CN115714861A - 视频译码器及相应方法 - Google Patents
视频译码器及相应方法 Download PDFInfo
- Publication number
- CN115714861A CN115714861A CN202211333863.1A CN202211333863A CN115714861A CN 115714861 A CN115714861 A CN 115714861A CN 202211333863 A CN202211333863 A CN 202211333863A CN 115714861 A CN115714861 A CN 115714861A
- Authority
- CN
- China
- Prior art keywords
- image block
- division
- current image
- block
- divided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/147—Data rate or code amount at the encoder output according to rate distortion criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/167—Position within a video image, e.g. region of interest [ROI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本申请公开了视频译码器及相应方法,涉及视频编解码技术领域,有助于提高视频编解码性能。本申请中,将编码和解码统称为译码。视频译码方法包括:根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略;将该块划分策略应用于当前图像块以得到编码块;通过对得到的编码块进行重构以实现对当前图像块的重构。
Description
本申请是分案申请,原申请的申请号是201910372891.6,原申请日是2019年5月6日,原申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及视频编解码技术领域,尤其涉及视频译码器及相应方法。
背景技术
数字视频能力可并入到多种多样的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(personal digital assistant,PDA)、膝上型或桌上型计算机、平板计算机、电子图书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话(所谓的“智能电话”)、视频电话会议装置、视频流式传输装置及其类似者。数字视频装置实施视频压缩技术,例如,在由MPEG-2、MPEG-4、ITU-TH.263、ITU-T H.264/MPEG-4第10部分高级视频编码(advanced video coding,AVC)定义的标准、视频编码标准H.265/高效视频编码(high efficiency video coding,HEVC)标准以及此类标准的扩展中所描述的视频压缩技术。视频装置可通过实施此类视频压缩技术来更有效率地发射、接收、编码、解码和/或存储数字视频信息。其中,MPEG是动态图像专家组(moving picture experts group)的英文缩写。ITU-T是国际电信联盟电信标准分局(ITU-T for ITU Telecommunication Standardization Sector)的英文缩写。
对于基于块的视频编码,视频条带(即,视频帧或视频帧的一部分)可划分成若干图像块,所述图像块也可被称作树块、编码单元(coding unit,CU)和/或编码节点。如何对视频帧或视频条带进行划分,从而提高视频编解码性能,成为亟待解决的技术问题。
发明内容
本申请实施例提供了视频译码器及相应方法,有助于提高视频编解码性能。本申请实施例中,将编码和解码统称为译码。
第一方面,提供了一种视频译码方法,包括:首先,根据当前图像块的宽与高的大小关系,确定所述当前图像块的块划分策略。然后,将该块划分策略应用于当前图像块以得到编码块(coding block)。接着,通过对得到的编码块进行重构以实现对当前图像块的重构。本技术方案中,有条件地确定当前图像块的块划分策略,从而得到编码块,这样,有助于降低划分复杂度,从而提高视频编解码性能。
其中,编码块也可以被称作编码单元。在一个示例中,该技术方案可以应用于扩展四叉树(extended quad-Tree,EQT)方案中的第二级编码树中,也就是说,当前图像块可以是第二级编码树中的任意一个图像块。编码块可以是编码树如第二级编码树中的叶节点。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第一条件。第一条件包括:当前图像块的宽小于第一阈值与当前图像块的高的乘积。然后,在当前图像块不满足第一条件时,确定块划分策略为划分方向为竖直方向的划分。竖直方向垂直于当前图像块的宽所在的边的方向。这样,当当前图像块的宽大于或等于第一阈值与高的乘积时,不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此可以节省传输比特开销。另外,该技术方案有助于将编码树中的叶节点的宽与高之比限制在一定范围之内,从而方便编码。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第二条件。第二条件包括:当前图像块的高小于第一阈值与当前图像块的宽的乘积。然后,在当前图像块不满足第二条件时,确定块划分策略为划分方向为水平方向的划分。水平方向垂直于当前图像块的高所在的边的方向。这样,当当前图像块的高大于或等于第一阈值与宽的乘积时,不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此可以节省传输比特开销。另外,该技术方案有助于将编码树中的叶节点的高与宽之比限制在一定范围之内,从而方便编码。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第一条件。第一条件包括:当前图像块的宽小于第一阈值与当前图像块的高的乘积。然后,在当前图像块不满足第一条件时,确定当前图像块的块划分策略不包括划分方向为水平方向的划分。水平方向垂直于当前图像块的高所在的边的方向。基于此,后续可以对当前图像块进行划分,也可以不对当前图像块进行划分。例如,可以根据当前图像块的块策略并结合其他信息,如最小CU尺寸原则和最小码率失真优化(rate distortion optimization,RDO)原则等,确定是否对当前图像块进行划分。如果确定对当前图像块进行划分,则不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此该技术方案有助于节省传输比特开销。另外,该技术方案有助于将编码树中的叶节点的宽与高之比限制在一定范围之内,从而方便编码。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第二条件。第二条件包括:当前图像块的高小于第一阈值与当前图像块的宽的乘积。然后,在当前图像块不满足第二条件时,确定当前图像块的块划分策略不包括划分方向为竖直方向的划分。竖直方向垂直于当前图像块的宽所在的边的方向。基于此,后续可以对当前图像块进行划分,也可以不对当前图像块进行划分。如果确定对当前图像块进行划分,则不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此该技术方案有助于节省传输比特开销。另外,该技术方案有助于将编码树中的叶节点的高与宽之比限制在一定范围之内,从而方便编码。
在一种可能的设计中,第一阈值是允许的编码树(如EQT方案中的第二级编码树等)中节点的长边长度与短边长度之比的最大值。
在一种可能的设计中,第一阈值是大于1的值。可选的,第一阈值可以是2的整数次幂。
在一种可能的设计中,该方法还可以包括:解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,将该块划分策略应用于当前图像块以得到编码块,包括:基于块划分策略(具体是不满足第一条件时所确定的块划分策略),采用该标识信息所表示的划分类型,对当前图像块进行划分方向为竖直方向的划分,以得到编码块。在该可能的设计中,视频译码方法具体是视频解码方法。
在一种可能的设计中,该方法还可以包括:解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,将该块划分策略应用于当前图像块以得到编码块,包括:基于块划分策略(具体是不满足第二条件时所确定的块划分策略),采用该标识信息所表示的划分类型,对当前图像块进行划分方向为水平方向的划分。在该可能的设计中,视频译码方法具体是视频解码方法。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第三条件。第三条件包括:当前图像块的宽小于第二阈值与当前图像块的高的乘积。然后,在当前图像块不满足第三条件时,确定块划分策略为划分方向为竖直方向的扩展四叉树划分。竖直方向垂直于当前图像块的宽所在的边的方向。这样,当当前图像块的宽大于或等于第二阈值与高的乘积,且对当前图像块进行扩展四叉树划分时,不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此可以节省传输比特开销。另外,该技术方案有助于将编码树中的叶节点的宽与高之比限制在一定范围之内,从而方便编码。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第四条件。第四条件包括:当前图像块的高小于第二阈值与当前图像块的宽的乘积。然后,在当前图像块不满足第四条件时,确定块划分策略为划分方向为水平方向的扩展四叉树划分。水平方向垂直于当前图像块的高所在的边的方向。这样,当当前图像块的高大于或等于第二阈值与宽的乘积,且对当前图像块进行扩展四叉树划分时,不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此可以节省传输比特开销。另外,该技术方案有助于将编码树中的叶节点的高与宽之比限制在一定范围之内,从而方便编码。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第三条件。第三条件包括:当前图像块的宽小于第二阈值与当前图像块的高的乘积。然后在当前图像块不满足第三条件时,确定当前图像块的块划分策略不包括划分方向为水平方向的扩展四叉树划分,水平方向垂直于当前图像块的高所在的边的方向。基于此,后续可以对当前图像块进行划分,也可以不对当前图像块进行划分。
在一种可能的设计中,根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略,包括:确定当前图像块是否满足第四条件。第四条件包括:当前图像块的高小于第二阈值与当前图像块的宽的乘积。然后在当前图像块不满足第四条件时,确定当前图像块的块划分策略不包括划分方向为竖直方向的扩展四叉树划分,竖直方向垂直于当前图像块的宽所在的边的方向。基于此,后续可以对当前图像块进行划分,也可以不对当前图像块进行划分。
在一种可能的设计中,第二阈值是允许的编码树(如EQT方案中的第二级编码树等)中节点的长边长度与短边长度之比的最大值的二分之一。
在一种可能的设计中,第二阈值是大于1的值。可选的,第二阈值可以是2的整数次幂。
在一种可能的设计中,该方法还可以包括:解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,将块划分策略应用于当前图像块以得到编码块,包括:基于块划分策略(具体是不满足第三条件时所确定的块划分策略),当该标识信息表示对当前图像块进行扩展四叉树划分时,对当前图像块进行划分方向为竖直方向的扩展四叉树划分。在该可能的设计中,视频译码方法具体是视频解码方法。
在一种可能的设计中,该方法还可以包括:解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,将该块划分策略应用于当前图像块以得到编码块,包括:基于块划分策略(具体是不满足第四条件时所确定的块划分策略),当该标识信息表示对当前图像块进行扩展四叉树划分时,对当前图像块进行划分方向为水平方向的扩展四叉树划分。在该可能的设计中,视频译码方法具体是视频解码方法。
第二方面,提供了一种视频译码方法,包括:如果待译码图像中的待划分图像块的长边长度是待划分图像块的短边长度的二倍,则对待划分图像块进行划分方向垂直于待划分图像块的长边的二叉树划分,得到划分后的图像块。例如,如果待译码图像中的待划分图像块的宽是高的二倍,则对待划分图像块进行竖直二叉树划分,得到划分后的图像块。又如,如果待译码图像中的待划分图像块的高是宽的二倍,则对待划分图像块进行水平二叉树划分,得到划分后的图像块。然后,根据划分后的图像块,对待译码图像进行重构。这样,对待划分图像块进行有条件的划分,有助于降低划分复杂度,从而提高视频编解码性能。另外,如果待划分图像块的长边长度是待划分图像块的短边长度的二倍,则不需要在码流中编入表示对当前图像块进行划分的划分方式(包括划分类型和划分方向)的信息,因此可以节省传输比特开销。另外,对当前图像块进行划分方向垂直于当前图像块的长边的二叉树划分,可以将当前图像块划分成两个正方形图像块,相比非正方形的矩形图像块来说,正方形图像块后续块被划分的可能性更高,因此,本技术方案有助于提高对视频图片的编码精确度。
在一种可能的设计中,待划分图像块的长边长度为128个像素长度,短边长度为64个像素长度。例如,当待划分图像块的尺寸是128*64(即宽是128个像素长度,高是64个像素长度)时,对待划分图像块进行竖直二叉树划分。又如,当待划分图像块的尺寸是64*128(即宽是64个像素长度,高是128个像素长度)时,对待划分图像块进行水平二叉树划分。
在一种可能的设计中,待划分图像块的短边长度等于最大变换单元(transformunit,TU)的边尺寸,或者,待划分图像块的短边长度等于虚拟流水数据单元(virtualpipeline data unit,VPDU)的边尺寸。
在一种可能的设计中,待划分图像块是边界图像块。其中,如果当前节点中存在一个或者一个以上的像素超出了当前图像边界,则称当前节点超出图像边界,该情况下,当前节点为边界图像块。
第三方面,提供了一种视频译码方法,包括:如果待译码图像中的待划分图像块的宽大于高,则对待划分图像块进行竖直二叉树划分,得到划分后的图像块;和/或,如果待译码图像中的待划分图像块的高大于宽,则对待划分图像块进行水平二叉树划分,得到划分后的图像块。然后,根据划分后的图像块,对待译码图像进行重构。这样,对待划分图像块进行有条件的划分,有助于降低划分复杂度,从而提高视频编解码性能。另外,本技术方案不需要在码流中编入表示对当前图像块进行划分的划分方式(包括划分类型和划分方向)的信息,因此可以节省传输比特开销。另外,本技术方案中将当前图像块划分成两个正方形图像块,相比非正方形的矩形图像块来说,正方形图像块后续块被划分的可能性更高,因此,本技术方案有助于提高对视频图片的编码精确度。
在一种可能的设计中,当待划分图像块的尺寸是128*64(即宽是128个像素长度,高是64个像素长度)时,对待划分图像块进行竖直二叉树划分。
在一种可能的设计中,当待划分图像块的尺寸是64*128(即宽是64个像素长度,高是128个像素长度)时,对待划分图像块进行水平二叉树划分。
在一种可能的设计中,待划分图像块是边界图像块。
第四方面,提供了一种视频译码装置,该装置包括用于执行上述第一方面或第二方面或第三方面,或者第一方面或第二方面或第三方面中的任意一种可能的设计中的方法的模块(或单元)。
第五方面,提供了一种视频译码器,该视频译码器包括:相互耦合的非易失性存储器和处理器。该处理器调用存储在该存储器中的程序代码以执行第一方面或第二方面或第三方面,或者第一方面或第二方面或第三方面中的任意一种可能的设计中的方法的部分或全部步骤。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储了程序代码,其中,该程序代码包括用于执行第一方面或第二方面或第三方面,或者第一方面或第二方面或第三方面中的任意一种实现方式中的方法的部分或全部步骤的指令。
第七方面,提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面或第二方面或第三方面,或者第一方面或第二方面或第三方面中的任意一种实现方式中的方法的部分或全部步骤的指令。
应当理解的是,上述提供的任一种视频译码装置、视频译码器、计算机可读存储介质和计算机程序产品的有益效果均可以对应参考上文对应方面提供的方法实施例的有益效果,此处不再赘述。
附图说明
图1A为本申请实施例所应用的一种视频编码及解码系统的示意性框图;
图1B为本申请实施例所应用的另一种视频编码及解码系统的示意性框图;
图2为实现本申请实施例的一种编码器的实例的示意性/概念性框图;
图3为实现本申请实施例的一种解码器的实例的示意性/概念性框图;
图4为本申请实施例提供的一种视频译码设备的结构示意图;
图5为本申请实施例的译码设备的一种实现方式的示意性框图;
图6为可适用于本申请实施例的几种划分方式的示意图;
图7为可适用于本申请实施例的一种编码树及其对应的划分方式的示意图;
图8为本申请实施例提供的一种视频译码方法的流程示意图;
图9为本申请实施例提供的一种图像块划分方法的流程示意图;
图10为本申请实施例提供的另一种图像块划分方法的流程示意图;
图11为本申请实施例提供的另一种图像块划分方法的流程示意图;
图12为本申请实施例提供的另一种图像块划分方法的流程示意图;
图13为本申请实施例提供的一种视频编码方法的流程示意图;
图14为本申请实施例提供的一种视频解码方法的流程示意图;
图15为本申请实施例提供的一种视频译码器的结构示意图;
图16为本申请实施例提供的另一种视频译码器的结构示意图;
图17为可适用于本申请实施例的一种视频通信系统的示意图;
图18为本申请实施例提供的另一种视频解码方法的流程示意图;
图19为本申请实施例提供的另一种视频解码方法的流程示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频译码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,宏块可进一步划分成多个可用于预测编码的预测块(partition)。或者,采用编码单元(即CU),预测单元(prediction unit,PU)和变换单元(即TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
通过使用表示为编码树的四叉树结构将编码树单元(编码树(coding tree unit,CTU)中的)拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU划分成TU。在视频压缩技术最新的发展中,使用四叉树和二叉树(quad-tree andbinary tree,QTBT)划分帧来划分编码块。在QTBT块结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块(或当前图像块),例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常划分成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1A,图1A示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmentedreality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的划分方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述的划分方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digitallight processor,DLP)或任何类别的其它显示器。
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图1B所示,成像设备41、天线42、处理单元46、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integratedcircuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含ASIC逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(static random access memory,SRAM)、动态随机存储器(dynamic randomaccess memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码划分相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码划分的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本申请实施例描述的解码方法主要用于解码过程,此过程在编码器20和解码器30均存在。
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、DPB230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过如输入202,接收图片201或图片201的图像块203,例如形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括划分单元(图2中未绘示),用于将图片201划分成多个例如图像块203的块,通常划分成多个不重叠的块。划分单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片划分成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述划分技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discretecosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为AVS,AVS2,AVS3指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过QP指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如AVS,AVS2,AVS3的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆DCT或逆DST,以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picturebuffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP 230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(advanced motion vector prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203划分成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)划分、二进制树(binary-tree,BT)划分或三叉树(triple-tree,TT)或者扩展四叉树(即EQT)划分,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择划分的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable lengthcoding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binaryarithmetic coding,SBAC)、概率区间划分熵(probability interval partitioningentropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的编码方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequenceparameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、SAO滤波器或其它滤波器,例如双边滤波器、ALF,或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的解码方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
参见图4,图4是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本申请实施例所提供的划分方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法,尤其是各种新的解码的方法。为避免重复,这里不再详细描述。
在本申请实施例中,处理器510可以是中央处理单元(central processing unit,CPU),处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括ROM设备或者RAM设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的解码方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
以下,说明本申请实施例中涉及的关键术语和技术,以方便读者理解:
CTU:一幅图像由多个CTU构成,一个CTU通常对应于一个方形图像区域,一个CTU包含这个图像区域中的亮度像素和色度像素,或者只包含亮度像素,或者只包含色度像素。CTU的大小可以设置为64×64,当然也可以设置为其它值,如128×128或256×256等。64×64的CTU是包含64列、且每列包含64个像素的矩形像素点阵。其他大小的CTU的解释与此类似,此处不再赘述。CTU可以对应一些语法元素,这些语法元素用于指示如何将CTU划分成至少一个CU,以及用于解码每个CU得到重建图像的信息等。
CU:通常对应于一个A×B的矩形区域,包含A×B亮度像素和它对应的色度像素。其中,A为矩形的宽,B为矩形的高,A和B可以相同也可以不同。A和B的取值通常为2的整数次幂,例如,128、64、32、16、8、4等。一个CU可以通过解码处理得到一个A×B的矩形区域的重建图像,解码处理通常包括预测、反量化、反变换等。
划分方式,可以通过划分类型和划分方向来表征。其中,划分类型可以是二叉树划分类型或扩展四叉树划分类型等。划分方向可以是竖直方向或水平方向。其中,水平方向是垂直于当前图像块的高所在的边的方向。竖直方向是垂直于当前图像块的宽所在的边的方向。基于此,划分方式可以是水平二叉树划分方式、竖直二叉树划分方式、水平扩展四叉树划分方式或竖直扩展四叉树划分方式。另外,划分方式也可以仅通过划分类型来表征,例如,四叉树划分方式与四叉树划分类型所表达的含义相同。
BT(二叉树):是一种树状结构,一个节点可以划分成两个子节点。在采用二叉树的编码方法中,一个二叉树结构上的节点可以不划分,或者可以划分成两个下一层级的节点。将一个节点划分成两个节点的方式包括水平二叉树划分方式和竖直二叉树划分方式。其中,水平二叉树划分方式具体为:将节点对应的区域划分成上、下两个相同大小的区域,每个区域对应于一个节点,如图6中的(a)图所示。竖直二叉树划分方式具体为:将节点对应的区域划分成左、右两个大小相同的区域,每个区域对应于一个节点,如图6中的(b)图所示。
QT(四叉树):是一种树状结构,一个节点可划分成四个子节点。AVS视频标准采用基于四叉树的CTU划分方式,具体的,将CTU作为根节点,每个节点对应于一个方形的区域;一个节点可以不再划分(此时它对应的区域为一个CU),或者可以划分成下一层级的四个节点,即把这个方形区域划分成四个大小相同的方形区域,划分后的每个方形区域的高、宽各为划分前的区域的高、宽的一半,每个区域对应于一个节点。如图6中的(c)图所示。
EQT(扩展四叉树):是一种树状结构,一个节点可划分成四个子节点。在采用EQT的编码方法中,一个扩展四叉树结构上的节点可以不划分,或者可以划分成下一层级的四个节点。将一个节点划分成四个节点的方式包括:水平扩展四叉树划分方式和竖直扩展四叉树划分方式。其中,水平四叉树划分方式具体为:先水平三分,将节点对应的区域划分成上、中、下三个区域,每个区域对应于一个节点,其中上、中、下三个区域的高分别为节点高的1/4、1/2、1/4,再将中区域的节点划分成左、右两个相同大小的区域,如图6中的(d)图所示。竖直扩展四叉树划分方式具体为:先竖直三分,将节点对应的区域划分成左、中、右三个区域,每个区域对应于一个节点,其中左、中、右三个区域的宽分别为节点高的1/4、1/2、1/4,再将中区域的节点划分成上、下两个相同大小的区域,如图6中的(e)图所示。
QTBT方案,是QT划分和BT划分级联的方式。具体的,CTU先按照QT划分,QT的叶节点允许继续使用BT进行划分,如图7所示,即第一级编码树为QT,第二级编码树为BT。其中图7右图中每个端点表示一个节点,一个节点连出4根实线表示四叉树划分,一个节点连出2根虚线表示二叉树划分,a到m为13个叶节点,每个叶节点对应1个CU;二叉树节点上的“1”表示竖直划分,“0”表示水平划分;一个CTU按照图7的右图进行划分,可以得到a到m这13个CU,如图7的左图所示。
QTBT方案优点为CU形状更加多样,从而更好地适应局部图像的内容。AVS2视频编码标准中基于QT划分使得所有CU都只能是正方形,即CU的宽(width)等于CU的高(height)。CU的宽是CU包含的像素的列数,CU的高是CU包含的像素的行数。引入BT划分后,CU的宽和高可以不相同,例如宽与高之比为2、4、8、16、1/2、1/4、1/8或者1/16。在QTBT下,所有CU的宽和高都不能小于最小CU的边长,最小CU尺寸可以包含在SPS中,例如最小CU可设置为4×4。
在QTBT方案的基础上,AVS3视频编码标准提出了EQT方案,即第一级编码树可以使用QT划分,第二级编码树使用BT和EQT划分。更具体的,以CTU为第一级编码树的根节点,第一级编码树采用QT划分方式,将CTU划分为第一级编码树的叶节点;再以第一级编码树的叶节点作为第二级编码树的根节点,第二级编码树可采用上述的水平BT划分方式、竖直BT划分方式、水平EQT划分方式、竖直EQT划分方式这四种划分方式,将第一级编码树的叶节点继续划分成第二级编码树的叶节点。
在第二级编码树中,对于编码器来说,通常基于最小CU尺寸原则和最小码率失真优化(rate distortion optimization,RDO)原则确定是否对当前图像块(即当前节点)进行划分,以及如果划分的话采用哪种划分方式。具体的:先基于最小CU尺寸原则,确定当前图像块可能的划分方式,即依据划分后得到的每个图像块的尺寸必须大于或等于最小CU尺寸,确定可适用于当前图像块的划分方式。如果所有的候选划分方式(即水平BT划分方式、竖直BT划分方式、水平EQT划分方式、竖直EQT划分方式)均不适用,则确定不能对当前图像块进行划分。否则,计算并比较不划分当前图像块时的RDO与采用每种可能的划分方式进行划分时RDO,如果不划分时RDO最小,则确定不对当前图像块不进行划分;如果采用某种划分方式时RDO最小,则确定后续采用该划分方式对当前图像块进行划分。该方法需要遍历基于最小CU尺寸原则所确定的适用于当前图像块的所有可能的划分方式,从而确定出对当前图像块进行划分的划分方式,因此,编码复杂度较高。另外,如果确定采用某种划分方式对当前图像块进行划分,则码流中携带表示该划分方式的划分类型和划分方向的信息,因此,码流传输开销较大。
基于此,本申请实施例提供了一种视频编码方法及相应的解码方法。以下,结合附图,详细阐述本申请实施例提供的技术方案。
如图8所示,为本申请实施例提供的一种视频译码方法的流程示意图。图8所示的方法包括如下步骤:
S001:译码器根据当前图像块的宽与高的大小关系,确定当前图像块的块划分策略。
其中,当视频译码方法具体是视频编码方法时,译码器具体是编码器。当视频译码方法具体是视频解码方法时,译码器具体是解码器。
当前图像块,可以是对待译码图像进行划分的过程中的任意一个图像块。例如,第二级编码树中的任意一个图像块。
块划分策略,是指用于基于当前图像块得到编码块的策略。例如,当前图像块的块划分策略可以包括:对于当前图像块来说,哪些划分方式不合法。又如,当前图像块的块划分策略可以包括:对当前图像块进行划分时所采用的目标划分方式等。
可以理解的是,译码器可以基于最小CU尺寸原则确定可适用于当前图像块的划分方式。因此,在一种可能的实现方式中,可以将“最小CU尺寸原则”作为块划分策略的一部分。在另一种可能的实现方式中,可以认为“最小CU尺寸原则”与块划分策略是独立的两种策略。为了方便描述,下文中均以后者为例进行说明。
S002:译码器将该块划分策略应用于当前图像块以得到编码块。
编码块,可以认为是编码树(如EQT方案中的第二级编码树)中的叶节点。关于编码块的相关解释可以参考上文,或者可以参考现有技术。
具体的:如果译码器基于块划分策略(可选的,还可以基于其他策略如最小CU尺寸原则和最小RDO原则等),确定不对当前图像块进行划分,则可以将当前图像块作为编码树中的叶节点。该情况下,当前图像块可以作为一个编码块。
如果译码器基于块划分策略(可选的,还可以基于其他策略如最小CU尺寸原则和最小RDO原则等),确定需要对当前图像块进行划分,则可以将划分后得到的图像块分别作为当前图像块,然后执行S001~S002,以此类推,直至不再对当前图像块进行划分时,将该当前图像块作为编码树中的叶节点。该情况下,该当前图像块可以作为一个编码块。
S003:译码器通过对得到的编码块进行重构以实现对当前图像块的重构。该步骤的具体实现方式可以参考上文中的描述,或者可以参考现有技术。
本技术方案中,有条件地确定当前图像块的块划分策略,从而得到编码块,这样,有助于降低划分复杂度,从而提高视频编解码性能。
上述S001~S002可以认为是本申请实施例提供的图像块划分方法。以下,通过图9~图12说明本申请实施例提供的图像块划分方法。
如图9所示,为本申请实施例提供的一种图像块划分方法流程示意图。图9所示的方法包括如下步骤:
S101:编码器判断当前图像块的宽是否小于第一阈值与当前图像块的高的乘积。
若否,则执行S102。若是,则执行S103。
可选的,第一阈值是允许的编码树(如上文中描述的第二级编码树)中节点的长边长度与短边长度之比的最大值。可选的,第一阈值是大于1的值,如大于1的整数。可选的,第一阈值是2的整数幂,例如,第一阈值是4、8或16等。需要说明的是,如果不加说明,本申请实施例中的具体示例均是以第一阈值是大于1的值为例进行说明的。
S102:编码器确定第一候选集合。第一候选集合是针对当前图像块合法的划分方式构成的集合。其中,第一候选集合不包括划分方向为水平方向的划分方式。也就是说,水平方向的划分方式不合法。然后,根据第一候选集合确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式。
如果确定对当前图像块进行划分,则执行S105。
如果确定不对当前图像块进行划分,则执行S108。
具体的,编码器可以首先确定当前图像块的块划分策略,该块划分策略包括不包括划分方向为水平方向的划分。也就是说,在当前图像块不满足第一条件时,确定当前图像块的块划分策略不包括划分方向为水平方向的划分。第一条件包括当前图像块的宽小于第一阈值与当前图像块的高的乘积。然后,至少基于该块划分策略,确定第一候选集合。例如,编码器可以基于“最小CU尺寸原则”和该块划分策略确定第一候选集合。假设基于“最小CU原则”,确定的可适用于当前图像块的划分方式包括竖直二叉树划分方式、竖直扩展四叉树划分方式、水平二叉树划分方式和水平扩展四叉树划分方式,那么:第一候选集合可以包括竖直二叉树划分方式和竖直扩展四叉树划分方式,不包括水平二叉树划分方式和水平扩展四叉树划分方式。也就是说,针对当前图像块合法的划分方式是竖直方向的划分方式。
在一个示例中,根据候选集合确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式,可以包括:计算并比较不划分当前图像块时的RDO与采用该候选集合中的每种可能的划分方式进行划分时RDO;如果不划分时RDO最小,则确定不对当前图像块不进行划分;如果采用该候选集合中的某种划分方式时RDO最小,则确定该划分方式为目标划分方式。在另一个示例中,如果候选集合为空,则确定不对当前图像块进行划分。其中,这两个示例中的候选集合可以是第一候选集合,或者是下文中的第二候选集合或第三候选集合。
可以理解的是,当第一阈值是大于1的值时,S101的判断结果是“否”,即当前图像块的宽大于或等于第一阈值与当前图像块的高的乘积,说明:当前图像块的宽是长边,高是短边。根据S102的描述可知,编码器默认垂直于当前图像块的短边(具体是高)的划分方式不合法。具体实现时,编码器和解码器可以预定义S101的判断结果是“否”时,垂直于当前图像块的短边(具体是高)的划分方式不合法。
S103:编码器判断待编码图像中的当前图像块的高是否小于第一阈值与当前图像块的宽的乘积。
若否,则执行S104。若是,则执行S106。
S104:编码器确定第二候选集合。第二候选集合是针对当前图像块合法的划分方式构成的集合。其中,第二候选集合不包括划分方向为竖直方向的划分方式。也就是说,竖直方向的划分方式不合法。然后,根据第二候选集合确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式。
如果确定对当前图像块进行划分,则执行S105。
如果确定不对当前图像块进行划分,则执行S108。
具体的,编码器首先确定当前图像块的块划分策略,该块划分策略包括不包括划分方向为竖直方向的划分。也就是说,在当前图像块不满足第二条件时,确定当前图像块的块划分策略不包括划分方向为竖直方向的划分。第二条件包括当前图像块的高小于第一阈值与当前图像块的宽的乘积。然后,至少基于该块划分策略,确定第二候选集合。例如,编码器可以基于“最小CU尺寸原则”和该块划分策略确定第二候选集合。假设基于“最小CU原则”,确定的可适用于当前图像块的划分方式包括竖直二叉树划分方式、竖直扩展四叉树划分方式、水平二叉树划分方式和水平扩展四叉树划分方式,那么:第二候选集合可以包括水平二叉树划分方式和水平扩展四叉树划分方式,不包括竖直二叉树划分方式和竖直扩展四叉树划分方式。也就是说,针对当前图像块合法的划分方式是水平方向。
可以理解的是,当第一阈值是大于1的值时,S103的判断结果是“否”,即当前图像块的高大于或等于第一阈值与当前图像块的宽的乘积,说明:当前图像块的高是长边,宽是短边。根据S104的描述可知,编码器默认垂直于当前图像块的短边(具体是宽)的划分方式不合法。具体实现时,编码器和解码器可以预定义S103的判断结果是“否”时,垂直于当前图像块的短边(具体是宽)的划分方式不合法。
S105:编码器按照目标划分方式对当前图像块进行划分。并且,将第一标识信息和第二标识信息编入码流。第一标识信息用于表示是否对当前图像块进行划分(具体是划分)。第二标识信息用于表示目标划分方式的划分类型(如二叉树划分类型或扩展四叉树划分类型)。
执行S105之后,执行S109。
S106:编码器确定第三候选集合。第三候选集合是针对当前图像块合法的划分方式构成的集合。然后,根据第三候选集合确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式。
如果确定对当前图像块进行划分,则执行S107。
如果确定不对当前图像块进行划分,则执行S108。
具体实现时,编码器可以基于“最小CU尺寸原则”确定第三候选集合。例如,第三候选集合可以包括水平二叉树划分方式、水平扩展四叉树划分方式、竖直二叉树划分方式和竖直扩展四叉树划分方式。
需要说明的是,上述S101~S102和S103~S104的执行顺序可以不分先后。例如,编码器可以先执行S103,并在S103的判断结果为“是”时,执行上述S101,在S103的判断结果为“否”时,执行上述S104。并且,在S101的判断结果为“是”时,执行上述S106,在S101的判断结果为“否”时,执行上述S102。
另外,编码器还可以不执行上述S101~S102,或者,不执行上述S103~S104。例如,当不执行上述S103~S104时,编码器可以在S101的判断结果为“是”时,直接执行上述S106。
S107:编码器按照目标划分方式对当前图像块进行划分。并且,将第一标识信息、第二标识信息和第三标识信息均编入码流。第一标识信息用于表示是否对当前图像块进行划分(具体是划分)。第二标识信息用于表示目标划分方式的划分类型(如二叉树划分类型或扩展四叉树划分类型),第三标识信息用于表示目标划分方式的划分方向(如水平方向或竖直方向)。
执行S107之后,执行S109。
S108:编码器将第一标识信息编入码流。第一标识信息用于表示是否对当前图像块进行划分(具体是不划分)。
S109:编码器向解码器发送码流。
需要说明的是,对于执行划分操作后得到的“划分后的图像块”来说,编码器可以将其作为当前图像块,从而返回执行S101~S109。
本实施例提供的视频编码方法,有条件地确定当前图像块的块划分策略,与现有EQT方案中针对第二级编码树中的节点的划分方法相比,能够减小划分复杂度,从而提高编码效率。并且,当当前图像块的宽大于或等于第一阈值与高的乘积,和/或当前图像块的高大于或等于第一阈值与宽的乘积时,默认划分方向是垂直于当前图像块的短边的划分方式不合法。因此,不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,这样可以节省传输比特开销。另外,本技术方案有助于将编码树中的叶节点的宽与高之比(或高与宽之比)限制在一定范围之内,有助于在编码过程中尽量不出现“细长”的节点,从而方便进行编码。
如图10所示,为本申请实施例提供的一种图像块划分方法的流程示意图。图10所示的视频解码方法与图9所示的视频编码方法相对应,因此,本实施例中相关内容的解释可以参考上述图9所示的实施例。图10所示的方法包括如下步骤:
S201:解码器接收来自编码器的码流。
S202:解码器解析码流,以得到第一标识信息,第一标识信息用于表示是否对当前图像块进行划分。
如果第一标识信息表示不对当前图像块进行划分,则针对当前图像块的划分过程结束。该情况下,可以将当前图像块作为一个编码块。
如果第一标识信息表示对当前图像块进行划分,则执行以下S203。
S203:解码器判断当前图像块的宽是否小于第一阈值与高的乘积。
若否,则执行S204。若是,则执行S207。
S204:解码器继续解析码流,以得到第二标识信息,第二标识信息用于表示对当前图像块进行划分的划分类型;并采用第二标识信息所表示的划分类型,对当前图像块进行划分方向为竖直方向的划分。
执行S204之后,则针对当前图像块的划分过程结束。
具体的,当S203的判断结果是“否”时,解码器可以基于该判断结果,确定当前图像块的块划分策略不包括划分方向为水平方向的划分。然后,基于该块划分策略,采用第二标识信息所表示的划分类型,对当前图像块进行划分方向为竖直方向的划分。
示例的,第二标识信息所表示的划分类型可以包括二叉树划分类型或扩展四叉树划分类型等。如果第二标识信息所表示的划分类型是二叉树划分类型,则对当前图像块进行竖直二叉树划分;如果第二标识信息所表示的划分类型是扩展四叉树划分类型,则对当前图像块进行竖直扩展四叉树划分。
当第一阈值是大于1的值时,S203的判断结果是“否”,即当前图像块的宽大于或等于第一阈值与高的乘积,说明当前图像块的宽是长边,高是短边。
S205:解码器判断当前图像块的高是否小于第一阈值与宽的乘积。
若否,则执行S206。若是,则执行S207。
S206:解码器继续解析码流,以得到第二标识信息,第二标识信息用于表示对当前图像块进行划分的划分类型;并采用第二标识信息所表示的划分类型,对当前图像块进行划分方向为水平方向的划分。
执行S206之后,则针对当前图像块的划分过程结束。
具体的,当S205的判断结果是“否”时,解码器可以基于该判断结果,确定当前图像块的块划分策略不包括划分方向为竖直方向的划分。然后,基于该块划分策略,采用第二标识信息所表示的划分类型,对当前图像块进行划分方向为水平方向的划分。
示例的,第二标识信息所表示的划分类型可以包括二叉树划分类型或扩展四叉树划分类型等。如果第二标识信息所表示的划分类型是二叉树划分类型,则对当前图像块进行水平二叉树划分;如果第二标识信息所表示的划分类型是扩展四叉树划分类型,则对当前图像块进行水平扩展四叉树划分。
当第一阈值是大于1的值时,S205的判断结果是“否”,即当前图像块的高大于或等于第一阈值与宽的乘积,说明当前图像块的高是长边,宽是短边。
S207:解码器继续解析码流,以得到第二标识信息和第三标识信息,第二标识信息用于表示对当前图像块进行划分的划分类型,第三标识信息用于表示对当前图像块进行划分的划分方向;以及,采用第二标识信息所表示的划分类型,对当前图像块进行第三标识信息所表示的划分方向的划分。
执行S207之后,则针对当前图像块的划分过程结束。
例如,当第二标识信息所表示的划分类型是二叉树划分类型,且第三标识信息所表示的划分方向是水平划分,则对当前图像块进行水平二叉树划分。其他示例不再一一列举。
具体的,解码器可以执行一次解析码流的操作,得到第二标识信息和第三标识信息。或者,解码器可以执行一次解析码流的操作得到第二标识信息,执行另一次解析码流的操作得到第三标识信息,且两次解析步骤可以不分先后。
需要说明的是,上述S203~S204和S205~S206的执行顺序可以不分先后。例如,解码器可以先执行S205,并在S205的判断结果为“是”时,执行上述S203,在S205的判断结果为“否”时,执行上述S206。并且,在S203的判断结果为“是”时,执行上述S207,在S203的判断结果为“否”时,执行上述S204。
另外,解码器还可以不执行上述S203~S204,或者,不执行上述S205~S206。例如,当不执行上述S205~S206时,解码器可以在S203的判断结果为“是”时,直接执行上述S207。可以理解的是,具体实现时,若编码器执行上述S101~S102,则解码器执行上述S203~S204;若编码器执行上述S103~S104,则解码器执行上述S205~S206。
需要说明的是,对于执行划分操作后得到的“划分后的图像块”来说,解码器可以将其作为当前图像块,从而执行S202~S207。
本实施例提供的视频解码方法,当当前图像块的宽大于或等于第一阈值与高的乘积,和/或当前图像块的高大于或等于第一阈值与宽的乘积时,解码器默认划分方向是垂直于当前图像块的短边的划分方式不合法。这样,编码器不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此可以节省传输比特开销。另外,本技术方案有助于将编码树中的叶节点的宽与高之比(或高与宽之比)限制在一定范围之内,有助于在编码过程中尽量不出现“细长”的节点,从而方便进行编码。
如图11所示,为本申请实施例提供的一种图像块划分方法的流程示意图。本实施例中的当前图像块、第一标识信息、第二标识信息和第三标识信息的相关说明均可以参考上文。图11所示的方法包括如下步骤:
S301:编码器判断当前图像块的宽是否小于第二阈值与当前图像块的高的乘积。
若否,则执行S302。若是,则执行S303。
可选的,第二阈值是允许的编码树中节点的长边长度与短边长度之比的最大值的二分之一。可选的,第二阈值是大于1的值,如大于1的整数。可选的,第二阈值是2的整数幂,例如,第二阈值是2、4或8等。需要说明的是,如果不加说明,本申请实施例中的具体示例均是以第二阈值是大于1的值为例进行说明的。
S302:编码器确定第一候选集合。第一候选集合是针对当前图像块合法的划分方式构成的集合。其中,第一候选集合不包括划分方向为水平方向的扩展四叉树划分方式。也就是说,划分方向是水平方向的扩展四叉树划分方式不合法。然后,根据第一候选集合确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式。
如果确定对当前图像块进行划分,则执行S305。
如果确定不对当前图像块进行划分,则执行S308。
具体的,编码器可以首先确定当前图像块的块划分策略,该块划分策略包括不包括划分方向为水平方向的扩展四叉树划分。也就是说,在当前图像块不满足第三条件时,确定当前图像块的块划分策略不包括划分方向为水平方向的扩展四叉树划分。第三条件包括当前图像块的宽小于第二阈值与当前图像块的高的乘积。然后,至少基于该块划分策略,确定第一候选集合。例如,编码器可以基于“最小CU尺寸原则”和该块划分策略确定第一候选集合。假设基于“最小CU原则”,确定的可适用于当前图像块的划分方式包括竖直二叉树划分方式、竖直扩展四叉树划分方式、水平二叉树划分方式和水平扩展四叉树划分方式,那么:第一候选集合可以包括水平二叉树划分方式、竖直二叉树划分方式和竖直扩展四叉树划分方式,不包括水平扩展四叉树划分方式。
S303:编码器判断待编码图像中的当前图像块的高是否小于第二阈值与当前图像块的宽的乘积。
若否,则执行S304;若是,则执行S306。
S304:编码器确定第二候选集合。第二候选集合是针对当前图像块合法的划分方式构成的集合。其中,第二候选集合不包括划分方向为竖直方向的扩展四叉树划分方式。也就是说,划分方向是竖直方向的扩展四叉树划分方式不合法。然后,根据第二候选集合确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式。
如果确定对当前图像块进行划分,则执行S305。
如果确定不对当前图像块进行划分,则执行S308。
具体的,编码器可以首先确定当前图像块的块划分策略,该块划分策略包括不包括划分方向为竖直方向的扩展四叉树划分。也就是说,在当前图像块不满足第四条件时,确定当前图像块的块划分策略不包括划分方向为竖直方向的扩展四叉树划分。第四条件包括当前图像块的高小于第二阈值与当前图像块的宽的乘积。然后,至少基于该块划分策略,确定第二候选集合。例如,编码器可以基于“最小CU尺寸原则”和该块划分策略确定第二候选集合。假设基于“最小CU原则”,确定的可适用于当前图像块的划分方式包括竖直二叉树划分方式、竖直扩展四叉树划分方式、水平二叉树划分方式和水平扩展四叉树划分方式,那么:第二候选集合可以包括水平二叉树划分方式、竖直二叉树划分方式和水平扩展四叉树划分方式,不包括竖直扩展四叉树划分方式。
S305:编码器按照目标划分方式对当前图像块进行划分。并且:
如果目标划分方式的划分类型是二叉树划分类型,则将第一标识信息、第二标识信息和第三标识信息均编入码流,其中,第一标识信息用于表示是否对当前图像块进行划分(具体是划分),第二标识信息用于表示目标划分方式的划分类型(具体是二叉树划分类型),第三标识信息用于表示目标划分方式的划分方向(具体是水平方向或竖直方向)。
如果目标划分方式的划分类型是扩展四叉树划分类型,则将第一标识信息和第二标识信息编入码流,其中,第一标识信息用于表示是否对当前图像块进行划分(具体是划分),第二标识信息用于表示目标划分方式的划分类型(具体是扩展四叉树划分类型)。
执行S305之后,执行S309。
S306~S309,可以参考上述S106~S109。
需要说明的是,对于执行划分操作后得到的“划分后的图像块”来说,编码器可以将其作为当前图像块,从而返回执行S301~S309。
本实施例中,编码器确定是否对当前图像块进行划分,以及当划分时所采用的目标划分方式的具体实现方式,可以参考上文,此处不再赘述。
需要说明的是,上述S301~S302和S303~S304的执行顺序可以不分先后。例如,编码器可以先执行S303,并在S303的判断结果为“是”时,执行上述S301,在S303的判断结果为“否”时,执行上述S304。并且,在S301的判断结果为“是”时,执行上述S306,在S301的判断结果为“否”时,执行上述S302。
另外,编码器还可以不执行上述S301~S302,或者,不执行上述S303~S304。例如,当不执行上述S303~S304时,编码器可以在S301的判断结果为“是”时,直接执行上述S306。
本实施例提供的视频编码方法中,有条件地确定当前图像块的块划分策略,与现有EQT方案中针对第二级编码树中的节点的划分方法相比,能够减小划分复杂度,从而提高编码效率。并且,当当前图像块的宽大于或等于第二阈值与高的乘积,和/或当前图像块的高大于或等于第二阈值与宽的乘积时,默认划分方向是垂直于当前图像块的短边的扩展四叉树划分方式不合法。因此,当划分类型是扩展四叉树划分时,不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,这样可以节省传输比特开销。另外,本技术方案有助于将编码树中的叶节点的宽与高之比(或高与宽之比)限制在一定范围之内,有助于在编码过程中尽量不出现“细长”的节点,从而方便进行编码。
如图12所示,为本申请实施例提供的一种图像块划分方法的流程示意图。图12所示的视频解码方法与图11所示的视频编码方法相对应。图12所示的方法包括如下步骤:
S401:解码器接收来自编码器的码流。
S402:解码器解析码流,以得到第一标识信息,第一标识信息用于表示是否对当前图像块进行划分。
如果第一标识信息表示对当前图像块进行划分,则执行S403。
如果第一标识信息表示不对当前图像块进行划分,则针对当前图像块的划分过程结束。
S403:解码器判断当前图像块的宽是否小于第二阈值与当前图像块的高的乘积。
若否,则执行S404。若是,则执行S405。
S404:解码器继续解析码流,以得到第二标识信息,第二标识信息用于表示对当前图像块进行划分的划分类型。并且:
如果第二标识信息用于表示对当前图像块进行二叉树划分,则解码器继续解析码流,以得到第三标识信息,第三标识信息用于表示对当前图像块进行划分的划分方向。当第三标识信息用于表示对当前图像块进行水平划分时,对当前图像块进行是水平二叉树划分。当第三标识信息用于表示对当前图像块进行竖直划分时,对当前图像块进行竖直二叉树划分。
如果第二标识信息用于表示对当前图像块进行扩展四叉树划分,则对当前图像块进行竖直扩展四叉树划分。
执行S404之后,针对当前图像块的划分过程结束。
S405:解码器判断当前图像块的高是否小于第二阈值与当前图像块的宽的乘积。
若否,则执行S406。若是,则执行S407。
S406:解码器继续解析码流,以得到第二标识信息,第二标识信息用于表示对当前图像块进行划分的划分类型。并且:
如果第二标识信息用于表示对当前图像块进行二叉树划分,则解码器继续解析码流,以得到第三标识信息,第三标识信息用于表示对当前图像块进行划分的划分方向。当第三标识信息用于表示对当前图像块进行水平划分时,对当前图像块进行是水平二叉树划分。当第三标识信息用于表示对当前图像块进行竖直划分时,对当前图像块进行竖直二叉树划分。
如果第二标识信息用于表示对当前图像块进行扩展四叉树划分,则对当前图像块进行水平扩展四叉树划分。
执行S406之后,针对当前图像块的划分过程结束。
S407:可以参考上述S207。
执行S407之后,针对当前图像块的划分过程结束。
需要说明的是,对于执行划分操作后得到的“划分后的图像块”来说,解码器可以将其作为当前图像块,从而执行S402~S407。
需要说明的是,上述S403~S404和S405~S406的执行顺序可以不分先后。例如,解码器可以先执行S405,并在S405的判断结果为“是”时,执行上述S403,在S405的判断结果为“否”时,执行上述S406。并且,在S403的判断结果为“是”时,执行上述S407,在S403的判断结果为“否”时,执行上述S404。
另外,解码器还可以不执行上述S403~S404,或者,不执行上述S405~S406。例如,当不执行上述S405~S406时,解码器可以在S403的判断结果为“是”时,直接执行上述S407。可以理解的是,具体实现时,若编码器执行上述S301~S302,则解码器执行上述S403~S404;若编码器执行上述S303~S304,则解码器执行上述S405~S406。
本实施例提供的视频解码方法中,当当前图像块的宽大于或等于第二阈值与高的乘积,和/或当前图像块的高大于或等于第二阈值与宽的乘积时,解码器默认划分方向是垂直于当前图像块的短边的扩展四叉树划分方式不合法。这样,当划分类型是扩展四叉树划分时,编码器不需要在码流中编入表示对当前图像块进行划分的划分方向的信息,因此可以节省传输比特开销。另外,本技术方案有助于将编码树中的叶节点的宽与高之比(或高与宽之比)限制在一定范围之内,有助于在编码过程中尽量不出现“细长”的节点,从而方便进行编码。
如图13所示,为本申请实施例提供的一种视频编码方法的流程示意图。图13所示的方法包括如下步骤:
S501:编码器判断待编码图像中的当前图像块的长边长度是否是当前图像块的短边长度的二倍。
若是,则执行S502。若否,则执行S503。
S502:编码器确定第一候选集合。第一候选集合包括对当前图像块进行划分方向垂直于当前图像块的长边的二叉树划分。并根据第一候选集合确定是否对当前图像块进行划分。其中,如果确定对当前图像块进行划分,则当前图像块可以被称为是待划分图像块。
如果确定对当前图像块进行划分,则执行S503。
如果确定不对当前图像块进行划分,则执行S506。
具体的:当当前图像块的宽是长边,高是短边时,第一候选集合包括竖直二叉树划分方式。当当前图像块的宽是短边,高是长边时,第一候选集合包括水平二叉树划分方式。
S503:编码器对当前图像块进行划分方向垂直于当前图像块的长边的二叉树划分。并且,将第一标识信息编入码流。第一标识信息用于表示是否对当前图像块进行划分(具体是划分)。
执行S503之后,执行S507。
S504~S507:可以参考上述S104~S107。
需要说明的是,对于执行划分操作后得到的“划分后的图像块”来说,编码器可以将其作为当前图像块,从而返回执行S501~S507。
本实施例提供的视频编码方法中,当当前图像块的长边长度是当前图像块的短边长度的二倍时,如果对当前图像块进行划分,则编码器默认进行划分方向垂直于当前图像块的长边的二叉树划分。这样,一方面,与现有EQT方案中针对第二级编码树中的节点的划分方法相比,本申请实施例提供的技术方案,能够减小划分复杂度,从而提高编码效率。另一方面,如果对当前图像块进行划分,则不需要在码流中编入表示对当前图像块进行划分的划分方式(包括划分类型和划分方向)的信息,因此可以节省传输比特开销。另外,对当前图像块进行划分方向垂直于当前图像块的长边的二叉树划分,可以将当前图像块划分成两个正方形图像块,相比非正方形的矩形图像块来说,正方形图像后续块被划分的可能性更高,因此,有助于提高对视频图片的编码精确度。
如图14所示,为本申请实施例提供的一种视频解码方法的流程示意图。图14所示的视频解码方法与图13所示的视频编码方法相对应。图14所示的方法包括如下步骤:
S601:解码器接收来自编码器的码流。
S602:解码器解析码流,以得到第一标识信息,第一标识信息用于表示是否对待解码图像中的当前图像块进行划分。
如果第一标识信息表示不对当前图像块进行划分,则针对当前图像块的划分过程结束。
如果第一标识信息表示对当前图像块进行划分,则执行S603。
S603:解码器判断当前图像块的长边长度是否等于当前图像块的短边长度的二倍。
若是,则执行S604。若否,则执行S605。
S604:解码器对当前图像块进行划分方向垂直于当前图像块的长边的二叉树划分。
执行S604之后,针对当前图像块的划分过程结束。
S605:可以参考上述S205。
需要说明的是,对于执行划分操作后得到的“划分后的图像块”来说,解码器可以将其作为当前图像块,从而执行S602~S605。
本实施例提供的视频解码方法中,当当前图像块的长边长度是当前图像块的短边长度的二倍时,如果对当前图像块进行划分,则解码器默认进行划分方向垂直于当前图像块的长边的二叉树划分。这样,编码器不需要在码流中编入表示对当前图像块进行划分的划分方式(包括划分类型和划分方向)的信息,因此可以节省传输比特开销。
对于图13或图14所示的实施例,以下提供几种可选的是实现方式:
可选的,当前图像块的长边长度为2a个像素长度,短边长度为a个像素长度。其中,a是整数,a通常是2的整数幂次方。例如,当前图像块的长边长度为128个像素长度,短边长度为64个像素长度。
可选的,当前图像块的短边长度等于最大变换单元(即TU)的边尺寸,或者,当前图像块的短边长度等于虚拟流水数据单元(即VPDU)的边尺寸。
其中,VPDU,也可以称为硬件流水单元,定义为图像中的非重叠的单元,大小可以为a*a,边尺寸为a个像素长度。在硬件解码器中,连续的VPDU由多个流水线同时并行处理。VPDU的大小与大多数流水线级中的缓冲区大小大致成比例,因此保持VPDU大小很小很重要。在大多数硬件解码器中,VPDU的大小可以设置为最大变换单元的大小。然而,在AVS3视频编码标准中,扩展四叉树(EQT)和二叉树(BT)分区可能导致VPDU大小的增加。为了将VPDU大小保持为a*a(如64x64)的亮度样本,不能出现同一个亮度样本跨不同的VPDU。
可选的,当前图像块是边界图像块。其中,如果当前节点中存在一个或者一个以上的像素超出了当前图像边界,则称当前节点超出图像边界,该情况下,当前节点为边界图像块。
需要说明的是,对于上文中提供的任意一种视频译码(包括编码和解码)方法,如果对当前图像块进行划分,则译码器可以基于划分后的图像块对待译码图像块进行重构;如果不对当前图像块进行划分,则译码器可以基于当前图像块对待译码图像块进行重构等操作,具体实现过程可以参考现有技术。
另外需要说明的是,在不冲突的情况下,上文中所描述的至少两种视频编码方法(如图9、图11或图13所描述的视频编码方法)中的部分特征可以结合,从而构成新的视频编码方法。相应的,该至少两种视频编码方法对应的视频解码方法中的相应特征可以结合,从而构成新的视频解码方法。
例如,当第二阈值是第一阈值的二分之一时,在一个示例中,图9和图11结合后的视频编码方法可以包括:
如果当前图像块的长边长度与短边长度之比大于或等于第一阈值,则针对当前图像块合法的划分方式不包括对当前图像块进行划分方向垂直于待划分图像块的短边的划分方式;
如果当前图像块的长边长度与短边长度之比小于第一阈值,且大于或等于第二阈值,则针对当前图像块合法的划分方式不包括对当前图像块进行划分方向垂直于待划分图像块的短边的扩展四叉树划分方式。可以理解的是,由于当前图像块的宽和高通常是2的整数次幂,因此,当第二阈值和第一阈值均是2的整数次幂时,“当前图像块的长边长度与短边长度之比小于第一阈值,且大于或等于第二阈值”等价于“当前图像块的长边长度与短边长度之比等于第二阈值”。例如,假设第一阈值是8,第二阈值是4,则“长边长度与短边长度之比小于8,且大于或等于4”有且仅有一种可能,即长边长度与短边长度之比等于4。
如果当前图像块的长边长度与短边长度之比小于第二阈值,则针对当前图像块合法的划分方式可以包括水平二叉树划分方式、竖直二叉树划分方式、水平扩展四叉树划分方式和竖直扩展四叉树划分方式。
其他示例不再一一列举。
基于上文提供的任意一种实施例,以下,说明第一标识信息、第二标识信息和第三标识信息的具体实现方式。
例如,如果不对当前图像块进行划分,则第一标识信息可以是二进制数“0”。如果对当前图像块进行划分,则第一标识信息可以是二进制数“1”。
例如,如果目标划分方式的划分类型是二叉树划分类型,则第二标识信息可以是二进制数“0”。如果所确定的划分类型是扩展四叉树划分类型,则第二标识信息可以是二进制数“1”。
例如,如果目标划分方式的划分方向是水平方向,则第三标识信息可以是二进制数“0”。如果所确定的划分方向是竖直方向,则第三标识信息可以是二进制数“1”。
例如,第一标识信息可以是码流中的“split_flag”字段所包含的信息。
例如,第二标识信息可以是码流中的“SplitMode”字段所包含的信息。当SplitMode为1,表示二叉树划分类型;当SplitMode为0,表示扩展四叉树划分类型。当然不限于此。
例如,第三标识信息可以是码流中的“SplitDir”字段所包含的信息。当SplitMode为1,表示竖直划分,SplitDir为0,表示水平划分。当然不限于此。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对编码器/解码器进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图15所示,为本申请实施例提供的一种视频译码器140的示意性框图。视频译码器140具体可以是编码器或解码器。当视频译码器140是编码器时,视频译码器140可以用于执行本申请实施例提供的任意一种视频编码方法,如图9、图11或图13所示的视频编码方法。当视频译码器140是解码器时,视频译码器140可以用于执行本申请实施例提供的任意一种视频解码方法,如图10、图12或图14所示的视频解码方法。
视频译码器140可以包括划分单元1401和重构单元1402。可选的,如图16所示,当视频译码器140具体是视频解码器时,该视频解码器还可以包括熵解码单元1403。
例如,视频译码器140可以是图2中的编码器20,该情况下,划分单元1401可以是预测处理单元260中的一个子单元,或者可以是与预测处理单元260、重构单元214和熵编码单元270均连接的一个单元;重构单元1402可以是重构单元214。
又如,视频译码器140可以是图3中的解码器30,该情况下,划分单元1401可以是预测处理单元360中的一个子单元,或者可以是与预测处理单元360、重构单元314和熵解码单元304均连接的一个单元;重构单元1402可以是重构单元314。
在一些实施例中,划分单元1401,用于根据当前图像块的宽与高的大小关系,确定所述当前图像块的块划分策略;以及,将所述块划分策略应用于所述当前图像块以得到编码块。重构单元1402,用于通过对得到的所述编码块进行重构以实现对所述当前图像块的重构。
可选的,划分单元1401具体用于:确定当前图像块是否满足第一条件,第一条件包括:当前图像块的宽小于第一阈值与当前图像块的高的乘积;在当前图像块不满足第一条件时,确定该块划分策略为划分方向为竖直方向的划分,竖直方向垂直于当前图像块的宽所在的边的方向。
可选的,划分单元1401具体用于:确定当前图像块是否满足第二条件,第二条件包括:当前图像块的高小于第一阈值与当前图像块的宽的乘积;在当前图像块不满足第二条件时,确定该块划分策略为划分方向为水平方向的划分,水平方向垂直于当前图像块的高所在的边的方向。
可选的,划分单元1401具体用于:确定当前图像块是否满足第一条件,第一条件包括:当前图像块的宽小于第一阈值与当前图像块的高的乘积;在当前图像块不满足第一条件时,确定当前图像块的块划分策略不包括划分方向为水平方向的划分,水平方向垂直于当前图像块的高所在的边的方向。例如,结合图9,划分单元1401可以用于执行S102和S105。又如,结合图10,划分单元1401可以用于执行S203和S204。
可选的,划分单元1401具体用于:确定当前图像块是否满足第二条件,第二条件包括:当前图像块的高小于第一阈值与当前图像块的宽的乘积;在当前图像块不满足第二条件时,确定当前图像块的块划分策略不包括划分方向为竖直方向的划分,竖直方向垂直于当前图像块的宽所在的边的方向。例如,结合图9,划分单元1401可以用于执行S103和S104。又如,结合图10,划分单元1401可以用于执行S205和S207。
可选的,熵解码单元1403可以用于解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,划分单元1401具体用于:基于该块划分策略(具体是不满足第一条件时所确定的块划分策略),采用该标识信息所表示的划分类型,对当前图像块进行划分方向为竖直方向的划分,以得到编码块。例如,结合图10,熵解码单元1403可以用于执行S204中的解析步骤。划分单元1401可以用于执行S204中的划分步骤。
可选的,熵解码单元1403可以用于解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,划分单元1401具体用于:基于该块划分策略(具体是不满足第二条件时所确定的块划分策略),采用该标识信息所表示的划分类型,对当前图像块进行划分方向为水平方向的划分。例如,结合图10,熵解码单元1403可以用于执行S207中的解析步骤。划分单元1401可以用于执行S207中的划分步骤。
可选的,第一阈值是允许的编码树中节点的长边长度与短边长度之比的最大值。
可选的,第一阈值是大于1的值。可选的,第一阈值是2的整数次幂。
可选的,划分单元1401具体用于:确定当前图像块是否满足第三条件,第三条件包括:当前图像块的宽小于第二阈值与当前图像块的高的乘积;在当前图像块不满足第三条件时,确定该块划分策略为划分方向为竖直方向的扩展四叉树划分,竖直方向垂直于当前图像块的宽所在的边的方向。
可选的,划分单元1401具体用于:确定当前图像块是否满足第四条件,第四条件包括:当前图像块的高小于第二阈值与当前图像块的宽的乘积;在当前图像块不满足第四条件时,确定该块划分策略为划分方向为水平方向的扩展四叉树划分,水平方向垂直于当前图像块的高所在的边的方向。
可选的,划分单元1401具体用于:确定当前图像块是否满足第三条件,第三条件包括:当前图像块的宽小于第二阈值与当前图像块的高的乘积;在当前图像块不满足第三条件时,确定当前图像块的块划分策略不包括划分方向为水平方向的扩展四叉树划分,水平方向垂直于当前图像块的高所在的边的方向。例如,结合图11,划分单元1401可以用于执行S301,以及S302中确定第一候选集合的步骤。又如,结合图12,划分单元1401可以用于执行S404中的当第二标识信息用于指示对当前图像块进行扩展四叉树划分时的划分步骤。
可选的,划分单元1401具体用于:确定当前图像块是否满足第四条件,第四条件包括:当前图像块的高小于第二阈值与当前图像块的宽的乘积;在当前图像块不满足第四条件时,确定当前图像块的块划分策略不包括划分方向为竖直方向的扩展四叉树划分,竖直方向垂直于当前图像块的宽所在的边的方向。例如,结合图11,划分单元1401可以用于执行S303,以及S304中确定第二候选集合的步骤。又如,结合图12,划分单元1401可以用于执行S406中的当第二标识信息用于指示对当前图像块进行扩展四叉树划分时的划分步骤。
可选的,熵解码单元1403可以用于解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,划分单元1401具体用于:基于块划分策略(具体是不满足第三条件时所确定的块划分策略),当该标识信息表示对当前图像块进行扩展四叉树划分时,对当前图像块进行划分方向为竖直方向的扩展四叉树划分。例如,结合图12,熵解码单元1403可以用于执行S404中的当第二标识信息用于指示对当前图像块进行扩展四叉树划分时的解析步骤,划分单元1401可以用于执行S404中的当第二标识信息用于指示对当前图像块进行扩展四叉树划分时的划分步骤。
可选的,熵解码单元1403可以用于解析码流,以得到标识信息,该标识信息用于表示对当前图像块进行划分的划分类型。相应的,划分单元1401具体用于:基于块划分策略(具体是不满足第四条件时所确定的块划分策略),当该标识信息表示对当前图像块进行扩展四叉树划分时,对当前图像块进行划分方向为水平方向的扩展四叉树划分。例如,结合图12,熵解码单元1403可以用于执行S406中的当第二标识信息用于指示对当前图像块进行扩展四叉树划分时的解析步骤。划分单元1401可以用于执行S406中的当第二标识信息用于指示对当前图像块进行扩展四叉树划分时的划分步骤。
可选的,第二阈值是允许的编码树中节点的长边长度与短边长度之比的最大值的二分之一。
可选的,第二阈值是大于1的值。可选的,第二阈值是2的整数次幂。
在另一些实施例中,划分单元1401,用于如果待译码图像中的待划分图像块的长边长度是待划分图像块的短边长度的二倍,则对待划分图像块进行划分方向垂直于待划分图像块的长边的二叉树划分,得到划分后的图像块。重构单元1402,用于根据划分后的图像块,对待译码图像进行重构。例如,结合图13,划分单元1401可以用于执行S503中的划分操作。又如,结合图14,划分单元1401可以用于执行S604。
可选的,待划分图像块的长边长度为128个像素长度,短边长度为64个像素长度。
可选的,待划分图像块的短边长度等于最大变换单元TU的边尺寸,或者,待划分图像块的短边长度等于虚拟流水数据单元VPDU的边尺寸。
可选的,待划分图像块是边界图像块。
可以理解的,本申请实施例提供的视频译码器140中的各模块为实现上文提供的相应的方法中所包含的各种执行步骤的功能主体,即具备实现完整实现本申请实施例中的各个步骤以及这些步骤的扩展及变形的功能主体,具体请参见上文中相应方法的介绍,为简洁起见,本文将不再赘述。
需要说明的是,对于EQT方案,由于第二级编码树的节点可使用BT和EQT划分,编码一个节点最多需要尝试四种划分,而且它的子节点也可最多尝试四种划分,编码复杂度较高。基于此,本发明提供一种新的CU划分方法和装置,以减少系统划分CU时的复杂度。
本发明应用于视频编解码器。视频通信系统如图17所示。该通信系统包括源装置12和接收装置14,以及二者之间的连接线15。其中,源装置包括视频存储器16、视频编码器18、发射器20和视频俘获装置23。接收装置14包括接收器22、视频解码器24和显示装置26。本发明应于视频编码器18和视频解码器24。
实施例一涉及一种视频解码方法。
根据压缩码流中至少一个CTU的编码信息对该CTU做解码操作,获得该CTU的重建图像块。在解码一个CTU时,会对其中每一个CU,执行CU解析处理(步骤1和步骤2)和CU解码处理(步骤3),最终得到CTU的全部重建像素。其中,步骤2是本发明的关键,步骤1和3为现有技术。流程图如图18所示。
CTU的大小可以是64×64、128×128或者256×256等等。一个CTU被划分成一组互不重叠的CU,这一组CU覆盖整个CTU;一组CU包括一个或多个CU。一个CU包含N行M列的亮度像素、或者包含N行M列的色度像素、或者包含N行M列的亮度像素以及N/2行M/2列的色度像素(如YUV420格式)、或者包含N行M列的亮度像素以及N行M列的色度像素(如YUV444格式)、或者包含N行M列的RGB像素(如RGB格式)。其中N和M为2的整数次幂。
步骤1:以CTU为第一级编码树的根节点,解析第一级编码树的划分信息,获取第一级编码树叶节点。其中,第一级编码树的划分方式为QT划分或不划分。
此步骤为现有技术,例如AVS方案中CTU划分为QT叶节点的处理。更具体的,包括:将CTU作为根节点,解析码流获取语法元素SplitFlag,如果SplitFlag为0则节点为第一级编码树叶节点,否则将节点按照四叉树划分方式划分成四个第一级编码树上的子节点,每个子节点的宽和高为该节点的一半。依次对每个子节点,解析码流获取语法元素SplitFlag,确定此节点是否为第一级编码树叶节点;如果不是,则继续按照四叉树划分;依次类推,直到节点的宽等于阈值MinQTSize(例如4)时,此节点默认为第一级编码树叶节点,SplitFlag默认为0。
步骤2:以第一级编码树的叶节点为第二级编码树的根节点,解析第二级编码树信息,获取第二级编码树叶节点,并解析第二级编码树叶节点对应的编码单元CU。其中,第二级编码树的划分方式包含2种二叉树划分(水平二分、竖直二分)和2种扩展四叉树划分(水平,竖直);解析节点的划分方式中,如果一个节点的大小是64×128或128×64,则该节点默认划分为两个64×64的子块或不划分。
第二级编码树的划分方式与第一级编码树的划分方式不同。例如本实施例中第二级编码树包含4种划分方式,而第一级编码树包含1种划分方式。
上述“解析第二级编码树叶节点对应的编码单元CU”为现有技术,可参考AVS标准中的编码单元解析,本发明不作限定。
“解析第二级编码树信息,获取第二级编码树叶节点”,包括:
解析第二级编码树中每个节点的划分信息STSplitMode;
如果划分信息指示节点不划分(如STSplitMode=0),则节点为第二级编码树叶节点;
如果划分信息指示节点进行二叉树划分(如STSplitMode=1或2),则选择划分信息指示的一种划分方式将节点划分为2个子节点,并依次对每个子节点,解析它的划分信息进而确定它的划分方式;例如,当STSplitMode=1时,划分信息指示节点进行水平二叉树划分,将节点划分为2个水平子节点;当STSplitMode=2时,划分信息指示节点进行竖直二叉树划分,将节点划分为2个竖直子节点。
如果划分信息指示节点进行扩展四叉树划分(如STSplitMode=3或4),则选择划分信息指示的一种划分方式将节点划分为4个子节点,并依次对每个子节点,解析它的划分信息进而确定它的划分方式;当STSplitMode=3时,划分信息指示节点进行水平扩展四叉树划分;当STSplitMode=4时,划分信息指示节点进行竖直扩展四叉树划分。
应可理解,STSplitMode和其值只是用来表示不同的划分模式,使用其他的可以区分的表述方式(例如使用不同的码字来表示),也在本发明的保护范围之内。
本发明中,确定节点的划分方式,也就是确定节点不划分还是继续划分,以及如果继续划分使用的是哪种划分方式。
本发明中,增加了一种针对扩展四叉树的节点的划分限定,即“如果节点有任何一个边长大于32时,则节点默认不进行扩展四叉树划分”。
第二级编码树的叶节点对应一个编码单元CU,解析码流中的编码单元语法结构体(例如H.265中的coding_unit()语法结构体),得到CU的编码信息,包括CU的预测模式、变换系数等信息。
优选的,上述步骤2中,第二级编码树叶节点的确定和编码单元的解析可交替进行,更具体的:获取一个第二级编码树叶节点后,解析此节点对应的编码单元信息;解析完编码单元信息后,继续获取下一个第二级编码树叶节点,并解析此叶节点的编码单元信息;依次类推,直到第一级编码树叶节点中最后一个第二级编码树叶节点。
步骤3:根据由步骤2确定的各个CU的编码信息,对各CU进行解码重建,得到各CU的重建像素,从而获得CTU的重建图像。
CU的解码包括熵解码、反量化、反变换、预测、环路滤波等处理,其过程主要包括:
通过熵解码获得CU的预测模式、量化参数、变换系数、变换模式等编码信息;
根据预测模式,选用帧内预测或帧间预测,得到CU的预测像素;
如果CU存在变换系数,则根据量化参数、变换模式,对变换系数进行反量化和反变换处理,得到CU的重建残差。如果CU不存在变换系数,则CU的重建残差为0,即CU中各像素的重建残差值均为0。
将预测像素和重建残差相加后进行环路滤波处理,得到CU的重建像素。
本发明对应的解码装置,可包括2个模块:
编码树节点解析模块,其完成步骤1和步骤2的处理,即解析码流,确定编码树上各节点的划分方式,得到CTU划分为CU的方式和各个CU的编码信息。其中,若节点的大小是64×32或32×64,则该节点默认划分为两个32×32的子块或不划分。
CU解码模块,其完成步骤3的处理,即对各个CU进行解码,得到CTU的重建图像。
本发明实施例一的技术效果
本发明实施例一通过对特定块(64×32或32×64)限定特定的划分方式,可使得CTU的划分更加细致,可以减少CTU划分的复杂度(多种划分方式变为一种划分方式),还增加了提升处理精度的可能性(32×32的块可进一步划分的可能性更高)。
本发明实施例二
实施例二为实施例一的扩展。
在实施例二中,如果节点的宽、高、长边与短边比满足一定条件(即不合法条件)时,认为节点的划分方式不合法(即将此节点划分的划分方式实际上是不允许使用的)。
例如,当以下几种不合法条件中至少一种满足时,节点默认为不合法。
1)如果节点的长边与短边比大于阈值minRatio时,则认为节点不合法。此处阈值可为大于等于1的整数,例如4。
2)如果节点的边长小于阈值minCUSize,则认为节点不划分。其中,minCUSize称为最小CU边长,例如等于4。
以上各个条件中的阈值均可在高层语法中指定,或者预设为默认值。
具体的,如果对当前节点采用了某种划分方式之后得到的子节点,满足了任意一项不合法条件,那么则不能对当前节点进行这种方式的划分。因此,基于不合法条件的限制,可以进一步减少需要解析的语法元素。
具体地,如果父节点的长边与短边比等于阈值minRatio,则不可对短边继续划分子节点。在一个示例中,该阈值minRatio可以对应于上文中的第一阈值。例如,父节点的宽与高的比等于阈值4,则不可继续进行水平划分,因为若进行水平划分:那么在水平BT划分的情况下,子节点的宽与高的比将等于8,超过阈值4,是不合法的;在水平EQT划分的情况下,子节点的宽与高的比将等于16,超过阈值4,是不合法的。但只要子节点不符合其他不合法条件,仍可进行垂直划分,因此在这种情况下,在实施例一中,无需解析STSplitMode=1和STSplitMode=3的划分情况,只有可能是STSplitMode=2或STSplitMode=4;在实施例三中,只需解析出BTSplitMode或者EQTSplitMode的值,就可以推断出BtSplitDir和EqtSplitDir的值,无需额外解析出BtSplitDir和EqtSplitDir的值。具体地,若解析出BTSplitMode=1,则可以推断BtSplitDir=1;若解析出BTSplitMode=1,则可以推断EqtSplitDir=1。
同样的,可以推理出,在要划分子节点的情况下:
如果一个父节点的短边长度等于阈值minCUSize,那么它只能在长边上进行BT划分;即当判断出当前节点的短边长度等于阈值minCUSize时,只用解析BTSplitMode的值,即可获得当前节点的划分方式。
如果一个父节点的的长边与短边比等于阈值minRatio的二倍,那么它无法在短边上进行EQT划分;即当判断出当前节点的长边与短边比等于阈值minRatio的二倍时,只要解析到EQTSplitMode的值为1,即可获得当前节点的划分方式是沿长边的EQT(即不用即系EqtSplitDir)。
如果一个父节点的短边长度是阈值minCUSize的二倍,那么它无法在短边上进行EQT划分;即当判断出当前节点的短边长度等于阈值minCUSize的二倍时,只要解析到EQTSplitMode的值为1,即可获得当前节点的划分方式是沿长边的EQT(即不用即系EqtSplitDir)。
如果一个父节点的宽和高都是阈值minCUSize的二倍,那么它无法进行EQT划分;即当判断出当前节点的宽和高都是阈值minCUSize的二倍时,只用解析BTSplitMode和BtSpliDir,不用解析EQTSplitMode。
本发明实施例二的技术效果
本发明实施例二通过比较当前节点的尺寸与阈值minCUSize和/或阈值minRatio的关系,排除了当前节点不可能的划分模式(实施例二的发明点),从而减少了整个解析过程的复杂度,提高了系统的效率。
本发明实施例三
实施例三为实施例一的扩展。本实施例对实施例一种的步骤二中的下述步骤的变形:
步骤二中“解析第二级编码树信息,获取第二级编码树叶节点”,还可以包括:
解析第二级编码树中每个节点的划分信息BTSplitMode和EQTSplitMode;
如果划分信息指示节点不划分(如BTSplitMode=0并且EQTSplitMode=0),则节点为第二级编码树叶节点;
如果划分信息指示节点进行二叉树划分(如BtSplitMode=1),则选择划分信息指示的一种划分方式将节点划分为2个子节点,并依次对每个子节点,解析它的划分信息进而确定它的划分方式;例如,当BtSplitDir=0时,划分信息指示节点进行水平二叉树划分,将节点划分为2个水平子节点;当BtSplitDir=1时,划分信息指示节点进行竖直二叉树划分,将节点划分为2个竖直子节点。
如果划分信息指示节点进行扩展四叉树划分(如EQTSplitMode=1),则选择划分信息指示的一种划分方式将节点划分为4个子节点,并依次对每个子节点,解析它的划分信息进而确定它的划分方式;当EqtSplitDir=0时,划分信息指示节点进行水平扩展四叉树划分;当EqtSplitDir=1时,划分信息指示节点进行竖直四叉树划分。
一个示例的流程图如图19所示。应可理解,图中对于BTSplitMode和EQTSplitMode的判断为示意,其可为任意顺序,或者同时进行,并不是对本实施例的限定。
本发明实施例三的技术效果
本发明实施例三通过引入独立的参数判断对节点进行二叉树或扩展四叉树划分种类,可以更快速的定位划分方法和方式,提高了并行处理能力,从而提升系统的效率。
本发明实施例对特定块(64×32或32×64的块)限定特定的划分方式(划分成32×32);
本发明实施例针对扩展四叉树的节点的划分限定,即“如果节点有任何一个边长大于32时,则节点默认不进行扩展四叉树划分”;
本发明实施例比较当前节点的尺寸与阈值minCUSize和/或阈值minRatio的关系,排除当前节点不可能的划分模式(实施例二),从而减少了整个解析过程的复杂度。
有益效果是,减少CTU划分的复杂度(多种划分方式变为一种划分方式、或者不划分),从而提升整个系统的效率。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。
Claims (10)
1.一种视频译码方法,其特征在于,包括:
如果待译码图像中的待划分图像块的长边长度是所述待划分图像块的短边长度的二倍,则对所述待划分图像块进行划分方向垂直于所述待划分图像块的长边的二叉树划分,得到划分后的图像块;
根据所述划分后的图像块,对所述待译码图像进行重构。
2.根据权利要求1所述的方法,其特征在于,所述待划分图像块的长边长度为128个像素长度,短边长度为64个像素长度。
3.根据权利要求1或2所述的方法,其特征在于,所述待划分图像块的短边长度等于最大变换单元TU的边尺寸,或者,所述待划分图像块的短边长度等于虚拟流水数据单元VPDU的边尺寸。
4.根据权利要求1至3任一项所述的方法,其特征在于,所述待划分图像块是边界图像块。
5.一种视频译码器,其特征在于,包括:
划分单元,用于如果待译码图像中的待划分图像块的长边长度是所述待划分图像块的短边长度的二倍,则对所述待划分图像块进行划分方向垂直于所述待划分图像块的长边的二叉树划分,得到划分后的图像块;
重构单元,用于根据所述划分后的图像块,对所述待译码图像进行重构。
6.根据权利要求5所述的视频译码器,其特征在于,所述待划分图像块的长边长度为128个像素长度,短边长度为64个像素长度。
7.根据权利要求5或6所述的视频译码器,其特征在于,所述待划分图像块的短边长度等于最大变换单元TU的边尺寸,或者,所述待划分图像块的短边长度等于虚拟流水数据单元VPDU的边尺寸。
8.根据权利要求5至7任一项所述的视频译码器,其特征在于,所述待划分图像块是边界图像块。
9.一种视频译码装置,其特征在于,包括存储器和处理器;所述存储器用于存储程序代码;所述处理器用于调用所述程序代码,以执行如权利要求1至4任一项所述的方法。
10.一种计算机可读存储介质,其特征在于,包括程序代码,所述程序代码在计算机上运行时,使得所述计算机执行如权利要求1至4任一项所述的方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811546224 | 2018-12-16 | ||
CN2018115462247 | 2018-12-16 | ||
CN201910372891.6A CN111327899A (zh) | 2018-12-16 | 2019-05-06 | 视频译码器及相应方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910372891.6A Division CN111327899A (zh) | 2018-12-16 | 2019-05-06 | 视频译码器及相应方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115714861A true CN115714861A (zh) | 2023-02-24 |
Family
ID=71170868
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211333863.1A Pending CN115714861A (zh) | 2018-12-16 | 2019-05-06 | 视频译码器及相应方法 |
CN201910372891.6A Pending CN111327899A (zh) | 2018-12-16 | 2019-05-06 | 视频译码器及相应方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910372891.6A Pending CN111327899A (zh) | 2018-12-16 | 2019-05-06 | 视频译码器及相应方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11516470B2 (zh) |
EP (1) | EP3890322A4 (zh) |
CN (2) | CN115714861A (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111770345B (zh) * | 2020-07-22 | 2022-02-22 | 腾讯科技(深圳)有限公司 | 编码单元的运动估计方法、装置、设备及存储介质 |
EP4254949A1 (en) * | 2022-03-31 | 2023-10-04 | Beijing Xiaomi Mobile Software Co., Ltd. | Encoding/decoding video picture partitionned in ctu grids |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104053012A (zh) * | 2014-05-28 | 2014-09-17 | 北京大学深圳研究生院 | 一种基于字典库的视频编解码方法及装置 |
US20170272782A1 (en) * | 2016-03-21 | 2017-09-21 | Qualcomm Incorporated | Coding video data using a two-level multi-type-tree framework |
WO2018030599A1 (ko) * | 2016-08-08 | 2018-02-15 | 엘지전자(주) | 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치 |
CN108141604A (zh) * | 2015-06-05 | 2018-06-08 | 英迪股份有限公司 | 图像编码和解码方法和图像解码设备 |
KR20180107762A (ko) * | 2017-03-22 | 2018-10-02 | 한국전자통신연구원 | 블록 형태에 기반한 예측 방법 및 장치 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101452860B1 (ko) * | 2009-08-17 | 2014-10-23 | 삼성전자주식회사 | 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치 |
CN101938657B (zh) * | 2010-10-07 | 2012-07-04 | 西安电子科技大学 | 高效视频编码中编码单元自适应划分方法 |
CN102957907B (zh) | 2011-08-31 | 2016-06-29 | 华为技术有限公司 | 一种变换块位置信息的获取方法和模块 |
CN102970526B (zh) | 2011-08-31 | 2016-12-14 | 华为技术有限公司 | 一种获得变换块尺寸的方法和模块 |
CN102761742B (zh) * | 2012-07-03 | 2017-06-06 | 华为技术有限公司 | 变换块划分方法,变换块划分参数的编码方法及解码方法 |
CN104284188B (zh) | 2014-10-11 | 2018-03-13 | 华为技术有限公司 | 预测块的划分方法、编码设备和解码设备 |
EP3758377B1 (en) * | 2016-03-16 | 2023-10-25 | HFI Innovation Inc. | Method and apparatus of block partitioning |
CN107566848B (zh) * | 2016-06-30 | 2020-04-14 | 华为技术有限公司 | 编解码的方法及装置 |
CN109923866B (zh) * | 2016-11-08 | 2023-07-21 | 株式会社Kt | 视频解码方法、编码方法 |
WO2018123314A1 (ja) * | 2016-12-26 | 2018-07-05 | 日本電気株式会社 | 映像符号化方法、映像復号方法、映像符号化装置、映像復号装置及びプログラム |
EP3349455A1 (en) | 2017-01-11 | 2018-07-18 | Thomson Licensing | Method and device for coding a block of video data, method and device for decoding a block of video data |
US11284076B2 (en) * | 2017-03-22 | 2022-03-22 | Electronics And Telecommunications Research Institute | Block form-based prediction method and device |
CN108965894B (zh) * | 2017-05-27 | 2021-12-21 | 华为技术有限公司 | 一种视频图像的编解码方法及装置 |
WO2020004912A1 (ko) * | 2018-06-25 | 2020-01-02 | 한국전자통신연구원 | 양자화 파라미터를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
-
2019
- 2019-05-06 CN CN202211333863.1A patent/CN115714861A/zh active Pending
- 2019-05-06 CN CN201910372891.6A patent/CN111327899A/zh active Pending
- 2019-12-16 EP EP19898034.4A patent/EP3890322A4/en not_active Withdrawn
-
2021
- 2021-06-11 US US17/345,286 patent/US11516470B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104053012A (zh) * | 2014-05-28 | 2014-09-17 | 北京大学深圳研究生院 | 一种基于字典库的视频编解码方法及装置 |
CN108141604A (zh) * | 2015-06-05 | 2018-06-08 | 英迪股份有限公司 | 图像编码和解码方法和图像解码设备 |
US20170272782A1 (en) * | 2016-03-21 | 2017-09-21 | Qualcomm Incorporated | Coding video data using a two-level multi-type-tree framework |
WO2018030599A1 (ko) * | 2016-08-08 | 2018-02-15 | 엘지전자(주) | 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치 |
KR20180107762A (ko) * | 2017-03-22 | 2018-10-02 | 한국전자통신연구원 | 블록 형태에 기반한 예측 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP3890322A4 (en) | 2022-01-19 |
US11516470B2 (en) | 2022-11-29 |
CN111327899A (zh) | 2020-06-23 |
EP3890322A1 (en) | 2021-10-06 |
US20210306630A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12284367B2 (en) | Picture reconstruction method and apparatus | |
WO2020125595A1 (zh) | 视频译码器及相应方法 | |
CN111385572B (zh) | 预测模式确定方法、装置及编码设备和解码设备 | |
CN111277828B (zh) | 视频编解码方法、视频编码器和视频解码器 | |
US12363285B2 (en) | Image prediction method, apparatus, and system, device, and storage medium | |
CN115243048A (zh) | 视频图像解码、编码方法及装置 | |
US20210344899A1 (en) | Video encoder, video decoder, and corresponding methods | |
WO2020259353A1 (zh) | 语法元素的熵编码/解码方法、装置以及编解码器 | |
WO2020253681A1 (zh) | 融合候选运动信息列表的构建方法、装置及编解码器 | |
US11516470B2 (en) | Video coder and corresponding method | |
WO2020224476A1 (zh) | 一种图像划分方法、装置及设备 | |
CN111277840B (zh) | 变换方法、反变换方法以及视频编码器和视频解码器 | |
WO2020114508A1 (zh) | 视频编解码方法及装置 | |
CN112135128A (zh) | 图像预测方法、编码树节点划分方法及其装置 | |
CN111327894A (zh) | 块划分方法、视频编解码方法、视频编解码器 | |
CN112135148A (zh) | 非可分离变换方法以及设备 | |
WO2020125761A1 (zh) | 一种图像块划分方法及装置 | |
WO2020186882A1 (zh) | 基于三角预测单元模式的处理方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |