing phase change nanocapsule/boron nitride hybrid filler increased by 7.32%.
本实施例所得的一种含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料的应用:Application of a silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler obtained in this example:
与实施例1的操作过程基本一致,区别在于:使用直流稳压电源的电压来控制发热片加热功率,设定功率为5W。测试结果:使用该含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料导热垫片作为热界面材料比使用直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料导热垫片的芯片温度低9.47℃。The operation process is basically the same as that of Embodiment 1, except that the voltage of the DC regulated power supply is used to control the heating power of the heating plate, and the power is set to 5W. Test results: Using the silicone rubber composite thermal pad containing phase change nanocapsule/boron nitride hybrid filler as a thermal interface material is better than using the directly mixed phase change nanocapsule/boron nitride/silicone rubber composite thermal pad. The chip temperature is 9.47℃ lower.
表1Table 1
表1为本发明实施例1-3的含相变纳米胶囊/氮化硼杂化填料的硅橡胶复合材料与直接混合的相变纳米胶囊/氮化硼/硅橡胶复合材料热导率对比数据。可以看出,含相变胶囊/氮化硼杂化填料的硅橡胶复合材料具有比直接混合的相变胶囊/氮化硼/硅橡胶复合材料更高的热导率,在实施例1、2、3的条件下,分别使热导率提高了30.61%、10.87%、7.32%,说明该杂化填料形成的片-球相接的新型的莲子-莲蓬结构有利于减少纳米胶囊-氮化硼间的界面热阻,从而使复合材料的热导率得到显著提升。Table 1 is the thermal conductivity comparison data of the silicone rubber composite material containing phase change nanocapsule/boron nitride hybrid filler and the directly mixed phase change nanocapsule/boron nitride/silicone rubber composite material of Examples 1-3 of the present invention. . It can be seen that the silicone rubber composite material containing phase change capsule/boron nitride hybrid filler has a higher thermal conductivity than the directly mixed phase change capsule/boron nitride/silicone rubber composite material. In Examples 1 and 2 , 3 conditions, the thermal conductivity was increased by 30.61%, 10.87%, and 7.32% respectively, indicating that the new lotus seed-lotus pod structure formed by the hybrid filler with connected tablets and balls is beneficial to reducing the nanocapsule-boron nitride The interface thermal resistance between the composite materials significantly improves the thermal conductivity of the composite material.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211676669.3A CN115725182B (en) | 2022-12-26 | 2022-12-26 | A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211676669.3A CN115725182B (en) | 2022-12-26 | 2022-12-26 | A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115725182A CN115725182A (en) | 2023-03-03 |
CN115725182B true CN115725182B (en) | 2023-12-12 |
Family
ID=85302103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211676669.3A Active CN115725182B (en) | 2022-12-26 | 2022-12-26 | A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115725182B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101310851A (en) * | 2008-02-26 | 2008-11-26 | 浙江大学 | Method for preparing metallic oxide hollow nano-sphere |
CN102784598A (en) * | 2012-06-25 | 2012-11-21 | 浙江赛凡新材料有限公司 | Method for preparing self-repairing nanocomposite sol used for long-lasting anticorrosion of metal plate |
KR20130067128A (en) * | 2011-12-13 | 2013-06-21 | 현대자동차주식회사 | Complex particle of phase change materials and conductive filler for a heat control material and its preparing method |
CN106939156A (en) * | 2017-03-14 | 2017-07-11 | 华东理工大学 | A kind of capsule/polymer setting phase change energy storage material and preparation method thereof |
KR20180057440A (en) * | 2016-11-22 | 2018-05-30 | 전남대학교산학협력단 | Capsulated latent heat storage microcapsule and preparation method thereof |
CN112121738A (en) * | 2020-09-28 | 2020-12-25 | 杭州应星新材料有限公司 | Preparation method of functionalized microcapsule and functionalized microcapsule prepared by preparation method |
CN112126393A (en) * | 2020-09-28 | 2020-12-25 | 杭州应星新材料有限公司 | Phase-change heat storage pouring sealant and preparation method thereof |
CN113201806A (en) * | 2021-04-15 | 2021-08-03 | 王香玉 | Thermochromic fabric based on carbon fibers and preparation method thereof |
CN114496429A (en) * | 2022-03-07 | 2022-05-13 | 华北电力大学 | Nonlinear conductive composite materials based on nano-electrostatic adsorption and preparation method thereof |
CN114774086A (en) * | 2022-04-14 | 2022-07-22 | 华南理工大学 | Phase-change nano-capsule composite material with enhanced heat conduction and preparation method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0718300D0 (en) * | 2007-09-20 | 2007-10-31 | Univ Leeds | Microcapsules and methods |
US9683109B2 (en) * | 2013-12-30 | 2017-06-20 | Council Of Scientific & Industrial Research | Self healing anti corrosive coatings and a process for the preparation thereof |
US9480960B2 (en) * | 2014-12-01 | 2016-11-01 | National Chung Shan Institute Of Science And Technology | Process for preparing phase change microcapsule having thermally conductive shell |
-
2022
