CN115706517A - Resonant half-bridge flyback converter with omitted period and control method thereof - Google Patents
Resonant half-bridge flyback converter with omitted period and control method thereof Download PDFInfo
- Publication number
- CN115706517A CN115706517A CN202210688358.2A CN202210688358A CN115706517A CN 115706517 A CN115706517 A CN 115706517A CN 202210688358 A CN202210688358 A CN 202210688358A CN 115706517 A CN115706517 A CN 115706517A
- Authority
- CN
- China
- Prior art keywords
- transistor
- period
- resonant
- driving signal
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种返驰式转换器,特别涉及一种具有省略周期的谐振半桥返驰式转换器。本发明还涉及用以控制谐振半桥返驰式转换器的控制方法。The invention relates to a flyback converter, in particular to a resonant half-bridge flyback converter with an omitted period. The invention also relates to a control method for controlling a resonant half-bridge flyback converter.
背景技术Background technique
请参阅图1,图1显示现有技术美国专利US 5,959,850的非对称占空比返驰式转换器(Asymmetrical Duty Cycle Flyback Converter),此现有技术公开了具有零电压切换(zero voltage switching,ZVS)的半桥返驰式转换器,由此实现较高的功率效率。零电压切换可被定义为当晶体管的跨压(例如:漏源极电压)为零或接近于零时,将晶体管切换为导通。然而,本现有技术的缺点为,于轻负载状态中,电源转换器的功率转换效率较低。Please refer to FIG. 1. FIG. 1 shows an asymmetrical duty cycle flyback converter (Asymmetrical Duty Cycle Flyback Converter) of the prior art U.S. Patent No. 5,959,850. This prior art discloses a zero voltage switching (zero voltage switching, ZVS ) half-bridge flyback converter, thereby achieving high power efficiency. ZVS can be defined as switching a transistor on when the voltage across the transistor (eg, drain-to-source voltage) is zero or close to zero. However, the disadvantage of the prior art is that the power conversion efficiency of the power converter is low in the light load state.
上述现有技术的另一个缺点在于,该电源转换器的输出电压是不可变的,具体而言,上述现有技术若要改为具有可变输出电压的零电压切换返驰式转换器,必须通过侦测其变压器的去磁时段而控制变压器的切换。Another disadvantage of the above-mentioned prior art is that the output voltage of the power converter is not variable, specifically, the above-mentioned prior art to be changed to a ZVS flyback converter with a variable output voltage must The switching of the transformer is controlled by detecting the demagnetization period of the transformer.
另一现有技术美国专利US 7,151,681为测量变压器的反射电压与放电时段的多重取样电路(Multiple-sampling circuit for measuring reflected voltage anddischarge time of a transformer),此现有技术公开一种侦测变压器的输出电压与去磁时段的方法,然而,本现有技术无法实现电源转换器的零电压切换,其是用于不连续导通模式(discontinuous conduction mode,DCM)的操作。Another prior art US Patent No. 7,151,681 is a multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer (Multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer). This prior art discloses a detection transformer output The method of voltage and demagnetization period, however, the present prior art cannot realize ZVS of the power converter, which is used for discontinuous conduction mode (DCM) operation.
图2显示现有技术的半桥返驰式转换器于轻负载状态中操作于不连续导通模式的波形图。驱动信号SH用以驱动半桥返驰式转换器的上桥开关,以激磁变压器,驱动信号SL用以驱动半桥返驰式转换器的下桥开关,激磁电流IM的信号波形显示变压器操作于不连续导通模式。当半桥返驰式转换器的输出功率下降时,驱动信号SH的脉宽PW因半桥返驰式转换器的反馈控制而降低,驱动信号SL的脉宽也对应降低,因此,半桥返驰式转换器的切换频率增加,切换损失也因而增加。当驱动信号SH转为低位准(关断)后,于变压器的去磁时段中,驱动信号SL的第一个脉冲被使能。驱动信号SL的第二脉冲被使能以产生循环电流,由此实现上桥开关的零电压切换。FIG. 2 shows a waveform diagram of a prior art half-bridge flyback converter operating in discontinuous conduction mode in a light load state. The driving signal SH is used to drive the upper switch of the half-bridge flyback converter to excite the transformer, and the driving signal SL is used to drive the lower switch of the half-bridge flyback converter. The signal waveform of the excitation current IM shows that the transformer operates at discontinuous conduction mode. When the output power of the half-bridge flyback converter decreases, the pulse width PW of the drive signal SH decreases due to the feedback control of the half-bridge flyback converter, and the pulse width of the drive signal SL also decreases correspondingly. Therefore, the half-bridge flyback As the switching frequency of the Chi-mode converter increases, the switching losses also increase. After the driving signal SH turns to a low level (off), the first pulse of the driving signal SL is enabled during the demagnetization period of the transformer. The second pulse of the driving signal SL is enabled to generate a circulating current, thereby realizing zero-voltage switching of the high-side switch.
上述现有技术的缺点在于,当操作于不连续导通模式时,驱动信号SL于一个切换周期需切换导通/关断两次,因此大幅增加驱动信号SL的平均切换频率,造成大量的切换损失且导致下桥开关的能量耗损。The disadvantage of the above-mentioned prior art is that when operating in the discontinuous conduction mode, the driving signal SL needs to be switched on/off twice in one switching cycle, so the average switching frequency of the driving signal SL is greatly increased, resulting in a large number of switching loss and results in energy loss in the lower side switch.
相较于现有技术美国专利US 7,151,681,本发明提供一种具有省略周期的谐振半桥返驰式转换器,以改善中负载、轻负载的操作状态中的功率效率。Compared with the prior art US Pat. No. 7,151,681, the present invention provides a resonant half-bridge flyback converter with omitted periods to improve power efficiency in medium load and light load operating states.
相较于现有技术美国专利US 5,959,850,本发明提供一种产生去磁信号的方法以及切换控制电路,其中去磁信号的期间等于变压器的去磁时段,本发明可用于具有可程序化输出电压的零电压切换返驰式转换器,例如:USB PD电源转换器。Compared with the prior art US patent US 5,959,850, the present invention provides a method for generating a demagnetization signal and a switching control circuit, wherein the period of the demagnetization signal is equal to the demagnetization period of the transformer, and the present invention can be used to have a programmable output voltage ZVS flyback converters, such as USB PD power converters.
相较于图2的现有技术,本发明提供一种非对称半桥(asymmetrical half-bridge,AHB)返驰式转换器的控制电路,以三个晶体管改善中负载与轻负载的操作状态的功率转换效率。Compared with the prior art shown in FIG. 2, the present invention provides a control circuit of an asymmetrical half-bridge (asymmetrical half-bridge, AHB) flyback converter, which uses three transistors to improve the operation status of medium load and light load. power conversion efficiency.
发明内容Contents of the invention
就其中一个观点言,本发明提供了一种谐振半桥返驰式转换器,包含:一第一晶体管及一第二晶体管,用以构成一半桥电路;一变压器及一谐振电容,彼此串联并耦接于该半桥电路;以及一切换控制电路,用以产生一第一驱动信号及一第二驱动信号以分别控制该第一晶体管及该第二晶体管,进而切换该变压器以产生一输出电压;其中该第一驱动信号用以激磁该变压器;其中于该第一驱动信号的两个连续脉冲之间,该第二驱动信号包括最多一个脉冲,其中该第二驱动信号的该最多一个脉冲包括一谐振脉冲或一零电压切换(zero voltage switching,ZVS)脉冲,该谐振脉冲用以于该变压器被激磁后操作一谐振周期,该零电压切换脉冲用以实现该第一晶体管的零电压切换;其中该切换控制电路包括一计时器,该计时器用以于一输出功率低于一预设阈值时,产生一省略周期,其中该输出功率对应于该输出电压;其中,该第二驱动信号的一谐振脉冲于该省略周期中被省略;其中该省略周期随着该输出功率的降低而增加。In terms of one of the viewpoints, the present invention provides a resonant half-bridge flyback converter, comprising: a first transistor and a second transistor for forming a half-bridge circuit; a transformer and a resonant capacitor connected in series and parallel to each other coupled to the half-bridge circuit; and a switching control circuit for generating a first driving signal and a second driving signal to respectively control the first transistor and the second transistor, and then switch the transformer to generate an output voltage ; wherein the first drive signal is used to excite the transformer; wherein between two consecutive pulses of the first drive signal, the second drive signal includes at most one pulse, wherein the at most one pulse of the second drive signal includes a resonant pulse or a zero voltage switching (zero voltage switching, ZVS) pulse, the resonant pulse is used to operate a resonant period after the transformer is excited, the zero voltage switching pulse is used to realize the zero voltage switching of the first transistor; Wherein the switching control circuit includes a timer, and the timer is used to generate an omission period when an output power is lower than a preset threshold value, wherein the output power corresponds to the output voltage; wherein, a of the second driving signal The resonant pulse is omitted during the omitted period; wherein the omitted period increases as the output power decreases.
在一较佳实施例中,该第二驱动信号于该第一驱动信号的两个连续脉冲之间不包括第二个脉冲,因而不以该第二个脉冲实现该第一晶体管的零电压切换。In a preferred embodiment, the second drive signal does not include a second pulse between two consecutive pulses of the first drive signal, so that the second pulse is not used to achieve zero-voltage switching of the first transistor .
在一较佳实施例中,于该省略周期中,该第一驱动信号及该第二驱动信号都包括零个脉冲。In a preferred embodiment, in the omitted period, both the first driving signal and the second driving signal include zero pulses.
在一较佳实施例中,该第二驱动信号的该谐振脉冲的期间等于或长于该变压器的一去磁时段。In a preferred embodiment, the duration of the resonance pulse of the second driving signal is equal to or longer than a demagnetization period of the transformer.
在一较佳实施例中,当该第一晶体管于该省略周期关断后,该变压器的一去磁电流的一部分流经该第二晶体管的一本体二极管。In a preferred embodiment, after the first transistor is turned off during the skipping period, a part of a demagnetization current of the transformer flows through a body diode of the second transistor.
在一较佳实施例中,于该第二驱动信号的两个连续脉冲之间,该第一驱动信号包括最多一个脉冲。In a preferred embodiment, the first drive signal comprises at most one pulse between two consecutive pulses of the second drive signal.
在一较佳实施例中,于该第二驱动信号的每一脉冲之后,接着产生该第一驱动信号的一脉冲。In a preferred embodiment, after each pulse of the second driving signal, a pulse of the first driving signal is subsequently generated.
在一较佳实施例中,于该省略周期后,该第二晶体管因一零电压切换脉冲而导通,用以实现该第一晶体管的零电压切换。In a preferred embodiment, after the omitted period, the second transistor is turned on by a zero-voltage switching pulse to realize zero-voltage switching of the first transistor.
在一较佳实施例中,当该输出功率低于该预设阈值时,该省略周期起始于该第一驱动信号转为不导通的一不导通时点。In a preferred embodiment, when the output power is lower than the preset threshold, the omission period starts at a non-conduction time point when the first driving signal becomes non-conductive.
在一较佳实施例中,该省略周期起始于该第一驱动信号转为不导通的一不导通时点,且当该省略周期终止时,该第二驱动信号产生一零电压切换脉冲。In a preferred embodiment, the omission period starts at a non-conduction point when the first drive signal turns non-conduction, and when the omission period ends, the second drive signal produces a zero-voltage switching pulse.
在一较佳实施例中,该谐振周期还包括一延续零电压切换期间,该延续零电压切换期间用以实现该第一晶体管的零电压切换。In a preferred embodiment, the resonant period further includes an extended zero-voltage switching period, and the extended zero-voltage switching period is used to realize zero-voltage switching of the first transistor.
就另一个观点言,本发明也提供了一种控制方法,用以控制一谐振半桥返驰式转换器,其中该谐振半桥返驰式转换器包括一第一晶体管及一第二晶体管,用以构成一半桥电路;以及一变压器及一谐振电容,彼此串联并耦接于该半桥电路,该控制方法包含:通过切换该半桥电路,以周期性的切换方式切换该变压器以产生一输出电压;于一输出功率低于一预设阈值时,产生一省略周期,其中该输出功率对应于该输出电压;其中该第一晶体管的导通用以激磁该变压器;该第二晶体管的导通用以实现一谐振周期或实现该第一晶体管的零电压切换(zero voltage switching,ZVS);其中用以控制该第二晶体管实现该谐振周期的一谐振脉冲于该省略周期中被省略;其中该省略周期随着该输出功率的降低而增加。From another point of view, the present invention also provides a control method for controlling a resonant half-bridge flyback converter, wherein the resonant half-bridge flyback converter includes a first transistor and a second transistor, used to form a half-bridge circuit; and a transformer and a resonant capacitor, which are connected in series with each other and coupled to the half-bridge circuit, the control method includes: switching the transformer in a periodic switching manner by switching the half-bridge circuit to generate a output voltage; when an output power is lower than a preset threshold value, an omission period is generated, wherein the output power corresponds to the output voltage; wherein the conduction of the first transistor is used to excite the transformer; the conduction of the second transistor is used for To realize a resonance period or realize zero voltage switching (zero voltage switching, ZVS) of the first transistor; wherein a resonance pulse used to control the second transistor to realize the resonance period is omitted in the omitted period; wherein the omission The period increases as the output power decreases.
以下通过具体实施例详加说明,会更容易了解本发明的目的、技术内容、特点及其所实现的效果。The following detailed description through specific embodiments will make it easier to understand the purpose, technical content, characteristics and effects of the present invention.
附图说明Description of drawings
图1显示现有技术的非对称占空比返驰式转换器。Figure 1 shows a prior art flyback converter with asymmetric duty cycle.
图2显示现有技术的半桥返驰式转换器于轻负载状态中操作于不连续导通模式的波形图。FIG. 2 shows a waveform diagram of a prior art half-bridge flyback converter operating in discontinuous conduction mode in a light load state.
图3显示本发明的谐振半桥返驰式转换器的一实施例示意图。FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention.
图4显示对应于图3的实施例的操作波形图。FIG. 4 shows an operation waveform corresponding to the embodiment of FIG. 3 .
图5显示降低驱动信号SH与驱动信号SL的切换频率的操作波形图。FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL.
图6显示本发明的具有省略周期的谐振半桥返驰式转换器的一实施例的操作波形图。FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.
图7显示本发明的谐振半桥返驰式转换器中一次侧控制器的一实施例方块图。FIG. 7 shows a block diagram of an embodiment of the primary-side controller in the resonant half-bridge flyback converter of the present invention.
图8显示本发明的谐振半桥返驰式转换器中一次侧控制器的一实施例方块图。FIG. 8 shows a block diagram of an embodiment of the primary-side controller in the resonant half-bridge flyback converter of the present invention.
图9显示本发明的去磁仿拟器产生去磁信号的操作波形图。FIG. 9 shows the operation waveform diagram of the demagnetization simulator of the present invention to generate the demagnetization signal.
图10显示本发明去磁仿拟器产生去磁信号Sdmg的一具体实施例示意图。FIG. 10 shows a schematic diagram of a specific embodiment of the demagnetization simulator generating the demagnetization signal Sdmg of the present invention.
图11显示本发明的谐振半桥返驰式转换器的一较佳实施例示意图。FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention.
图12显示本发明的一次侧控制器201操作于不连续导通模式的一较佳实施例操作波形图。FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-
图13显示本发明一次侧控制器的一较佳实施例方块图。FIG. 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention.
图中符号说明Explanation of symbols in the figure
10:变压器10: transformer
100:二次侧控制器100: Secondary side controller
20:谐振电容20: Resonant capacitor
200:一次侧控制器200: primary side controller
201:一次侧控制器201: primary side controller
205:时钟产生器205: Clock generator
208:一次侧控制器208: primary side controller
22:计时器22: Timer
230:电容230: capacitance
231:开关231: switch
240:控制元件240: Control elements
243:控制元件243: Control elements
248:控制元件248: Control elements
25:计时器25: Timer
250:去磁仿拟器250: Demagnetization Simulator
255:电阻255: Resistance
260:周期计数器260: Cycle counter
271,272:晶体管271, 272: Transistors
280:比较器280: Comparator
285:逻辑电路285: Logic Circuits
30:第一晶体管30: first transistor
300:谐振半桥返驰式转换器300: Resonant Half-Bridge Flyback Converter
35:本体二极管35: Body Diode
40:第二晶体管40: second transistor
45:本体二极管45: Body diode
51,52,55,60:电阻51, 52, 55, 60: resistance
70:二次侧同步整流器70: Secondary side synchronous rectifier
75:本体二极管75: Body Diode
90:光耦合器90: Optocoupler
900:谐振半桥返驰式转换器900: Resonant Half-Bridge Flyback Converter
C:电容值C: capacitance value
CPO:比较器输出CPO: Comparator output
DCM:不连续导通模式DCM: Discontinuous Conduction Mode
ID:放电电流ID: discharge current
IM:激磁电流IM: excitation current
IP:一次侧开关电流IP: primary side switching current
IS:二次侧开关电流IS: Secondary side switching current
kn:膝点kn: knee point
Lr:漏电感Lr: leakage inductance
LX:切换节点LX: switch node
M1:第一晶体管M1: first transistor
M2:第二晶体管M2: second transistor
M3:第三晶体管M3: third transistor
n,m:匝数比n, m: turns ratio
NA:辅助绕组NA: auxiliary winding
NC:正整数NC: positive integer
NNP:耦接节点NNP: Coupling Node
NP:一次侧绕组NP: primary side winding
NS:二次侧绕组NS: Secondary side winding
PW:脉宽PW: pulse width
PZV:零电压切换脉冲PZV: Zero Voltage Switching Pulse
Rs:电阻值Rs: resistance value
Rt:电阻值Rt: resistance value
S1:第一驱动信号S1: the first driving signal
S2:第二驱动信号S2: Second driving signal
S3:第三驱动信号S3: The third drive signal
Sdmg:去磁信号Sdmg: demagnetization signal
SG:驱动信号SG: driving signal
SH:驱动信号SH: drive signal
SL:驱动信号SL: drive signal
SMP:取样信号SMP: Sampled signal
t1-t9:时点t1-t9: point in time
t3’:时点t3': time point
ta-te:时点ta-te: time point
TA:第一时段TA: first period
ta’,tc’:时点ta', tc': point in time
TB:第二时段TB: second period
TC:第三时段TC: third period
Tcyc1:切换周期Tcyc1: switching cycle
Tcyc2:切换周期Tcyc2: switching cycle
Td1:第一不导通时段Td1: the first non-conduction period
Td2:第二不导通时段Td2: the second non-conduction period
TDS:去磁时段TDS: Demagnetization period
TDSX:导通期间TDSX: Turn-on period
TDSX’:导通期间TDSX': conduction period
TRH:时段TRH: time period
TRL:时段TRL: time period
TSL:导通期间TSL: Turn-on period
TW:激磁时段TW: Excitation period
Tx:省略周期Tx: omit cycle
TZ:第三不导通时段TZ: the third non-conduction period
VAUX:辅助信号VAUX: auxiliary signal
VC:跨压VC: cross voltage
Vcr:跨压Vcr: cross voltage
VCS:电流感测信号VCS: current sense signal
VCSp:电压位准VCSp: voltage level
VDP:电压降VDP: voltage drop
VFB:反馈信号VFB: feedback signal
Vg:电压位准Vg: voltage level
VHB:切换节点电压VHB: switching node voltage
VIN:输入电压VIN: input voltage
Vinx:电压位准Vinx: voltage level
VNA:辅助绕组信号VNA: auxiliary winding signal
VO:输出电压VO: output voltage
VPK:电压突波VPK: voltage surge
Vref:参考电压Vref: reference voltage
Vth:电压阈值Vth: voltage threshold
VX:反射电压VX: reflected voltage
具体实施方式Detailed ways
本发明中的附图均属示意,主要意在表示各电路间的耦接关系,以及各信号波形之间的关系,至于电路、信号波形与频率则并未依照比例绘制。The drawings in the present invention are all schematic diagrams, mainly intended to show the coupling relationship between various circuits and the relationship between various signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.
图3显示本发明的谐振半桥返驰式转换器的一实施例示意图。谐振半桥返驰式转换器300包含:第一晶体管30及第二晶体管40,用以构成半桥电路。变压器10及谐振电容20彼此串联并耦接于半桥电路的切换节点LX,变压器10包括一次侧绕组NP、二次侧绕组NS以及辅助绕组NA,其中一次侧绕组NP及二次侧绕组NS具有匝数比n,二次侧绕组NS及辅助绕组NA具有匝数比m。一次侧控制器200产生驱动信号SH及驱动信号SL,驱动信号SH及驱动信号SL经由半桥电路切换变压器10,以于变压器10的二次侧产生输出电压VO。驱动信号SH驱动第一晶体管30,以激磁变压器10。驱动信号SL于变压器10的去磁与谐振时段中导通第二晶体管40,驱动信号SL也用于导通第二晶体管40以产生流经变压器10的循环电流,以实现第一晶体管30的零电压切换。电阻60通过侦测变压器10的一次侧开关电流IP而产生电流感测信号VCS。FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-
驱动信号SH及驱动信号SL根据反馈信号VFB而产生,其中反馈信号VFB根据谐振半桥返驰式转换器300的输出功率而产生。二次侧控制器100耦接于输出电压VO以产生反馈信号VFB,反馈信号VFB经由光耦合器90耦接于一次侧控制器200。二次侧控制器100也用以产生驱动信号SG,以于变压器10的去磁时段TDS中驱动二次侧同步整流器70。辅助绕组NA于变压器10切换时产生辅助绕组信号VNA,电阻51、电阻52用以将辅助绕组信号VNA衰减以产生辅助信号VAUX,辅助信号VAUX耦接于一次侧控制器200。在一实施例中,电阻55耦接于一次侧控制器200,通过电阻55以设定参数而产生去磁信号Sdmg。The driving signal SH and the driving signal SL are generated according to the feedback signal VFB, wherein the feedback signal VFB is generated according to the output power of the resonant half-
图4显示对应于图3的实施例的操作波形图。当驱动信号SH导通时,变压器10被激磁并产生激磁电流IM,当驱动信号SH不导通时,变压器10被去磁。于去磁时段TDS中,变压器10产生二次侧开关电流IS,驱动信号SL相关于变压器10的去磁时段TDS。在一实施例中,驱动信号SL的导通期间TSL(亦即脉宽)等于或长于变压器10的去磁时段TDS,由此避免变压器10操作于连续导通模式(continuous conduction mode,CCM)。于变压器10的去磁时段TDS中,谐振电容20上产生反射电压VX,其中反射电压VX与输出电压VO的关系为:VX=n*VO。FIG. 4 shows an operation waveform corresponding to the embodiment of FIG. 3 . When the driving signal SH is turned on, the
当驱动信号SH不导通时,驱动信号SL可被导通,而当驱动信号SL不导通时,驱动信号SH可被导通。驱动信号SH与驱动信号SL之间(即驱动信号SH与驱动信号SL都不导通时)可包括空滞时间(例如时段TRH、时段TRL)。When the driving signal SH is off, the driving signal SL can be turned on, and when the driving signal SL is off, the driving signal SH can be turned on. A dead time (eg period TRH, period TRL) may be included between the driving signal SH and the driving signal SL (ie, when the driving signal SH and the driving signal SL are both non-conductive).
图4的不同时段中的操作细节详见下列说明。Details of the operations in different time periods of FIG. 4 are detailed in the following description.
时点t1至时点t2的时段为激磁变压器周期,本时段中第一晶体管30导通且第二晶体管40关断,流经变压器10中的一次侧开关电流IP增加且谐振电容20的电压也增加,此时变压器10被激磁而谐振电容20进行充电,二次侧同步整流器70关断且其本体二极管75具有逆向偏压,因此,此时并无能量被转换至二次侧。The time period from time point t1 to time point t2 is the exciter transformer cycle. During this time period, the
时点t2至时点t3的时段为第一循环电流周期,本时段中第一晶体管30与第二晶体管40均关断,变压器10的循环电流强制半桥电路的切换节点电压VHB下降,直到第二晶体管40的本体二极管45导通为止。时点t2至时点t3的时段相关于准谐振时段(quasi-resonantperiod),以实现第二晶体管40的零电压切换,此时变压器10的一次侧电压与谐振电容20于时点t3的电压相同。The time period from time point t2 to time point t3 is the first circulating current period. In this period, both the
时点t3至时点t4的时段为谐振周期(正电流),本时段中,在零电压切换的状态下,第一晶体管30关断且第二晶体管40导通,此时输出电压VO等于谐振电容20的跨压Vcr除以匝数比n,电流开始流经二次侧同步整流器70,储存于变压器10的能量被转换至输出端而产生输出电压VO。由于变压器10的漏电感Lr与谐振电容20(Cr)形成电感电容槽(LC tank),因此二次侧电流于谐振频率Lr及Cr所决定的时段中为正弦波的形式。变压器10的一次侧电流为激磁电流IM与二次侧开关电流IS之和。流经谐振槽(Lr,Cr)的电流仍为正电流,其主要由变压器10的激磁电感驱动,并且流经谐振电容20。The period from time point t3 to time point t4 is the resonant cycle (positive current). In this period, in the state of zero voltage switching, the
时点t4至时点t5的时段为谐振周期(负电流),本时段中第一晶体管30继续关断且第二晶体管40继续导通,能量持续转换至二次侧,但谐振槽电流被谐振电容20的电压反向驱动,谐振电容20的能量不仅被转换至二次侧,还于第二晶体管40持续导通(例如时点t4至时点t5)时,用以将变压器10的激磁电流位准拉至负值。The time period from time point t4 to time point t5 is the resonant cycle (negative current). During this time period, the
时点t5至时点t6的时段为反向激磁变压器周期(负电流),本时段自变压器10的去磁时段TDS结束时至第二晶体管40关断时,谐振电容20反向激磁变压器10,并产生负电流。The period from time point t5 to time point t6 is the reverse excitation transformer cycle (negative current). In this period, from the end of the demagnetization period TDS of the
时点t6至时点t7的时段为第二循环电流周期,本时段中第一晶体管30与第二晶体管40均关断,变压器10的负电流于时点t5至时点t6被感应而产生,以强制半桥电路中切换节点LX上的切换节点电压VHB增加,直到其导通第一晶体管30的本体二极管35为止。The period from the time point t6 to the time point t7 is the second circulating current period. In this period, both the
时点t7之后,开始另一个与时点t1至时点t2的时段相似的周期,第一晶体管30在零电压切换状态下导通且第二晶体管40关断,若变压器谐振槽中的循环电流仍为负电流,则谐振槽中多余的能量将被送回输入端(供应输入电压VIN的节点)。After time point t7, another period similar to the period from time point t1 to time point t2 begins, the
在轻负载的状态下,当输出功率降低时,驱动信号SH与驱动信号SL的脉宽将对应减少,故驱动信号SH与驱动信号SL的切换频率于轻负载状态下增加,由于铁芯损失(coreloss)、开关损耗(switching loss)等功率损耗增加,因此导致功率转换器的功率转换效率变差。In the light load state, when the output power decreases, the pulse width of the drive signal SH and the drive signal SL will decrease correspondingly, so the switching frequency of the drive signal SH and the drive signal SL increases under the light load state, due to the core loss ( core loss), switching loss (switching loss) and other power losses increase, resulting in poor power conversion efficiency of the power converter.
图5显示降低驱动信号SH与驱动信号SL的切换频率的操作波形图。一种改善功率效率的方式是,通过延长驱动信号SL关断(例如时点t3)至驱动信号SH导通(例如时点t5)之间的时间,可降低切换频率,然而,驱动信号SL的关断将产生循环电流,进而导致切换节点电压VHB的电压突波VPK以及辅助信号VAUX的电压降VDP,电压突波VPK与电压降VDP将造成功率损耗与噪声。FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL. One way to improve power efficiency is to reduce the switching frequency by prolonging the time between when the driving signal SL is turned off (such as time point t3) and when the driving signal SH is turned on (such as time point t5). However, the driving signal SL Turning off will generate a circulating current, which will cause a voltage surge VPK of the switching node voltage VHB and a voltage drop VDP of the auxiliary signal VAUX. The voltage surge VPK and the voltage drop VDP will cause power loss and noise.
需注意的是,前述驱动信号SH与驱动信号SL的导通或关断都各自对应于第一晶体管30与第二晶体管40的导通或关断。It should be noted that the turning on or off of the driving signal SH and the driving signal SL respectively correspond to turning on or off of the
图6显示本发明的具有省略周期的谐振半桥返驰式转换器的一实施例的操作波形图。FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.
请参阅图6,在一实施例中,驱动信号SH于激磁变压器10的激磁周期中(例如时点t1至时点t2)导通,以激磁变压器10。驱动信号SH关断后,驱动信号SL于谐振周期中(例如时点t2至时点t3)导通,且具有谐振脉冲(例如时点t2至时点t3),一个激磁周期与一个谐振周期形成一个切换周期(例如时点t1至时点t3)。Please refer to FIG. 6 , in one embodiment, the driving signal SH is turned on during the excitation cycle of the excitation transformer 10 (for example, from time point t1 to time point t2 ), so as to excite the
如图6所示,在一实施例中,省略周期Tx起始于驱动信号SH转为不导通的不导通时点(例如时点t4),且当省略周期Tx终止时(例如时点t6),驱动信号SL转为导通。在一实施例中,当输出功率因省电而降低时,省略周期Tx将对应增加(即切换频率减少)。As shown in FIG. 6, in one embodiment, the omission period Tx starts at the non-conduction time point when the drive signal SH turns non-conduction (such as time point t4), and when the omission period Tx ends (such as time point t6), the driving signal SL turns on. In one embodiment, when the output power is reduced due to power saving, the skipping period Tx will correspondingly increase (ie, the switching frequency will decrease).
请继续参阅图6,相较于无省略周期的时段,例如时点t1至时点t3,驱动信号SL于省略周期中(例如Tx)不导通而无谐振脉冲,举例而言,在现有技术中,驱动信号SL于时点t4至时点t5所存在的一个脉冲,即驱动信号SL的谐振脉冲,在本实施例中已被省略,如图6所示,因此,于省略周期中(时点t4至时点t6),并无负循环电流产生。现有技术中,切换节点电压VHB产生的电压突波VPK以及辅助信号VAUX产生的电压降VDP,在本实施例中也已被避免。在一实施例中,如图6所示,驱动信号SH于省略周期中(例如Tx)也为不导通状态。Please continue to refer to FIG. 6 , compared to a period without an omitted period, such as time point t1 to time point t3, the driving signal SL is not conducted during the omitted period (such as Tx) and there is no resonant pulse. For example, in the existing In the technology, a pulse of the driving signal SL from the time point t4 to the time point t5, that is, the resonant pulse of the driving signal SL, has been omitted in this embodiment, as shown in FIG. 6 , therefore, in the omitted period ( From time point t4 to time point t6), there is no negative circulation current. In the prior art, the voltage surge VPK generated by switching the node voltage VHB and the voltage drop VDP generated by the auxiliary signal VAUX are also avoided in this embodiment. In one embodiment, as shown in FIG. 6 , the driving signal SH is also in a non-conducting state during the omitted period (for example, Tx).
在一实施例中,当驱动信号SH关断后,于省略周期的部分时间中(例如于时点t4至时点t5之间的一部分时间),变压器10的去磁电流的一部分流经第二晶体管40的本体二极管45。换言之,在一实施例中,驱动信号SL中并无双脉冲(double pulses)。在一实施例中,驱动信号SH中也无双脉冲。就一观点而言,于驱动信号SH的单一脉冲之后,接着产生驱动信号SL的单一脉冲,于驱动信号SL的单一脉冲之后,接着产生驱动信号SH的单一脉冲,即便谐振半桥返驰式转换器操作于具有省略周期的状态亦同。就另一观点而言,于驱动信号SH的两个连续脉冲之间,驱动信号SL包括最多一个脉冲,于驱动信号SL的两个连续脉冲之间,驱动信号SH包括最多一个脉冲。In one embodiment, after the driving signal SH is turned off, during a part of the omitted period (for example, a part of the time between time point t4 and time point t5), a part of the demagnetization current of the
在一实施例中,于输出功率低于预设阈值时,产生省略周期Tx。在一实施例中,省略周期Tx随着输出功率的降低而对应增加。在一实施例中,即使在驱动信号SL无法实现第一晶体管30的零电压切换的情况下,第二驱动信号于第一驱动信号的两个连续脉冲之间不包括第二个脉冲,因而不以第二个脉冲实现第一晶体管30的零电压切换。In one embodiment, when the output power is lower than a predetermined threshold, an omission period Tx is generated. In one embodiment, the omission period Tx increases correspondingly as the output power decreases. In one embodiment, even if the driving signal SL cannot achieve zero-voltage switching of the
请继续参阅图6,在一实施例中,驱动信号SL的零电压切换脉冲(例如PZV)于省略周期经过后导通第二晶体管40,以实现零电压切换周期(例如时点t6至时点t7)。Please continue to refer to FIG. 6 , in one embodiment, the zero-voltage switching pulse (for example, PZV) of the driving signal SL turns on the
如图6所示,在一实施例中,于省略周期后的零电压切换脉冲PZV之后,接着产生至少一个切换周期(例如时点t7至时点t9)。As shown in FIG. 6 , in one embodiment, at least one switching period (for example, time point t7 to time point t9 ) is generated after the zero-voltage switching pulse PZV after the cycle is omitted.
请继续参阅图6,在一实施例中,谐振周期可包括延续零电压切换期间(例如时点t3’至时点t3),延续零电压切换期间用以实现第一晶体管30的零电压切换。换言之,本实施例中,谐振脉冲的第一部分(例如时点t2至时点t3’)用以实现变压器10与谐振电容20的谐振,而谐振脉冲的第二部分(例如时点t3’至时点t3)用以产生循环电流以实现第一晶体管30的零电压切换。Please continue to refer to FIG. 6 , in one embodiment, the resonant period may include a continuation of the zero-voltage switching period (for example, time point t3' to time point t3), and the continuation of the zero-voltage switching period is used to realize the zero-voltage switching of the
图7显示本发明的谐振半桥返驰式转换器中一次侧控制器的一实施例方块图。在一实施例中,一次侧控制器200包括计时器25以及控制元件240。在一实施例中,控制元件240用以根据输入电压VIN(经由辅助信号VAUX)与反馈信号VFB而产生驱动信号SH与驱动信号SL,计时器25用以产生前述省略周期Tx。FIG. 7 shows a block diagram of an embodiment of the primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the
如图7所示,在一实施例中,计时器25根据相关于输出功率的信息,判断输出功率是否低于预设阈值,当输出功率被判断为低于预设阈值时,计时器25开始计算省略周期Tx,并控制控制元件240于省略周期Tx中省略驱动信号SH与驱动信号SL的脉冲。As shown in Figure 7, in one embodiment, the
请再次参阅图4,当谐振半桥返驰式转换器处于中负载及轻负载的状态时,时点t4至时点t5的谐振周期较短,无法产生足够的负电流(能量)以实现零电压切换,因此,负电流的主要部分来自时点t5至时点t6所产生的电流。Please refer to Figure 4 again. When the resonant half-bridge flyback converter is in the state of medium load and light load, the resonant period from time point t4 to time point t5 is short and cannot generate enough negative current (energy) to achieve zero The voltage switches, therefore, the main part of the negative current comes from the current generated from the time point t5 to the time point t6.
然而,较高的负电流将导致较高的功率损耗,为了将实现零电压切换的负电流控制在适当位准,去磁时段的控制必须准确,因此需产生去磁信号Sdmg对应于变压器10的去磁时段TDS。However, a higher negative current will lead to higher power loss. In order to control the negative current for zero-voltage switching at an appropriate level, the control of the demagnetization period must be accurate, so it is necessary to generate a demagnetization signal Sdmg corresponding to the
图8显示本发明的谐振半桥返驰式转换器中一次侧控制器的一实施例方块图。在一实施例中,一次侧控制器208包括去磁仿拟器250以及控制元件248。在一实施例中,控制元件248用以根据输入电压VIN(经由辅助信号VAUX)与反馈信号VFB而产生驱动信号SH与驱动信号SL,去磁仿拟器250用以根据去磁相关信号而产生去磁信号Sdmg,以仿拟去磁时段TDS,其中去磁相关信号例如变压器10的反射电压(经由辅助信号VAUX)。FIG. 8 shows a block diagram of an embodiment of the primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the
请同时参阅图9,图9显示本发明的去磁仿拟器产生去磁信号的操作波形图。Please refer to FIG. 9 at the same time. FIG. 9 shows the operation waveform diagram of the demagnetization simulator generating the demagnetization signal of the present invention.
于切换周期中,谐振半桥返驰式转换器周期性地操作于非不连续导通模式(例如时点ta至时点tc’),驱动信号SH首先导通第一晶体管30,以激磁变压器10进而产生一次侧开关电流IP(例如时点ta’至时点tb),于第一晶体管30关断后,驱动信号SL用以于谐振周期中(时点tb至时点tc)导通(例如时点tb至时点tc’)第二晶体管40,并用以产生循环电流(例如时点tc至时点tc’)以实现第一晶体管30的零电压切换。于非不连续导通模式的切换周期中,驱动信号SL的导通期间TSL(例如时点tb至时点tc’)由去磁信号Sdmg的脉宽(例如TDSX’)决定,其中去磁信号Sdmg由去磁仿拟器250根据先前强制插入的不连续导通模式中的校正而产生。在一实施例中,去磁信号Sdmg的导通期间TDSX’于先前主动强制的不连续导通模式期间中被校正,并用以使得控制元件248控制第二晶体管40的最小导通时间,由此于第一晶体管30关断后的非不连续导通模式期间,去磁变压器10。在一实施例中,如图9所示,驱动信号SL的导通期间TSL(例如时点tb至时点tc’)可为去磁信号Sdmg的导通期间TDSX’加上一延迟时间(例如时点tc至时点tc’),以于去磁时段后,在一次侧开关电流IP上建立负循环电流,以实现第一晶体管30的零电压切换。In the switching period, the resonant half-bridge flyback converter operates periodically in the discontinuous conduction mode (for example, from time point ta to time point tc'), and the driving signal SH first turns on the
需注意的是,非不连续导通模式是指不是不连续导通模式的操作模式,例如:连续导通模式(continuous conduction mode,CCM),或准谐振模式(quasi-resonant mode,QRM)的操作,准谐振模式又称为边界导通模式(boundary conduction mode,BCM)。It should be noted that the non-discontinuous conduction mode refers to the operation mode that is not discontinuous conduction mode, such as: continuous conduction mode (continuous conduction mode, CCM), or quasi-resonant mode (quasi-resonant mode, QRM) operation, the quasi-resonant mode is also called boundary conduction mode (boundary conduction mode, BCM).
在一实施例中,当一次侧开关电流IP已有预设数量(例如一正整数NC)的切换周期(例如时点ta至时点t1)操作于非不连续导通模式(例如准谐振模式)时,至少一个切换周期被主动强制操作于不连续导通模式(例如时点t1至时点t3)。因此,去磁仿拟器250用以于强制插入的不连续导通模式中,根据变压器10的去磁时段TDS而校正去磁信号Sdmg的导通期间TDSX。In one embodiment, when the primary-side switch current IP has a preset number (such as a positive integer NC) of switching cycles (such as time point ta to time point t1), it operates in a non-discontinuous conduction mode (such as a quasi-resonant mode ), at least one switching cycle is actively forced to operate in the discontinuous conduction mode (for example, time point t1 to time point t3). Therefore, the
如图9所示,于强制插入的不连续导通模式中,变压器10的去磁时段TDS从辅助信号VAUX的上升缘(rising edge)开始,并于辅助信号VAUX(例如时点t2至时点t3)的下降缘(falling edge,即膝点kn)结束。具体而言,本实施例中,可通过感测辅助信号VAUX而侦测反射电压,辅助信号VAUX来自第一晶体管30的关断期间中,变压器10的辅助绕组NA。反射电压出现的时间长度,即辅助信号VAUX自上升缘至膝点kn的脉宽,相关于变压器10的去磁时段TDS。As shown in FIG. 9 , in the forced-inserted discontinuous conduction mode, the demagnetization period TDS of the
在一实施例中,一次侧控制器208还包括周期计数器260,周期计数器260用以根据一次侧开关电流IP而计算切换周期操作于非不连续导通模式的数量,且当一次侧开关电流IP被判断为已有预设数量的切换周期非操作于不连续导通模式时,周期计数器260用以控制控制元件248主动强制操作于不连续导通模式。在一实施例中,周期计数器260可经由电流感测信号VCS而感测一次侧开关电流IP,由此判断操作于非不连续导通模式。In one embodiment, the primary-
在一实施例中,如图9所示,于强制不连续导通模式切换周期中,驱动信号SL持续控制第二晶体管40为不导通,使得半桥电路不仅操作于不连续导通模式,也操作于异步切换模式,其中于强制不连续导通模式切换周期中,变压器10的去磁电流(例如时点t2至时点t2’的IP)的一部分流经第二晶体管40的本体二极管45。In one embodiment, as shown in FIG. 9, during the forced discontinuous conduction mode switching period, the driving signal SL continuously controls the
请继续参阅图9,在不连续导通模式DCM之后(例如时点t4至时点t5),驱动信号SL的第一脉冲导通第二晶体管40,以自谐振电容20至变压器10激磁变压器10,进而产生负循环电流(时点t4至时点t5的IP)以实现第一晶体管30的零电压切换。Please continue to refer to FIG. 9 , after the discontinuous conduction mode DCM (for example, from time point t4 to time point t5), the first pulse of the driving signal SL turns on the
图10显示本发明产生去磁信号Sdmg的去磁仿拟器的一具体实施例示意图。在一实施例中,去磁仿拟器250包括计时产生器205、比较器280以及逻辑电路285。FIG. 10 shows a schematic diagram of a specific embodiment of a demagnetization simulator for generating a demagnetization signal Sdmg according to the present invention. In one embodiment, the
在一实施例中,计时产生器205包括积分器,积分器由开关231及电容230组成,开关231由取样信号SMP所控制,取样信号SMP相关于驱动信号SH以对电流感测信号VCS取样。放电电流ID相关于n*VO,用以将电容230的跨压VC放电。跨压VC通过比较器280而与参考电压Vref进行比较。逻辑电路285根据比较器输出CPO与相关于驱动信号SH的取样信号SMP而产生去磁信号Sdmg。在一实施例中,参考电压Vref为0伏特,当一次侧开关电流IP为0时,电流感测电压VCS为0。In one embodiment, the
在一实施例中,去磁信号Sdmg的时间长度相关于变压器10的输入电压的电压位准(Vinx),亦即如图3所示,一次侧绕组NP与谐振电容20的耦接节点NNP上的电压,去磁信号Sdmg的时间长度也相关于变压器10的输出电压的电压位准(例如n*VO)及变压器10于第一晶体管30导通时的激磁时段(TW)。需注意的是,变压器10的输入电压的电压位准Vinx等于输入电压VIN减去谐振电容20的跨压Vcr。In one embodiment, the duration of the demagnetization signal Sdmg is related to the voltage level (Vinx) of the input voltage of the
根据变压器10被去磁的磁通量等于变压器10被激磁的磁通量,可列出以下式1:According to the demagnetized magnetic flux of the
Vinx*TW=n*VO*TDS (式1)Vinx*TW=n*VO*TDS (Formula 1)
其中TW为在变压器10的激磁时段中,变压器10的输入电压的电压位准Vinx的出现时间;n*VO为在变压器10的去磁时段TDS中,变压器10的电压。n为一次侧绕组NP及二次侧绕组NS的匝数比,VO为二次侧绕组NS的电压(即输出电压)。Where TW is the occurrence time of the voltage level Vinx of the input voltage of the
在变压器10被激磁后,电流感测信号VCS的位准VCSp相关于一次侧开关电流IP于激磁过程结束的峰值,且于图3所示的电阻60上产生,其可以下列式2表示:After the
VCSp=(Vinx/L)*TW*Rs (式2)VCSp=(Vinx/L)*TW*Rs (Formula 2)
其中L为变压器10的一次侧绕组NP的电感,Rs为电阻60的电阻值,VCSp为变压器10于激磁过程结束的电压位准。Where L is the inductance of the primary winding NP of the
设ID=n*VO/Rt,其中Rt为电阻55的电阻值。Let ID=n*VO/Rt, where Rt is the resistance value of the
去磁信号Sdmg的脉宽TDSX可被表示为:The pulse width TDSX of the demagnetization signal Sdmg can be expressed as:
TDSX=(C*VCSp)/ID,其中C为电容230的电容值。TDSX=(C*VCSp)/ID, where C is the capacitance of the
TDSX=(Rt*C*VCSp)/(n*VO)TDSX=(Rt*C*VCSp)/(n*VO)
TDSX=(Rt*C/(n*VO))*(Rs/L)*Vinx*TWTDSX=(Rt*C/(n*VO))*(Rs/L)*Vinx*TW
设Rt=L/(Rs*C) (式3)Let Rt=L/(Rs*C) (Equation 3)
TDSX=(Vinx*TW)/(n*VO) (式4)TDSX=(Vinx*TW)/(n*VO) (Formula 4)
当式3的条件满足时,式4所示的去磁信号Sdmg的导通期间TDSX等于变压器10的去磁时段TDS。When the condition of
请继续参阅图10,开关231导通以对电流感测信号VCS取样至电容230,且于开关231关断时(即激磁结束时),电流感测信号VCS的位准VCSp被保持在电容230,开关231由取样信号SMP控制。当开关231关断时,去磁信号Sdmg被使能(例如通过逻辑电路285),换言之,当去磁信号Sdmg开始使能时,电容230的跨压VC为电流感测信号VCS的峰值。在开关231关断之后,放电电流ID开始将电容230放电,当电容230经由放电电流ID(ID=n*VO/Rt)完全放电完成时(VC=0V),去磁信号Sdmg禁止。图10及图3所示的电阻55用以设定去磁信号Sdmg的预设脉宽。Please continue to refer to FIG. 10, the
在一实施例中,于强制插入的不连续导通模式切换周期中,去磁信号Sdmg的脉宽TDSX可通过去磁仿拟器250而与辅助信号VAUX的脉宽所示意的去磁时段TDS做比较,因此去磁信号Sdmg的脉宽TDSX可被校正而用于接下来的非不连续导通模式切换周期。在一实施例中,去磁仿拟器250还用以根据不连续导通模式中所侦测到的去磁时段TDS而调整电阻255的电阻值,以校正去磁信号Sdmg的脉冲期间TDSX。In one embodiment, in the forcedly inserted discontinuous conduction mode switching period, the pulse width TDSX of the demagnetization signal Sdmg can be compared with the demagnetization period TDS indicated by the pulse width of the auxiliary signal VAUX through the
在其他实施例中,除了调整电阻255的电阻值外,去磁仿拟器250也可通过以下方式校正去磁信号Sdmg的脉冲期间TDSX:调整电压阈值Vth以决定去磁信号Sdmg的结束,或调整电容230的电容值,或调整例如图10中晶体管271与晶体管272所组成的电流镜的比值。In other embodiments, in addition to adjusting the resistance value of the
图11显示本发明的谐振半桥返驰式转换器的一较佳实施例示意图。谐振半桥返驰式转换器900相似于图3的谐振半桥返驰式转换器300。在本实施例中,谐振半桥返驰式转换器900包括第一晶体管M1、第二晶体管M2及第三晶体管M3,第一晶体管M1、第二晶体管M2及第三晶体管M3用以构成半桥电路。就一观点而言,第一晶体管M1与第三晶体管M3配置为谐振半桥返驰式转换器900的下桥晶体管,且第二晶体管M2配置为谐振半桥返驰式转换器900的上桥晶体管。FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-
根据反馈信号VFB及输入电压VIN,一次侧控制器201用以产生第一驱动信号S1、第二驱动信号S2及第三驱动信号S3,第一驱动信号S1、第二驱动信号S2及第三驱动信号S3耦接以经由半桥电路而切换变压器10,由此于变压器10的二次侧产生输出电压VO。第二驱动信号S2驱动第二晶体管M2以激磁变压器10,第三驱动信号S3于变压器10的去磁与谐振时段中导通第三晶体管M3,第三驱动信号S3也用于导通第三晶体管M3以产生流经变压器10的循环电流,并于重负载状态中实现第二晶体管M2的零电压切换。换言之,第二晶体管M2为谐振半桥返驰式转换器900的一次侧上桥开关且可对应于图3的第一晶体管30,第三晶体管M3为谐振半桥返驰式转换器900的一次侧下桥开关且可对应于图3的第二晶体管40。就一观点而言,第一晶体管M1用以并联于第三晶体管M3且作为辅助一次侧下桥开关,具有独立的控制信号S1。According to the feedback signal VFB and the input voltage VIN, the
在一实施例中,在轻负载状态且操作于不连续导通模式时,通过导通第二晶体管M2而激磁变压器10之后,第三晶体管M3于变压器10的去磁与谐振时段中被控制为导通。于去磁之后,当第三晶体管M3持续关断,第一驱动信号S1用以导通第一晶体管M1,以产生流经变压器10的循环电流而实现第二晶体管M2的零电压切换。因此,第三晶体管M3在不连续导通模式的一个切换周期中可避免切换两次。In one embodiment, after the
由于第一晶体管M1只用以产生循环电流以实现零电压切换,在一实施例中,第一晶体管M1的实际尺寸(例如长宽比)可配置为远小于第三晶体管M3的实际尺寸。因此,第一晶体管M1的驱动能力及寄生电容(例如栅极电容)低于第三晶体管M3的寄生电容,第一晶体管M1的切换损耗也因此低于第三晶体管M3的切换损耗。Since the first transistor M1 is only used to generate circulating current to realize zero-voltage switching, in one embodiment, the actual size (eg aspect ratio) of the first transistor M1 can be configured to be much smaller than the actual size of the third transistor M3 . Therefore, the driving capability and parasitic capacitance (eg, gate capacitance) of the first transistor M1 are lower than those of the third transistor M3 , and the switching loss of the first transistor M1 is therefore lower than that of the third transistor M3 .
举例而言,晶体管的栅极切换损耗Pg可被表示为:For example, the gate switching loss Pg of a transistor can be expressed as:
Pg=0.5*Ciss*Vg*Vg*FreqPg=0.5*Ciss*Vg*Vg*Freq
其中Ciss为晶体管的输入电容,Vg为栅极驱动信号的电压位准,Freq为栅极驱动信号的切换频率。Where Ciss is the input capacitance of the transistor, Vg is the voltage level of the gate driving signal, and Freq is the switching frequency of the gate driving signal.
如上述开关功率损耗方程式,实际尺寸较小的第一晶体管M1用以专用于不连续导通模式中实现第二晶体管M2的零电压切换,因此第一晶体管M1的栅极切换损耗低于实际尺寸较大的第三晶体管M3。According to the switching power loss equation above, the first transistor M1 with a smaller actual size is dedicated to realize the zero-voltage switching of the second transistor M2 in the discontinuous conduction mode, so the gate switching loss of the first transistor M1 is lower than the actual size Larger third transistor M3.
此外,在一实施例中,第一驱动信号S1的电压位准(即Vg)的振幅低于第三驱动信号S3的电压位准的振幅,因此还可降低第一晶体管M1的切换损耗,且在一实施例中,第一晶体管M1的栅极最大额定值(例如栅源极电压)也可低于第三晶体管M3的栅极最大额定值。In addition, in one embodiment, the amplitude of the voltage level (ie, Vg) of the first driving signal S1 is lower than the amplitude of the voltage level of the third driving signal S3, so the switching loss of the first transistor M1 can also be reduced, and In an embodiment, the maximum rating of the gate of the first transistor M1 (eg, the gate-to-source voltage) may also be lower than the maximum rating of the gate of the third transistor M3 .
电阻60通过侦测变压器10的一次侧开关电流IP而产生电流感测信号VCS,一次侧控制器201用以根据输入电压VIN而产生第一驱动信号S1,并根据输入电压VIN及/或输出电压VO而产生第三驱动信号S3。一次侧控制器201还用以根据反馈信号VFB而产生第二驱动信号S2。The
图12显示本发明的一次侧控制器201操作于不连续导通模式的一较佳实施例操作波形图。于不连续导通模式的操作中,一次侧控制器201操作于第一切换周期Tcyc1并控制第一驱动信号S1于第一时段TA中导通第一晶体管M1,由此产生循环电流以实现第二晶体管M2导通时的零电压切换。经过第一时段TA后,第一驱动信号S1、第二驱动信号S2及第三驱动信号S3用以于第一不导通时段Td1(即空滞时段)中,关断第一晶体管M1、第二晶体管M2及第三晶体管M3。在一实施例中,第一不导通时段Td1相关于用以实现第二晶体管M2的零电压切换的准谐振时段。经过第一不导通时段Td1后,第二驱动信号S2于第二时段TB中,导通第二晶体管M2,第二晶体管M2的导通用以激磁变压器10。经过第二时段TB后,第一驱动信号S1、第二驱动信号S2及第三驱动信号S3用以于(即空滞时段)中,关断第一晶体管M1、第二晶体管M2及第三晶体管M3。在一实施例中,第二不导通时段Td2相关于用以实现第三晶体管M3的零电压切换的另一准谐振时段。经过第二不导通时段Td2后,第三驱动信号S3于第三时段TC中,导通第三晶体管M3,第三晶体管M3于变压器10的去磁时段中导通。经过第三时段TC后,第一驱动信号S1、第二驱动信号S2及第三驱动信号S3用以于第三不导通时段TZ中,关断第一晶体管M1、第二晶体管M2及第三晶体管M3,其中激磁电流IM于第三不导通时段TZ中(即不连续导通模式)维持在零。经过第三不导通时段TZ后,开始另一切换周期Tcyc2。FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-
图13显示本发明一次侧控制器的一较佳实施例方块图。在一实施例中,一次侧控制器213包括计时器22及控制元件243。控制元件243用以根据输入电压VIN(经由VAUX)及反馈信号VFB而产生第一驱动信号S1、第二驱动信号S2及第三驱动信号S3。FIG. 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention. In one embodiment, the
计时器22用以计时而产生第三不导通时段TZ,第三不导通时段TZ起始于第三驱动信号S3脉冲结束时(例如下降缘)。在一实施例中,当谐振半桥返驰式转换器的输出功率减少时,第三不导通时段TZ对应增加,因此,谐振半桥返驰式转换器的切换频率也能因谐振半桥返驰式转换器的输出功率减少而对应减少,由此改善轻负载操作状态中的效能。The
以上已针对较佳实施例来说明本发明,但以上所述,仅为使本领域技术人员易于了解本发明的内容,并非用来限定本发明的权利范围。所说明的各个实施例,并不限于单独应用,也可以组合应用,举例而言,两个或以上的实施例可以组合运用,而一实施例中的部分组成也可用以取代另一实施例中对应的组成部件。此外,在本发明的相同精神下,本领域技术人员可以想到各种等效变化以及各种组合,举例而言,本发明所称“根据某信号进行处理或运算或产生某输出结果”,不限于根据该信号的本身,也包含于必要时,将该信号进行电压电流转换、电流电压转换、及/或比例转换等,之后根据转换后的信号进行处理或运算产生某输出结果。由此可知,在本发明的相同精神下,本领域技术人员可以想到各种等效变化以及各种组合,其组合方式甚多,在此不一一列举说明。因此,本发明的范围应涵盖上述及其他所有等效变化。The present invention has been described above with reference to preferred embodiments, but the above description is only for those skilled in the art to easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The various embodiments described are not limited to single application, and can also be used in combination. For example, two or more embodiments can be used in combination, and some components in one embodiment can also be used to replace another embodiment. corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. It is limited to the signal itself, and also includes performing voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or computing the converted signal to generate a certain output result. It can be seen that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which will not be listed here. Accordingly, the scope of the invention should encompass the above and all other equivalent variations.
Claims (16)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163230419P | 2021-08-06 | 2021-08-06 | |
US63/230,419 | 2021-08-06 | ||
US17/673,062 | 2022-02-16 | ||
US17/673,062 US11962247B2 (en) | 2021-02-25 | 2022-02-16 | Resonant half-bridge flyback power converter with skipping cycles and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115706517A true CN115706517A (en) | 2023-02-17 |
Family
ID=85180717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210688358.2A Pending CN115706517A (en) | 2021-08-06 | 2022-06-17 | Resonant half-bridge flyback converter with omitted period and control method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115706517A (en) |
TW (1) | TWI824551B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118646270A (en) * | 2023-03-13 | 2024-09-13 | 艾科微电子(深圳)有限公司 | Controller of asymmetric half-bridge converter and method of operating the same |
CN115940660B (en) * | 2023-03-13 | 2023-06-30 | 艾科微电子(深圳)有限公司 | Asymmetric half-bridge power supply and control method thereof |
TWI880804B (en) * | 2024-02-20 | 2025-04-11 | 立錡科技股份有限公司 | Power converting circuit and control method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7518263B2 (en) * | 2004-04-12 | 2009-04-14 | Delta Electronics, Inc. | Time delay control scheme for a power supply with multiple outputs |
TWM312840U (en) * | 2006-11-24 | 2007-05-21 | Ching-Ming Lai | Single level logic connection controlled power converter characterized by high power factor |
US10972014B2 (en) * | 2017-10-12 | 2021-04-06 | Rompower Technology Holdings, Llc | High efficiency passive clamp |
TWI863918B (en) * | 2018-09-26 | 2024-12-01 | 義大利商埃格特羅尼克工程股份公司 | Apparatus for transferring electrical power to an electrical load with converter |
-
2022
- 2022-06-08 TW TW111121174A patent/TWI824551B/en active
- 2022-06-17 CN CN202210688358.2A patent/CN115706517A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI824551B (en) | 2023-12-01 |
TW202308282A (en) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12009753B2 (en) | Half-bridge flyback power converter and control method thereof | |
CN114123784B (en) | Resonant half-bridge flyback power supply and primary side control circuit and control method thereof | |
US8988901B2 (en) | Switching power supply device | |
US9276483B2 (en) | Control circuit for active-clamp flyback power converter with programmable switching period | |
JP3371962B2 (en) | DC-DC converter | |
JP5463759B2 (en) | Switching power supply device and switching power supply control circuit | |
US7522429B2 (en) | DC-DC converter | |
TWI824551B (en) | Resonant half-bridge flyback power converter with skipping cycles and control method thereof | |
JP4371042B2 (en) | Switching power supply | |
KR101727290B1 (en) | Converter and the driving method thereof | |
US6738266B2 (en) | Switching power supply unit | |
JP2015163018A (en) | Switching power supply | |
JP2009284667A (en) | Power supply device, its control method, and semiconductor device | |
TWI822091B (en) | Half-bridge flyback power converter and control method thereof | |
CN112152432A (en) | Method and control circuit for driving electronic switches in power converters | |
TWI825773B (en) | Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof | |
US20240313659A1 (en) | Controller for use in asymmetrical half-bridge converter and operation method thereof | |
TWI862221B (en) | Resonant flyback power converter and switching control circuit and method thereof | |
CN115940646A (en) | Power Converter with Adaptive Active Clamp | |
KR101486962B1 (en) | Converter and the driving method thereof | |
US20240120844A1 (en) | Resonant flyback power converter and switching control circuit and method thereof | |
TW202418740A (en) | Resonant flyback power converter and switching control circuit and method thereof | |
CN118508756A (en) | Resonant asymmetric half-bridge flyback power converter and switching control circuit thereof | |
JP2003219639A (en) | Switching power source | |
KR20160147689A (en) | Converter and the driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |