CN115677349B - A fluorescent ceramic material with broad-spectrum red light emission and its preparation method - Google Patents
A fluorescent ceramic material with broad-spectrum red light emission and its preparation method Download PDFInfo
- Publication number
- CN115677349B CN115677349B CN202211467609.0A CN202211467609A CN115677349B CN 115677349 B CN115677349 B CN 115677349B CN 202211467609 A CN202211467609 A CN 202211467609A CN 115677349 B CN115677349 B CN 115677349B
- Authority
- CN
- China
- Prior art keywords
- ceramic material
- fluorescent ceramic
- red light
- broad
- light emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明公开了一种具有宽光谱红光发射的荧光陶瓷材料,其特征在于,其化学通式为Y3(MnxAl1‑x‑yScy)5O12,其中,0.0002≤x≤0.005,0<y≤0.3。按化学计量比称量Al2O3,Y2O3,Sc2O3和MnCO3原料粉体,加入烧结助剂和溶剂;经过球磨、干燥、过筛得混合粉体;再进行干压和冷等静压,得到素坯;经过高温真空烧结和双面抛光,即得Y3(MnxAl1‑x‑yScy)5O12荧光陶瓷材料。
The invention discloses a fluorescent ceramic material with wide-spectrum red light emission, which is characterized in that its general chemical formula is Y 3 (Mn x Al 1‑x‑y Sc y ) 5 O 12 , where 0.0002≤x≤ 0.005, 0<y≤0.3. Weigh Al 2 O 3 , Y 2 O 3 , Sc 2 O 3 and MnCO 3 raw material powders according to the stoichiometric ratio, add sintering aids and solvents; ball mill, dry, and sieve to obtain mixed powders; then dry press and cold isostatic pressing to obtain a green body; after high-temperature vacuum sintering and double-sided polishing, a Y 3 (Mn x Al 1‑x‑y Sc y ) 5 O 12 fluorescent ceramic material is obtained.
Description
技术领域technical field
本发明属于无机发光材料领域,涉及一种荧光陶瓷材料,具体涉及一种具有宽光谱红光发射的荧光陶瓷材料及其制备方法。The invention belongs to the field of inorganic luminescent materials, and relates to a fluorescent ceramic material, in particular to a fluorescent ceramic material with wide-spectrum red light emission and a preparation method thereof.
背景技术Background technique
白光LED作为第四代照明光源因具有低能耗,高效率,长寿命,无污染等显著优势,在固态照明,投影显示等领域具有广泛的应用。当前,白光LED的最广泛,最成熟的技术方案为荧光粉转换型(phosphor converted white LED),通常也称为PC-LED,即将荧光粉通过树脂,硅胶等有机物与蓝光芯片封装,通过蓝光与荧光混合形成白光效果。然而,有机封装材料自身存在的耐热性差,易老化等弊端难以满足白光LED在高功率应用场合下的应用。荧光陶瓷材料由于具有高热导率,低光衰,强抗热冲击力等显著优势可有效替代传统的Ce:YAG荧光粉+树脂的技术方案。As the fourth-generation lighting source, white LED has a wide range of applications in solid-state lighting, projection display and other fields due to its significant advantages such as low energy consumption, high efficiency, long life, and no pollution. At present, the most extensive and mature technical solution for white LEDs is phosphor converted white LED, also commonly known as PC-LED, that is, the phosphor is packaged with blue light chips through resin, silica gel and other organic substances, and through blue light and Fluorescence mixes to create a white light effect. However, the disadvantages of organic packaging materials such as poor heat resistance and easy aging are difficult to meet the application of white light LEDs in high-power applications. Fluorescent ceramic materials can effectively replace the traditional Ce:YAG phosphor + resin technical solution due to their significant advantages such as high thermal conductivity, low light attenuation, and strong thermal shock resistance.
然而,Ce:YAG荧光陶瓷仍然面临光谱中缺少红光成分,造成显色指数低下,光色品质差等难题。目前稀土离子Eu2+掺杂的CaAlSiN3:Eu2+红色荧光材料受限于制备工艺复杂,制备效率低下,而K2SiF6:Mn4+荧光粉则面临抗潮解性能差以及发射光谱较窄的难题。因此,亟需寻求一种制备工艺简单,成本低的氧化物红色荧光体。在众多方案中,通过Mn2+离子取代YAG石榴石结构中八面体中心位置的Al3+,产生6A1→4T1跃迁并发射出中心波长在600nm附近的橙光发射峰,尽管Mn2+的发射峰一定程度上缓解了红光缺失的问题,但与太阳光相比,仍然缺少红光区域(>650nm)的发射。研究人员在Gd3(Al,Ga)5O12荧光粉基质里通过调控Al/Ga的比例实现Mn2+/Mn4+的发光可调,但是,Ga3+的引入会显著降低石榴石体系的带隙,导致导带下沉,容易产生热离化,使得荧光材料的热稳定性显著下降。除此之外,由于较大的斯托克斯位移损失,在LED芯片的工作温度下(150℃),红色荧光材料的发射强度与室温下相比通常会降低20%以上,这也进一步限制了红光发射的荧光陶瓷材料在高品质固态照明中的应用。However, Ce:YAG fluorescent ceramics still face the lack of red light components in the spectrum, resulting in low color rendering index and poor light and color quality. At present, the CaAlSiN 3 :Eu 2+ red fluorescent material doped with rare earth ions Eu 2+ is limited by the complex preparation process and low preparation efficiency, while the K 2 SiF 6 :Mn 4+ phosphor faces poor deliquescence resistance and relatively low emission spectrum. narrow puzzle. Therefore, there is an urgent need to find an oxide red phosphor with simple preparation process and low cost. In many schemes, the Al 3+ in the center of the octahedron in the YAG garnet structure is replaced by Mn 2+ ions, resulting in a 6 A 1 → 4 T 1 transition and an orange emission peak with a center wavelength near 600nm, although Mn 2 The emission peak of + alleviates the problem of missing red light to a certain extent, but compared with sunlight, the emission in the red region (>650nm) is still lacking. The researchers realized the tunable luminescence of Mn 2+ /Mn 4+ by adjusting the ratio of Al/Ga in the Gd 3 (Al,Ga) 5 O 12 phosphor matrix. However, the introduction of Ga 3+ will significantly reduce the luminescence of the garnet system. The large band gap leads to the sinking of the conduction band, which is easy to generate thermal ionization, which makes the thermal stability of the fluorescent material decrease significantly. In addition, due to the large Stokes shift loss, at the operating temperature of the LED chip (150°C), the emission intensity of the red fluorescent material usually decreases by more than 20% compared with room temperature, which further limits Application of red-emitting fluorescent ceramic materials in high-quality solid-state lighting.
发明内容Contents of the invention
本发明的目的之一是提供一种具有宽光谱红光发射的荧光陶瓷材料,发射光谱宽,热稳定性好。One of the objects of the present invention is to provide a fluorescent ceramic material with broad spectrum red light emission, wide emission spectrum and good thermal stability.
本发明的目的之二是提供上述具有宽光谱红光发射的荧光陶瓷材料的制备方法,可实现大批量生产。The second object of the present invention is to provide a method for preparing the above-mentioned fluorescent ceramic material with broad-spectrum red light emission, which can realize mass production.
为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:
一种具有宽光谱红光发射的荧光陶瓷材料,其化学通式为Y3(MnxAl1-x-yScy)5O12,其中,0.0002≤x≤0.005,0<y≤0.3,0<y≤0.3。A fluorescent ceramic material with broad-spectrum red light emission, its general chemical formula is Y 3 (Mn x Al 1-xy Sc y ) 5 O 12 , wherein, 0.0002≤x≤0.005, 0<y≤0.3, 0< y≤0.3.
本发明的具有宽光谱红光发射的荧光陶瓷材料在440-460nm的蓝光激发下,同时发射出主波长在580-630nm的Mn2+的橙色荧光,以及主波长在670-710nm的Mn4+的红色荧光。当环境温度为150~200℃时,所述荧光陶瓷发光强度衰减在5%-10%。在波长为450-460nm的蓝光LED激发下,色坐标(x,y)的变化范围为:0.64<x<0.67,0.33<y<0.35。The fluorescent ceramic material with broad-spectrum red light emission of the present invention simultaneously emits orange fluorescence of Mn 2+ with a dominant wavelength of 580-630nm and Mn 4+ with a dominant wavelength of 670-710nm under the excitation of blue light of 440-460nm of red fluorescence. When the ambient temperature is 150-200°C, the luminous intensity of the fluorescent ceramics decays by 5%-10%. Under the excitation of blue LED with a wavelength of 450-460nm, the variation range of the color coordinates (x, y) is: 0.64<x<0.67, 0.33<y<0.35.
本发明还提供上述具有宽光谱红光发射的荧光陶瓷材料的制备方法,包括以下步骤:The present invention also provides a method for preparing the above-mentioned fluorescent ceramic material with broad-spectrum red light emission, comprising the following steps:
步骤1,按照化学式Y3(MnxAl1-x-yScy)5O12,称量Al2O3,Y2O3,MnCO3以及Sc2O3原料粉体,加入正硅酸乙酯(TEOS)0.1~0.5wt.%作为烧结助剂,并加入无水乙醇作为溶剂,原料粉体与无水乙醇的质量比为1:1~1:2;Step 1, according to the chemical formula Y 3 (Mn x Al 1-xy Sc y ) 5 O 12 , weigh Al 2 O 3 , Y 2 O 3 , MnCO 3 and Sc 2 O 3 raw material powders, add tetraethyl orthosilicate (TEOS) 0.1~0.5wt.% is used as sintering aid, and absolute ethanol is added as solvent, the mass ratio of raw material powder to absolute ethanol is 1:1~1:2;
步骤2,将步骤1称量的原料粉体原料置于球磨罐内,同时加入磨球进行行星式球磨,球磨转速为120-180r/min,球磨时间为12-24h;
步骤3,将步骤2球磨后的浆料在温度40-60℃下干燥10-24h,然后将干燥后的浆料进行粉碎,过100-200目筛得混合粉末;
步骤4,将步骤3的混合粉体进行等轴双向加压成型,压力为2-5MPa,随后进行冷等静压成型,压力为200-300MPa,保压时间为200-400s,即得陶瓷素坯;In step 4, the mixed powder in
步骤5,将陶瓷素坯进行真空烧结,无需退火,再进行双面抛光处理,即得Y3(MnxAl1-x-yScy)5O12荧光陶瓷材料。
作为改进的是,步骤5中所述的烧结温度为1600-1750℃,保温5-24h。As an improvement, the sintering temperature described in
有益效果:Beneficial effect:
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明提供的具有宽光谱红光发射的荧光陶瓷材料,采用Mn离子和Sc离子同时部分取代八面体中心的Al离子格位,分别利用与 与的“尺寸匹配”效应,使得发射光谱同时包括Mn2+的橙红色以及Mn4+的红色荧光。1. The fluorescent ceramic material with broad-spectrum red light emission provided by the present invention adopts Mn ions and Sc ions to partially replace the Al ion sites in the center of the octahedron at the same time. and and The "size-matching" effect makes the emission spectrum include the orange-red fluorescence of Mn 2+ and the red fluorescence of Mn 4+ at the same time.
2.本发明提供的具有宽光谱红光发射的荧光陶瓷材料引入Sc3+引入YAG基质后,增强了材料的晶格刚性,实现了热稳定性的提升,在150~200℃下发光强度衰减5-10%。2. After introducing Sc 3+ into the YAG matrix of the fluorescent ceramic material with broad-spectrum red light emission provided by the present invention, the lattice rigidity of the material is enhanced, the thermal stability is improved, and the luminous intensity attenuates at 150-200°C 5-10%.
本发明提供的具有宽光谱红光发射的荧光陶瓷材料与在发光波长为440-460nm的蓝光LED芯片激发下,同时发射出主波长在580-650nm的Mn2+的橙色荧光,以及主波长在670-710nm的Mn4+的红色荧光。The fluorescent ceramic material with wide-spectrum red light emission provided by the present invention can simultaneously emit orange fluorescence of Mn 2+ with a dominant wavelength of 580-650nm under the excitation of a blue LED chip with a luminous wavelength of 440-460nm, and a dominant wavelength of 580-650nm. Red fluorescence of Mn 4+ at 670-710 nm.
附图说明Description of drawings
图1为本发明实施例1制备的具有宽光谱红光发射的荧光陶瓷材料的x射线衍射图谱,横坐标为x射线的入射角,纵坐标为衍射强度;Fig. 1 is the x-ray diffraction spectrum of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 1 of the present invention, the abscissa is the incident angle of x-rays, and the ordinate is the diffraction intensity;
图2为本发明实施例1-2制备的具有宽光谱红光发射的荧光陶瓷材料Mn离子的x射线光电子能谱图;Fig. 2 is the X-ray photoelectron energy spectrum diagram of the fluorescent ceramic material Mn ion with broad-spectrum red light emission prepared in Example 1-2 of the present invention;
图3为本发明实施例1制备得到的具有宽光谱红光发射的荧光陶瓷材料的荧光光谱;Fig. 3 is the fluorescent spectrum of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 1 of the present invention;
图4为本发明实施例1制备得到的具有宽光谱红光发射的荧光陶瓷材料在625nm处的荧光寿命曲线;Fig. 4 is the fluorescence lifetime curve at 625nm of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 1 of the present invention;
图5为本发明实施例1制备得到的具有宽光谱红光发射的荧光陶瓷材料在698nm处的荧光寿命曲线。Fig. 5 is the fluorescence lifetime curve at 698 nm of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 1 of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
以制备60g目标产物,分别称量原料粉体配料表见表1。以下实施例中涉及的测量方式均为本领域常规的技术手段,材料均为商业化的成品,此处不再赘述。To prepare 60g of the target product, weigh the raw material powder ingredients respectively in Table 1. The measurement methods involved in the following examples are all conventional technical means in the art, and the materials are all commercialized finished products, which will not be repeated here.
表1实施例的配料表The list of ingredients of table 1 embodiment
实施例1Example 1
一种具有宽光谱红光发射的荧光陶瓷材料,其化学通式为Y3(Mn0.0002Al0.8998Sc0.1)5O12 A fluorescent ceramic material with broad spectrum red light emission, its general chemical formula is Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12
上述荧光陶瓷材料的制备方法,包括以下步骤:The preparation method of the above-mentioned fluorescent ceramic material comprises the following steps:
步骤1,按照表1中1#所示质量比与化学计量比称量Al2O3,Y2O3,MnCO3以及Sc2O3原料粉体,烧结助剂正硅酸乙酯(TEOS),以及酒精作为溶剂;Step 1. Weigh Al 2 O 3 , Y 2 O 3 , MnCO 3 and Sc 2 O 3 raw material powders according to the mass ratio and stoichiometric ratio shown in 1# in Table 1, and the sintering aid tetraethyl orthosilicate (TEOS ), and alcohol as a solvent;
步骤2,将步骤1称量的原料粉体置于球磨罐内,同时加入磨球进行行星式球磨,球磨转速为130r/min,球磨时间为15h;
步骤3,将步骤2球磨后的浆料干燥,干燥温度为40℃,时间为20h,然后将干燥后的浆料进行粉碎,过100目筛得混合粉末;
步骤4,将步骤3的混合粉体进行等轴双向加压成型,压力为2MPa,随后进行冷等静压成型,压力为200MPa,保压时间为200s,即得陶瓷素坯;Step 4, subjecting the mixed powder in
步骤5,将步骤4得到的陶瓷素坯进行真空烧结,烧结温度为1600℃,保温5h,随后无需退火,最后进行双面抛光处理,即得Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料。Step 5: Carry out vacuum sintering of the ceramic green body obtained in step 4, the sintering temperature is 1600°C, keep it warm for 5 hours, then do not need annealing, and finally perform double-sided polishing treatment to obtain Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 Fluorescent ceramic material.
见附图1,本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料的x射线衍射图谱,XRD的测试结果显示,所制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷的x射线衍射峰与YAG(JCPDS(#34-0379))的标准卡片相吻合,为纯石榴石相。See accompanying drawing 1, the X-ray diffraction pattern of the Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramic material prepared in this example, the XRD test results show that the prepared Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) The X-ray diffraction peaks of 5 O 12 fluorescent ceramics are consistent with the standard card of YAG (JCPDS (#34-0379)), which is pure garnet phase.
见附图2,本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料内Mn离子2p3/2轨道的x射线光电子能谱(XPS),峰值位于640eV的XPS包络峰对应Mn2+的特征峰,峰值位于642eV的包络峰对应Mn4+的特征峰。图中可以看出Mn4+的特征峰强度显著高于Mn2+的特征峰,Mn4+与Mn2+的积分强度比为11:1。See accompanying
见附图3,本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料在460nm激发光激发下的荧光光谱。图中可以看出在可将光区域具有多个发光区域,包括主波长在625nm的Mn2+的橙色荧光,以及主波长在698nm的Mn4+的红色荧光。See Figure 3, the fluorescence spectrum of the Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramic material prepared in this example under the excitation of 460nm excitation light. It can be seen from the figure that there are multiple light-emitting regions in the region where the light can be emitted, including the orange fluorescence of Mn 2+ with a dominant wavelength of 625nm, and the red fluorescence of Mn 4+ with a dominant wavelength of 698nm.
见附图4,本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料在300nm激发光激发下,其位于625nm处的发射峰的荧光衰减曲线。从图中可以看出,曲线呈双指数衰减趋势,荧光寿命经计算为0.076ms,对应于Mn2+的荧光寿命。See Figure 4, the fluorescence decay curve of the emission peak at 625nm of the Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramic material prepared in this example under the excitation of 300nm excitation light. It can be seen from the figure that the curve shows a double-exponential decay trend, and the calculated fluorescence lifetime is 0.076ms, which corresponds to the fluorescence lifetime of Mn 2+ .
见附图5,本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料在300nm激发光激发下,其位于698nm处的发射峰的荧光衰减曲线。从图中可以看出,曲线呈单指数衰减趋势,荧光寿命经计算为1.61ms,对应于Mn4+的荧光寿命。See Figure 5, the fluorescence decay curve of the emission peak at 698nm of the Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramic material prepared in this example under the excitation of 300nm excitation light. It can be seen from the figure that the curve presents a mono-exponential decay trend, and the calculated fluorescence lifetime is 1.61ms, which corresponds to the fluorescence lifetime of Mn 4+ .
本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷随着温度增加,荧光陶瓷材料的发光强度逐渐降低,150℃时发光强度下降5%。The luminous intensity of the Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramics prepared in this example decreases gradually as the temperature increases, and the luminous intensity decreases by 5% at 150°C.
本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料在450nm蓝光LED激发下,获得的红光的色坐标为(0.6405,0.3313)。The Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramic material prepared in this example is excited by a 450nm blue LED, and the color coordinates of the red light obtained are (0.6405, 0.3313).
实施例2Example 2
一种具有宽光谱红光发射的荧光陶瓷材料,其化学通式为Y3(Mn0.001Al0.799Sc0.2)5O12 A fluorescent ceramic material with broad spectrum red light emission, its general chemical formula is Y 3 (Mn 0.001 Al 0.799 Sc 0.2 ) 5 O 12
上述具有宽光谱红光发射的荧光陶瓷材料的制备方法,包括以下步骤:The preparation method of the above-mentioned fluorescent ceramic material with broad-spectrum red light emission comprises the following steps:
步骤1,按照表1中2#所示质量比与化学计量比称量Al2O3,Y2O3,MnCO3以及Sc2O3原料粉体,烧结助剂正硅酸乙酯(TEOS),以及酒精作为溶剂;Step 1. Weigh Al 2 O 3 , Y 2 O 3 , MnCO 3 , and Sc 2 O 3 raw material powders according to the mass ratio and stoichiometric ratio shown in 2# in Table 1, and the sintering aid tetraethyl orthosilicate (TEOS ), and alcohol as a solvent;
步骤2,将步骤1称量的原料粉体置于球磨罐内,同时加入磨球进行行星式球磨,球磨转速为140r/min,球磨时间为20h;In
步骤3,将步骤2球磨后的浆料干燥,干燥温度为50℃,时间为15h,然后将干燥后的浆料进行粉碎,过150目筛得混合粉末;
步骤4,将步骤3的混合粉体进行等轴双向加压成型,压力为3MPa,随后进行冷等静压成型,压力为250MPa,保压时间为250s,即得到陶瓷素坯;Step 4, subjecting the mixed powder in
步骤5,将步骤4得到的陶瓷素坯进行真空烧结,烧结温度为1700℃,保温10h,随后无需退火,最后进行双面抛光处理,即得Y3(Mn0.001Al0.799Sc0.2)5O12荧光陶瓷材料。Step 5: Carry out vacuum sintering of the ceramic green body obtained in step 4, the sintering temperature is 1700°C, keep it warm for 10 hours, then do not need annealing, and finally perform double-sided polishing treatment to obtain Y 3 (Mn 0.001 Al 0.799 Sc 0.2 ) 5 O 12 Fluorescent ceramic material.
见附图2,本实施例制备的Y3(Mn0.0002Al0.8998Sc0.1)5O12荧光陶瓷材料内Mn离子2p3/2轨道的x射线光电子能谱(XPS),峰值位于640eV的XPS包络峰对应Mn2+的特征峰,峰值位于642eV的包络峰对应Mn4+的特征峰。图中可以看出Mn4+的特征峰强度高于Mn2+的特征峰,Mn4+与Mn2+的积分强度比为3:1。See accompanying drawing 2, the x-ray photoelectron spectrum (XPS) of the Mn ion 2p 3/2 orbital in the Y 3 (Mn 0.0002 Al 0.8998 Sc 0.1 ) 5 O 12 fluorescent ceramic material prepared in this embodiment, the XPS package with the peak at 640eV The envelope peak corresponds to the characteristic peak of Mn 2+ , and the envelope peak at 642eV corresponds to the characteristic peak of Mn 4+ . It can be seen from the figure that the characteristic peak intensity of Mn 4+ is higher than that of Mn 2+ , and the integrated intensity ratio of Mn 4+ and Mn 2+ is 3:1.
经过观测,本实施例2中所制备得到具有宽光谱红光发射的荧光陶瓷材料的主要结构性能,发光光谱与实施例1相似。After observation, the main structural properties of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 2 are similar to those in Example 1.
本实施例制备的Y3(Mn0.001Al0.799Sc0.2)5O12荧光陶瓷材料随着温度增加,荧光陶瓷材料的发光强度逐渐降低,170℃时发光强度下降8%。The luminous intensity of the Y 3 (Mn 0.001 Al 0.799 Sc 0.2 ) 5 O 12 fluorescent ceramic material prepared in this example decreases gradually as the temperature increases, and the luminous intensity decreases by 8% at 170°C.
本实施例制备的Y3(Mn0.001Al0.799Sc0.2)5O12荧光陶瓷材料在455nm蓝光LED激发下,获得的红光的色坐标为(0.6558,0.3435)。The Y 3 (Mn 0.001 Al 0.799 Sc 0.2 ) 5 O 12 fluorescent ceramic material prepared in this example is excited by a 455nm blue LED, and the color coordinates of the red light obtained are (0.6558, 0.3435).
实施例3Example 3
一种具有宽光谱红光发射的荧光陶瓷材料,其化学通式为Y3(Mn0.0005Al0.8495Sc0.15)5O12 A fluorescent ceramic material with broad spectrum red light emission, its general chemical formula is Y 3 (Mn 0.0005 Al 0.8495 Sc 0.15 ) 5 O 12
上述具有宽光谱红光发射的荧光陶瓷材料的制备方法,包括以下步骤:The preparation method of the above-mentioned fluorescent ceramic material with broad-spectrum red light emission comprises the following steps:
步骤1,按照表1中3#所示质量比与化学计量比称量Al2O3,Y2O3,MnCO3以及Sc2O3原料粉体,烧结助剂正硅酸乙酯(TEOS),以及酒精作为溶剂;Step 1: Weigh Al 2 O 3 , Y 2 O 3 , MnCO 3 , and Sc 2 O 3 raw material powders according to the mass ratio and stoichiometric ratio shown in 3# in Table 1, and the sintering aid tetraethyl orthosilicate (TEOS ), and alcohol as a solvent;
步骤2,将步骤1称量的原料粉体置于球磨罐内,同时加入磨球进行行星式球磨,球磨转速为140r/min,球磨时间为20h;In
步骤3,将步骤2球磨后的浆料干燥,干燥温度为55℃,时间为16h,然后将干燥后的浆料进行粉碎,过150目筛得混合粉末;
步骤4,将步骤3的混合粉体进行等轴双向加压成型,压力为4MPa,随后进行冷等静压成型,压力为280MPa,保压时间为280s,即得到陶瓷素坯;Step 4, subjecting the mixed powder in
步骤5,将步骤4得到的陶瓷素坯进行真空烧结,烧结温度为1720℃,保温11h,随后无需退火,最后进行双面抛光处理,即得Y3(Mn0.0005Al0.8495Sc0.15)5O12荧光陶瓷材料。Step 5: Carry out vacuum sintering of the ceramic green body obtained in step 4, the sintering temperature is 1720°C, keep it warm for 11 hours, then do not need annealing, and finally carry out double-sided polishing treatment to obtain Y 3 (Mn 0.0005 Al 0.8495 Sc 0.15 ) 5 O 12 Fluorescent ceramic material.
经过观测,本实施例2中所制备得到具有宽光谱红光发射的荧光陶瓷材料的主要结构性能,发光光谱与实施例1相似。After observation, the main structural properties of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 2 are similar to those in Example 1.
本实施例制备的得Y3(Mn0.0005Al0.8495Sc0.15)5O12荧光陶瓷材料随着温度增加,荧光陶瓷材料的发光强度逐渐降低,180℃时发光强度下降8.5%。The luminous intensity of the Y 3 (Mn 0.0005 Al 0.8495 Sc 0.15 ) 5 O 12 fluorescent ceramic material prepared in this example decreases gradually as the temperature increases, and the luminous intensity decreases by 8.5% at 180°C.
本实施例制备的得Y3(Mn0.0005Al0.8495Sc0.15)5O12荧光陶瓷材料在455nm蓝光LED激发下,获得的红光的色坐标为(0.6433,0.3345)。The Y 3 (Mn 0.0005 Al 0.8495 Sc 0.15 ) 5 O 12 fluorescent ceramic material prepared in this example is excited by a 455nm blue LED, and the color coordinates of the red light obtained are (0.6433, 0.3345).
实施例4Example 4
一种具有宽光谱红光发射的荧光陶瓷材料,其化学通式为Y3(Mn0.005Al0.695Sc0.3)5O12 A fluorescent ceramic material with broad spectrum red light emission, its general chemical formula is Y 3 (Mn 0.005 Al 0.695 Sc 0.3 ) 5 O 12
上述具有宽光谱红光发射的荧光陶瓷材料的制备方法,包括以下步骤:The preparation method of the above-mentioned fluorescent ceramic material with broad-spectrum red light emission comprises the following steps:
步骤1,按照表1中4#所示质量比与化学计量比称量Al2O3,Y2O3,MnCO3以及Sc2O3原料粉体,烧结助剂,以及酒精作为溶剂;Step 1, weighing Al 2 O 3 , Y 2 O 3 , MnCO 3 and Sc 2 O 3 raw material powders, sintering aids, and alcohol as solvents according to the mass ratio and stoichiometric ratio shown in 4# in Table 1;
步骤2,将步骤1称量的粉体原料置于球磨罐内,同时加入磨球进行行星式球磨,球磨转速为150r/min,球磨时间为18h;
步骤3,将步骤2球磨后的浆料干燥,干燥温度为60℃,时间为12h,然后将干燥后的浆料进行粉碎,过200目筛得混合粉末;
步骤4,将步骤3的混合粉体进行等轴双向加压成型,压力为4MPa,随后进行冷等静压成型,压力为300MPa,保压时间为300s,即得到陶瓷素坯;Step 4, subjecting the mixed powder in
步骤5,将步骤4得到的陶瓷素坯进行真空烧结,烧结温度为1750℃,保温24h,随后无需退火,最后进行双面抛光处理,即得Y3(Mn0.005Al0.695Sc0.3)5O12荧光陶瓷材料。Step 5: Carry out vacuum sintering of the ceramic green body obtained in step 4, the sintering temperature is 1750°C, keep it warm for 24 hours, then do not need annealing, and finally carry out double-sided polishing treatment to obtain Y 3 (Mn 0.005 Al 0.695 Sc 0.3 ) 5 O 12 Fluorescent ceramic material.
经过观测,本实施例3中所制备得到的具有宽光谱红光发射的荧光陶瓷材料的主要结构性能,发光光谱与实施例1相似。After observation, the main structural properties and emission spectrum of the fluorescent ceramic material with broad-spectrum red light emission prepared in Example 3 are similar to those in Example 1.
本实施例制备的Y3(Mn0.05Al0.695Sc0.3)5O12荧光陶瓷材料随着温度增加,荧光陶瓷材料的发光强度逐渐降低,200℃时发光强度下降10%。The luminous intensity of the Y 3 (Mn 0.05 Al 0.695 Sc 0.3 ) 5 O 12 fluorescent ceramic material prepared in this example decreases gradually as the temperature increases, and the luminous intensity decreases by 10% at 200°C.
本实施例制备的Y3(Mn0.05Al0.695Sc0.3)5O12荧光陶瓷材料在460nm蓝光LED激发下,获得的红光的色坐标为(0.6695,0.3498)。The Y 3 (Mn 0.05 Al 0.695 Sc 0.3 ) 5 O 12 fluorescent ceramic material prepared in this example is excited by a 460nm blue LED, and the color coordinates of the red light obtained are (0.6695, 0.3498).
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。The above is only a preferred embodiment of the present invention, and the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field within the technical scope disclosed in the present invention can obviously obtain the simplicity of the technical solution. Changes or equivalent replacements all fall within the protection scope of the present invention.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211248660 | 2022-10-12 | ||
CN2022112486602 | 2022-10-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115677349A CN115677349A (en) | 2023-02-03 |
CN115677349B true CN115677349B (en) | 2023-05-12 |
Family
ID=85053515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211467609.0A Active CN115677349B (en) | 2022-10-12 | 2022-11-22 | A fluorescent ceramic material with broad-spectrum red light emission and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115677349B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280534A (en) * | 1993-02-25 | 1994-01-18 | Polaroid Corporation | Tunable solid state crystalline laser material |
CN1821164A (en) * | 2006-03-09 | 2006-08-23 | 中国科学院上海硅酸盐研究所 | Preparation method of mixed garnet-based ceramic material |
CN1955116A (en) * | 2005-10-24 | 2007-05-02 | 富士胶片株式会社 | Inorganic compound, composition and molded body containing the same, light emitting device, and solid laser device |
WO2011123538A2 (en) * | 2010-03-31 | 2011-10-06 | Osram Sylvania Inc. | Phosphor and leds containing same |
CN103080272A (en) * | 2010-07-22 | 2013-05-01 | 欧司朗光电半导体有限公司 | Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material |
CN107473729A (en) * | 2017-09-18 | 2017-12-15 | 重庆文理学院 | A kind of translucent YAG fluorescence ceramics method for preparing slices |
CN108264899A (en) * | 2016-12-30 | 2018-07-10 | 中国科学院宁波材料技术与工程研究所 | A kind of fluorescence ceramics applied to LED and preparation method thereof |
CN113979739A (en) * | 2021-10-27 | 2022-01-28 | 中国科学院上海硅酸盐研究所 | Composite fluorescent ceramic, preparation method and light-emitting device |
CN114988862A (en) * | 2022-06-29 | 2022-09-02 | 江苏师范大学 | High-color-rendering-index fluorescent ceramic for laser lighting and preparation method thereof |
CN115140938A (en) * | 2022-07-13 | 2022-10-04 | 中国科学院上海光学精密机械研究所 | Preparation method of YAG composite fluorescent glass with enhanced red light component |
-
2022
- 2022-11-22 CN CN202211467609.0A patent/CN115677349B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280534A (en) * | 1993-02-25 | 1994-01-18 | Polaroid Corporation | Tunable solid state crystalline laser material |
CN1955116A (en) * | 2005-10-24 | 2007-05-02 | 富士胶片株式会社 | Inorganic compound, composition and molded body containing the same, light emitting device, and solid laser device |
CN1821164A (en) * | 2006-03-09 | 2006-08-23 | 中国科学院上海硅酸盐研究所 | Preparation method of mixed garnet-based ceramic material |
WO2011123538A2 (en) * | 2010-03-31 | 2011-10-06 | Osram Sylvania Inc. | Phosphor and leds containing same |
CN103080272A (en) * | 2010-07-22 | 2013-05-01 | 欧司朗光电半导体有限公司 | Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material |
CN108264899A (en) * | 2016-12-30 | 2018-07-10 | 中国科学院宁波材料技术与工程研究所 | A kind of fluorescence ceramics applied to LED and preparation method thereof |
CN107473729A (en) * | 2017-09-18 | 2017-12-15 | 重庆文理学院 | A kind of translucent YAG fluorescence ceramics method for preparing slices |
CN113979739A (en) * | 2021-10-27 | 2022-01-28 | 中国科学院上海硅酸盐研究所 | Composite fluorescent ceramic, preparation method and light-emitting device |
CN114988862A (en) * | 2022-06-29 | 2022-09-02 | 江苏师范大学 | High-color-rendering-index fluorescent ceramic for laser lighting and preparation method thereof |
CN115140938A (en) * | 2022-07-13 | 2022-10-04 | 中国科学院上海光学精密机械研究所 | Preparation method of YAG composite fluorescent glass with enhanced red light component |
Non-Patent Citations (5)
Title |
---|
On the limitary radius of garnet structure compounds Y3Al5-xMxO12 (M=Cr, Co, Mn, Ni, Cu) and Y3Fe5xCoxO12 (0≤x≤2.75) synthesized by sole-gel method;R. Skaudzius等;Materials Chemistry and Physics;479-485 * |
Spectroscopic properties and laser operation of RE3+-ion doped garnet materials;Takunori Taira等;PROCEEDINGS OF SPIE;1-13 * |
Spectroscopic properties of Y3Sc2Al3O12 (YSAG) single crystals grown by l-PD technique.Optical Materials.2007,第30卷135-138. * |
刘英丽.稀土掺杂Y2O3-Al2O3-Sc2O3三元体系荧光陶瓷制备及其光谱性能研究.第工程科技Ⅰ辑卷38. * |
用于高功率白光发光二极管的YAGG:Ce~(3+)/MMG:Mn~(4+)荧光玻璃陶瓷的结构与性能;胡桃;林航;高妍;张力强;王元生;;硅酸盐学报(第11期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115677349A (en) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104818024B (en) | White light LEDs comprising solid transparent fluorescent material and preparation method thereof | |
CN104844217B (en) | Preparation method of AlON transparent ceramic phosphor for warm-color warm-white LED packaging light source | |
CN108530071A (en) | A kind of YAG fluorescence ceramics and its preparation method and application | |
CN112011332B (en) | Far-red fluorescent powder and light-emitting device comprising same | |
CN108947516A (en) | A kind of (Cu, Ce): YAG transparent fluorescent ceramic and the preparation method and application thereof | |
CN104177079B (en) | For Ce:YAG base transparent ceramic containing Sr that white-light LED fluorescence is changed and preparation method thereof | |
CN105778913B (en) | A kind of list matrix three adulterates white light phosphor and preparation method and application | |
CN111056847B (en) | High-luminous-efficiency and high-color-rendering-index nitrogen oxide fluorescent ceramic for white light LED and preparation method thereof | |
CN106518037B (en) | A kind of silicate fluorescent ceramics with full spectrum emission and preparation method thereof | |
CN108018040A (en) | A kind of fluorescent ceramic material, its preparation method and a kind of low color temperature white light LED | |
CN106978176A (en) | A kind of yellow fluorescent powder and preparation method and its application in luminescent device | |
CN114410302B (en) | Near infrared fluorescent powder and optical device thereof | |
CN113582679B (en) | Fluorescent ceramic with high color rendering index and high thermal stability for white light illumination and preparation method thereof | |
CN104498031B (en) | A kind of phosphate yellow fluorescent powder and preparation method thereof for white light LEDs | |
CN110129050A (en) | A single-doped single-phase full-spectrum phosphor and preparation method thereof | |
CN115677349B (en) | A fluorescent ceramic material with broad-spectrum red light emission and its preparation method | |
CN104496474B (en) | Ultraviolet-converted white-light LED transparent ceramic material and preparation method thereof | |
CN110055061B (en) | Red long afterglow nitride luminescent material and preparation method thereof | |
CN110272740B (en) | Zero-doped rare earth borate red fluorescent powder, preparation and application thereof in L ED field | |
CN104087299B (en) | A kind of blue light activated aluminate-based red fluorescent material and preparation method and application | |
CN114774116B (en) | Blue luminescent material, preparation method thereof and white light LED | |
CN111116207A (en) | Oxynitride fluorescent ceramic material with long-wave-band emission and high color rendering index and preparation method thereof | |
CN114031400B (en) | Single-phase warm white fluorescent ceramic and preparation method and application thereof | |
CN101935528A (en) | Method for preparing rare earth-doped yellow fluorescent powder | |
CN113717721A (en) | Purple light excited orange-red fluorescent powder and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |