CN115692662B - A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material - Google Patents
A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material Download PDFInfo
- Publication number
- CN115692662B CN115692662B CN202211419886.4A CN202211419886A CN115692662B CN 115692662 B CN115692662 B CN 115692662B CN 202211419886 A CN202211419886 A CN 202211419886A CN 115692662 B CN115692662 B CN 115692662B
- Authority
- CN
- China
- Prior art keywords
- aluminum
- rare earth
- composite material
- solution
- coated graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 38
- 239000010439 graphite Substances 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 28
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 25
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 13
- -1 rare earth compound Chemical class 0.000 claims abstract description 10
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 7
- 239000008139 complexing agent Substances 0.000 claims abstract description 6
- 239000007822 coupling agent Substances 0.000 claims abstract description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 16
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 10
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 6
- 150000004645 aluminates Chemical class 0.000 claims description 5
- 238000005303 weighing Methods 0.000 claims description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 4
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 claims description 4
- 239000008096 xylene Substances 0.000 claims description 4
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 3
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 3
- WHRIKZCFRVTHJH-UHFFFAOYSA-N ethylhydrazine Chemical compound CCNN WHRIKZCFRVTHJH-UHFFFAOYSA-N 0.000 claims description 3
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 239000003513 alkali Substances 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 claims 1
- VXAFLZMXUOCKBW-UHFFFAOYSA-L zinc;azane;sulfate Chemical compound N.N.N.N.[Zn+2].[O-]S([O-])(=O)=O VXAFLZMXUOCKBW-UHFFFAOYSA-L 0.000 claims 1
- 239000007770 graphite material Substances 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000002904 solvent Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract 4
- 239000012670 alkaline solution Substances 0.000 abstract 1
- 238000000975 co-precipitation Methods 0.000 abstract 1
- 239000008367 deionised water Substances 0.000 abstract 1
- 229910021641 deionized water Inorganic materials 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 239000000463 material Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 229910021383 artificial graphite Inorganic materials 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- BWMPALYESSYXAM-UHFFFAOYSA-J [I-].[I-].[I-].[I-].[K+].[K+].[K+].[K+] Chemical compound [I-].[I-].[I-].[I-].[K+].[K+].[K+].[K+] BWMPALYESSYXAM-UHFFFAOYSA-J 0.000 description 2
- 238000001467 acupuncture Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- MJIHMGIXWVSFTF-UHFFFAOYSA-L copper;azane;sulfate Chemical compound N.N.N.N.[Cu+2].[O-]S([O-])(=O)=O MJIHMGIXWVSFTF-UHFFFAOYSA-L 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910021384 soft carbon Inorganic materials 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 150000002909 rare earth metal compounds Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WVRJUMZHKISIJD-UHFFFAOYSA-N tetraazanium;disulfate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O WVRJUMZHKISIJD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种铝和稀土共包覆石墨负极复合材料的制备方法,包括:将铝粉、铝基偶联剂、稀土化合物、络合剂添加到溶剂中分散均匀,得到溶液A;将石墨、还原剂添加到去离子水分散均匀,得到溶液B;通过三颈烧瓶同时添加溶液A、溶液B及其有机碱性溶液,并在温度为50‑150℃,压强为‑0.01~‑0.09Mpa条件下进行共沉积反应1‑6h,过滤、滤渣真空干燥,在温度为700‑1100℃碳化1‑6h,即得。本发明提升石墨材料的首次效率和快充性能。
The invention discloses a method for preparing an aluminum and rare earth co-coated graphite negative electrode composite material, comprising: adding aluminum powder, an aluminum-based coupling agent, a rare earth compound, and a complexing agent to a solvent to disperse uniformly to obtain a solution A; Add graphite and reducing agent to deionized water and disperse evenly to obtain solution B; add solution A, solution B and its organic alkaline solution through a three-necked flask at the same time, and at a temperature of 50‑150 ° C, a pressure of ‑0.01 to ‑0.09 Carry out coprecipitation reaction under the condition of Mpa for 1-6h, filter, vacuum-dry the filter residue, and carbonize at a temperature of 700-1100°C for 1-6h to obtain the product. The invention improves the first-time efficiency and fast charging performance of the graphite material.
Description
技术领域technical field
本发明属于锂离子电池材料制备领域,具体的说是一种铝和稀土共包覆石墨负极复合材料的制备方法。The invention belongs to the field of preparation of lithium ion battery materials, in particular to a method for preparing aluminum and rare earth co-coated graphite negative electrode composite materials.
背景技术Background technique
随着市场对磷酸铁锂电池能量密度要求的提高,要求锂离子电池在具有高能量密度的同时,材料的快充性能也应得到提升。而负极材料又是影响其电池能量密度及其快充性能的关键材料,目前市场化的负极材料主要以人造石墨为主,其主要通过在石墨表面包覆软碳或硬碳提升首次效率及其快充性能,但由于软碳或硬碳材料自身首次效率低(80-85%)造成其石墨负极材料的首次效率在92%左右,而正极材料磷酸铁锂的首次效率为96%左右,负极材料成为制约磷酸铁锂电池全电池首次效率偏低的主要原因,影响其能量密度的提升。因此为提升磷酸铁锂电池能量密度,需要提升石墨材料的首次效率。提升石墨材料的首次效率主要是通过以下措施:1)降低石墨材料的表面缺陷,减少形成SEI膜消耗的锂离子,但是提升幅度不大;2)包覆氧化铝等金属氧化物,但是会造成阻抗增加并降低能量密度;3)包覆快离子导体,但是存在加工问题难且成本较高。比如专利申请号202110661595.5公开了一种网状γ-氧化铝包覆改性石墨负极材料、其制备方法及其应用,其将铝盐在高温、常压下,通过溶胶-凝胶法均匀包覆在石墨负极表面;将所得包覆前驱体真空干燥;干燥后产物经高温煅烧反应即得。虽提升了首次效率及其高温性能,但是由于包覆氧化铝降低了材料的动力学性能及倍率性能,同时在常压下反应效率低,不利于产业化的推广。As the market's requirements for the energy density of lithium iron phosphate batteries increase, it is required that lithium-ion batteries have high energy density and the fast charging performance of materials should also be improved. The anode material is the key material that affects the energy density of the battery and its fast charging performance. At present, the anode material in the market is mainly artificial graphite, which mainly improves the initial efficiency by coating soft carbon or hard carbon on the graphite surface. Fast charging performance, but due to the low initial efficiency of soft carbon or hard carbon materials (80-85%), the initial efficiency of the graphite negative electrode material is about 92%, while the initial efficiency of the positive electrode material lithium iron phosphate is about 96%. Materials have become the main reason for the low efficiency of lithium iron phosphate batteries for the first time, affecting the improvement of their energy density. Therefore, in order to increase the energy density of lithium iron phosphate batteries, it is necessary to increase the first-time efficiency of graphite materials. Improve the first efficiency of graphite materials mainly through the following measures: 1) reduce the surface defects of graphite materials and reduce the lithium ions consumed by the formation of SEI film, but the increase is not large; 2) coating aluminum oxide and other metal oxides, but will cause Impedance increases and energy density is reduced; 3) Coating fast ion conductors, but processing problems are difficult and the cost is high. For example, patent application No. 202110661595.5 discloses a network-shaped γ-alumina coated modified graphite negative electrode material, its preparation method and its application, which uniformly coats aluminum salt by sol-gel method at high temperature and normal pressure On the surface of the graphite negative electrode; the obtained coated precursor is vacuum-dried; after drying, the product is obtained by calcining at a high temperature. Although the first-time efficiency and high-temperature performance are improved, the kinetic performance and rate performance of the material are reduced due to the coating of alumina, and the reaction efficiency is low under normal pressure, which is not conducive to the promotion of industrialization.
发明内容Contents of the invention
本发明的目的在于克服上述缺点而提供的一种提升石墨材料的首次效率和快充性能的铝和稀土共包覆石墨负极复合材料的制备方法。The purpose of the present invention is to overcome the above disadvantages and provide a method for preparing an aluminum and rare earth co-coated graphite negative electrode composite material that improves the first-time efficiency and fast charge performance of graphite materials.
本发明的一种铝和稀土共包覆石墨负极复合材料的制备方法,包括如下步骤:A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material of the present invention, comprises the following steps:
步骤S1:按照质量比1-10:1-10:1-5:1-5:500称取铝粉、铝基偶联剂、稀土化合物、络合剂和有机溶剂分散均匀后,得到溶液A;Step S1: According to the mass ratio of 1-10: 1-10: 1-5: 1-5: 500, weigh aluminum powder, aluminum-based coupling agent, rare earth compound, complexing agent and organic solvent and disperse evenly to obtain solution A ;
步骤S2:按照质量比100:1-5:500-1000将石墨、还原剂及其有机溶剂分散均匀,得到溶液B;Step S2: according to the mass ratio of 100:1-5:500-1000, graphite, reducing agent and organic solvent thereof are uniformly dispersed to obtain solution B;
步骤S3:按溶液A:溶液B:有机碱液质量比=500:500-1000:100通过三颈烧瓶同时添加,在温度为50-150℃,压强为-0.01~-0.09Mpa条件下反应1-6h,过滤,滤渣在80℃真空干燥24h,在温度为700-1100℃碳化1-6h,得到铝和稀土共包覆石墨负极复合材料。Step S3: According to solution A:solution B:organic lye mass ratio=500:500-1000:100, add simultaneously through a three-necked flask, and react 1 at a temperature of 50-150°C and a pressure of -0.01~-0.09Mpa -6h, filter, and vacuum-dry the filter residue at 80°C for 24h, carbonize at a temperature of 700-1100°C for 1-6h, and obtain aluminum and rare earth co-coated graphite negative electrode composite material.
所述步骤S1中的铝基偶联剂为二硬酯酰氧异丙基铝酸酯、铝酸三异丙酯或铝酸三苄酯中的一种。The aluminum-based coupling agent in the step S1 is one of distearoyloxyisopropyl aluminate, triisopropyl aluminate or tribenzyl aluminate.
所述步骤S1中的稀土化合物为铈、钐、铕、钆、铽、镝、钬、铒或钪中氧化物的一种。The rare earth compound in the step S1 is one of the oxides of cerium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium or scandium.
所述步骤S1中络合剂为硫酸四氨合铜、四碘化汞酸钾或硫酸四氨合锌中的一种。The complexing agent in the step S1 is one of tetraammine copper sulfate, potassium tetraiodide mercurate or tetraammine zinc sulfate.
所述步骤S2中还原剂为无水肼、甲基肼或乙基肼中的一种。The reducing agent in the step S2 is one of anhydrous hydrazine, methyl hydrazine or ethyl hydrazine.
所述步骤S1和步骤S2中的有机溶剂为异丙醇、丁二醇或、二甲苯中的一种。The organic solvent in the step S1 and step S2 is one of isopropanol, butanediol or xylene.
所述步骤S3中的有机碱液为二甲胺、三甲胺、N,N-二甲基乙醇胺中的一种。The organic lye in the step S3 is one of dimethylamine, trimethylamine and N,N-dimethylethanolamine.
本发明与现有技术相比,具有明显的有益效果,从以上技术方案可知:本发明通过共沉积法在石墨表面沉积氧化铝提升首次效率,并通过电子导电性强的金属铝和稀土化合物的特性,降低阻抗提升功率性能;同时利用铝基偶联剂将金属铝、稀土化合物形成三维网络结构,提升材料充放电过程中的结构稳定性,并改善循环性能。通过络合剂、还原剂、有机碱的化学反应在石墨表面沉积碱性胶体,碳化得到金属氧化物,包覆在石墨表面形成一层薄膜结构,降低阻抗及提升循环性能。Compared with the prior art, the present invention has obvious beneficial effects. It can be seen from the above technical schemes that: the present invention deposits alumina on the graphite surface by co-deposition to improve the first efficiency, and through the deposition of metal aluminum and rare earth compounds with strong electronic conductivity characteristics, reduce impedance and improve power performance; at the same time, use aluminum-based coupling agent to form a three-dimensional network structure of metal aluminum and rare earth compounds, improve the structural stability of the material during charge and discharge, and improve cycle performance. Through the chemical reaction of complexing agent, reducing agent and organic base, alkaline colloid is deposited on the surface of graphite, carbonized to obtain metal oxide, and coated on the surface of graphite to form a thin film structure, which reduces impedance and improves cycle performance.
附图说明Description of drawings
图1为实施例1制备出的铝包覆石墨负极复合材料的SEM图。FIG. 1 is a SEM image of the aluminum-coated graphite negative electrode composite material prepared in Example 1.
具体实施方式Detailed ways
实施例1Example 1
一种铝和稀土共包覆石墨负极复合材料的制备方法,包括如下步骤:步骤S1:称取5g铝粉、5g二硬酯酰氧异丙基铝酸酯、3g氧化铈、3g硫酸四氨合铜和500g异丙醇分散均匀后,得到溶液A;A preparation method of aluminum and rare earth co-coated graphite negative electrode composite material, comprising the steps: Step S1: taking 5g of aluminum powder, 5g of distearoyloxyisopropylaluminate, 3g of cerium oxide, 3g of tetraammonium sulfate After copper alloy and 500g isopropanol are uniformly dispersed, solution A is obtained;
步骤S2:称取100g人造石墨、3g无水肼及其800g异丙醇混合均匀后,得到溶液B;Step S2: After weighing 100g of artificial graphite, 3g of anhydrous hydrazine and 800g of isopropanol and mixing them uniformly, obtain solution B;
步骤S3:通过三颈烧瓶同时添加500g溶液A、800g溶液B及其100g二甲胺溶液,并在温度为100℃,压强为-0.05Mpa条件下反应3h,过滤,滤渣在80℃真空干燥24h,并在温度为900℃碳化3h,即得。Step S3: Add 500g of solution A, 800g of solution B and 100g of dimethylamine solution simultaneously through a three-necked flask, react at a temperature of 100°C and a pressure of -0.05Mpa for 3h, filter, and vacuum-dry the filter residue at 80°C for 24h , and carbonized at a temperature of 900°C for 3h, that is.
实施例2Example 2
一种铝和稀土共包覆石墨负极复合材料的制备方法,包括如下步骤:A preparation method of aluminum and rare earth co-coated graphite negative electrode composite material, comprising the steps of:
步骤S1:称取1g铝粉、1g铝酸三异丙酯、1g氧化钐、1g四碘化汞酸钾和500ml丁二醇分散均匀后,得到溶液A;Step S1: After weighing 1g of aluminum powder, 1g of triisopropyl aluminate, 1g of samarium oxide, 1g of potassium tetraiodide mercurate and 500ml of butanediol and dispersing evenly, a solution A was obtained;
步骤S2:将100g人造石墨、1g甲基肼及其500g丁二醇混合均匀,得到溶液B;Step S2: Mix 100g artificial graphite, 1g methylhydrazine and 500g butanediol thereof to obtain solution B;
步骤S3:通过三颈烧瓶同时添加500g溶液A、500g溶液B及其100g三甲胺溶液,并在温度为50℃,压强为-0.09Mpa条件下反应6h,之后过滤,滤渣在80℃真空干燥24h,并在温度为700℃碳化6h,即得。Step S3: Add 500g of solution A, 500g of solution B and 100g of trimethylamine solution simultaneously through a three-necked flask, and react at a temperature of 50°C and a pressure of -0.09Mpa for 6h, then filter, and vacuum-dry the filter residue at 80°C for 24h , and carbonized at a temperature of 700 ° C for 6 hours, that is.
实施例3Example 3
一种铝和稀土共包覆石墨负极复合材料的制备方法,包括如下步骤:A preparation method of aluminum and rare earth co-coated graphite negative electrode composite material, comprising the steps of:
步骤S1:称取10g铝粉、10g铝酸三苄酯、5g氧化铕、5g硫酸四氨合锌和500g二甲苯分散均匀后,得到溶液A;Step S1: After weighing 10g of aluminum powder, 10g of tribenzyl aluminate, 5g of europium oxide, 5g of tetraamminezinc sulfate and 500g of xylene and dispersing them uniformly, a solution A was obtained;
步骤S2:将100g人造石墨、5g乙基肼及其1000g二甲苯混合均匀,得到溶液B;Step S2: 100g artificial graphite, 5g ethylhydrazine and 1000g xylene are mixed uniformly to obtain solution B;
步骤S3:通过三颈烧瓶同时添加溶液A、溶液B及其100g N,N-二甲基乙醇胺,并在温度为150℃,压强为-0.01Mpa条件下反应1h,过滤,滤渣在80℃真空干燥24h,并在温度为1100℃碳化1h,即得。Step S3: Add solution A, solution B and 100 g of N,N-dimethylethanolamine simultaneously through a three-necked flask, and react at a temperature of 150°C and a pressure of -0.01Mpa for 1h, filter, and vacuum the filter residue at 80°C Dry for 24 hours, and carbonize for 1 hour at a temperature of 1100°C.
对比例1:Comparative example 1:
一种石墨负极复合材料的制备方法,包括如下步骤:A preparation method of graphite negative electrode composite material, comprising the steps of:
步骤S1:称取3g氧化铈、3g硫酸四氨合铜和500g异丙醇分散均匀后,得到溶液A;Step S1: after weighing 3g of cerium oxide, 3g of tetraammine copper sulfate and 500g of isopropanol and dispersing evenly, obtain solution A;
步骤S2:称取100g人造石墨、3g无水肼及其800g异丙醇混合均匀,得到溶液B;Step S2: take 100g artificial graphite, 3g anhydrous hydrazine and 800g isopropanol and mix them uniformly to obtain solution B;
步骤S3:之后通过三颈烧瓶同时添加500g溶液A、800g溶液B及其100g二甲胺溶液,并在温度为100℃,压强为-0.05Mpa条件下反应3h,之后过滤、80℃真空干燥24h,并在温度为900℃碳化3h,得到石墨负极复合材料。Step S3: Then add 500g of solution A, 800g of solution B and 100g of dimethylamine solution simultaneously through a three-necked flask, and react at a temperature of 100°C and a pressure of -0.05Mpa for 3h, then filter and vacuum dry at 80°C for 24h , and carbonized at a temperature of 900° C. for 3 hours to obtain a graphite negative electrode composite material.
对比例2:Comparative example 2:
一种铝包覆石墨负极复合材料的制备方法,包括如下步骤:A preparation method of an aluminum-coated graphite negative electrode composite material, comprising the steps of:
步骤S1:称取5g铝粉、5g二硬酯酰氧异丙基铝酸酯添加到500g异丙醇分散均匀后,得到溶液A;Step S1: Weigh 5g of aluminum powder and 5g of distearoyloxyisopropyl aluminate and add it to 500g of isopropanol to disperse evenly to obtain solution A;
步骤S2:称取100g人造石墨添加到800g异丙醇混合均匀,得到溶液B;Step S2: take 100g artificial graphite and add to 800g isopropanol and mix uniformly to obtain solution B;
步骤S3:之后通过三颈烧瓶同时添加溶液A、溶液B及其100g二甲胺溶液,并在温度为100℃,压强为-0.05Mpa条件下反应3h,之后过滤、80℃真空干燥24h,并在温度为900℃碳化3h,得到铝包覆石墨负极复合材料。Step S3: Add solution A, solution B and 100 g of dimethylamine solution simultaneously through a three-necked flask, and react at a temperature of 100°C and a pressure of -0.05Mpa for 3h, then filter, vacuum dry at 80°C for 24h, and Carbonize at a temperature of 900° C. for 3 hours to obtain an aluminum-coated graphite negative electrode composite material.
性能测试:Performance Testing:
(1)SEM测试(1) SEM test
图1为实施例1制备出的铝和稀土共包覆石墨负极复合材料的SEM图,由图中可以看出,材料表面有微孔结构,大小均一,粒径D50在15μm左右。Figure 1 is the SEM image of the aluminum and rare earth co-coated graphite negative electrode composite material prepared in Example 1. It can be seen from the figure that the surface of the material has a microporous structure with a uniform size and a particle size D50 of about 15 μm.
(2)物化性能测试(2) Physical and chemical performance test
测试实施例1-3和对比例1-2的制得的石墨负极复合材料的吸油值,以表征材料的吸收电解液的能力。按照GB/T-7046-2003《色素炭黑邻苯二甲酸二丁醋吸收值的测定》中的方法测定,同时按照GB/T-24533-2019《锂离子电池石墨类负极材料》测试复合材料的比表面积、振实密度及其粉体电导率。测试结果如表1所示。The oil absorption values of the graphite negative electrode composite materials prepared in Examples 1-3 and Comparative Examples 1-2 were tested to characterize the ability of the materials to absorb electrolyte. Measure according to the method in GB/T-7046-2003 "Determination of Absorption Value of Pigment Carbon Black Dibutyl Phthalate", and test the composite material according to GB/T-24533-2019 "Graphite Anode Materials for Lithium-ion Batteries" The specific surface area, tap density and electrical conductivity of the powder. The test results are shown in Table 1.
表1Table 1
由表1可以看出,本发明制得的铝和稀土共包覆石墨负极复合材料的吸油值明显高于对比例,可以提高材料吸收电解液的能力,使锂离子电池具有更好的循环性能和倍率性能。同时,由于实施例掺杂有电子导电率高的金属铝粉及其稀土金属化合物从而提升粉体电导率。As can be seen from Table 1, the oil absorption value of the aluminum and rare earth co-coated graphite negative electrode composite material prepared by the present invention is significantly higher than that of the comparative example, which can improve the ability of the material to absorb electrolyte, so that the lithium-ion battery has better cycle performance and rate performance. At the same time, because the embodiment is doped with metal aluminum powder and its rare earth metal compound with high electronic conductivity, the conductivity of the powder is improved.
(3)扣式电池充放电性能测试(3) Button battery charge and discharge performance test
分别将实施例1-3中和对比例1-2石墨负极复合材料组装成扣式电池,组装方法包括:在复合材料中添加粘结剂及溶剂,进行搅拌制浆,然后涂覆在铜箔上,经过烘干、碾压制得极片。其中,所用粘结剂为PVDF粘结剂,溶剂为NMP,其用量比为石墨:PVDF:NMP=80g:20g:300ml;电解液是LiPF6/EC+DEC(EC、DEC体积比1:1,LiPF6浓度为1.3mol/L),金属锂片为对电极,隔膜采用聚乙丙烯(PEP)复合膜,在充氩气的手套箱中进行装配。The graphite negative electrode composite materials in Examples 1-3 and Comparative Examples 1-2 were assembled into button batteries respectively. The assembly method included: adding binder and solvent to the composite materials, stirring and pulping, and then coating on copper foil After being dried and rolled, pole pieces are obtained. Wherein, the binder used is PVDF binder, the solvent is NMP, and its dosage ratio is graphite: PVDF:NMP=80g:20g:300ml; Electrolyte is LiPF 6 /EC+DEC (EC, DEC volume ratio 1:1 , the concentration of LiPF 6 is 1.3mol/L), the metal lithium sheet is used as the counter electrode, and the separator is made of polyethylene propylene (PEP) composite film, which is assembled in an argon-filled glove box.
电化学性能在武汉蓝电5V/10mA型电池测试仪上进行,充放电电压范围为0.005V至2.0V,充放电倍率为0.1C。同时测试材料的倍率和循环性能,放电倍率分别为0.1C/0.2C/0.5C/1.0C,计算其1C/0.1C的倍率性能;同时其测试其扣电在0.2C/0.2C、0.005V-2V、25±3℃的循环性能。测试结果如表2所示。The electrochemical performance was carried out on a Wuhan Landian 5V/10mA battery tester, the charge and discharge voltage range was 0.005V to 2.0V, and the charge and discharge rate was 0.1C. At the same time, the rate and cycle performance of the material are tested, the discharge rate is 0.1C/0.2C/0.5C/1.0C, and the rate performance of 1C/0.1C is calculated; at the same time, it is tested at 0.2C/0.2C, 0.005V -2V, 25±3℃ cycle performance. The test results are shown in Table 2.
表2Table 2
从表2可以看出,采用实施例1-3所得复合材料制得的电池,其放电容量及效率都明显高于对比例。这是因为复合材料中掺杂稀土化合物及其铝粉降低其不可逆容量损失及其提升材料的电子导电率,提升材料的首次效率和倍率性能;同时,实施例材料具有高的比表面积提高保液性能,并提升材料的循环性能。It can be seen from Table 2 that the discharge capacity and efficiency of the batteries made of the composite materials obtained in Examples 1-3 are significantly higher than those of the comparative examples. This is because doping the rare earth compound and its aluminum powder in the composite material reduces its irreversible capacity loss and improves the electronic conductivity of the material, which improves the first efficiency and rate performance of the material; at the same time, the embodiment material has a high specific surface area and improves liquid retention. Performance, and improve the recycling performance of materials.
(4)软包电池测试(4) Soft pack battery test
分别以实施例1-3和对比例1-2所得石墨负极复合材料作为负极材料,以磷酸铁锂为正极材料,采用LiPF6/EC+DEC(体积比1:1)为电解液,Celgard 2400膜为隔膜,制备出5Ah软包电池C1、C2、C3、D1、D2。并测试其软包电池循环性能、倍率性能、安全性能。The graphite negative electrode composite materials obtained in Examples 1-3 and Comparative Examples 1-2 were used as the negative electrode material, lithium iron phosphate was used as the positive electrode material, and LiPF 6 /EC+DEC (volume ratio 1:1) was used as the electrolyte, Celgard 2400 The membrane is a separator, and 5Ah pouch batteries C1, C2, C3, D1, and D2 are prepared. And test the cycle performance, rate performance and safety performance of its pouch battery.
4.1倍率性能测试条件:充电倍率:1C/2C/3C/5C,放电倍率1C;电压范围:2.5-3.65V,测试其电池的充电恒流比,测试结果如3所示。4.1 Rate performance test conditions: charge rate: 1C/2C/3C/5C, discharge rate 1C; voltage range: 2.5-3.65V, test the charging constant current ratio of the battery, the test results are shown in 3.
4.2循环测试条件为,1C/1C,2.5-3.65V,温度:25±3℃,循环次数,500周,测试结果如表3所示。4.2 The cycle test conditions are 1C/1C, 2.5-3.65V, temperature: 25±3°C, and the number of cycles is 500 cycles. The test results are shown in Table 3.
表3table 3
从表3可以看出,采用实施例1~3所得石墨负极复合材料制备的软包电池在多次循环后的容量及容量保持率均高于对比例,容量衰减速度与衰减率明显低于对比例。实验结果表明,采用本发明的负极材料所得电池具有良好的循环性能,原因在于:通过沉淀法在石墨表面沉积致密度高的氧化物及其金属元素掺杂,降低阻抗提升恒流比;同时沉积材料具有结构稳定的特性,从而提升循环性能。同时实施例材料具有粉体电导率高的特性,提升恒流比,即提升倍率性能。It can be seen from Table 3 that the capacity and capacity retention rate of the pouch battery prepared by using the graphite negative electrode composite materials obtained in Examples 1 to 3 after multiple cycles are higher than those of the comparative example, and the capacity decay rate and decay rate are significantly lower than those of the comparative example. Proportion. The experimental results show that the battery obtained by using the negative electrode material of the present invention has good cycle performance. The reason is that: the oxide with high density and its metal element doping are deposited on the graphite surface by the precipitation method, which reduces the impedance and improves the constant current ratio; simultaneously deposits The material has structurally stable properties, thereby improving cycle performance. At the same time, the material of the embodiment has the characteristic of high electrical conductivity of the powder, and the constant current ratio is improved, that is, the rate performance is improved.
4.3针刺实验4.3 Acupuncture experiment
取实施例1-3和对比例1-2电池各10支电池,电池充满电后,用一个直径为5mm的钉子穿过电池的中心,并在电池极柱处安装温度测试仪,并把钉子留在电池内,观察电池情况和测量电池温度。测试结果如表4所示。Take 10 batteries each of Example 1-3 and Comparative Example 1-2. After the battery is fully charged, use a nail with a diameter of 5mm to pass through the center of the battery, and install a temperature tester at the pole of the battery, and put the nail Stay in the battery, observe the battery condition and measure the battery temperature. The test results are shown in Table 4.
表4Table 4
由表4可以看出,由于实施例1~3中材料含有阻燃性材料氧化铝及其铝粉,其原因为电池在短路等非正常使用时,电池局部温度过高,而实施例中材料热扩散性能差,从而改善针刺实验时候的温升。It can be seen from Table 4 that because the materials in Examples 1 to 3 contain flame-retardant materials such as alumina and its aluminum powder, the reason is that the local temperature of the battery is too high when the battery is in abnormal use such as short circuit, while the materials in Examples Poor thermal diffusion performance, thus improving the temperature rise during acupuncture experiments.
4.4撞击实验:4.4 Impact test:
取实施例1-3和对比例1-2电池各10支,充满电后,将一个16.0mm直径的硬质棒横放于电池上,用一个20磅的重物从610mm的高度掉下来砸在硬质棒上,观察电池情况。测试结果详见表5。Take 10 batteries of each of Example 1-3 and Comparative Example 1-2. After fully charged, place a hard rod with a diameter of 16.0mm horizontally on the battery, and drop it with a 20-pound weight from a height of 610mm. On the hard stick, observe the condition of the battery. The test results are detailed in Table 5.
表5table 5
由表5可以看出,实施例制备出锂离子电池在撞击实验方面明显由于对比例,其原因为实施例电池负极石墨材料中含有氧化铝化合物,在电池撞击过程中电温度过高时,电池的阻抗瞬间增大,阻隔电池的热失控,提高其安全性能。As can be seen from Table 5, the lithium-ion battery prepared by the embodiment is obviously inferior to the comparative example in the impact test. The reason is that the negative electrode graphite material of the embodiment battery contains aluminum oxide compounds. When the battery temperature is too high during the battery impact process, the battery The impedance of the battery increases instantaneously, blocking the thermal runaway of the battery and improving its safety performance.
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211419886.4A CN115692662B (en) | 2022-11-14 | 2022-11-14 | A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211419886.4A CN115692662B (en) | 2022-11-14 | 2022-11-14 | A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115692662A CN115692662A (en) | 2023-02-03 |
CN115692662B true CN115692662B (en) | 2023-08-25 |
Family
ID=85052515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211419886.4A Active CN115692662B (en) | 2022-11-14 | 2022-11-14 | A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115692662B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633327A (en) * | 2012-08-14 | 2014-03-12 | 三星Sdi株式会社 | Composite anode active material, anode and lithium battery comprising the material, and method of preparing the same |
CN104091934A (en) * | 2014-07-17 | 2014-10-08 | 深圳市贝特瑞新能源材料股份有限公司 | Multi-component composite negative electrode material, preparation method of multi-component composite negative electrode material and lithium ion battery comprising multi-component composite negative electrode material |
CN105264113A (en) * | 2013-06-04 | 2016-01-20 | 索尔维特殊聚合物意大利有限公司 | Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries containing the same |
CN106450221A (en) * | 2016-11-11 | 2017-02-22 | 深圳市鑫永丰科技有限公司 | Aluminum-containing silicon carbon composite negative electrode material and preparation method thereof |
JP2021068665A (en) * | 2019-10-28 | 2021-04-30 | 東ソー株式会社 | Composite material with core-shell structure, manufacturing method thereof, and negative electrode material |
CN115312740A (en) * | 2022-09-01 | 2022-11-08 | 新疆天宏基科技有限公司 | Quick-filling graphite composite material and preparation method thereof |
-
2022
- 2022-11-14 CN CN202211419886.4A patent/CN115692662B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633327A (en) * | 2012-08-14 | 2014-03-12 | 三星Sdi株式会社 | Composite anode active material, anode and lithium battery comprising the material, and method of preparing the same |
CN105264113A (en) * | 2013-06-04 | 2016-01-20 | 索尔维特殊聚合物意大利有限公司 | Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries containing the same |
CN104091934A (en) * | 2014-07-17 | 2014-10-08 | 深圳市贝特瑞新能源材料股份有限公司 | Multi-component composite negative electrode material, preparation method of multi-component composite negative electrode material and lithium ion battery comprising multi-component composite negative electrode material |
CN106450221A (en) * | 2016-11-11 | 2017-02-22 | 深圳市鑫永丰科技有限公司 | Aluminum-containing silicon carbon composite negative electrode material and preparation method thereof |
JP2021068665A (en) * | 2019-10-28 | 2021-04-30 | 東ソー株式会社 | Composite material with core-shell structure, manufacturing method thereof, and negative electrode material |
CN115312740A (en) * | 2022-09-01 | 2022-11-08 | 新疆天宏基科技有限公司 | Quick-filling graphite composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115692662A (en) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022166059A1 (en) | Boron-doped resin-coated artificial graphite material | |
CN102931409A (en) | Preparation method of polyaniline/silicon composite with core-shell structure for lithium ion battery cathode | |
WO2016206548A1 (en) | Preparation method for lithium battery high-voltage modified negative electrode material | |
CN115566170B (en) | Preparation method of high-energy-density quick-charging lithium ion battery anode material | |
WO2023071551A1 (en) | Solid-state lithium battery | |
WO2020043151A1 (en) | Positive electrode plate, preparation method therefor, and lithium-ion rechargeable battery | |
JP7413482B2 (en) | Manufacturing method for lithium ion battery negative electrode material | |
CN114122372A (en) | Low-expansion silicon-carbon negative electrode material for lithium ion battery and preparation method thereof | |
CN114122391A (en) | High-power graphite composite material and preparation method thereof | |
CN115347153A (en) | Lithium-rich composite material, preparation method thereof and secondary battery | |
WO2025000626A1 (en) | Metal-doped silicon-carbon composite material and preparation method therefor and use thereof | |
CN108598386A (en) | Iron manganese phosphate for lithium base composite positive pole and preparation method thereof | |
CN112467138B (en) | Preparation method of aluminum-doped porous silicon-carbon composite material and lithium ion battery | |
CN106711428A (en) | Lithium-rich ternary composite material and preparation method thereof | |
CN115995541A (en) | Hard carbon coated nano silicon oxide composite anode material and preparation method thereof | |
CN108039483B (en) | Lithium iron phosphate composite material and preparation method thereof | |
CN104900910A (en) | Li-ion battery with silicon anode based on carbon fiber cloth barrier layer | |
CN113285178A (en) | Oxide-coated lithium lanthanum zirconium oxide material, diaphragm material, lithium battery and preparation method | |
WO2024183283A1 (en) | Secondary battery | |
CN115692662B (en) | A kind of preparation method of aluminum and rare earth co-coated graphite negative electrode composite material | |
CN107681131A (en) | A kind of preparation method of inexpensive nano silica fume and silicon carbon material | |
CN115394989A (en) | Preparation method of high-power graphite composite material | |
CN115172680A (en) | High-capacity high-rate lithium ion battery and preparation method thereof | |
CN114300679A (en) | High-first-time-efficiency negative electrode material and preparation method thereof | |
CN115513442B (en) | A high energy density composite negative electrode material and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20230203 Assignee: Guizhou Huiyang Technology Innovation Research Co.,Ltd. Assignor: Huiyang (Guizhou) new energy materials Co.,Ltd. Contract record no.: X2024980031240 Denomination of invention: Preparation method of aluminum and rare earth co coated graphite negative electrode composite material Granted publication date: 20230825 License type: Common License Record date: 20241202 |
|
EE01 | Entry into force of recordation of patent licensing contract |