CN115714155A - Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode - Google Patents
Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode Download PDFInfo
- Publication number
- CN115714155A CN115714155A CN202211455177.1A CN202211455177A CN115714155A CN 115714155 A CN115714155 A CN 115714155A CN 202211455177 A CN202211455177 A CN 202211455177A CN 115714155 A CN115714155 A CN 115714155A
- Authority
- CN
- China
- Prior art keywords
- layer
- algan
- nucleation
- ultraviolet light
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电技术领域,尤其涉及一种深紫外发光二极管外延片及其制备方法、深紫外发光二极管。The invention relates to the field of optoelectronic technology, in particular to a deep ultraviolet light emitting diode epitaxial wafer, a preparation method thereof, and a deep ultraviolet light emitting diode.
背景技术Background technique
深紫外固体光源在杀菌、水质净化、生物化学与医学、高密度光学存储光源、荧光分析系统及相关信息传感领域都有广泛应用。Deep ultraviolet solid light sources are widely used in sterilization, water purification, biochemistry and medicine, high-density optical storage light sources, fluorescence analysis systems and related information sensing fields.
早期报道的紫外LED效率极低,发光波长400nm时,外量子效率在50%,随着波长进一步变短外量子效率急剧下降,在250nm时只有0.2%。这主要是由于在生长GaN和AlGaN材料是由Al原子与Ga原子的原子迁移率和粘合系数差别比较大,Al原子的迁移率较Ga原子低,而且粘合系数也更加的高,以至于在高Al组分的AlGaN材料生长过程中聚集形成大量的三维的岛状结构,从而难以在表面自由移动生长为光滑的二维平面,会直接大幅度的降低AlGaN的晶体质量。AlGaN材料中的缺陷密度较高,能达到1010cm-2-1011cm-2的位错密度,而GaN中的位错浓度则相对较低为108cm-2,这样高的位错密度会将这一区域变成非辐射复合中心,降低有源区内的辐射复合效率从而影响氮化物半导体器件的光电性能。The efficiency of the ultraviolet LED reported in the early stage is extremely low. When the luminous wavelength is 400nm, the external quantum efficiency is 50%. As the wavelength is further shortened, the external quantum efficiency drops sharply, and it is only 0.2% at 250nm. This is mainly due to the large difference in the atomic mobility and adhesion coefficient between Al atoms and Ga atoms in the growth of GaN and AlGaN materials, the mobility of Al atoms is lower than that of Ga atoms, and the adhesion coefficient is also higher, so that During the growth process of AlGaN materials with high Al composition, a large number of three-dimensional island structures are formed, which makes it difficult to move freely on the surface and grow into a smooth two-dimensional plane, which will directly and greatly reduce the crystal quality of AlGaN. The defect density in AlGaN material is relatively high, which can reach the dislocation density of 10 10 cm -2 -10 11 cm -2 , while the dislocation density in GaN is relatively low at 10 8 cm -2 , such a high dislocation density The density will turn this region into a non-radiative recombination center, reducing the radiative recombination efficiency in the active region and thus affecting the optoelectronic performance of nitride semiconductor devices.
发明内容Contents of the invention
本发明所要解决的技术问题在于,提供一种深紫外发光二极管外延片,其降低深紫外发光二极管位错密度,降低量子阱非辐射复合效率,提升深紫外发光二极管发光效率。The technical problem to be solved by the present invention is to provide a deep ultraviolet light emitting diode epitaxial wafer, which reduces the dislocation density of deep ultraviolet light emitting diodes, reduces the non-radiative recombination efficiency of quantum wells, and improves the luminous efficiency of deep ultraviolet light emitting diodes.
本发明所要解决的技术问题还在于,提供一种深紫外发光二极管外延片的制备方法,其工艺简单,能够稳定制得上述性能良好的深紫外发光二极管外延片。The technical problem to be solved by the present invention is also to provide a method for preparing a deep ultraviolet light-emitting diode epitaxial wafer, which has a simple process and can stably produce the above-mentioned deep ultraviolet light-emitting diode epitaxial wafer with good performance.
为了解决上述技术问题,本发明提供了一种深紫外发光二极管外延片,包括衬底及依次层叠于所述衬底上的缓冲层、成核层、非掺杂AlGaN层、N型AlGaN层、多量子阱层、电子阻挡层、P型AlGaN层和P型接触层;In order to solve the above technical problems, the present invention provides a deep ultraviolet light-emitting diode epitaxial wafer, including a substrate and a buffer layer, a nucleation layer, a non-doped AlGaN layer, an N-type AlGaN layer, Multi-quantum well layer, electron blocking layer, P-type AlGaN layer and P-type contact layer;
所述成核层包括依次层叠于所述缓冲层上的二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层和AlGaN成核层。The nucleation layer includes a two-dimensional AlGaN nucleation preparation layer, an Al nano-dot layer, an AlGa nano-cluster nucleation point layer and an AlGaN nucleation layer stacked in sequence on the buffer layer.
在一种实施方式中,所述二维AlGaN成核准备层的厚度为10nm-100nm;In one embodiment, the thickness of the two-dimensional AlGaN nucleation preparation layer is 10nm-100nm;
所述Al纳米点层的厚度为5nm-50nm;The thickness of the Al nano-dot layer is 5nm-50nm;
所述AlGa纳米团簇成核点层的厚度为50nm-500nm;The thickness of the AlGa nanocluster nucleation point layer is 50nm-500nm;
所述AlGaN成核层的厚度为0.5μm-5μm。The thickness of the AlGaN nucleation layer is 0.5 μm-5 μm.
在一种实施方式中,所述二维AlGaN成核准备层中Al组分浓度为0.1-1。In one embodiment, the Al component concentration in the two-dimensional AlGaN nucleation preparation layer is 0.1-1.
在一种实施方式中,所述AlGaN成核层中Al组分浓度为0.1-1。In one embodiment, the Al component concentration in the AlGaN nucleation layer is 0.1-1.
为解决上述问题,本发明提供了一种深紫外发光二极管外延片的制备方法,包括以下步骤:In order to solve the above problems, the invention provides a method for preparing a deep ultraviolet light-emitting diode epitaxial wafer, comprising the following steps:
准备衬底;Prepare the substrate;
在所述衬底上依次沉积缓冲层、成核层、非掺杂AlGaN层、N型AlGaN层、多量子阱层、电子阻挡层、P型AlGaN层和P型接触层;sequentially depositing a buffer layer, a nucleation layer, a non-doped AlGaN layer, an N-type AlGaN layer, a multi-quantum well layer, an electron blocking layer, a P-type AlGaN layer and a P-type contact layer on the substrate;
所述成核层包括依次层叠于所述缓冲层上的二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层和AlGaN成核层。The nucleation layer includes a two-dimensional AlGaN nucleation preparation layer, an Al nano-dot layer, an AlGa nano-cluster nucleation point layer and an AlGaN nucleation layer stacked in sequence on the buffer layer.
在一种实施方式中,在所述缓冲层上沉积所述二维AlGaN成核准备层包括以下步骤:In one embodiment, depositing the two-dimensional AlGaN nucleation preparation layer on the buffer layer comprises the following steps:
将反应室温度控制在700℃-1000℃,压力控制在50torr-300torr,通入N2和NH3作载气,通入N源、Ga源和Al源完成沉积。The temperature of the reaction chamber is controlled at 700°C-1000°C, the pressure is controlled at 50torr-300torr, N 2 and NH 3 are fed as carrier gas, and N source, Ga source and Al source are fed to complete the deposition.
在一种实施方式中,在所述二维AlGaN成核准备层上沉积所述Al纳米点层包括以下步骤:In one embodiment, depositing the Al nano-dot layer on the two-dimensional AlGaN nucleation preparation layer comprises the following steps:
先将反应室温度控制在900℃-1100℃,压力控制在100torr-500torr,通入N2作载气,通入Al源完成沉积。Firstly, the temperature of the reaction chamber is controlled at 900°C-1100°C, the pressure is controlled at 100torr-500torr, N 2 is fed as carrier gas, and Al source is fed to complete the deposition.
在一种实施方式中,在所述Al纳米点层上沉积所述AlGa纳米团簇成核点层包括以下步骤:In one embodiment, depositing the AlGa nanocluster nucleation dot layer on the Al nano dot layer comprises the following steps:
将反应室温度控制在900℃-1100℃,压力控制在100torr-500torr,通入N2作载气,通入Al源和Ga源完成沉积。The temperature of the reaction chamber is controlled at 900°C-1100°C, the pressure is controlled at 100torr-500torr, N 2 is fed as carrier gas, and Al source and Ga source are fed to complete the deposition.
在一种实施方式中,在所述AlGa纳米团簇成核点层上沉积所述AlGaN成核层包括以下步骤:In one embodiment, depositing the AlGaN nucleation layer on the AlGa nanocluster nucleation point layer comprises the following steps:
将反应室温度控制在1000℃-1200℃,压力控制在50torr-300torr,通入N2作载气,通入N2、NH3和H2作载气,通入Ga源、Al源和N源完成沉积。Control the temperature of the reaction chamber at 1000°C-1200°C, control the pressure at 50torr-300torr, feed N2 as carrier gas, N2 , NH3 and H2 as carrier gas, Ga source, Al source and N The source completes the deposition.
相应地,本发明还提供一种深紫外发光二极管,所述深紫外发光二极管包括上文所述的深紫外发光二极管外延片。Correspondingly, the present invention also provides a deep ultraviolet light emitting diode, which comprises the above-mentioned deep ultraviolet light emitting diode epitaxial wafer.
实施本发明,具有如下有益效果:Implement the present invention, have following beneficial effect:
本发明在缓冲层上生长了成核层,所述成核层包括依次层叠于所述缓冲层上的二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层和AlGaN成核层。其中,二维AlGaN成核准备层为Al纳米点层生长提供了平整的成核表面,减少其成核生长的接触角;所述Al纳米点层控制成核点的密度,而Al纳米点层成核点密度与后续层状结构的密度密切相关;所述AlGa纳米团簇成核点层引入Ga原子,使Al纳米点层继续长大,同时减少与后续AlGaN成核层的晶格失配,提高AlGaN成核层的晶体质量;所述AlGaN成核层的密度与深紫外外延层的位错密度息息相关,AlGaN成核层融合产生线缺陷,降低GaN外延层的晶体质量,而通过之前沉积二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层可以有效控制AlGaN成核层的密度来控制位错密度,降低缺陷密度,减少量子阱的非辐射复合效率,提高深紫外发光二极管的发光效率。In the present invention, a nucleation layer is grown on the buffer layer, and the nucleation layer includes a two-dimensional AlGaN nucleation preparation layer, an Al nano-dot layer, an AlGa nano-cluster nucleation point layer and an AlGaN layer stacked sequentially on the buffer layer. nucleation layer. Among them, the two-dimensional AlGaN nucleation preparation layer provides a flat nucleation surface for the growth of the Al nano-dot layer, reducing the contact angle of its nucleation growth; the Al nano-dot layer controls the density of the nucleation point, and the Al nano-dot layer The nucleation point density is closely related to the density of the subsequent layered structure; the AlGa nanocluster nucleation point layer introduces Ga atoms, so that the Al nano point layer continues to grow, and at the same time reduces the lattice mismatch with the subsequent AlGaN nucleation layer , improve the crystal quality of the AlGaN nucleation layer; the density of the AlGaN nucleation layer is closely related to the dislocation density of the deep ultraviolet epitaxial layer, and the fusion of the AlGaN nucleation layer produces line defects, which reduces the crystal quality of the GaN epitaxial layer. The two-dimensional AlGaN nucleation preparation layer, Al nano-dot layer, and AlGa nano-cluster nucleation point layer can effectively control the density of the AlGaN nucleation layer to control the dislocation density, reduce the defect density, reduce the non-radiative recombination efficiency of quantum wells, and improve Luminous efficiency of deep ultraviolet light-emitting diodes.
附图说明Description of drawings
图1为本发明提供的深紫外发光二极管外延片的结构示意图。FIG. 1 is a schematic structural view of a deep ultraviolet light-emitting diode epitaxial wafer provided by the present invention.
其中:衬底1、缓冲层2、成核层3、非掺杂AlGaN层4、N型AlGaN层5、多量子阱层6、电子阻挡层7、P型AlGaN层8、P型接触层9、二维AlGaN成核准备层31、Al纳米点层32、AlGa纳米团簇成核点层33、AlGaN成核层34。Among them:
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below.
除非另外说明或存在矛盾之处,本文中使用的术语或短语具有以下含义:Unless otherwise stated or contradictory, terms and phrases used herein have the following meanings:
本发明中,所使用的“其组合”、“其任意组合”、“其任意组合方式”等中包括所列项目中任两个或任两个以上项目的所有合适的组合方式。In the present invention, "its combination", "any combination thereof", "any combination thereof" and the like include all suitable combinations of any two or more of the listed items.
本发明中,“优选”仅为描述效果更好的实施方式或实施例,应当理解,并不构成对本发明保护范围的限制。In the present invention, "preferred" is only to describe an implementation or an example with better effects, and it should be understood that it does not constitute a limitation to the protection scope of the present invention.
本发明中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。In the present invention, the technical features described in open form include closed technical solutions consisting of the enumerated features, as well as open technical solutions including the enumerated features.
本发明中,涉及到数值区间,如无特别说明,则包括数值区间的两个端点。In the present invention, when referring to a numerical interval, unless otherwise specified, both endpoints of the numerical interval are included.
传统的成核层为大量的三维的岛状结构,成核密度高导致成核层小岛合并时形成大量的位错沿外延层方向延伸至量子阱形成非辐射复合中心,降低深紫外发光二极管的内量子效率。The traditional nucleation layer is a large number of three-dimensional island structures, and the high nucleation density leads to the formation of a large number of dislocations when the nucleation layer islands merge and extend along the direction of the epitaxial layer to the quantum well to form a non-radiative recombination center, reducing the deep ultraviolet light-emitting diode. internal quantum efficiency.
为解决上述问题,本发明提供了一种深紫外发光二极管外延片,如图1所示,包括衬底1及依次层叠于所述衬底1上的缓冲层2、成核层3、非掺杂AlGaN层4、N型AlGaN层5、多量子阱层6、电子阻挡层7、P型AlGaN层8和P型接触层9;In order to solve the above problems, the present invention provides a deep ultraviolet light-emitting diode epitaxial wafer, as shown in Figure 1, comprising a
所述成核层3包括依次层叠于所述缓冲层2上的二维AlGaN成核准备层31、Al纳米点层32、AlGa纳米团簇成核点层33和AlGaN成核层34。The
在一种实施方式中,所述二维AlGaN成核准备层的厚度为10nm-100nm;所述Al纳米点层的厚度为5nm-50nm;所述AlGa纳米团簇成核点层的厚度为50nm-500nm;所述AlGaN成核层的厚度为0.5μm-5μm。在一种实施方式中,所述二维AlGaN成核准备层中Al组分浓度为0.1-1;所述AlGaN成核层中Al组分浓度为0.1-1。In one embodiment, the thickness of the two-dimensional AlGaN nucleation preparation layer is 10nm-100nm; the thickness of the Al nano-dot layer is 5nm-50nm; the thickness of the AlGa nano-cluster nucleation point layer is 50nm -500 nm; the thickness of the AlGaN nucleation layer is 0.5 μm-5 μm. In one embodiment, the Al component concentration in the two-dimensional AlGaN nucleation preparation layer is 0.1-1; the Al component concentration in the AlGaN nucleation layer is 0.1-1.
本发明所述成核层中,所述二维AlGaN成核准备层为所述Al纳米点层生长提供了平整的成核表面,减少其成核生长的接触角;所述Al纳米点层控制成核点的密度,而Al纳米点层成核点密度与所述AlGaN成核层的密度密切相关;所述AlGa纳米团簇成核点层引入Ga原子,使Al纳米点层继续长大,同时减少与后续AlGaN成核层的晶格失配,提高AlGaN成核层的晶体质量;所述AlGaN成核层的密度与深紫外外延层的位错密度息息相关,AlGaN成核层融合产生线缺陷,降低GaN外延层的晶体质量,而通过之前沉积二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层可以有效控制AlGaN成核层的密度来控制位错密度,降低缺陷密度,减少量子阱的非辐射复合效率,提高深紫外发光二极管的发光效率。In the nucleation layer of the present invention, the two-dimensional AlGaN nucleation preparation layer provides a smooth nucleation surface for the growth of the Al nano-dot layer, reducing the contact angle of its nucleation growth; the Al nano-dot layer controls The density of the nucleation point, and the density of the nucleation point of the Al nano-dot layer is closely related to the density of the AlGaN nucleation layer; the AlGa nano-cluster nucleation point layer introduces Ga atoms, so that the Al nano-dot layer continues to grow up, At the same time, the lattice mismatch with the subsequent AlGaN nucleation layer is reduced, and the crystal quality of the AlGaN nucleation layer is improved; the density of the AlGaN nucleation layer is closely related to the dislocation density of the deep ultraviolet epitaxial layer, and the fusion of the AlGaN nucleation layer produces line defects , reduce the crystal quality of the GaN epitaxial layer, and the density of the AlGaN nucleation layer can be effectively controlled to control the dislocation density by depositing a two-dimensional AlGaN nucleation preparation layer, Al nano-dot layer, and AlGa nano-cluster nucleation point layer before, reducing Defect density reduces the non-radiative recombination efficiency of quantum wells and improves the luminous efficiency of deep ultraviolet light-emitting diodes.
除了上述成核层外,本发明的其它层状结构的特点如下:Except above-mentioned nucleation layer, the characteristics of other layered structures of the present invention are as follows:
在一种实施方式中,所述衬底选用蓝宝石衬底、SiO2蓝宝石复合衬底、硅衬底、碳化硅衬底、氮化镓衬底、氧化锌衬底中的一种。优选地,衬底选用蓝宝石衬底,蓝宝石是目前最常用的衬底材料,蓝宝石衬底具有制备工艺成熟、价格较低、易于清洗和处理,高温下有很好的稳定性。In one embodiment, the substrate is selected from one of a sapphire substrate, a SiO 2 sapphire composite substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and a zinc oxide substrate. Preferably, the substrate is a sapphire substrate. Sapphire is currently the most commonly used substrate material. The sapphire substrate has a mature preparation process, low price, easy cleaning and handling, and good stability at high temperatures.
在一种实施方式中,所述缓冲层为AlN缓冲层。采用AlN缓冲层提供了与衬底取向相同的成核中心,释放了AlGaN和衬底之间的晶格失配产生的应力以及热膨胀系数失配所产生的热应力,进一步的生长提供了平整的成核表面,减少其成核生长的接触角使岛状生长的GaN晶粒在较小的厚度内能连成面,转变为二维外延生长,提高后续沉积AlGaN层晶体质量,降低位错密度,提高多量子阱层辐射复合效率。在一种实施方式中,所述缓冲层的厚度为80nm-150nm。In one embodiment, the buffer layer is an AlN buffer layer. The use of the AlN buffer layer provides the nucleation center with the same orientation as the substrate, releasing the stress caused by the lattice mismatch between AlGaN and the substrate and the thermal stress caused by the thermal expansion coefficient mismatch, and further growth provides a flat surface. Nucleation surface, reducing the contact angle of its nucleation growth, so that the island-shaped GaN grains can be connected into a surface within a small thickness, transforming into two-dimensional epitaxial growth, improving the crystal quality of the subsequent deposited AlGaN layer and reducing the dislocation density , improve the multiple quantum well layer radiation recombination efficiency. In one embodiment, the thickness of the buffer layer is 80nm-150nm.
在一种实施方式中,所述非掺杂AlGaN层的生长温度为1000℃-1300℃,生长压力为50torr-500torr,生长厚度1μm-5μm。优选地,所述非掺杂AlGaN层的生长温度为1200℃,生长压力为100torr,生长厚度2μm-3μm。非掺杂的AlGaN层生长温度较高,压力较低,制备的到GaN的晶体质量较优,同时厚度随着AlGaN厚度的增加,压应力会通过堆垛层错释放,线缺陷减少,晶体质量提高,反向漏电降低,但提高AlGaN层厚度对MO源金属有机源材料消耗较大,大大提高了发光二极管的外延成本,因此厚度控制在2μm-3μm,不仅节约生产成本,而且GaN材料又具有较高的晶体质量。In one embodiment, the growth temperature of the non-doped AlGaN layer is 1000° C.-1300° C., the growth pressure is 50 torr-500 torr, and the growth thickness is 1 μm-5 μm. Preferably, the growth temperature of the non-doped AlGaN layer is 1200° C., the growth pressure is 100 torr, and the growth thickness is 2 μm-3 μm. The non-doped AlGaN layer has higher growth temperature and lower pressure, and the prepared GaN crystal quality is better. At the same time, as the thickness of AlGaN increases, the compressive stress will be released through stacking faults, line defects will be reduced, and the crystal quality will be improved. increase, the reverse leakage is reduced, but increasing the thickness of the AlGaN layer consumes a lot of MO source metal-organic source materials, which greatly increases the epitaxial cost of light-emitting diodes. Therefore, the thickness is controlled at 2μm-3μm, which not only saves production costs, but also GaN materials have Higher crystal quality.
在一种实施方式中,所述N型AlGaN层,生长温度为1000℃-1300℃,Si掺杂浓度为1*1019atoms/cm3-5*1020atoms/cm3,厚度为1μm-5μm。优选地,生长温度为1200℃,生长压力为100torr,生长厚度为2μm-3μm,Si掺杂浓度为2.5*1019atoms/cm3。首先,N型掺杂的AlGaN层为紫外LED发光提供充足电子与空穴发生复合。其次,N型掺杂的AlGaN层的电阻率要比P型GaN层上的透明电极的电阻率高,因此足够的Si掺杂,可以有效的降低N型GaN层电阻率。最后,N型掺杂的AlGaN层足够的厚度可以有效释放应力并提升发光二极管的发光效率。In one embodiment, the growth temperature of the N-type AlGaN layer is 1000°C-1300°C, the Si doping concentration is 1*10 19 atoms/cm 3 -5*10 20 atoms/cm 3 , and the thickness is 1 μm- 5 μm. Preferably, the growth temperature is 1200° C., the growth pressure is 100 torr, the growth thickness is 2 μm-3 μm, and the Si doping concentration is 2.5*10 19 atoms/cm 3 . First, the N-type doped AlGaN layer provides sufficient electron and hole recombination for the ultraviolet LED to emit light. Secondly, the resistivity of the N-type doped AlGaN layer is higher than that of the transparent electrode on the P-type GaN layer, so sufficient Si doping can effectively reduce the resistivity of the N-type GaN layer. Finally, the sufficient thickness of the N-type doped AlGaN layer can effectively release the stress and improve the luminous efficiency of the light-emitting diode.
在一种实施方式中,所述多量子阱层为交替堆叠的AlxGa1-xN量子阱层和AlyGa1-yN量子垒层,堆叠周期数3-15。其中AlxGa1-xN量子阱层生长温度为950℃-1150℃,厚度为2nm-5nm,生长压力50torr-300torr,Al组分为0.2-0.6;AlyGa1-yN量子垒层生长温度为1000℃-1300℃,厚度为5nm-15nm,生长压力50torr-300torr,Al组分为0.4-0.8。In one embodiment, the multiple quantum well layers are alternately stacked AlxGa1 -xN quantum well layers and AlyGa1 -yN quantum barrier layers, and the number of stacking periods is 3-15. Among them, the growth temperature of Al x Ga 1-x N quantum well layer is 950°C-1150°C, the thickness is 2nm-5nm, the growth pressure is 50torr-300torr, and the Al composition is 0.2-0.6; the Al y Ga 1-y N quantum barrier layer The growth temperature is 1000°C-1300°C, the thickness is 5nm-15nm, the growth pressure is 50torr-300torr, and the Al component is 0.4-0.8.
优选地,堆叠周期数为9个,其中AlxGa1-xN量子阱层生长温度为1050℃,厚度为3.5nm,压力200torr,Al组分为0.55;AlyGa1-yN量子垒层生长温度为1150℃,厚度为11nm,生长压力为200torr,Al组分为0.7。多量子阱为电子和空穴复合的区域,合理的结构设计可以显著增加电子和空穴波函数交叠程度,从而提高LED器件发光效率。Preferably, the number of stacking cycles is 9, wherein the growth temperature of the Al x Ga 1-x N quantum well layer is 1050°C, the thickness is 3.5nm, the pressure is 200torr, and the Al composition is 0.55; the Al y Ga 1-y N quantum barrier The layer growth temperature was 1150° C., the thickness was 11 nm, the growth pressure was 200 torr, and the Al composition was 0.7. Multiple quantum wells are regions where electrons and holes recombine. Reasonable structural design can significantly increase the degree of overlap between electron and hole wave functions, thereby improving the luminous efficiency of LED devices.
在一种实施方式中,所述电子阻挡层为AlGaN电子阻挡层,其厚度为10nm-100nm,生长温度为1000℃-1100℃,压力100torr-300torr,其中Al组分为0.4-0.8。优选地,AlGaN电子阻挡层厚度30nm,其中Al组分0.75,生长温度1050℃,生长压力200torr,这样既可以有效地限制电子溢流,也可以减少对空穴的阻挡,提升空穴向量子阱的注入效率,减少载流子俄歇复合,提高发光二极管的发光效率。In one embodiment, the electron blocking layer is an AlGaN electron blocking layer with a thickness of 10nm-100nm, a growth temperature of 1000°C-1100°C, a pressure of 100torr-300torr, and an Al component of 0.4-0.8. Preferably, the thickness of the AlGaN electron blocking layer is 30nm, the Al composition is 0.75, the growth temperature is 1050°C, and the growth pressure is 200torr, which can not only effectively limit the electron overflow, but also reduce the blocking of holes, and improve the hole vector to the quantum well. Injection efficiency, reduce carrier Auger recombination, improve luminous efficiency of light-emitting diodes.
在一种实施方式中,所述P型AlGaN层的生长温度为1000℃-1100℃,厚度为20nm-200nm,生长压力为100torr-600torr,Mg掺杂浓度1*1019atoms/cm3-5*1020atoms/cm3。In one embodiment, the growth temperature of the P-type AlGaN layer is 1000°C-1100°C, the thickness is 20nm-200nm, the growth pressure is 100torr-600torr, and the Mg doping concentration is 1*10 19 atoms/cm 3 -5 *10 20 atoms/cm 3 .
优选地,所述P型AlGaN层生长温度为1050℃,厚度为100nm,生长压力为200torr,Mg掺杂浓度5*1019atoms/cm3,Mg掺杂浓度过高会破坏晶体质量,而掺杂浓度较低则会影响空穴浓度。同时,P型掺杂的AlGaN层可以有效填平外延层,得到表面光滑的深紫外LED外延片。Preferably, the growth temperature of the P-type AlGaN layer is 1050° C., the thickness is 100 nm, the growth pressure is 200 torr, and the Mg doping concentration is 5*10 19 atoms/cm 3 . If the Mg doping concentration is too high, the crystal quality will be damaged, while doping A lower impurity concentration will affect the hole concentration. At the same time, the P-type doped AlGaN layer can effectively fill up the epitaxial layer to obtain a deep ultraviolet LED epitaxial wafer with a smooth surface.
在一种实施方式中,所述P型接触层的生长温度为900℃-1100℃,厚度为5nm-50nm,生长压力为100torr-600torr,Mg掺杂浓度为5*1019atoms/cm3-5*1020atoms/cm3。In one embodiment, the growth temperature of the P-type contact layer is 900°C-1100°C, the thickness is 5nm-50nm, the growth pressure is 100torr-600torr, and the Mg doping concentration is 5*10 19 atoms/cm 3 - 5*10 20 atoms/cm 3 .
优选地,P型掺杂的AlGaN层生长温度950℃,厚度10nm,生长压力200torr,Mg掺杂浓度1*1020atoms/cm3,高掺杂浓度的P型接触层降低接触电阻。Preferably, the growth temperature of the P-type doped AlGaN layer is 950° C., the thickness is 10 nm, the growth pressure is 200 torr, the Mg doping concentration is 1*10 20 atoms/cm 3 , and the P-type contact layer with high doping concentration reduces contact resistance.
相应地,本发明还提供了上述深紫外发光二极管外延片的制备方法,包括以下步骤:Correspondingly, the present invention also provides a method for preparing the above-mentioned deep ultraviolet light-emitting diode epitaxial wafer, comprising the following steps:
S1、准备衬底;S1. Prepare the substrate;
S2、在所述衬底上依次沉积缓冲层、成核层、非掺杂AlGaN层、N型AlGaN层、多量子阱层、电子阻挡层、P型AlGaN层和P型接触层;S2, sequentially depositing a buffer layer, a nucleation layer, a non-doped AlGaN layer, an N-type AlGaN layer, a multiple quantum well layer, an electron blocking layer, a P-type AlGaN layer, and a P-type contact layer on the substrate;
所述成核层包括依次层叠于所述缓冲层上的二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层和AlGaN成核层。The nucleation layer includes a two-dimensional AlGaN nucleation preparation layer, an Al nano-dot layer, an AlGa nano-cluster nucleation point layer and an AlGaN nucleation layer stacked in sequence on the buffer layer.
在一种实施方式中,所述步骤S2包含以下步骤:In one embodiment, the step S2 includes the following steps:
S21、在PVD中在所述衬底的正面沉积AlN缓冲层。S21. Depositing an AlN buffer layer on the front surface of the substrate by PVD.
S22、在所述缓冲层上沉积所述二维AlGaN成核准备层:S22. Depositing the two-dimensional AlGaN nucleation preparation layer on the buffer layer:
将反应室温度控制在700℃-1000℃,压力控制在50torr-300torr,通入N2和NH3作载气,通入N源、Ga源和Al源完成沉积。The temperature of the reaction chamber is controlled at 700°C-1000°C, the pressure is controlled at 50torr-300torr, N 2 and NH 3 are fed as carrier gas, and N source, Ga source and Al source are fed to complete the deposition.
S23、在所述二维AlGaN成核准备层上沉积所述Al纳米点层:S23. Depositing the Al nano-dot layer on the two-dimensional AlGaN nucleation preparation layer:
先将反应室温度控制在900℃-1100℃,压力控制在100torr-500torr,通入N2作载气,通入Al源完成沉积。Firstly, the temperature of the reaction chamber is controlled at 900°C-1100°C, the pressure is controlled at 100torr-500torr, N 2 is fed as carrier gas, and Al source is fed to complete the deposition.
需要说明的是,在一种实施方式中,本发明采用的衬底为PSS衬底,其沉积方向主要为C面,PSS图像其他面基本不沉积;并且由于Al纳米层厚度较薄,在衬底上并未形成Al薄膜层,而是得到Al纳米点。It should be noted that, in one embodiment, the substrate used in the present invention is a PSS substrate, the deposition direction of which is mainly the C surface, and the other surfaces of the PSS image are basically not deposited; Al thin film layer is not formed on the bottom, but Al nano dots are obtained.
S24、在所述Al纳米点层上沉积所述AlGa纳米团簇成核点层:S24. Depositing the AlGa nanocluster nucleation dot layer on the Al nano dot layer:
将反应室温度控制在900℃-1100℃,压力控制在100torr-500torr,通入N2作载气,通入Al源和Ga源完成沉积。The temperature of the reaction chamber is controlled at 900°C-1100°C, the pressure is controlled at 100torr-500torr, N 2 is fed as carrier gas, and Al source and Ga source are fed to complete the deposition.
需要说明的是,随着Al纳米点层继续沉积AlGa纳米团簇层,以Al纳米点层作为类似于晶核,AlGa纳米团簇层继续长大,根据外延生长条件,例如高压等条件促进AlGa纳米团簇层偏向三维生长,因此后面沉积得到为AlGa纳米团簇成核点。It should be noted that as the Al nano-dot layer continues to deposit the AlGa nano-cluster layer, the AlGa nano-cluster layer continues to grow with the Al nano-dot layer as a similar crystal nucleus, and the AlGa nano-cluster layer continues to grow according to the epitaxial growth conditions, such as high pressure. The nanocluster layer tends to grow three-dimensionally, so the subsequent deposition is the nucleation point of the AlGa nanocluster.
S25、在所述AlGa纳米团簇成核点层上沉积所述AlGaN成核层:S25. Depositing the AlGaN nucleation layer on the AlGa nanocluster nucleation point layer:
将反应室温度控制在1000℃-1200℃,压力控制在50torr-300torr,通入N2作载气,通入N2、NH3和H2作载气,通入Ga源、Al源和N源完成沉积。Control the temperature of the reaction chamber at 1000°C-1200°C, control the pressure at 50torr-300torr, feed N2 as carrier gas, N2 , NH3 and H2 as carrier gas, Ga source, Al source and N The source completes the deposition.
S26、在所述AlGaN成核层上沉积所述非掺杂AlGaN层:S26. Depositing the non-doped AlGaN layer on the AlGaN nucleation layer:
控制反应室温度为1000℃-1300℃,生长压力为50torr-500torr,通入N源、Ga源和Al源,完成沉积。The temperature of the reaction chamber is controlled to be 1000°C-1300°C, the growth pressure is 50torr-500torr, and the N source, Ga source and Al source are supplied to complete the deposition.
S27、在所述非掺杂AlGaN层上沉积所述N型AlGaN层:S27. Depositing the N-type AlGaN layer on the non-doped AlGaN layer:
将反应室温度控制在1000℃-1300℃,压力50torr-300torr,通入Si源、Al源、N源和Ga源,完成沉积。The temperature of the reaction chamber is controlled at 1000°C-1300°C, the pressure is 50torr-300torr, and Si source, Al source, N source and Ga source are fed to complete the deposition.
S28、在所述N型AlGaN层上沉积所述多量子阱层:S28. Depositing the multiple quantum well layer on the N-type AlGaN layer:
先将反应室温度控制在950℃-1150℃,压力控制在50torr-300torr,通入N源、Ga源和Al源完成AlxGa1-xN量子阱层沉积,再将温度控制在1000℃-1300℃,继续通入N源、Ga源和Al源完成AlyGa1-yN沉积,重复层叠3-15个周期。First control the temperature of the reaction chamber at 950°C-1150°C, the pressure at 50torr-300torr, feed in N source, Ga source and Al source to complete the Al x Ga 1-x N quantum well layer deposition, and then control the temperature at 1000°C -1300°C, continue to feed N source, Ga source and Al source to complete AlyGa 1-y N deposition, and repeat stacking for 3-15 cycles.
S29、在所述多量子阱层上沉积所述电子阻挡层:S29. Depositing the electron blocking layer on the multiple quantum well layer:
将反应室温度控制在1000℃-1100℃,压力100torr-300torr,通入N源、Ga源和Al源完成AlGaN层沉积。The temperature of the reaction chamber is controlled at 1000°C-1100°C, the pressure is 100torr-300torr, and N source, Ga source and Al source are fed to complete the AlGaN layer deposition.
S30、在所述电子阻挡层上沉积所述P型AlGaN层和P型接触层:S30, depositing the P-type AlGaN layer and the P-type contact layer on the electron blocking layer:
将反应室温度控制在1000℃-1100℃,压力100torr-600torr,通入Mg源、N源、Ga源和Al源完成P型AlGaN层沉积,再将反应室温度控制在900℃-1100℃,压力100torr-600torr,通入Mg源、N源、Ga源和Al源完成P型AlGaN接触层沉积。The temperature of the reaction chamber is controlled at 1000°C-1100°C, the pressure is 100torr-600torr, and Mg source, N source, Ga source and Al source are introduced to complete the deposition of the P-type AlGaN layer, and then the temperature of the reaction chamber is controlled at 900°C-1100°C. The pressure is 100torr-600torr, and the Mg source, N source, Ga source and Al source are fed to complete the deposition of the P-type AlGaN contact layer.
相应地、本发明还提供一种深紫外发光二极管,所述深紫外发光二极管包括上文所述的深紫外发光二极管外延片。Correspondingly, the present invention also provides a deep ultraviolet light emitting diode, which comprises the above-mentioned deep ultraviolet light emitting diode epitaxial wafer.
以上采用MOCVD设备、CVD设备或PVD设备完成沉积过程,本发明对沉积方法不作限定。采用高纯N2(氮气)和H2(氢气)作为载气。高纯NH3(氨气)提供N(氮)源,铝源选用的是TMAl(三甲基铝),镁源选用的是Cp2Mg(二茂镁),分别采用TMGa(三甲基镓)和TEGa(三乙基镓)作为镓源,硅烷(SiH4)作为N型掺杂剂,不限于以上列举。Above, MOCVD equipment, CVD equipment or PVD equipment are used to complete the deposition process, and the present invention does not limit the deposition method. High-purity N 2 (nitrogen) and H 2 (hydrogen) were used as carrier gases. High-purity NH 3 (ammonia) provides N (nitrogen) source, what the aluminum source selects is TMAl (trimethylaluminum), what the magnesium source selects is Cp 2 Mg (magnesocene), respectively adopts TMGa (trimethylgallium ) and TEGa (triethylgallium) as the gallium source, and silane (SiH 4 ) as the N-type dopant, not limited to the above list.
下面以具体实施例进一步说明本发明:Further illustrate the present invention with specific embodiment below:
实施例1Example 1
本实施例提供一种深紫外发光二极管外延片,包括衬底及依次层叠于所述衬底上的缓冲层、成核层、非掺杂AlGaN层、N型AlGaN层、多量子阱层、电子阻挡层、P型AlGaN层和P型接触层;This embodiment provides a deep ultraviolet light-emitting diode epitaxial wafer, including a substrate and a buffer layer, a nucleation layer, a non-doped AlGaN layer, an N-type AlGaN layer, a multi-quantum well layer, and an electronic layer sequentially stacked on the substrate. barrier layer, P-type AlGaN layer and P-type contact layer;
所述成核层包括依次层叠于所述缓冲层上的二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层和AlGaN成核层。The nucleation layer includes a two-dimensional AlGaN nucleation preparation layer, an Al nano-dot layer, an AlGa nano-cluster nucleation point layer and an AlGaN nucleation layer stacked in sequence on the buffer layer.
所述二维AlGaN成核准备层厚度为50nm,所述Al纳米点层厚度为20nm,所述AlGa纳米团簇成核点层厚度为350nm,所述AlGaN成核层厚度为1.9μm。The thickness of the two-dimensional AlGaN nucleation preparation layer is 50 nm, the thickness of the Al nano-dot layer is 20 nm, the thickness of the AlGa nano-cluster nucleation point layer is 350 nm, and the thickness of the AlGaN nucleation layer is 1.9 μm.
所述二维AlGaN成核准备层中Al组分浓度为0.5,所述AlGaN成核层中Al组分浓度为0.45。The Al component concentration in the two-dimensional AlGaN nucleation preparation layer is 0.5, and the Al component concentration in the AlGaN nucleation layer is 0.45.
上述深紫外发光二极管外延片的制备方法,包括以下步骤:The preparation method of the above-mentioned deep ultraviolet light-emitting diode epitaxial wafer comprises the following steps:
S1、准备衬底;S1. Prepare the substrate;
S2、在所述衬底上依次沉积缓冲层、成核层、非掺杂AlGaN层、N型AlGaN层、多量子阱层、电子阻挡层、P型AlGaN层和P型接触层;S2, sequentially depositing a buffer layer, a nucleation layer, a non-doped AlGaN layer, an N-type AlGaN layer, a multiple quantum well layer, an electron blocking layer, a P-type AlGaN layer, and a P-type contact layer on the substrate;
所述步骤S2包含以下步骤:Described step S2 comprises the following steps:
S21、在PVD中在所述衬底的正面沉积AlN缓冲层。S21. Depositing an AlN buffer layer on the front surface of the substrate by PVD.
S22、在所述缓冲层上沉积所述二维AlGaN成核准备层:S22. Depositing the two-dimensional AlGaN nucleation preparation layer on the buffer layer:
将反应室温度控制在820℃,压力控制在100torr,通入N2和NH3作载气,通入N源、Ga源和Al源完成沉积。The temperature of the reaction chamber is controlled at 820°C, the pressure is controlled at 100torr, N 2 and NH 3 are fed as carrier gas, and N, Ga and Al sources are fed to complete the deposition.
S23、在所述二维AlGaN成核准备层上沉积所述Al纳米点层:S23. Depositing the Al nano-dot layer on the two-dimensional AlGaN nucleation preparation layer:
先将反应室温度控制在980℃,压力控制在300torr,通入N2作载气,通入Al源完成沉积。Firstly, the temperature of the reaction chamber is controlled at 980°C, the pressure is controlled at 300torr, N 2 is fed as carrier gas, and Al source is fed to complete the deposition.
S24、在所述Al纳米点层上沉积所述AlGa纳米团簇成核点层:S24. Depositing the AlGa nanocluster nucleation dot layer on the Al nano dot layer:
将反应室温度控制在980℃,压力控制在300torr,通入N2作载气,通入Al源和Ga源完成沉积。The temperature of the reaction chamber is controlled at 980°C, the pressure is controlled at 300torr, N 2 is fed as a carrier gas, and Al and Ga sources are fed to complete the deposition.
S25、在所述AlGa纳米团簇成核点层上沉积所述AlGaN成核层:S25. Depositing the AlGaN nucleation layer on the AlGa nanocluster nucleation point layer:
将反应室温度控制在1050℃,压力控制在150torr,通入N2作载气,通入N2、NH3和H2作载气,通入Ga源、Al源和N源完成沉积。The temperature of the reaction chamber is controlled at 1050°C, the pressure is controlled at 150torr, N 2 is fed as carrier gas, N 2 , NH 3 and H 2 are fed as carrier gas, and Ga source, Al source and N source are fed to complete the deposition.
S26、在所述AlGaN成核层上沉积所述非掺杂AlGaN层:S26. Depositing the non-doped AlGaN layer on the AlGaN nucleation layer:
控制反应室温度为1200℃,生长压力为100torr,通入N源、Ga源和Al源,完成沉积并控制厚度为2.5μm。The temperature of the reaction chamber is controlled at 1200° C., the growth pressure is 100 torr, N source, Ga source and Al source are supplied to complete the deposition and control the thickness to 2.5 μm.
S27、在所述非掺杂AlGaN层上沉积所述N型AlGaN层:S27. Depositing the N-type AlGaN layer on the non-doped AlGaN layer:
将反应室温度控制在1200℃,压力100torr,通入Si源、Al源、N源和Ga源,完成沉积并控制厚度为2.5μm。The temperature of the reaction chamber is controlled at 1200° C., the pressure is 100 torr, and Si source, Al source, N source and Ga source are introduced to complete the deposition and control the thickness to 2.5 μm.
S28、在所述N型AlGaN层上沉积所述多量子阱层:S28. Depositing the multiple quantum well layer on the N-type AlGaN layer:
先将反应室温度控制在1150℃,压力控制在200torr,通入N源、Ga源和Al源完成AlxGa1-xN量子阱层沉积并控制厚度为3.5nm,Al组分为0.55;再将温度控制在1150℃,生长压力为200torr,继续通入N源、Ga源和Al源完成AlyGa1-yN沉积并控制厚度为11nm,Al组分为0.7;重复层叠9个周期。First control the temperature of the reaction chamber at 1150°C, the pressure at 200torr, and feed in N source, Ga source and Al source to complete the Al x Ga 1-x N quantum well layer deposition and control the thickness to 3.5nm, and the Al composition to 0.55; Then control the temperature at 1150°C and the growth pressure at 200torr, continue to feed N source, Ga source and Al source to complete the deposition of AlyGa 1-y N and control the thickness to 11nm, and the Al composition to 0.7; repeat stacking for 9 cycles .
S29、在所述多量子阱层上沉积所述电子阻挡层:S29. Depositing the electron blocking layer on the multiple quantum well layer:
将反应室温度控制在1050℃,压力200torr,通入N源、Ga源和Al源完成AlGaN层沉积并控制厚度为30nm,Al组分为0.75。The temperature of the reaction chamber is controlled at 1050° C., the pressure is 200 torr, N source, Ga source and Al source are fed to complete the AlGaN layer deposition and the thickness is controlled to be 30 nm, and the Al composition is 0.75.
S30、在所述电子阻挡层上沉积所述P型AlGaN层和P型接触层:S30, depositing the P-type AlGaN layer and the P-type contact layer on the electron blocking layer:
将反应室温度控制在1050℃,压力200torr,通入Mg源、N源、Ga源和Al源完成P型AlGaN层沉积并控制厚度为100nm,Mg掺杂浓度为5*1019atoms/cm3;再将反应室温度控制在950℃,压力200torr,通入Mg源、N源、Ga源和Al源完成P型AlGaN接触层沉积并控制厚度为10nm,Mg掺杂浓度为1*1020atoms/cm3。The temperature of the reaction chamber is controlled at 1050°C, the pressure is 200torr, and the Mg source, N source, Ga source and Al source are fed to complete the deposition of the P-type AlGaN layer and the thickness is controlled to 100nm, and the Mg doping concentration is 5*10 19 atoms/cm 3 ; Then control the temperature of the reaction chamber at 950°C and the pressure of 200torr, and feed in Mg source, N source, Ga source and Al source to complete the deposition of the P-type AlGaN contact layer and control the thickness to 10nm, and the Mg doping concentration to 1*10 20 atoms /cm 3 .
实施例2Example 2
本实施例与实施例1不同之处在于:所述二维AlGaN成核准备层厚度为10nm,其余参照实施例1。The difference between this embodiment and
实施例3Example 3
本实施例与实施例1不同之处在于:所述二维AlGaN成核准备层厚度为100nm,其余参照实施例1。The difference between this embodiment and
实施例4Example 4
本实施例与实施例1不同之处在于:所述Al纳米点层厚度为5nm,其余参照实施例1。The difference between this example and Example 1 lies in that the thickness of the Al nano-dot layer is 5nm, and refer to Example 1 for the rest.
实施例5Example 5
本实施例与实施例1不同之处在于:所所述Al纳米点层厚度为50nm,其余参照实施例1。The difference between this example and Example 1 lies in that: the thickness of the Al nano-dot layer is 50nm, and refer to Example 1 for the rest.
实施例6Example 6
本实施例与实施例1不同之处在于:所述AlGa纳米团簇成核点层厚度为50nm,其余参照实施例1。The difference between this example and Example 1 lies in that the thickness of the AlGa nanocluster nucleation point layer is 50 nm, and refer to Example 1 for the rest.
实施例7Example 7
本实施例与实施例1不同之处在于:所述AlGa纳米团簇成核点层厚度为500nm,其余参照实施例1。The difference between this embodiment and
实施例8Example 8
本实施例与实施例1不同之处在于:所述二维AlGaN成核准备层中Al组分浓度为0.1,所述AlGaN成核层中Al组分浓度为0.1。其余参照实施例1。The difference between this embodiment and
实施例9Example 9
本实施例与实施例1不同之处在于:所述二维AlGaN成核准备层中Al组分浓度为0.65,所述AlGaN成核层中Al组分浓度为0.55。其余参照实施例1。The difference between this embodiment and
对比例1Comparative example 1
本对比例提供一种深紫外发光二极管外延片,其与实施例1不同之处在:所述成核层仅为厚度为1.9μm的AlGaN成核层。其余均与实施例1相同。This comparative example provides a deep ultraviolet light-emitting diode epitaxial wafer, which is different from Example 1 in that: the nucleation layer is only an AlGaN nucleation layer with a thickness of 1.9 μm. All the other are identical with
以实施例1-实施例9和对比例1制得深紫外发光二极管外延片使用相同芯片工艺条件制备成15mil*15mil芯片.分别抽取300颗LED芯片。在120mA/60mA电流下测试,计算各实施例相对于对比例1的光效提升率。具体测试结果如表1所示。The epitaxial wafers of deep ultraviolet light-emitting diodes prepared in Example 1-Example 9 and Comparative Example 1 were prepared into 15mil*15mil chips using the same chip process conditions. 300 LED chips were extracted respectively. Tested at a current of 120mA/60mA, and calculated the improvement rate of light efficiency of each embodiment relative to Comparative Example 1. The specific test results are shown in Table 1.
表1为实施例1-实施例9制得深紫外发光二极管外延片性能测试结果Table 1 shows the performance test results of deep ultraviolet light-emitting diode epitaxial wafers prepared in embodiment 1-
由上述结果可知,本发明在缓冲层上生长了成核层,所述成核层包括依次层叠于所述缓冲层上的二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层和AlGaN成核层。其中,二维AlGaN成核准备层为Al纳米点层生长提供了平整的成核表面,减少其成核生长的接触角;所述Al纳米点层控制成核点的密度,而Al纳米点层成核点密度与后续层状结构的密度密切相关;所述AlGa纳米团簇成核点层引入Ga原子,使Al纳米点层继续长大,同时减少与后续AlGaN成核层的晶格失配,提高AlGaN成核层的晶体质量;所述AlGaN成核层的密度与深紫外外延层的位错密度息息相关,AlGaN成核层融合产生线缺陷,降低GaN外延层的晶体质量,而通过之前沉积二维AlGaN成核准备层、Al纳米点层、AlGa纳米团簇成核点层可以有效控制AlGaN成核层的密度来控制位错密度,降低缺陷密度,减少量子阱的非辐射复合效率,提高深紫外发光二极管的发光效率。From the above results, it can be known that the present invention grows a nucleation layer on the buffer layer, and the nucleation layer includes a two-dimensional AlGaN nucleation preparation layer, an Al nano-dot layer, and an AlGa nano-cluster formation layer sequentially stacked on the buffer layer. Nucleation point layer and AlGaN nucleation layer. Among them, the two-dimensional AlGaN nucleation preparation layer provides a flat nucleation surface for the growth of the Al nano-dot layer, reducing the contact angle of its nucleation growth; the Al nano-dot layer controls the density of the nucleation point, and the Al nano-dot layer The nucleation point density is closely related to the density of the subsequent layered structure; the AlGa nanocluster nucleation point layer introduces Ga atoms, so that the Al nano point layer continues to grow, and at the same time reduces the lattice mismatch with the subsequent AlGaN nucleation layer , improve the crystal quality of the AlGaN nucleation layer; the density of the AlGaN nucleation layer is closely related to the dislocation density of the deep ultraviolet epitaxial layer, and the fusion of the AlGaN nucleation layer produces line defects, which reduces the crystal quality of the GaN epitaxial layer. The two-dimensional AlGaN nucleation preparation layer, Al nano-dot layer, and AlGa nano-cluster nucleation point layer can effectively control the density of the AlGaN nucleation layer to control the dislocation density, reduce the defect density, reduce the non-radiative recombination efficiency of quantum wells, and improve Luminous efficiency of deep ultraviolet light-emitting diodes.
以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above is the preferred embodiment of the invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered as protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211455177.1A CN115714155A (en) | 2022-11-21 | 2022-11-21 | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211455177.1A CN115714155A (en) | 2022-11-21 | 2022-11-21 | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115714155A true CN115714155A (en) | 2023-02-24 |
Family
ID=85233971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211455177.1A Pending CN115714155A (en) | 2022-11-21 | 2022-11-21 | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115714155A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116053372A (en) * | 2023-04-03 | 2023-05-02 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, LED |
CN116130567A (en) * | 2023-04-13 | 2023-05-16 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, LED |
CN116190511A (en) * | 2023-04-25 | 2023-05-30 | 江西兆驰半导体有限公司 | High-efficiency LED epitaxial wafer, preparation method and LED chip |
CN116387420A (en) * | 2023-03-22 | 2023-07-04 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, light-emitting diode |
CN116454179A (en) * | 2023-06-14 | 2023-07-18 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode |
CN116487493A (en) * | 2023-06-25 | 2023-07-25 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and its preparation method, LED chip |
CN116598395A (en) * | 2023-07-14 | 2023-08-15 | 江西兆驰半导体有限公司 | A kind of light-emitting diode and its preparation method |
CN116705927A (en) * | 2023-08-09 | 2023-09-05 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104485404A (en) * | 2014-12-29 | 2015-04-01 | 北京大学 | High-brightness near-ultraviolet LED and epitaxial growth method thereof |
CN108133993A (en) * | 2018-01-30 | 2018-06-08 | 广东工业大学 | A kind of ultraviolet LED vertical chip structure |
CN114361303A (en) * | 2021-03-08 | 2022-04-15 | 常熟理工学院 | Epitaxial layer structure of aluminum gallium nitrogen-based ultraviolet light-emitting diode and preparation method thereof |
CN115064620A (en) * | 2022-06-22 | 2022-09-16 | 西安电子科技大学 | High-efficiency deep ultraviolet light-emitting diode with stepped composition YAlN/AlGaN superlattice p-type layer and preparation method |
-
2022
- 2022-11-21 CN CN202211455177.1A patent/CN115714155A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104485404A (en) * | 2014-12-29 | 2015-04-01 | 北京大学 | High-brightness near-ultraviolet LED and epitaxial growth method thereof |
CN108133993A (en) * | 2018-01-30 | 2018-06-08 | 广东工业大学 | A kind of ultraviolet LED vertical chip structure |
CN114361303A (en) * | 2021-03-08 | 2022-04-15 | 常熟理工学院 | Epitaxial layer structure of aluminum gallium nitrogen-based ultraviolet light-emitting diode and preparation method thereof |
CN115064620A (en) * | 2022-06-22 | 2022-09-16 | 西安电子科技大学 | High-efficiency deep ultraviolet light-emitting diode with stepped composition YAlN/AlGaN superlattice p-type layer and preparation method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116387420A (en) * | 2023-03-22 | 2023-07-04 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, light-emitting diode |
CN116053372A (en) * | 2023-04-03 | 2023-05-02 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, LED |
CN116053372B (en) * | 2023-04-03 | 2023-06-02 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, LED |
CN116130567A (en) * | 2023-04-13 | 2023-05-16 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, LED |
CN116190511A (en) * | 2023-04-25 | 2023-05-30 | 江西兆驰半导体有限公司 | High-efficiency LED epitaxial wafer, preparation method and LED chip |
CN116454179A (en) * | 2023-06-14 | 2023-07-18 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode |
CN116454179B (en) * | 2023-06-14 | 2023-08-25 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
CN116487493A (en) * | 2023-06-25 | 2023-07-25 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and its preparation method, LED chip |
CN116598395A (en) * | 2023-07-14 | 2023-08-15 | 江西兆驰半导体有限公司 | A kind of light-emitting diode and its preparation method |
CN116598395B (en) * | 2023-07-14 | 2023-09-29 | 江西兆驰半导体有限公司 | A kind of light-emitting diode and preparation method thereof |
CN116705927A (en) * | 2023-08-09 | 2023-09-05 | 江西兆驰半导体有限公司 | LED epitaxial wafer, preparation method thereof and LED |
CN116705927B (en) * | 2023-08-09 | 2023-11-07 | 江西兆驰半导体有限公司 | LED epitaxial wafer and preparation method thereof, LED |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115714155A (en) | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode | |
CN102368519B (en) | A kind of method improving semiconductor diode multiple quantum well light emitting efficiency | |
CN101438429B (en) | Group III nitride compound semiconductor stacked structure | |
CN110112273B (en) | Deep ultraviolet LED epitaxial structure, preparation method thereof and deep ultraviolet LED | |
CN116314514B (en) | LED epitaxial wafer, preparation method thereof and LED | |
US8445938B2 (en) | Nitride semi-conductive light emitting device | |
CN115458650A (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
CN116190519B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN115832131A (en) | Deep ultraviolet light emitting diode epitaxial wafer and preparation method thereof, deep ultraviolet light emitting diode | |
CN116130569B (en) | High-efficiency light-emitting diode and preparation method thereof | |
CN117393667B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
CN118522833B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN115911202A (en) | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode | |
CN109411579A (en) | Semiconductor devices and preparation method thereof with graphene-structured | |
CN116230823A (en) | A high-efficiency light-emitting diode epitaxial wafer and its preparation method | |
CN116487493A (en) | Light-emitting diode epitaxial wafer and its preparation method, LED chip | |
CN116387426A (en) | Light-emitting diode epitaxial wafer and preparation method thereof | |
CN117153964A (en) | Deep ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light-emitting diode | |
CN116314510B (en) | Composite non-doped AlGaN layer and preparation method, epitaxial wafer and LED | |
CN116230824B (en) | High-efficiency light-emitting diode epitaxial wafer, preparation method thereof, and LED chip | |
CN109888064B (en) | Growth method of light emitting diode epitaxial wafer | |
CN116344684B (en) | A kind of light-emitting diode preparation method and diode | |
CN117199204A (en) | High-light-efficiency LED epitaxial wafer, preparation method thereof and LED chip | |
CN116779736A (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
CN116565097A (en) | Light-emitting diode epitaxial wafer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |