CN115679130A - A kind of grouping method of ionic rare earth ore erbium and thulium - Google Patents
A kind of grouping method of ionic rare earth ore erbium and thulium Download PDFInfo
- Publication number
- CN115679130A CN115679130A CN202110823269.XA CN202110823269A CN115679130A CN 115679130 A CN115679130 A CN 115679130A CN 202110823269 A CN202110823269 A CN 202110823269A CN 115679130 A CN115679130 A CN 115679130A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- thulium
- erbium
- grouping
- lutetium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 68
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 60
- 229910052775 Thulium Inorganic materials 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 50
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 title claims description 30
- 229910052691 Erbium Inorganic materials 0.000 title claims description 24
- 239000012074 organic phase Substances 0.000 claims abstract description 36
- 238000000605 extraction Methods 0.000 claims abstract description 32
- 239000002253 acid Substances 0.000 claims abstract description 17
- DTNKINGSFZRARC-UHFFFAOYSA-N erbium thulium Chemical compound [Er][Tm] DTNKINGSFZRARC-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000008346 aqueous phase Substances 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims description 25
- 238000004508 fractional distillation Methods 0.000 claims description 15
- 229910052727 yttrium Inorganic materials 0.000 claims description 15
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 10
- 229910052693 Europium Inorganic materials 0.000 claims description 9
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 7
- 238000005191 phase separation Methods 0.000 claims description 7
- 238000007127 saponification reaction Methods 0.000 claims description 7
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 claims description 6
- 238000009776 industrial production Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 abstract description 42
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 abstract description 40
- 229910052769 Ytterbium Inorganic materials 0.000 abstract description 33
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 abstract description 31
- 238000000926 separation method Methods 0.000 abstract description 14
- 239000012071 phase Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000012141 concentrate Substances 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910003443 lutetium oxide Inorganic materials 0.000 description 6
- MPARYNQUYZOBJM-UHFFFAOYSA-N oxo(oxolutetiooxy)lutetium Chemical compound O=[Lu]O[Lu]=O MPARYNQUYZOBJM-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 description 6
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 4
- -1 rare earth ion Chemical class 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 229910052689 Holmium Inorganic materials 0.000 description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 3
- 239000012527 feed solution Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 3
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 3
- 229940075624 ytterbium oxide Drugs 0.000 description 3
- ZFMCJJFTTCFJLL-UHFFFAOYSA-N [Lu].[Ho] Chemical compound [Lu].[Ho] ZFMCJJFTTCFJLL-UHFFFAOYSA-N 0.000 description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- ZDFBXXSHBTVQMB-UHFFFAOYSA-N 2-ethylhexoxy(2-ethylhexyl)phosphinic acid Chemical compound CCCCC(CC)COP(O)(=O)CC(CC)CCCC ZDFBXXSHBTVQMB-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- JYXGEPNZGMUFEK-UHFFFAOYSA-N [Lu].[Yb].[Tm] Chemical compound [Lu].[Yb].[Tm] JYXGEPNZGMUFEK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于稀土萃取分离技术领域,具体涉及一种离子型稀土矿铒铥分组方法。The invention belongs to the technical field of rare earth extraction and separation, and in particular relates to a grouping method of ion-type rare earth ore erbium and thulium.
背景技术Background technique
离子型矿稀土配分齐全,主要以中重稀土为主,富含功能材料所需的铕、铽、镝、铒、镥、钇等中重稀土元素,是我国特有的战略资源。离子型稀土矿主要分布在我国南方的江西、福建、广东、湖南和广西等省区,根据稀土矿的配分特征,可分为轻稀土型、中钇富铕型和高钇型,氧化铥、氧化镱和氧化镥的总量在三种类型离子型矿中分别约为0.9%、1.6%、4.4%。目前离子型矿稀土分离主体工艺均采用P507(2-乙基己基膦酸单2-乙基己基酯)和环烷酸体系,离子型稀土矿经过多次分组后才能得到铥镱镥富集物(Sep.Purif.Technol.,2017,184,280-287.)。例如高钇型离子矿首先采用环烷酸分离氧化钇,再通过P507体系铒铥分组,得到铥镱镥富集物;中钇富铕型离子矿首先通过P507体系镝钬分组,得到钬~镥富集物(Ho、Er、Tm、Yb、Lu、Y),再通过环烷酸体系分离氧化钇,最后是采用P507对钬~镥富集物铒铥分组,得到铥镱镥富集物;轻稀土型离子矿采用P507体系依次钕钐分组和镝钬分组,环烷酸分离氧化钇,最后再采用P507体系铒铥分组,得到铥镱镥富集物。现有离子型稀土矿分组存在一些问题,例如获得铥镱镥富集物的流程较长,P507体系对铥镱镥等重稀土反萃不完全,分组工序中铥镱镥的收率约95%,容易造成镥等贵重的重稀土资源流失等问题。Ionic minerals have a complete distribution of rare earths, mainly medium and heavy rare earths, and are rich in medium and heavy rare earth elements such as europium, terbium, dysprosium, erbium, lutetium, and yttrium required for functional materials. They are unique strategic resources in my country. Ionic rare earth ores are mainly distributed in Jiangxi, Fujian, Guangdong, Hunan, Guangxi and other provinces in southern my country. According to the distribution characteristics of rare earth ores, they can be divided into light rare earth type, medium yttrium rich europium type and high yttrium type, thulium oxide, The total amount of ytterbium oxide and lutetium oxide is about 0.9%, 1.6%, and 4.4% in the three types of ion-type minerals, respectively. At present, the main process of rare earth separation of ion-type ore adopts P507 (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and naphthenic acid system, and ion-type rare earth ore can only be obtained from thulium, ytterbium and lutetium concentrates after many times of grouping (Sep. Purif. Technol., 2017, 184, 280-287.). For example, high-yttrium-rich ion ores first use naphthenic acid to separate yttrium oxide, and then group erbium and thulium through the P507 system to obtain thulium, ytterbium and lutetium concentrates; medium-yttrium-europium-rich ion ores first pass the P507 system dysprosium and holmium grouping to obtain holmium-lutetium Concentrates (Ho, Er, Tm, Yb, Lu, Y), and then separate yttrium oxide through naphthenic acid system, and finally use P507 to group holmium-lutetium enrichment erbium and thulium to obtain thulium, ytterbium and lutetium enrichment; The light rare earth ion ore uses the P507 system to group neodymium, samarium and dysprosium and holmium in sequence, and naphthenic acid to separate yttrium oxide, and finally uses the P507 system to group erbium and thulium to obtain thulium, ytterbium and lutetium concentrates. There are some problems in the existing grouping of ionic rare earth ores. For example, the process of obtaining thulium, ytterbium and lutetium concentrates is relatively long, and the P507 system is incomplete for the back extraction of heavy rare earths such as thulium, ytterbium and lutetium. The yield of thulium, ytterbium and lutetium in the grouping process is about 95%. , It is easy to cause problems such as the loss of valuable heavy rare earth resources such as lutetium.
发明内容Contents of the invention
本发明要解决现有技术中的技术问题,提供一种离子型稀土矿铒铥分组方法,采用P507-异辛醇体系进行铒铥分组,通过分液漏斗法模拟分馏萃取,使铒铥分组出口有机相稀土中铥镱镥总含量大于99%,出口水相铥镱镥的含量均小于0.03%,保证了镥等重稀土有较高的收率,含铥镱镥富集物的有机相可采用有机相进料方式直接分离氧化镥、氧化铥和氧化镱。The present invention aims to solve the technical problems in the prior art, and provides a method for grouping erbium and thulium of ion-type rare earth ore, adopting the P507-isooctanol system to carry out grouping of erbium and thulium, and simulating fractionation extraction through a separating funnel method, so that the grouping of erbium and thulium can be exported The total content of thulium, ytterbium and lutetium in the rare earth organic phase is greater than 99%, and the content of thulium, ytterbium and lutetium in the outlet water phase is less than 0.03%, which ensures a high yield of heavy rare earths such as lutetium, and the organic phase containing thulium, ytterbium and lutetium concentrates can be Lutetium oxide, thulium oxide and ytterbium oxide are directly separated by the organic phase feeding method.
为了解决上述技术问题,本发明的技术方案具体如下:In order to solve the problems of the technologies described above, the technical solution of the present invention is specifically as follows:
本发明提供一种离子型稀土矿铒铥分组方法,包括以下步骤:The invention provides a method for grouping ionic rare earth ore erbium and thulium, comprising the following steps:
针对不同类型的离子型稀土矿配分特点,采用串级萃取理论确定级数和流比;采用分液漏斗法模拟分馏萃取,铒铥分组工艺由n级萃取,m级洗涤组成;第1级进有机相,第n级进料液,第n+m级进洗酸,振荡后静置分相后分馏;n和m为正整数。According to the distribution characteristics of different types of ionic rare earth ores, the cascade extraction theory is used to determine the number of stages and the flow ratio; the separating funnel method is used to simulate fractional distillation extraction, and the erbium and thulium grouping process consists of n-stage extraction and m-stage washing; The organic phase, the feed liquid of the nth stage, and the washing acid of the n+mth stage, after shaking, stand still for phase separation and fractional distillation; n and m are positive integers.
在上述技术方案中,有机相为:1.2~1.5mol/LP507浓度,10~30%异辛醇,皂化率为36%。In the above technical solution, the organic phase has a concentration of 1.2-1.5 mol/LP507, 10-30% iso-octanol, and a saponification rate of 36%.
在上述技术方案中,n为13-14,m为8-11。In the above technical solution, n is 13-14, and m is 8-11.
在上述技术方案中,进一步的所述分组方法的水相酸度pH为0.60-1.50。In the above technical solution, the acidity pH of the water phase in the further grouping method is 0.60-1.50.
在上述技术方案中,本发明所述的分组方法实际应用在工业生产过程中,由于萃取槽级效率等因素影响,实际萃取级数n和洗涤级数m为理论计算的1.5~3倍。In the above technical solution, the grouping method of the present invention is actually applied in the industrial production process. Due to the influence of factors such as extraction tank level efficiency, the actual number of extraction stages n and the number of washing stages m are 1.5 to 3 times of theoretical calculations.
在上述技术方案中,所述不同类型的离子型稀土矿为轻稀土型、中钇富铕型或者高钇型。In the above technical solution, the different types of ionic rare earth minerals are light rare earth type, medium yttrium rich in europium type or high yttrium type.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明提供一种离子型稀土矿铒铥分组方法,第一步采用P507-异辛醇体系进行铒铥分组,得到贵重的铥镱镥,铥镱镥的收率大于99%。与现有二步以上分组后再P507体系铒铥分组铥镱镥的收率约95%相比,本发明一步可获得铥镱镥富集物,具有流程短,收率高等优点。(1) The present invention provides a method for grouping erbium and thulium of ionic rare earth ore. In the first step, the P507-isooctanol system is used to group erbium and thulium to obtain precious thulium, ytterbium and lutetium, and the yield of thulium, ytterbium and lutetium is greater than 99%. Compared with the yield of about 95% of thulium, ytterbium and lutetium in the P507 system after more than two steps of grouping, the present invention can obtain thulium, ytterbium and lutetium concentrates in one step, and has the advantages of short process and high yield.
(2)与现有P507体系铒铥分组水相盐酸浓度为0.40~1.10mol/L相比,本发明P507-异辛醇体系铒铥分组水相酸度范围pH 0.60~1.50,大大降低了水相酸度,降低了酸消耗量。(2) Compared with the hydrochloric acid concentration of the existing P507 system erbium-thulium grouping water phase of 0.40~1.10mol/L, the acidity range of the P507-isooctanol system erbium-thulium grouping water phase of the present invention is pH 0.60~1.50, which greatly reduces the concentration of the water phase Acidity, reduces acid consumption.
(3)P507-异辛醇体系分离氧化镥已实现工业化生产,离子型稀土矿采用P507-异辛醇体系铒铥分组,含铥镱镥的有机相可直接进料,可以与现有氧化镥等重稀土分离工艺衔接,易于实现工业化,具有实际应用价值。(3) P507-isooctanol system separation of lutetium oxide has been industrialized production, ionic rare earth ore using P507-isooctanol system erbium thulium grouping, the organic phase containing thulium ytterbium lutetium can be directly fed, and can be combined with existing lutetium oxide Equal-heavy rare earth separation process is connected, easy to realize industrialization, and has practical application value.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
图1为串级模拟实验水相和有机相稀土浓度及水相酸度结果。Figure 1 shows the results of cascade simulation experiments for the concentration of rare earths in the aqueous and organic phases and the acidity of the aqueous phase.
具体实施方式Detailed ways
本发明的发明思想为:离子型稀土矿均采用以氨化P507和环烷酸为主体技术的稀土分离流程,已广泛应用于我国的稀土湿法冶金工业中,取得了良好的经济和社会效益。近年来,针对南方离子型矿重稀土分离工艺中P507体系存在铥镱镥重稀土分离效率低、反萃不完全、高纯产品制备难等关键性技术问题,课题组发明了“一种添加改良剂的萃取体系分离重稀土工艺”(ZL200510016682.6),开拓了优于P507分离重稀土的新萃取体系,新体系在Tm、Yb、Lu的分离选择性,反萃酸度,特别是易反萃完全等方面均优于P507体系,为高纯镥的高效分离新技术的应用奠定了基础。采用该专利技术,多家重稀土分离龙头企业建成了南方离子型矿重稀土分离生产线,实现了晶体用氧化镥产业化制备。现有离子型稀土矿经过P507等体系多次分组后才能得到铥镱镥富集物,由于P507体系对铥镱镥等重稀土反萃不完全,造成分组工序中镥等重稀土资源流失。为解决现有离子型稀土矿分组过程镥等重稀土流失的问题,本发明提出了一种离子型稀土矿铒铥分组方法,第一步采用P507-异辛醇体系进行铒铥分组,通过分液漏斗法模拟分馏萃取,使铒铥分组出口有机相稀土中铥镱镥总含量大于99%,出口水相稀土中铥镱镥的含量小于0.03%,保证了镥等重稀土有较高的收率,含铥镱镥富集物的有机相可采用有机相进料方式直接分离氧化镥、氧化铥和氧化镱。The inventive idea of the present invention is: the ionic rare earth ore adopts the rare earth separation process with ammoniated P507 and naphthenic acid as the main technology, which has been widely used in the rare earth hydrometallurgy industry in my country, and has achieved good economic and social benefits . In recent years, in view of the key technical problems of the P507 system in the separation process of thulium, ytterbium and lutetium heavy rare earths, such as low separation efficiency of thulium, ytterbium and lutetium heavy rare earths, incomplete stripping, and difficulty in preparing high-purity products, the research group invented "an additive improved "Separation of Heavy Rare Earths by Extraction System of Reagents" (ZL200510016682.6), developed a new extraction system superior to P507 for separation of heavy rare earths, the separation selectivity of the new system in terms of Tm, Yb, Lu, stripping acidity, especially easy stripping Complete and other aspects are superior to the P507 system, which has laid a foundation for the application of high-purity lutetium high-efficiency separation technology. Using this patented technology, a number of leading enterprises in the separation of heavy rare earths have built a production line for the separation of heavy rare earths in southern ionic ore, and realized the industrial production of lutetium oxide for crystals. Thulium, ytterbium and lutetium concentrates can only be obtained after multiple groupings of ionic rare earth ores by systems such as P507. Due to the incomplete stripping of heavy rare earths such as thulium, ytterbium and lutetium by the P507 system, heavy rare earth resources such as lutetium are lost in the grouping process. In order to solve the problem of loss of heavy rare earths such as lutetium in the existing ionic rare earth ore grouping process, the present invention proposes a method for grouping erbium and thulium in the ion type rare earth ore. The liquid funnel method simulates fractional distillation extraction, so that the total content of thulium, ytterbium and lutetium in the rare earths in the organic phase of erbium and thulium grouping is greater than 99%, and the content of thulium, ytterbium and lutetium in the exporting water phase rare earths is less than 0.03%, which ensures a higher recovery of heavy rare earths such as lutetium. rate, the organic phase containing thulium, ytterbium and lutetium concentrates can be directly separated from lutetium oxide, thulium oxide and ytterbium oxide by using the organic phase feeding method.
本发明提出了一种离子型稀土矿铒铥分组方法,具体包括:The present invention proposes a method for grouping ionic rare earth ore erbium and thulium, which specifically includes:
针对不同类型的离子型稀土矿配分特点,采用串级萃取理论确定级数和流比。采用“分液漏斗法”模拟分馏萃取,铒铥分组工艺由n级萃取,m级洗涤组成。第1级进有机相,第n级进料液,第n+m级进洗酸,振荡30分钟后静置分相后分馏。According to the distribution characteristics of different types of ionic rare earth ores, the cascade extraction theory is used to determine the number of stages and flow ratio. The "separating funnel method" is used to simulate fractional distillation extraction, and the erbium and thulium grouping process consists of n-stage extraction and m-stage washing. The first stage enters the organic phase, the nth stage feeds the liquid, and the n+m stage enters the washing acid. After shaking for 30 minutes, stand still for phase separation and fractional distillation.
本发明中:不同类型的离子型矿主要包括轻稀土型、中钇富铕型和高钇型;有机相为:1.2~1.5mol/LP507浓度,10~30%异辛醇,皂化率为36%;n为13-14,m为8-11;进一步的所述分组方法的水相酸度pH为0.60-1.50。In the present invention: different types of ionic minerals mainly include light rare earth type, medium yttrium rich europium type and high yttrium type; organic phase is: 1.2~1.5mol/LP507 concentration, 10~30% isooctyl alcohol, saponification rate is 36 %; n is 13-14, and m is 8-11; further, the acidity pH of the water phase in the grouping method is 0.60-1.50.
本发明的分组方法实际应用在工业生产过程中,实际萃取级数n和洗涤级数m应为理论计算的1.5~3倍。所述不同类型的离子型稀土矿为轻稀土型、中钇富铕型或者高钇型。When the grouping method of the present invention is actually applied in the industrial production process, the actual number of extraction stages n and the number of washing stages m should be 1.5 to 3 times of theoretical calculations. The different types of ionic rare earth minerals are light rare earth type, medium yttrium rich europium type or high yttrium type.
实施例1Example 1
以某高钇型离子矿铒铥分组为例,料液组成见表1,其中铥组摩尔配分为3.81%,铒组摩尔配分为96.19%,利用串级萃取理论计算确定级数和流比。采用“分液漏斗法”模拟分馏萃取,铒铥分组工艺由14级萃取,8级洗涤组成。第1级进有机相,第14级进料液,第22级进洗酸,振荡30分钟后静置分相后分馏。有机相:1.2mol/L P507+15%异辛醇,皂化率36%;水相:[RE3+]=1.2mol/L,pH=0.52;洗酸:4.5mol/L HCl。流比为有机相:料液:洗酸=6.67:1:0.55。串级模拟实验结果表明出口有机相稀土中铥镱镥总含量提高到99.21%,出口有机相稀土中氧化钇为0.79%,出口水相稀土中铥镱镥小于0.03%。有机相和水相稀土浓度及水相酸度结果见图1,串级模拟实验最佳水相酸度为pH 0.90~1.45。Taking the erbium-thulium grouping of a high-yttrium-type ion ore as an example, the composition of the feed solution is shown in Table 1. The molar fraction of the thulium group is 3.81%, and the molar fraction of the erbium group is 96.19%. The number of stages and the flow ratio are determined by cascade extraction theory. The "separating funnel method" is used to simulate fractional distillation extraction, and the erbium-thulium grouping process consists of 14 stages of extraction and 8 stages of washing. The first stage enters the organic phase, the 14th stage feeds liquid, and the 22nd stage enters the washing acid. After shaking for 30 minutes, stand still for phase separation and fractional distillation. Organic phase: 1.2mol/L P507+15% isooctyl alcohol, saponification rate 36%; aqueous phase: [RE 3+ ]=1.2mol/L, pH=0.52; washing acid: 4.5mol/L HCl. The flow ratio is organic phase: feed liquid: washing acid = 6.67:1:0.55. The results of the cascade simulation experiment show that the total content of thulium, ytterbium and lutetium in the export organic phase rare earth is increased to 99.21%, the yttrium oxide in the export organic phase rare earth is 0.79%, and the thulium, ytterbium and lutetium in the export water phase rare earth is less than 0.03%. The results of the concentration of rare earths in the organic phase and water phase and the acidity of the water phase are shown in Figure 1. The optimum acidity of the water phase in the cascade simulation experiment is pH 0.90-1.45.
表1高钇型离子矿稀土元素配分(%)Table 1 Distribution of rare earth elements in high-yttrium ion ores (%)
实施例2Example 2
以某轻稀土型离子矿铒铥分组为例,料液组成见表2,其中铥组摩尔配分为0.88%,铒组摩尔配分为99.12%,利用串级萃取理论计算确定级数和流比。采用“分液漏斗法”模拟分馏萃取,铒铥分组工艺由14级萃取,11级洗涤组成。第1级进有机相,第14级进料液,第25级进洗酸,振荡30分钟后静置分相后分馏。有机相:1.2mol/L P507+10%异辛醇,皂化率36%;水相:[RE3+]=1.0mol/L,pH=0.40;洗酸:4.5mol/L HCl。流比为有机相:料液:洗酸=5.37:1:0.46。串级模拟实验结果表明出口有机相稀土中铥镱镥总含量大于99.60%,出口有机相稀土中铒组含量小于0.4%,出口水相稀土中铥镱镥小于0.03%。串级模拟实验最佳水相酸度为pH 0.80~1.50。Taking the erbium-thulium grouping of a light rare earth ion ore as an example, the composition of the feed solution is shown in Table 2, in which the molar fraction of the thulium group is 0.88%, and the molar fraction of the erbium group is 99.12%. The series number and flow ratio are determined by cascade extraction theory. The "separating funnel method" is used to simulate fractional distillation extraction, and the erbium and thulium grouping process consists of 14 stages of extraction and 11 stages of washing. The first stage enters the organic phase, the 14th stage feeds the liquid, and the 25th stage enters the washing acid. After shaking for 30 minutes, stand still for phase separation and fractional distillation. Organic phase: 1.2 mol/L P507+10% isooctyl alcohol, saponification rate 36%; aqueous phase: [RE 3+ ]=1.0 mol/L, pH=0.40; washing acid: 4.5 mol/L HCl. The flow ratio is organic phase: feed liquid: washing acid = 5.37:1:0.46. The results of cascade simulation experiments show that the total content of thulium, ytterbium and lutetium in the export organic phase rare earth is greater than 99.60%, the content of erbium group in the export organic phase rare earth is less than 0.4%, and the thulium, ytterbium and lutetium in the export water phase rare earth is less than 0.03%. The optimal acidity of water phase in cascade simulation experiment is pH 0.80-1.50.
表2轻稀土型离子矿稀土元素配分(%)Table 2 Distribution of rare earth elements in light rare earth ion ores (%)
实施例3Example 3
以某中钇富铕型离子矿铒铥分组为例,料液组成见表3,其中铥组摩尔配分为2.52%,铒组摩尔配分为97.48%,利用串级萃取理论计算确定级数和流比。采用“分液漏斗法”模拟分馏萃取,铒铥分组工艺由13级萃取,9级洗涤组成。第1级进有机相,第13级进料液,第22级进洗酸,振荡30分钟后静置分相后分馏。有机相:1.5mol/L P507+20%异辛醇,皂化率36%;水相:[RE3+]=1.0mol/L,pH=0.60;洗酸:4.5mol/L HCl。流比为有机相:料液:洗酸=5.10:1:0.46。串级模拟实验结果表明出口有机相稀土中铥镱镥总含量大于99.50%,出口有机相稀土中铒组含量小于0.5%,出口水相稀土中铥镱镥小于0.03%。串级模拟实验最佳水相酸度为pH 0.60~1.40。Taking the erbium-thulium grouping of a medium-yttrium-europium-rich ion ore as an example, the composition of the feed solution is shown in Table 3, wherein the molar fraction of the thulium group is 2.52%, and the molar fraction of the erbium group is 97.48%. Compare. The "separating funnel method" is used to simulate fractional distillation extraction, and the erbium and thulium grouping process consists of 13 stages of extraction and 9 stages of washing. The first stage enters the organic phase, the 13th stage feeds the liquid, and the 22nd stage enters the washing acid. After shaking for 30 minutes, stand still for phase separation and fractional distillation. Organic phase: 1.5mol/L P507+20% isooctyl alcohol, saponification rate 36%; aqueous phase: [RE 3+ ]=1.0mol/L, pH=0.60; washing acid: 4.5mol/L HCl. The flow ratio is organic phase: feed liquid: washing acid = 5.10:1:0.46. The results of cascade simulation experiments show that the total content of thulium, ytterbium and lutetium in the export organic phase rare earth is more than 99.50%, the content of erbium group in the export organic phase rare earth is less than 0.5%, and the thulium, ytterbium and lutetium in the export water phase rare earth is less than 0.03%. The optimal acidity of water phase in cascade simulation experiment is pH 0.60-1.40.
表3中钇富铕型离子矿稀土元素配分(%)Distribution of rare earth elements in yttrium and europium-rich ion ores in Table 3 (%)
实施例4Example 4
以某轻稀土型离子矿铒铥分组为例,其中铥组摩尔配分为0.88%,铒组摩尔配分为99.12%,利用串级萃取理论计算确定级数和流比。采用“分液漏斗法”模拟分馏萃取,铒铥分组工艺由14级萃取,11级洗涤组成。第1级进有机相,第14级进料液,第25级进洗酸,振荡30分钟后静置分相后分馏。有机相:1.5mol/L P507,皂化率36%;水相:[RE3+]=1.0mol/L,pH=1.0;洗酸:4.5mol/L HCl。流比为有机相:料液:洗酸=3.88:1:0.46。串级模拟实验结果表明出口有机相稀土中铥镱镥总含量大于99%,出口有机相稀土中铒组含量小于1%,出口水相稀土中铥镱镥小于0.05%。串级模拟实验最佳水相酸度为0.40~1.10mol/L。Taking the erbium-thulium grouping of a light rare earth ion ore as an example, the molar distribution of the thulium group is 0.88%, and the molar distribution of the erbium group is 99.12%. The series number and flow ratio are determined by cascade extraction theory. The "separating funnel method" is used to simulate fractional distillation extraction, and the erbium and thulium grouping process consists of 14 stages of extraction and 11 stages of washing. The first stage enters the organic phase, the 14th stage feeds the liquid, and the 25th stage enters the washing acid. After shaking for 30 minutes, stand still for phase separation and fractional distillation. Organic phase: 1.5 mol/L P507, saponification rate 36%; aqueous phase: [RE 3+ ]=1.0 mol/L, pH=1.0; washing acid: 4.5 mol/L HCl. The flow ratio is organic phase: feed liquid: washing acid = 3.88:1:0.46. The results of cascade simulation experiments show that the total content of thulium, ytterbium and lutetium in the export organic phase rare earth is more than 99%, the content of erbium group in the export organic phase rare earth is less than 1%, and the thulium, ytterbium and lutetium in the export water phase rare earth is less than 0.05%. The optimal acidity of water phase in cascade simulation experiment is 0.40~1.10mol/L.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110823269.XA CN115679130A (en) | 2021-07-21 | 2021-07-21 | A kind of grouping method of ionic rare earth ore erbium and thulium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110823269.XA CN115679130A (en) | 2021-07-21 | 2021-07-21 | A kind of grouping method of ionic rare earth ore erbium and thulium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115679130A true CN115679130A (en) | 2023-02-03 |
Family
ID=85044632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110823269.XA Pending CN115679130A (en) | 2021-07-21 | 2021-07-21 | A kind of grouping method of ionic rare earth ore erbium and thulium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115679130A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1131200A (en) * | 1995-11-08 | 1996-09-18 | 北京大学 | Solvent extraction and separation new system of thulium, ytterbium and lutetium |
CN101787451A (en) * | 2010-01-22 | 2010-07-28 | 内蒙古科技大学 | Method for improving efficiency of acidic organophosphorus extractant for extraction separation of rare-earth elements |
CN107675000A (en) * | 2017-09-05 | 2018-02-09 | 中国科学院长春应用化学研究所 | Regulate and control heavy rare-earth extraction separating technology extraction equilibrium acidity and the method for extracting series |
WO2018028543A1 (en) * | 2016-08-08 | 2018-02-15 | 有研稀土新材料股份有限公司 | Method for extraction, enrichment and recovery of rare earths from low-concentration rare earth solution |
WO2020211304A1 (en) * | 2019-04-17 | 2020-10-22 | 中国科学院长春应用化学研究所 | Method for grouping and separating yttrium oxide from high-yttrium rare earth ore and method for grouping and separating yttrium oxide from middle-yttrium europium-rich rare earth ore |
WO2021043303A1 (en) * | 2019-09-06 | 2021-03-11 | 中国科学院长春应用化学研究所 | Use of phosphoryl carboxylic acid or salt thereof in separating yttrium and method |
-
2021
- 2021-07-21 CN CN202110823269.XA patent/CN115679130A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1131200A (en) * | 1995-11-08 | 1996-09-18 | 北京大学 | Solvent extraction and separation new system of thulium, ytterbium and lutetium |
CN101787451A (en) * | 2010-01-22 | 2010-07-28 | 内蒙古科技大学 | Method for improving efficiency of acidic organophosphorus extractant for extraction separation of rare-earth elements |
WO2018028543A1 (en) * | 2016-08-08 | 2018-02-15 | 有研稀土新材料股份有限公司 | Method for extraction, enrichment and recovery of rare earths from low-concentration rare earth solution |
CN107675000A (en) * | 2017-09-05 | 2018-02-09 | 中国科学院长春应用化学研究所 | Regulate and control heavy rare-earth extraction separating technology extraction equilibrium acidity and the method for extracting series |
WO2020211304A1 (en) * | 2019-04-17 | 2020-10-22 | 中国科学院长春应用化学研究所 | Method for grouping and separating yttrium oxide from high-yttrium rare earth ore and method for grouping and separating yttrium oxide from middle-yttrium europium-rich rare earth ore |
WO2021043303A1 (en) * | 2019-09-06 | 2021-03-11 | 中国科学院长春应用化学研究所 | Use of phosphoryl carboxylic acid or salt thereof in separating yttrium and method |
Non-Patent Citations (1)
Title |
---|
石富: "《稀土冶金技术》", 30 April 2009, 冶金工业出版社, pages: 97 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022033041A1 (en) | Extraction method for ion-adsorbed rare earths | |
CN102994781B (en) | Method for separation and purification of thorium | |
CN106521190B (en) | The phosphine of neutrality containing amino extractant is used for the purposes and method of extracting and separating zirconium and/or hafnium | |
CN102618736A (en) | Extraction seperation method of rare-earth element | |
CN103526058B (en) | Technique for preparing high-purity praseodymium from industrial praseodymium raw material | |
CN103215447A (en) | Method for extracting scandium from scandium-enriched ferrous acid solution by using P204 | |
CN106498191B (en) | The method of three feed inlet fractional extraction separation of mixed rare-earth | |
CN105256157B (en) | Pre-separation is extracted to light rare earth ore deposit and the method for middle ruthenium ion Rare Earth Mine combined separation | |
CN105087965A (en) | Method for extractive separation of La-Nd light rare earth | |
CN104404268A (en) | Novel co-extraction system for extraction of lithium from high magnesium-lithium ratio bittern and co-extraction method using the same | |
CN104726709A (en) | Process method for pre-separation three-outlet extraction separation of light rare earth ore | |
CN104388710B (en) | Method for separating light rare earth ore and high yttrium ore by means of two-in and three-out fractional distillation extraction grouping | |
CN102352436A (en) | Method for separating U (uranium) from Pu (plutonium) in Purex process | |
CN105543507B (en) | Method for combined separation of light rare earth ores and low yttrium ion rare earth ores with pre-separation and extraction | |
CN105018753A (en) | Composite extraction agent and method for extracting, separating and recycling indium through composite extraction agent | |
CN106498193B (en) | An extraction method for grouping and separating three rare earth raw materials | |
WO2020211304A1 (en) | Method for grouping and separating yttrium oxide from high-yttrium rare earth ore and method for grouping and separating yttrium oxide from middle-yttrium europium-rich rare earth ore | |
CN103215448A (en) | Method for extracting scandium from scandium-containing iron-rich acid liquor through P507 | |
CN115679130A (en) | A kind of grouping method of ionic rare earth ore erbium and thulium | |
CN103540746A (en) | Method of separating lanthanum from rare earth nitrate slurry as well as rare earth ore concentrate separation method | |
CN105861859B (en) | A kind of method that technical grade holmium raw material prepares 5N holmiums | |
CN109881005B (en) | Method for separating yttrium oxide by grouping of medium yttrium rich europium rare earth ore | |
CN109022832B (en) | A kind of extraction and separation method of co-producing 4N dysprosium and 4N ytterbium | |
CN1563442A (en) | Technique for separating high purity yttrium oxide through solvent extraction | |
CN110002487B (en) | Method for separating yttrium oxide from high-yttrium type rare earth ore components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230203 |