- 2022-12-26 CN CN202211676669.3A patent/CN115725182B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101310851A (en) * | 2008-02-26 | 2008-11-26 | 浙江大学 | Method for preparing metallic oxide hollow nano-sphere |
KR20130067128A (en) * | 2011-12-13 | 2013-06-21 | 현대자동차주식회사 | Complex particle of phase change materials and conductive filler for a heat control material and its preparing method |
CN102784598A (en) * | 2012-06-25 | 2012-11-21 | 浙江赛凡新材料有限公司 | Method for preparing self-repairing nanocomposite sol used for long-lasting anticorrosion of metal plate |
KR20180057440A (en) * | 2016-11-22 | 2018-05-30 | 전남대학교산학협력단 | Capsulated latent heat storage microcapsule and preparation method thereof |
CN106939156A (en) * | 2017-03-14 | 2017-07-11 | 华东理工大学 | A kind of capsule/polymer setting phase change energy storage material and preparation method thereof |
CN112121738A (en) * | 2020-09-28 | 2020-12-25 | 杭州应星新材料有限公司 | Preparation method of functionalized microcapsule and functionalized microcapsule prepared by preparation method |
CN112126393A (en) * | 2020-09-28 | 2020-12-25 | 杭州应星新材料有限公司 | Phase-change heat storage pouring sealant and preparation method thereof |
CN113201806A (en) * | 2021-04-15 | 2021-08-03 | 王香玉 | Thermochromic fabric based on carbon fibers and preparation method thereof |
CN114496429A (en) * | 2022-03-07 | 2022-05-13 | 华北电力大学 | Nonlinear conductive composite materials based on nano-electrostatic adsorption and preparation method thereof |
CN114774086A (en) * | 2022-04-14 | 2022-07-22 | 华南理工大学 | Phase-change nano-capsule composite material with enhanced heat conduction and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
新型碳纳米管改性密胺树脂相变微胶囊的制备及性能表征;黄奕添;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》(第07期);第B020-124页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115725182A (en) | 2023-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103172973B (en) | High thermal-conductivity polymer composite material and preparation method thereof | |
CN103333494B (en) | A kind of Thermal-conductive insulation silicone rubber thermal interface material and preparation method thereof | |
CN109181316A (en) | Heat-conductive composite material and preparation method thereof | |
CN114774086A (en) | Phase-change nano-capsule composite material with enhanced heat conduction and preparation method and application thereof | |
CN102153955B (en) | Preparation method of heat conduction plaster adopting fiber glass mesh as supporting structure | |
CN109206853B (en) | High-thermal-conductivity epoxy resin-based composite material, and preparation method and application thereof | |
CN112063020A (en) | Core-shell spherical heat-conducting filler and preparation method and application thereof | |
CN111909516B (en) | Heat-conducting composite material and preparation method thereof | |
CN1970667A (en) | Preparation method of Al2O3/BN composite powder heat-conductive filler for heat-conductive adhesive | |
CN117209962B (en) | Epoxy resin composite material and preparation method thereof | |
CN104710792A (en) | A spherical core-shell structure Al2O3/AlN thermally conductive powder and high thermally conductive insulating silicone grease and its preparation method | |
CN112662011A (en) | Modification method of silicon dioxide, silicon dioxide filler and epoxy resin composite material | |
CN113881190A (en) | Epoxy resin composite material for encapsulation of power electronic transformer and preparation method thereof | |
CN104327460A (en) | Method for efficiently preparing heat-conducting epoxy resin based on polyether sulfone and boron nitride | |
CN115725182B (en) | A silicone rubber composite material containing phase change nanocapsules/boron nitride hybrid filler and its preparation method and application | |
CN111363368A (en) | Fluid-like high-thermal-conductivity organic silicon gel and preparation method and application thereof | |
CN115819845A (en) | A filler modification method, modified filler and filled thermally conductive epoxy resin | |
CN110964228A (en) | A silicon carbide-boron nitride nanosheet heterogeneous filler and preparation method, epoxy resin thermally conductive composite material and preparation method | |
CN107501861A (en) | A kind of composite heat interfacial material based on graphene and preparation method thereof | |
CN104312098B (en) | Preparation method of heat-conducting epoxy resin | |
CN114605836A (en) | High-performance silicon oil-based flexible heat-conducting gasket and preparation method thereof | |
CN111334260A (en) | An organosilicon composite material with thermal conductivity insulation and electromagnetic shielding properties | |
WO2025000366A1 (en) | Single-component high-thermal-conductivity silicone mud and preparation method therefor | |
CN107384275A (en) | A kind of high-thermal-conductivity epoxy resin composition and preparation method thereof | |
CN110343351A (en) | A kind of selfreparing macromolecule heat conduction material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |