CN115685747A - A Model Predictive Control Method Based on Residual Neural Network Optimization - Google Patents
A Model Predictive Control Method Based on Residual Neural Network Optimization Download PDFInfo
- Publication number
- CN115685747A CN115685747A CN202211211043.5A CN202211211043A CN115685747A CN 115685747 A CN115685747 A CN 115685747A CN 202211211043 A CN202211211043 A CN 202211211043A CN 115685747 A CN115685747 A CN 115685747A
- Authority
- CN
- China
- Prior art keywords
- network
- residual
- layer
- value
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005457 optimization Methods 0.000 title claims abstract description 25
- 238000012549 training Methods 0.000 claims abstract description 32
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 21
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000011156 evaluation Methods 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 238000012795 verification Methods 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 65
- 230000006870 function Effects 0.000 claims description 64
- 238000005070 sampling Methods 0.000 claims description 32
- 239000003990 capacitor Substances 0.000 claims description 24
- 210000002569 neuron Anatomy 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 9
- 238000002790 cross-validation Methods 0.000 claims description 9
- 238000009825 accumulation Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 230000004907 flux Effects 0.000 claims description 3
- 239000011229 interlayer Substances 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明属于模型预测控制领域,具体涉及一种基于残差神经网络优化的模型预测控制方法。The invention belongs to the field of model predictive control, in particular to a model predictive control method based on residual neural network optimization.
背景技术Background technique
模型预测控制(Model Predictive Control,简称MPC)是近年来兴起的一种电机传动控制策略,在风力发电,船舶推进,牵引传动等工业领域逐步得到应用,MPC相较于传统的矢量控制具有多目标、多变量和多约束条件的控制特性,更适用于多电平变流器。同时,MPC可以大幅提升牵引电机的转矩响应速度,平衡直流侧中点电压,降低变流器的电流谐波和开关损耗。此外,MPC可以方便地处理多目标优化问题,优于传统的磁场定向矢量控制和直接转矩控制。因此,MPC并被认为是最具发展潜力的电机控制策略之一。然而,MPC的控制性能受限于代价函数及其权重因子的设计,目前权重因子的设计和优化方法还较少,尚缺少成熟的理论方法。Model predictive control (Model Predictive Control, referred to as MPC) is a motor drive control strategy that has emerged in recent years. It has been gradually applied in industrial fields such as wind power generation, ship propulsion, and traction drive. Compared with traditional vector control, MPC has multi-objective , multi-variable and multi-constraint control characteristics, more suitable for multi-level converters. At the same time, MPC can greatly increase the torque response speed of the traction motor, balance the midpoint voltage of the DC side, and reduce the current harmonics and switching losses of the converter. In addition, MPC can handle multi-objective optimization problems conveniently, outperforming traditional field-oriented vector control and direct torque control. Therefore, MPC is considered to be one of the most promising motor control strategies. However, the control performance of MPC is limited by the design of the cost function and its weight factors. At present, there are few design and optimization methods of weight factors, and there is still a lack of mature theoretical methods.
常规的权重因子优化方法主要从避免使用代价函数和状态观测器两个方面入手。前者利用电压信号注入、参考矢量合并、重构冗余矢量等手段,达到取消权重因子的目的,避免了权重因子的选择,但牺牲了系统动态性能。后者通过观测器监测不同工况下的状态信息,根据模型预测控制性能,在线调整代价函数的权重因子,进而实现权重因子的在线调节与优化,但是该方法增加了控制系统的复杂度和计算量,降低了MPC的响应速度,当用于多电平变流器系统时,运算量将急剧增加。因此,亟需研究一种既不增加计算量又具备普适性的权重因子优化方法,提高MPC控制性能,满足牵引列车复杂运行工况下的牵引需求。近年来,随着人工神经网络(Artificial neural network,ANN)的蓬勃发展,ANN的非线性拟合特性在模式识别、自然语言处理、生物技术及交通运输等方面得到了广泛的应用。Conventional weight factor optimization methods mainly start from avoiding the use of cost functions and state observers. The former uses methods such as voltage signal injection, reference vector merging, and redundant vector reconstruction to achieve the purpose of canceling the weight factor, avoiding the selection of the weight factor, but sacrificing the system dynamic performance. The latter monitors the state information under different working conditions through the observer, adjusts the weight factor of the cost function online according to the model prediction control performance, and then realizes the online adjustment and optimization of the weight factor, but this method increases the complexity and calculation of the control system. The amount reduces the response speed of the MPC, and when it is used in a multilevel converter system, the calculation amount will increase sharply. Therefore, it is urgent to study a weight factor optimization method that does not increase the amount of calculation and has universality, so as to improve the control performance of MPC and meet the traction requirements of traction trains under complex operating conditions. In recent years, with the vigorous development of artificial neural network (ANN), the nonlinear fitting characteristics of ANN have been widely used in pattern recognition, natural language processing, biotechnology and transportation.
发明内容Contents of the invention
针对上述的不足,本发明提供一种基于残差神经网络优化的模型预测控制方法,利用残差神经网络对MPC算法的代价函数及其权重因子进行优化,实现各种运行工况下的最优控制,且不需增加MPC算法的计算负担。In view of the above-mentioned deficiencies, the present invention provides a model predictive control method based on residual neural network optimization, which utilizes the residual neural network to optimize the cost function of the MPC algorithm and its weighting factors to achieve optimal performance under various operating conditions. control without increasing the computational burden of the MPC algorithm.
本发明的一种基于残差神经网络优化的模型预测控制方法,包括以下步骤:A kind of model predictive control method based on residual neural network optimization of the present invention comprises the following steps:
步骤1:建立系统状态变量的预测模型,调节模型预测控制算法的代价函数,记录不同权重因子下的电流谐波畸变率和开关频率组成数据样本。Step 1: Establish a prediction model of system state variables, adjust the cost function of the model predictive control algorithm, and record the current harmonic distortion rate and switching frequency under different weight factors to form data samples.
步骤2:根据所收集的数据,建立优化目标函数,同时将数据集分为训练集、验证集和测试集,用于网络评估与训练。Step 2: Based on the collected data, establish an optimization objective function, and at the same time divide the data set into training set, verification set and test set for network evaluation and training.
步骤3:构建残差并联神经网络,将权重因子作为网络输入层,目标函数作为网络输出层,依托数据集和Adam算法训练网络,根据评价指标调节神经网络的残差模块、网络深度等超参数,选取指标最优网络。Step 3: Build a residual parallel neural network, use the weight factor as the network input layer, and the objective function as the network output layer, rely on the data set and the Adam algorithm to train the network, and adjust the hyperparameters such as the residual module and network depth of the neural network according to the evaluation index , select the index optimal network.
步骤4:将步长更短的权重因子作为最优网络的输入层,预测目标函数,寻找使目标函数最小的权重因子,实现状态变量的最优控制。Step 4: Use the weight factor with shorter step size as the input layer of the optimal network, predict the objective function, find the weight factor that minimizes the objective function, and realize the optimal control of the state variable.
进一步的,上述模型预测控制算法代价函数的建立方法具体为:Further, the establishment method of the above model predictive control algorithm cost function is as follows:
以永磁电机为控制对象,建立电机驱动系统在旋转坐标系下的定离散化子电流预测模型,表示为:Taking the permanent magnet motor as the control object, the fixed and discrete sub-current prediction model of the motor drive system in the rotating coordinate system is established, expressed as:
其中,id(k+1)、iq(k+1)表示k+1采样时刻下的dq轴定子电流预测值,id(k)、iq(k)表示当前k采样时刻下的dq轴定子电流采样值,ud(k)、uq(k)表示当前k采样时刻下的dq轴定子电压值,Ts表示采样周期,Rs表示定子绕组电阻,Ld、Lq表示dq轴下的定子电感,ωe表示为永磁电机电角速度,ψf表示永磁体磁链。Among them, i d (k+1), i q (k+1) represent the dq axis stator current prediction value at k+1 sampling time, and i d (k), i q (k) represent the current k sampling time dq axis stator current sampling value, u d (k) and u q (k) represent the dq axis stator voltage value at the current k sampling moment, T s represents the sampling period, R s represents the stator winding resistance, L d and L q represent The stator inductance under the dq axis, ω e represents the electrical angular velocity of the permanent magnet motor, and ψ f represents the flux linkage of the permanent magnet.
根据流经直流母线上、下电容的电流值,建立直流母线侧电容的离散化预测模型,预测直流母线侧上、下电容的电压值;其计算公式为:According to the current value flowing through the DC bus upper and lower capacitors, a discrete prediction model for the DC bus side capacitors is established to predict the voltage values of the DC bus upper and lower capacitors; the calculation formula is:
其中,ic1(k)、ic2(k)分别表示直流母线上、下电容的电流值,vc1(k)和vc2(k)分别表示当前k采样时刻的直流母线侧上、下电容电压值,vc1(k+1)和vc2(k+1)分别表示k+1采样时刻的直流母线侧上、下电容电压预测值,C为直流侧电容的容值。Among them, i c1 (k) and i c2 (k) represent the current values of the upper and lower capacitors on the DC bus, respectively, and v c1 (k) and v c2 (k) represent the upper and lower capacitors on the DC bus side at the current k sampling time The voltage values, v c1 (k+1) and v c2 (k+1) represent the predicted voltage values of the upper and lower capacitors on the DC bus side at sampling time k+1 respectively, and C is the capacitance of the capacitor on the DC side.
其中,Ji表示跟踪电流误差的代价函数,Jdc表示中点电压偏差值的代价函数,Sx(k-1)表示上一采样时刻下的归一化相电压,Sx(k)表示当前采样时刻下的归一化相电压。Among them, J i represents the cost function of the tracking current error, J dc represents the cost function of the midpoint voltage deviation value, S x (k-1) represents the normalized phase voltage at the last sampling moment, and S x (k) represents The normalized phase voltage at the current sampling moment.
根据建立的跟踪电流误差、中点电压偏差和开关频率跟踪误差的代价函数建立总的代价函数表示为:According to the established cost functions of tracking current error, midpoint voltage deviation and switching frequency tracking error, the total cost function is expressed as:
J=Ji+λdcJdc+λswJsw J=J i +λ dc J dc +λ sw J sw
其中,J为总代价函数,λdc、λsw分别表示中性点电位平衡和开关频率调节的权重因子;根据Simulink仿真,得到不同权重因子组合下对应的电流谐波畸变THD与开关频率fsw,将其组成数据集。Among them, J is the total cost function, λ dc and λ sw respectively represent the weight factors of neutral point potential balance and switching frequency adjustment; according to Simulink simulation, the corresponding current harmonic distortion THD and switching frequency f sw under different weight factor combinations are obtained , to form a dataset.
进一步的,上述步骤2具体为:Further, the
将数据集进行异常值处理,异常值表示为:The data set is subjected to outlier processing, and the outlier is expressed as:
I=Q3-Q1 I=Q 3 -Q 1
Ol=Q3-1.5×IO l =Q 3 -1.5×I
Ou=Q3+1.5×IO u =Q 3 +1.5×I
其中,Q3,I和Q1分别是上四分位数,中位数和下四分位数,当数据集的值大于Ou或小于Ol时候将被视为异常值;清理异常值之后,数据集将按照70%,15%,15%的占比分为训练集、交叉验证集和测试集。Among them, Q 3 , I and Q 1 are the upper quartile, the median and the lower quartile respectively, when the value of the data set is greater than O u or less than O l , it will be regarded as an outlier; cleaning outliers After that, the data set will be divided into training set, cross-validation set and test set according to the ratio of 70%, 15%, and 15%.
训练集与交叉验证集需进行归一化处理,从而提高残差网络的训练速度;采取极差变化法对数据进行归一化,将数据映射到[0-1]之间,其过程表示为:The training set and the cross-validation set need to be normalized to improve the training speed of the residual network; the data is normalized by using the range change method, and the data is mapped to [0-1]. The process is expressed as :
其中,xi为数据样本个体值,xmin为数据集中的最小值,xmax为最大值,通过归一化后的个体值。Among them, x i is the individual value of the data sample, x min is the minimum value in the data set, x max is the maximum value, Individual values after normalization.
训练集用于训练神经网络,交叉验证集和验证集分别用于评估网络准确率和泛化能力,准确率与泛化能力的量化指标表示为:The training set is used to train the neural network, and the cross-validation set and verification set are used to evaluate the accuracy and generalization ability of the network respectively. The quantitative indicators of accuracy and generalization ability are expressed as:
其中,RMSE为量化指标,为神经网络预测值,yi为数据集中的真实值,m为数据集的样本数。Among them, RMSE is a quantitative index, is the predicted value of the neural network, y i is the real value in the data set, and m is the number of samples in the data set.
进一步的,上述步骤3构建的残差并联神经网络包括输入层、全连接层、激活函数层、全连接网络、累加层、并联网络单元、残差连接、输出层。Further, the residual parallel neural network constructed in the
输入层由模型预测控制权重因子构成分别为中点电压平衡λdc和开关频率限制λsw;全连接层和激活函数ReLU组成全连接网络,其中全连接层的信息传递公式表示为:The input layer is composed of model predictive control weight factors, which are the midpoint voltage balance λ dc and the switching frequency limit λ sw ; the fully connected layer and the activation function ReLU form a fully connected network, where the information transfer formula of the fully connected layer is expressed as:
g[l]=max(0,Zj [l]) j=1...Nl g [l] = max(0,Z j [l] ) j = 1...N l
a[l]=g[l](Zj [l])a [l] = g [l] (Z j [l] )
其中,g[l]是激活函数ReLU的表达式,当Zj [l]值达到g[l]的阈值时候,神经元的输出a[l]将传递到下一层,Nl为l层的神经元个数,j为上一层的神经元个数,wj [l]和bj [l]为全连接层的权重和偏差。Among them, g [l] is the expression of the activation function ReLU. When the value of Z j [l] reaches the threshold of g [l] , the output a [l] of the neuron will be passed to the next layer, and N l is the l layer The number of neurons, j is the number of neurons in the previous layer, w j [l] and b j [l] are the weights and biases of the fully connected layer.
并联网络单元与残差连接共同构成了残差并联网络,残差连接使并联网络单元跳过下一层,隔层与累加层相连。The parallel network unit and the residual connection constitute the residual parallel network, and the residual connection makes the parallel network unit skip the next layer, and the interlayer is connected to the accumulation layer.
根据所收集的数据集,定义残差网络的目标函数,表示为:According to the collected data set, define the objective function of the residual network, expressed as:
fANN=αt×THD+αf×fsw f ANN =α t ×THD+α f ×f sw
其中,THD为电流谐波总畸变,fsw为模型预测控制的开关频率,αt与αf分别为电流谐波畸变和开关频率的权重系数,αt的值越大,优化电流谐波总畸变在目标函数的权重越大,αf与降低开关频率的关系也是如此。Among them, THD is the total current harmonic distortion, f sw is the switching frequency of model predictive control, α t and α f are the weight coefficients of current harmonic distortion and switching frequency, respectively, the larger the value of α t is, the optimized current harmonic total The larger the weight of distortion in the objective function, the more the relation of α f with reducing the switching frequency.
根据收集的数据,将权重因子作为残差并联网络输入层,电流谐波畸变为网络输出层,结合Adam算法进行反向传播训练,根据RMSE评估训练好的网络,根据训练结果调节并联结构的超参数,选取最优网络。According to the collected data, the weight factor is used as the residual parallel network input layer, and the current harmonic distortion is used as the network output layer, combined with the Adam algorithm for backpropagation training, the trained network is evaluated according to the RMSE, and the parallel structure is adjusted according to the training results. parameters to select the optimal network.
进一步的,将步长更短的权重因子作为最优网络的输入层,最优网络将给出对应的目标函数值,使目标函数最小的权重因子为该目标函数下的最优权重因子。Furthermore, the weight factor with a shorter step size is used as the input layer of the optimal network, and the optimal network will give the corresponding objective function value, so that the weight factor with the smallest objective function is the optimal weight factor under the objective function.
本发明的有益技术效果为:The beneficial technical effect of the present invention is:
(1)本发明所提出的模型预测控制方法通过构建残差并联神经网络,对神经网络进行离线训练,使其具备预测最优权重因子能力,该方法不会增加模型预测控制算法的计算负担,能客观、高效地预测出不同工况下的最优权重因子,由于该方法属于数据驱动算法,只需要收集和定义网络输入层和输出层的数据,无需改变模型预测控制算法本身。(1) The model predictive control method proposed by the present invention carries out off-line training to the neural network by constructing a residual parallel neural network, so that it has the ability to predict the optimal weight factor. This method will not increase the computational burden of the model predictive control algorithm, It can objectively and efficiently predict the optimal weight factor under different working conditions. Since this method is a data-driven algorithm, it only needs to collect and define the data of the network input layer and output layer, without changing the model predictive control algorithm itself.
(2)本发明相较于传统BP神经网络,其准确性更高,残差连接避免了深度网络梯度消失和网络退化问题,并联结构使残差网络在同等参数的规模下,具有更好的模型表达能力和更高的预测准确率,同时并联结构简化了神经网络调节难度。(2) Compared with the traditional BP neural network, the present invention has higher accuracy, and the residual connection avoids the problems of deep network gradient disappearance and network degradation, and the parallel structure enables the residual network to have better Model expression ability and higher prediction accuracy, while the parallel structure simplifies the difficulty of neural network adjustment.
(3)该发明是基于数据驱动的优化方法,对数据差异具有很好的鲁棒性,因此该方法较适用于复杂运行工况下的模型预测控制策略,如牵引电机模型预测控制系统,该复杂工况可由几个目标函数等效,从而简化了控制系统的复杂度。(3) The invention is based on a data-driven optimization method, which has good robustness to data differences, so this method is more suitable for model predictive control strategies under complex operating conditions, such as traction motor model predictive control systems, the Complex working conditions can be equivalent by several objective functions, thus simplifying the complexity of the control system.
附图说明Description of drawings
图1为本发明的模型预测控制权重因子优化流程图;Fig. 1 is the optimization flowchart of model predictive control weight factor of the present invention;
图2为基于三电平中点钳位型逆变器的永磁电机驱动系统框图;Figure 2 is a block diagram of a permanent magnet motor drive system based on a three-level neutral-point clamped inverter;
图3为本发明的模型预测控制仿真图;Fig. 3 is a model predictive control simulation diagram of the present invention;
图4为本发明的残差并联神经网络结构图;Fig. 4 is residual parallel neural network structural diagram of the present invention;
图5为本发明的残差并联神经网络训练效果图;Fig. 5 is the residual parallel neural network training rendering of the present invention;
图6为本发明的残差并联神经网络优化结果图。Fig. 6 is a diagram of the optimization result of the residual parallel neural network of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方法对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific implementation methods.
本发明以三电平中点钳位型逆变器馈电的永磁电机驱动系统为案例,提供一种基于残差神经网络优化的模型预测控制方法,如图1所示,具体为:The present invention takes a permanent magnet motor drive system fed by a three-level neutral point clamping inverter as an example, and provides a model predictive control method based on residual neural network optimization, as shown in Figure 1, specifically:
S1、建立系统状态变量的预测模型,调节模型预测控制算法的代价函数,记录不同权重因子下的电流谐波畸变率和开关频率组成数据样本。S1. Establish a prediction model of system state variables, adjust the cost function of the model prediction control algorithm, and record the current harmonic distortion rate and switching frequency under different weight factors to form data samples.
本发明首先建立永磁电机驱动系统的数学模型,如图2所示,为本实施例所涉及的三电平二极管中点箝位型逆变器永磁电机驱动系统。逆变器拓扑中每相桥臂包含四个相同开关频率的开关器件,其中,开关管Tx1和Tx3为互补器件,Tx2和Tx4为互补器件,门极开关信号互相取反,下表1中给出了该逆变器拓扑不同开关状态所对应的输出电压:The present invention first establishes the mathematical model of the permanent magnet motor drive system, as shown in FIG. 2 , which is the three-level diode midpoint clamp type inverter permanent magnet motor drive system involved in this embodiment. In the inverter topology, each phase bridge arm contains four switching devices with the same switching frequency. Among them, the switching tubes Tx1 and Tx3 are complementary devices, Tx2 and Tx4 are complementary devices, and the gate switching signals are reversed. Table 1 gives the output voltage corresponding to different switching states of the inverter topology:
表1三电平逆变器的开关状态Table 1 Switching status of three-level inverter
表中,Vdc为直流母线侧所提供的电压值;表中的归一化向量Sx可以进一步表示为:In the table, V dc is the voltage value provided by the DC bus side; the normalized vector S x in the table can be further expressed as:
Sx=[Sa Sb Sc]S x = [S a S b S c ]
式中,Sa、Sb、Sc的取值范围均为(1,0)。随后,建立永磁电机数学模型:In the formula, the value ranges of S a , S b , and S c are all (1, 0). Subsequently, the mathematical model of the permanent magnet motor is established:
其中,ud、uq表示dq轴下的定子电压,Rs表示定子绕组电阻,id、iq表示dq轴下的定子电流,Ld、Lq表示dq轴下的定子电感,ωe表示为永磁电机电角度,ψf表示永磁体磁链。同时,采用一阶向前欧拉法,对永磁电机在旋转坐标系下定子的电流模型进行离散化处理,建立旋转坐标系下的离散化定子电流预测模型,表示为:Among them, u d and u q represent the stator voltage under the dq axis, R s represents the stator winding resistance, id and i q represent the stator current under the dq axis, L d and L q represent the stator inductance under the dq axis, ω e Expressed as the electrical angle of the permanent magnet motor, ψ f represents the flux linkage of the permanent magnet. At the same time, the first-order forward Euler method is used to discretize the stator current model of the permanent magnet motor in the rotating coordinate system, and a discretized stator current prediction model in the rotating coordinate system is established, expressed as:
其中id(k+1)、iq(k+1)表示k+1采样时刻下的dq轴定子电流预测值,id(k)、iq(k)表示当前k采样时刻下的dq轴定子电流采样值,ud(k)、uq(k)表示当前k采样时刻下的dq轴定子电压值,Ts表示采样周期。Among them, i d (k+1), i q (k+1) represent the dq-axis stator current prediction value at k+1 sampling time, and i d (k), i q (k) represent dq at the current k sampling time axis stator current sampling value, u d (k) and u q (k) represent the dq axis stator voltage value at the current k sampling moment, and T s represents the sampling period.
实际应用中,由于存在计算采样延时,需要对延迟进行补偿,通过对采样延时和控制延时进行一步补偿,得到k+2采样时刻下的dq轴定子电流预测值,表示为:In practical applications, due to the calculation and sampling delay, the delay needs to be compensated. By one-step compensation for the sampling delay and the control delay, the predicted value of the dq axis stator current at the k+2 sampling time is obtained, expressed as:
其中,id(k+2)、iq(k+2)表示k+1采样时刻下的dq轴定子电流预测值,ud(k+1)、uq(k+1)表示k+1采样时刻下拟采用的dq轴定子电压值。Among them, i d (k+2), i q (k+2) represent the dq axis stator current prediction value at k+1 sampling time, u d (k+1), u q (k+1) represent
根据逆变器的开关状态和相电流,计算直流母线电容电流,表示为:According to the switching state and phase current of the inverter, the DC bus capacitor current is calculated, expressed as:
其中,ic1(k)、ic2(k)分别表示直流母线上、下电容的电流值,idc(k)表示流经直流母线电容的电流值,Sa1、Sb1、Sc1、Sa4、Sb4、Sc4分别表示对应桥臂开关管的开关状态值,1表示开关管开通,0表示开关管断开,ia(k)、ib(k)、ic(k)分别表示对应桥臂的输出电流值。Among them, i c1 (k) and i c2 (k) represent the current value of the DC bus capacitor and the lower capacitor respectively, idc (k) represents the current value flowing through the DC bus capacitor, S a1 , S b1 , S c1 , S a4 , S b4 , and S c4 represent the switch status values of the corresponding bridge arm switch tubes, 1 means the switch tube is turned on, 0 means the switch tube is turned off, and ia (k), ib (k), and ic (k) respectively Indicates the output current value of the corresponding bridge arm.
根据流经直流母线上、下电容的电流值建立逆变器直流母线侧电容的离散化预测模型,预测直流母线侧上下电容电压值;其计算方式为:According to the current value flowing through the DC bus upper and lower capacitors, a discrete prediction model for the inverter DC bus side capacitors is established to predict the voltage values of the upper and lower capacitors on the DC bus side; the calculation method is:
其中,vc1(k)和vc2(k)分别表示当前k采样时刻的直流母线侧上、下电容电压值,vc1(k+1)和vc2(k+1)分别表示k+1采样时刻的直流母线侧上、下电容电压预测值,C为直流侧电容的容值。Among them, v c1 (k) and v c2 (k) represent the voltage values of the upper and lower capacitors on the DC bus side at the current k sampling time respectively, and v c1 (k+1) and v c2 (k+1) respectively represent k+1 The predicted values of the upper and lower capacitor voltages on the DC bus side at the sampling moment, and C is the capacitance of the DC side capacitor.
其中,Ji表示跟踪电流误差的代价函数,Jdc表示中点电压偏差值的代价函数,Jsw表示开关频率跟踪误差的代价函数,Sx(k-1)表示上一采样时刻下的归一化相电压,Sx(k)表示当前采样时刻下的归一化相电压。Among them, J i represents the cost function of the tracking current error, J dc represents the cost function of the midpoint voltage deviation value, J sw represents the cost function of the switching frequency tracking error, S x (k-1) represents the normalized value at the previous sampling time Normalized phase voltage, S x (k) represents the normalized phase voltage at the current sampling moment.
根据建立的建立跟踪电流误差、中点电压偏差和开关频率跟踪误差的代价函数建立总的代价函数表示为:According to the established cost function of establishing tracking current error, midpoint voltage deviation and switching frequency tracking error, the total cost function is expressed as:
J=Ji+λdcJdc+λswJsw J=J i +λ dc J dc +λ sw J sw
其中,J为总的代价函数,λdc、λsw分别表示中性点电位平衡和开关频率调节的权重因子,λdc和λsw的取值范围分别为0-5和0-10,步长均为0.5。如图3所示,根据Simulink仿真,得到不同权重因子(λdc和λsw)组合下对应的电流谐波总畸变(THD)与开关频率(fsw),将其组成仿真数据集。Among them, J is the total cost function, λ dc and λ sw represent the weight factors of neutral point potential balance and switching frequency adjustment respectively, and the value ranges of λ dc and λ sw are 0-5 and 0-10 respectively, and the step size Both are 0.5. As shown in Figure 3, according to the Simulink simulation, the corresponding current total harmonic distortion (THD) and switching frequency (f sw ) under different combinations of weight factors (λ dc and λ sw ) are obtained, and they are composed into a simulation data set.
在建立了残差并联网络所需的数据集之后,本发明按照后续步骤分别对数据集异常值清理并归一化。After the data sets required by the residual parallel network are established, the present invention cleans and normalizes the abnormal values of the data sets according to the subsequent steps.
S2、根据所收集的数据,建立优化目标函数同时将数据集分为训练集、验证集和测试集,用于网格评估与训练。S2. Based on the collected data, an optimization objective function is established and the data set is divided into a training set, a verification set and a test set for grid evaluation and training.
根据所收集的数据集,定义残差网络的目标函数,可表示为:According to the collected data set, define the objective function of the residual network, which can be expressed as:
fANN=αt×THD+αf×fsw f ANN =α t ×THD+α f ×f sw
其中THD为电流谐波总畸变,fsw为模型预测控制的开关频率。αt与αf分别为电流谐波畸变和开关频率的权重系数,αt的值越大,优化电流谐波总畸变在目标函数的权重越大。αf与降低开关频率的关系也是如此。本例中,αt为5,αf为1。此外,将数据集进行异常值清理,异常值表示为:Among them, THD is the total harmonic distortion of the current, and f sw is the switching frequency of the model predictive control. α t and α f are the weight coefficients of current harmonic distortion and switching frequency respectively. The larger the value of α t is, the greater the weight of the optimized current harmonic total distortion in the objective function will be. The same is true for α f with decreasing switching frequency. In this example, α t is 5 and α f is 1. In addition, the data set is cleaned of outliers, and the outliers are expressed as:
I=Q3-Q1 I=Q 3 -Q 1
Ol=Q3-1.5×IO l =Q 3 -1.5×I
Ou=Q3+1.5×IO u =Q 3 +1.5×I
其中Q3,I和Q1分别是上四分位数,中位数和下四分位数,当数据集的值大于Ou或小于Ol时候将被视为异常值。清理异常值之后,数据集将按照70%,15%,15%的占比分为训练集,交叉验证集和测试集。需对训练集与交叉验证集归一化,从而加快残差网络的训练。本发明采取极差变化法对数据进行归一化,将数据映射到[0-1]之间,其过程可表示为:Among them, Q 3 , I and Q 1 are the upper quartile, the median and the lower quartile respectively, and when the value of the data set is greater than Ou or less than Ol , it will be regarded as an outlier. After cleaning the outliers, the data set will be divided into training set, cross-validation set and test set according to the ratio of 70%, 15%, and 15%. The training set and the cross-validation set need to be normalized to speed up the training of the residual network. The present invention adopts the range change method to normalize the data, and maps the data to [0-1]. The process can be expressed as:
其中xi为数据样本个体值,xmin为数据集中的最小值,xmax为最大值,通过归一化后的个体值。此外,训练集训练神经网络,交叉验证集和验证集分别用于评估网络准确率和泛化能力。准确率与泛化能力的量化指标表示为:Where x i is the individual value of the data sample, x min is the minimum value in the data set, x max is the maximum value, Individual values after normalization. In addition, the training set trains the neural network, and the cross-validation set and validation set are used to evaluate the network accuracy and generalization ability, respectively. The quantitative indicators of accuracy and generalization ability are expressed as:
其中,RMSE为量化指标,为神经网络预测值,yi为数据集中的真实值,m为数据集的样本数。将数据集异常值处理和归一化之后,本发明将根据数据分布,利用MATLAB构建残差并联网络。Among them, RMSE is a quantitative index, is the predicted value of the neural network, y i is the real value in the data set, and m is the number of samples in the data set. After processing and normalizing the outliers of the data set, the present invention uses MATLAB to construct a residual parallel network according to the data distribution.
S3、构建残差并联网络,将权重因子作为网络输入层,目标函数作为输出层,依托数据集和Adam算法训练网络,根据评价指标调节神经网络的残差模块、网络深度等超参数,选取指标最优的残差网络。S3. Build a residual parallel network, use the weight factor as the network input layer, and the objective function as the output layer, rely on the data set and the Adam algorithm to train the network, adjust the hyperparameters such as the residual module and network depth of the neural network according to the evaluation index, and select the index Optimal Residual Networks.
残差网络如图4所示,主要包括输入层1、全连接层2、激活函数层3、全连接网络4、累加层5、并联网络单元6、残差连接7、输出层8:The residual network is shown in Figure 4, mainly including
输入层1由模型预测控制权重因子构成分别为中点电压平衡λdc和开关频率限制λsw;全连接层2和激活函数ReLU3组成全连接网络4,其中全连接层的信息传递公式表示为The
g[l]=max(0,Zj [l]) j=1...Nl g [l] = max(0,Z j [l] ) j = 1...N l
a[l]=g[l](Zj [l])a [l] = g [l] (Z j [l] )
其中,g[l]是激活函数ReLU的表达式,当Zj [l]值达到g[l]的阈值时候,神经元的输出a[l]将传递到下一层,Nl为l层的神经元个数,j为上一层的神经元个数,wj [l]和bj [l]为全连接层的权重和偏差;此外,并联结构使全连接网络网络在同等参数的规模下,具有更好的模型的表达能力。Among them, g [l] is the expression of the activation function ReLU. When the value of Z j [l] reaches the threshold of g [l] , the output a [l] of the neuron will be passed to the next layer, and N l is the l layer The number of neurons in j is the number of neurons in the previous layer, w j [l] and b j [l] are the weights and biases of the fully connected layer; in addition, the parallel structure makes the fully connected network network with the same parameters Under the scale, it has better expressive power of the model.
并联网络单元6与残差连接7共同构成了残差并联网络,残差连接7使并联网络单元6跳过下一层,隔层与累加层5相连,弱化每层之间的强联系。避免了神经网络训练过程中梯度消失和网络退化的问题,使深层网络具有更好的训练性能。The
根据网络训练集,结合Adam算法进行反向传播训练。其中Adam算法的伪代码如表2所示。通过反向传播更新wj [l]和bj [l],根据RMSE指标,结合MATLAB deep learning工具箱里的Experiment Manager,调节残差并联网络结构,选取RMSE最小的网络。相较于隐藏层的神经元个数,残差并联网络中的全连接网络更能提高残差并联网络的预测准确率。因此,只需要调节残差病来你网络的深度宽度(全连接网络)与深度(并联网络单元),无需调节隐藏层的神经元个数,从而简化了神经网络的调节流程。经调节,残差并联网络的最优结构由两个并联网络单元残差连接,并联网络单元由四个全连接网络和累加层5连接。此外,残差并联网络的输入层为权重因子(λdc和λsw),输出层8为优化目标函数fANN。残差并联网络的训练性能与传统BP网络训练RMSE如图5所示。According to the network training set, combined with the Adam algorithm for backpropagation training. The pseudo code of the Adam algorithm is shown in Table 2. Update w j [l] and b j [l] through backpropagation, according to the RMSE index, combined with the Experiment Manager in the MATLAB deep learning toolbox, adjust the residual parallel network structure, and select the network with the smallest RMSE. Compared with the number of neurons in the hidden layer, the fully connected network in the residual parallel network can improve the prediction accuracy of the residual parallel network. Therefore, it is only necessary to adjust the depth width (fully connected network) and depth (parallel network unit) of the residual disease to your network, without adjusting the number of neurons in the hidden layer, thus simplifying the adjustment process of the neural network. After adjustment, the optimal structure of the residual parallel network is residually connected by two parallel network units, and the parallel network unit is connected by four fully connected networks and
表2 Adam反向传播算法Table 2 Adam backpropagation algorithm
S4、将步长更短的权重因子作为最优网络的输入层,最优网络将给出对应的目标函数值,对最优网络的预测值进行逆归一化,得到目标函数的真实值,进而寻找使目标函数最小的权重因子,实现状态变量的最优控制。S4. Use the weight factor with a shorter step size as the input layer of the optimal network. The optimal network will give the corresponding objective function value, and inverse normalize the predicted value of the optimal network to obtain the true value of the objective function. Then find the weight factor that minimizes the objective function to achieve the optimal control of the state variables.
其中,权重因子范围不变,步长为0.01,在预测的fANN中找到最小值,其对应的权重因子为该目标函数下的最优权重因子。将预测的权重因子带入模型预测控制的代价函数之中,从图6中可以看出,残差并联网络相较于传统的BP网络,能准确找出目标函数所对应的最优权重因子,从而提高模型预测控制的控制性能,适用于列车牵引的复杂工况。Among them, the range of the weight factor remains unchanged, the step size is 0.01, and the minimum value is found in the predicted f ANN , and the corresponding weight factor is the optimal weight factor under the objective function. Bring the predicted weight factor into the cost function of model predictive control. It can be seen from Figure 6 that compared with the traditional BP network, the residual parallel network can accurately find the optimal weight factor corresponding to the objective function. Therefore, the control performance of model predictive control is improved, and it is suitable for complex working conditions of train traction.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211211043.5A CN115685747B (en) | 2022-09-30 | 2022-09-30 | A model predictive control method based on residual neural network optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211211043.5A CN115685747B (en) | 2022-09-30 | 2022-09-30 | A model predictive control method based on residual neural network optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115685747A true CN115685747A (en) | 2023-02-03 |
CN115685747B CN115685747B (en) | 2024-11-22 |
Family
ID=85064698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211211043.5A Active CN115685747B (en) | 2022-09-30 | 2022-09-30 | A model predictive control method based on residual neural network optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115685747B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116027672A (en) * | 2023-03-28 | 2023-04-28 | 山东大学 | Model Predictive Control Method Based on Neural Network |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659667A (en) * | 1995-01-17 | 1997-08-19 | The Regents Of The University Of California Office Of Technology Transfer | Adaptive model predictive process control using neural networks |
US20190031204A1 (en) * | 2017-05-15 | 2019-01-31 | Siemens Aktiengesellschaft | Method and system for providing an optimized control of a complex dynamical system |
CN110083955A (en) * | 2019-05-05 | 2019-08-02 | 西南交通大学 | The type selecting and design method of transmission system traction Support Capacitor |
CN110518847A (en) * | 2019-08-30 | 2019-11-29 | 长安大学 | Surface permanent magnetic Synchronous Machine Models forecast Control Algorithm based on BP neural network |
CN110945594A (en) * | 2017-10-16 | 2020-03-31 | 因美纳有限公司 | Deep learning-based splice site classification |
CN111523226A (en) * | 2020-04-21 | 2020-08-11 | 南京工程学院 | A battery life prediction method based on optimized multi-layer residual BP deep network |
CN111580389A (en) * | 2020-05-21 | 2020-08-25 | 浙江工业大学 | Explicit Model Predictive Control Method for Three Degrees of Freedom Helicopter Based on Deep Learning |
CN113139464A (en) * | 2021-04-23 | 2021-07-20 | 国网山东省电力公司青岛市即墨区供电公司 | Power grid fault detection method |
CN113708688A (en) * | 2021-08-31 | 2021-11-26 | 西南交通大学 | Permanent magnet motor vector reduction model prediction control method |
-
2022
- 2022-09-30 CN CN202211211043.5A patent/CN115685747B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659667A (en) * | 1995-01-17 | 1997-08-19 | The Regents Of The University Of California Office Of Technology Transfer | Adaptive model predictive process control using neural networks |
US20190031204A1 (en) * | 2017-05-15 | 2019-01-31 | Siemens Aktiengesellschaft | Method and system for providing an optimized control of a complex dynamical system |
CN110945594A (en) * | 2017-10-16 | 2020-03-31 | 因美纳有限公司 | Deep learning-based splice site classification |
CN110083955A (en) * | 2019-05-05 | 2019-08-02 | 西南交通大学 | The type selecting and design method of transmission system traction Support Capacitor |
CN110518847A (en) * | 2019-08-30 | 2019-11-29 | 长安大学 | Surface permanent magnetic Synchronous Machine Models forecast Control Algorithm based on BP neural network |
CN111523226A (en) * | 2020-04-21 | 2020-08-11 | 南京工程学院 | A battery life prediction method based on optimized multi-layer residual BP deep network |
CN111580389A (en) * | 2020-05-21 | 2020-08-25 | 浙江工业大学 | Explicit Model Predictive Control Method for Three Degrees of Freedom Helicopter Based on Deep Learning |
CN113139464A (en) * | 2021-04-23 | 2021-07-20 | 国网山东省电力公司青岛市即墨区供电公司 | Power grid fault detection method |
CN113708688A (en) * | 2021-08-31 | 2021-11-26 | 西南交通大学 | Permanent magnet motor vector reduction model prediction control method |
Non-Patent Citations (5)
Title |
---|
CHUNXING YAO等: "Optimal Parameters Design for Model Predictive Control using an Artificial Neural Network Optimized by Genetic Algorithm", 《2021 13TH INTERNATIONAL SYMPOSIUM ON LINEAR DRIVES FOR INDUSTRY APPLICATIONS (LDIA)》, 2 November 2021 (2021-11-02), pages 1 - 6 * |
LICHENG LIAO等: "Application of Neural Network in Parameters Optimization of Permanent Magnet Synchronous Motor Model Predictive Control", 《2021 IEEE INTERNATIONAL CONFERENCE ON PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER ELECTRONICS (PRECEDE)》, 24 January 2022 (2022-01-24), pages 744 - 747 * |
李明阳: "基于自抗扰控制技术的PMSM电流模型预测控制系统研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, no. 01, 15 January 2022 (2022-01-15), pages 042 - 576 * |
李艳昌等: "基于神经网络修正的残差智能灰色模型在负荷预测中的应用", 《华东电力》, 24 November 2007 (2007-11-24), pages 30 - 33 * |
杨莹: "基于残差神经网络的风机叶片覆冰预测方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, no. 03, 15 March 2022 (2022-03-15), pages 042 - 488 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116027672A (en) * | 2023-03-28 | 2023-04-28 | 山东大学 | Model Predictive Control Method Based on Neural Network |
Also Published As
Publication number | Publication date |
---|---|
CN115685747B (en) | 2024-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106164689B (en) | The method and controller of Model Predictive Control for multiphase DC/DC converter | |
Hannan et al. | Switching techniques and intelligent controllers for induction motor drive: Issues and recommendations | |
Yao et al. | ANN optimization of weighting factors using genetic algorithm for model predictive control of PMSM drives | |
Guellal et al. | FPGA based on-line artificial neural network selective harmonic elimination PWM technique | |
CN108872751A (en) | A kind of method for diagnosing faults of three level Cascade H-Bridge Inverter neural network based | |
CN105071678A (en) | Limited switch state model prediction control method and device | |
Yao et al. | Weighting factors optimization for FCS-MPC in PMSM drives using aggregated residual network | |
CN115685747B (en) | A model predictive control method based on residual neural network optimization | |
Krishnan et al. | A smart FPGA based design and implementation of grid connected direct matrix converter with IoT communication | |
Pang et al. | A virtual MPC-based artificial neural network controller for PMSM drives in aircraft electric propulsion system | |
CN116954072A (en) | A dynamic optimization method of predictive control weight factors based on deep residual network | |
CN112994432B (en) | A Model Predictive Control Method for Modular Multilevel DC Transformers | |
Long et al. | A model-data hybrid driven diagnosis method for open-switch faults in three-phase T-type grid-connected converters | |
Tian et al. | Weighting factors design in model predictive direct torque control based on cascaded neural network | |
CN110518625B (en) | A DC Component Suppression Method of Grid-connected Inverter Controlled by Variable Learning Rate BP-PID | |
CN112072893A (en) | A Power Electronic Converter Control Method with Synthetic Variable Feedback | |
CN116208017B (en) | Inverter predictive control method based on optimal switching sequence model | |
Cortés et al. | Model predictive control of cascaded H-bridge multilevel inverters | |
CN116565960A (en) | Method and system for inverter grid-connected control based on full artificial neural network | |
CN115987086A (en) | Single-switch DC-DC converter on-line control method based on neural network | |
CN113992100B (en) | An Improved Three-Level Model-Free Predictive Current Control Method for Permanent Magnet Synchronous Motor | |
CN112531782A (en) | Method for suppressing voltage fluctuation of bus of wind power converter | |
CN114865632A (en) | Filter-based sequential model prediction control method and device | |
CN103368443B (en) | A kind of neural network internal model control method of megawatt three-phase current transformer | |
CN106208771A (en) | The reverse model predictive control method of modular multi-level converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |