CN115671425A - Blood purification equipment and storage medium - Google Patents
Blood purification equipment and storage medium Download PDFInfo
- Publication number
- CN115671425A CN115671425A CN202211160191.9A CN202211160191A CN115671425A CN 115671425 A CN115671425 A CN 115671425A CN 202211160191 A CN202211160191 A CN 202211160191A CN 115671425 A CN115671425 A CN 115671425A
- Authority
- CN
- China
- Prior art keywords
- blood
- pressure
- elongated tube
- viscosity
- replacement fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- External Artificial Organs (AREA)
Abstract
Description
技术领域technical field
本发明涉及血液净化技术领域,具体而言,涉及一种血液净化设备及存储介质。The present invention relates to the technical field of blood purification, in particular, to a blood purification device and a storage medium.
背景技术Background technique
血液净化设备将人体血液引出体外,然后将血液中的特定分子物质进行滤除,再将净化后的血液回输到人体内,以达到疾病治疗的效果。血液净化治疗方式按照血液净化原理可以分为血液透析、血液滤过、血液透析滤过、血液灌流、血浆置换、免疫吸附、腹膜透析等治疗模式。不同的血液净化治疗模式适用于不同的临床症状,例如:各种心血管功能不稳定的、高分解代谢的或伴脑水中的急慢性肾衰、多脏器功能障碍综合征、急性呼吸窘迫综合征、挤压综合征、急性坏死性胰腺炎、慢性心衰、肝性脑病、药物及毒物中毒等各种疾病的救治。Blood purification equipment draws human blood out of the body, then filters out specific molecular substances in the blood, and then returns the purified blood to the human body to achieve the effect of disease treatment. Blood purification treatment methods can be divided into hemodialysis, hemofiltration, hemodiafiltration, hemoperfusion, plasma exchange, immunoadsorption, peritoneal dialysis and other treatment modes according to the principle of blood purification. Different blood purification treatment modes are suitable for different clinical symptoms, such as acute and chronic renal failure with unstable cardiovascular function, hypercatabolism or cerebral fluid, multiple organ dysfunction syndrome, acute respiratory distress syndrome syndrome, crush syndrome, acute necrotizing pancreatitis, chronic heart failure, hepatic encephalopathy, drug and poison poisoning and other diseases.
血液净化治疗需要依靠血液净化设备来执行,以血液透析治疗模式为例,将患者的血液和标准离子浓度的透析液同时引入透析器内,透析液和血液在中空纤维膜的两侧,利用中空纤维膜的弥散、对流、超滤等作用,以适当的速度移除患者体内多余的水分,达到纠正水电解质及酸碱平衡的目的。为了确保患者在血液透析治疗过程中的安全性,通过实时监测血液透析治疗过程中的血液动力学参数,以有效地抑制透析过程中产生的高血压、严重脱水导致的血管萎缩等并发症。血液粘度作为血液动力学参数之一,是反应血液流动性质的重要指标,正常的血液粘度是保证体外血液正常循环的重要条件。当体外血液循环过程中的血液粘度增大,这会导致出现凝血、血栓等问题,并且引起心血管相关并发症。Blood purification treatment needs to rely on blood purification equipment to perform. Taking the hemodialysis treatment mode as an example, the patient's blood and dialysate with standard ion concentration are introduced into the dialyzer at the same time. The dialysate and blood are on both sides of the hollow fiber membrane. The diffusion, convection, and ultrafiltration functions of the fibrous membrane remove excess water from the patient's body at an appropriate speed, and achieve the purpose of correcting water, electrolyte, and acid-base balance. In order to ensure the safety of patients during hemodialysis treatment, real-time monitoring of hemodynamic parameters during hemodialysis treatment can effectively suppress complications such as high blood pressure and vascular atrophy caused by severe dehydration during dialysis. As one of the hemodynamic parameters, blood viscosity is an important indicator reflecting the nature of blood flow. Normal blood viscosity is an important condition to ensure the normal circulation of extracorporeal blood. When blood viscosity increases during extracorporeal blood circulation, this can lead to problems such as coagulation, thrombus, and cardiovascular-related complications.
现有技术中,在对患者的血液粘度进行测定时,只能在透析前或者透析后,对患者的血常规或者血液粘度进行测试,并且在测试过程中由粘度测试仪和血液仪进行测试,在血液透析治疗过程中不能检测患者的血液粘度,用户就无法根据检测得到的血液粘度评价患者的血液透析治疗,不仅降低了血液粘度测定过程的实用价值和可靠性,更降低了患者进行血液透析治疗的安全性。In the prior art, when measuring the blood viscosity of a patient, the blood routine or blood viscosity of the patient can only be tested before or after dialysis, and the viscosity tester and hematometer are used for testing during the test. If the patient's blood viscosity cannot be detected during the hemodialysis treatment, the user cannot evaluate the patient's hemodialysis treatment according to the detected blood viscosity, which not only reduces the practical value and reliability of the blood viscosity measurement process, but also reduces the patient's need for hemodialysis. The safety of treatment.
发明内容Contents of the invention
本发明旨在解决现有技术中无法在血液透析治疗过程中检测血液粘度的问题。The invention aims to solve the problem in the prior art that blood viscosity cannot be detected during hemodialysis treatment.
为解决上述问题,本发明第一方面提供了一种血液净化设备,所述血液净化设备包括:细长管、动力组件、透析器、动脉管路、静脉管路、压力传感器、处理器和存储器,所述动脉管路与所述透析器的血液输入端连接,所述静脉管路与所述透析器的血液输出端连接,所述细长管的第一端与所述静脉管路连接,所述细长管的第二端与所述动力组件连接,所述处理器通过总线与存储器和压力传感器进行电连接;In order to solve the above problems, the first aspect of the present invention provides a blood purification device, the blood purification device includes: a slender tube, a power assembly, a dialyzer, an arterial line, a venous line, a pressure sensor, a processor, and a memory , the arterial line is connected to the blood input end of the dialyzer, the venous line is connected to the blood output end of the dialyzer, and the first end of the elongated tube is connected to the venous line, The second end of the elongated tube is connected to the power assembly, and the processor is electrically connected to the memory and the pressure sensor through a bus;
所述压力传感器,用于测量所述细长管的液体压力得到压力测量数据;The pressure sensor is used to measure the liquid pressure of the elongated tube to obtain pressure measurement data;
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如下方法:The memory stores program instructions executable by the processor, and the processor calls the program instructions to perform the following methods:
根据用户输出的预冲启动指令,将置换液输出至所述动脉管路、所述透析器和所述静脉管路,以及通过所述动力组件输出至所述细长管;Outputting the replacement fluid to the arterial line, the dialyzer, and the venous line, and outputting the replacement fluid to the elongated tube through the power assembly according to the preflush start command output by the user;
根据所述压力测量数据计算所述细长管的置换液压力变化量和所述细长管的置换液压力变化时间;calculating the displacement fluid pressure change amount of the elongated tube and the displacement fluid pressure change time of the elongated tube according to the pressure measurement data;
根据预设的置换液的粘度、所述细长管的置换液压力变化量和所述细长管的置换液压力变化时间,确定粘度系统参数;determining the parameters of the viscosity system according to the preset viscosity of the replacement fluid, the amount of change in pressure of the replacement fluid in the elongated tube, and the change time of the pressure of the replacement fluid in the elongated tube;
根据用户输出的血液治疗指令,通过所述透析器对血液进行透析,将透析后的血液通过所述动力组件输出至所述细长管;Dialyze the blood through the dialyzer according to the blood therapy instruction output by the user, and output the dialyzed blood to the elongated tube through the power assembly;
根据所述压力测量数据计算所述细长管的第一血液压力变化量和所述细长管的第一血液压力变化时间;calculating a first blood pressure change amount of the elongated tube and a first blood pressure change time of the elongated tube according to the pressure measurement data;
根据所述粘度系统参数、所述细长管的第一血液压力变化量和所述细长管的第一血液压力变化时间,确定第一血液粘度。The first blood viscosity is determined according to the viscosity system parameter, the first blood pressure change amount of the elongated tube, and the first blood pressure change time of the elongated tube.
本发明第二方面提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如下方法:The second aspect of the present invention provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the following method is implemented:
根据用户输出的预冲启动指令,将置换液输出至动脉管路、透析器和静脉管路,以及通过动力组件输出至细长管;Output the replacement fluid to the arterial line, dialyzer, and venous line according to the preflush start command output by the user, and output to the slender tube through the power component;
根据压力测量数据计算所述细长管的置换液压力变化量和所述细长管的置换液压力变化时间;calculating the displacement fluid pressure change amount of the elongated tube and the displacement fluid pressure change time of the elongated tube according to the pressure measurement data;
根据预设的置换液的粘度、所述细长管的置换液压力变化量和所述细长管的置换液压力变化时间,确定粘度系统参数;determining the parameters of the viscosity system according to the preset viscosity of the replacement fluid, the amount of change in pressure of the replacement fluid in the elongated tube, and the change time of the pressure of the replacement fluid in the elongated tube;
根据用户输出的血液治疗指令,通过所述透析器对血液进行透析,将透析后的血液通过所述动力组件输出至所述细长管;Dialyze the blood through the dialyzer according to the blood therapy instruction output by the user, and output the dialyzed blood to the elongated tube through the power assembly;
根据所述压力测量数据计算所述细长管的第一血液压力变化量和所述细长管的第一血液压力变化时间;calculating a first blood pressure change amount of the elongated tube and a first blood pressure change time of the elongated tube according to the pressure measurement data;
根据所述粘度系统参数、所述细长管的第一血液压力变化量和所述细长管的第一血液压力变化时间,确定第一血液粘度。The first blood viscosity is determined according to the viscosity system parameter, the first blood pressure change amount of the elongated tube, and the first blood pressure change time of the elongated tube.
本发明提供的血液净化设备和计算机可读存储介质,利用血液透析过程中的操作步骤,在预冲阶段提前获取粘度检测过程中必备的粘度系统参数,以便于后期对血液粘度的计算过程提供数据基础,在患者进行血液透析时,便于精确地计算出患者的血液粘度,本发明将血液粘度检测和血液透析过程完美结合,有效的将粘度检测融入血液透析过程中,在血液治疗阶段中可实时检测、监控患者的血液粘度,具有很强的实际操作性和便利性;此外本发明巧妙地利用吸入流体介质时压力随时间变化,从而确定血液粘度的方法,能够有效地获取血液粘度值,检测成本低,检测可行性高,检测的可靠性高,并且能够在血液透析过程中实时检测血液粘度,以供医护人员根据血液粘度能够对血液透析效果的评价过程进行参考,避免患者出现心血管等相关的并发症,从而进一步确保患者进行血液透析的安全性,克服了现有技术中无法在血液透析过程中检测患者的血液粘度,导致患者的血液透析治疗安全性低的问题。The blood purification equipment and computer-readable storage medium provided by the present invention use the operation steps in the hemodialysis process to obtain the necessary viscosity system parameters in the viscosity detection process in the preflushing stage in advance, so as to facilitate the later calculation process of blood viscosity. Data basis, when the patient undergoes hemodialysis, it is convenient to accurately calculate the blood viscosity of the patient. The present invention perfectly combines the blood viscosity detection with the hemodialysis process, effectively integrates the viscosity detection into the hemodialysis process, and can be used in the blood treatment stage. Real-time detection and monitoring of the patient's blood viscosity has strong practicality and convenience; in addition, the present invention skillfully utilizes the pressure change with time when the fluid medium is inhaled, thereby determining the blood viscosity method, which can effectively obtain the blood viscosity value, The detection cost is low, the detection feasibility is high, the detection reliability is high, and the blood viscosity can be detected in real time during the hemodialysis process, so that the medical staff can refer to the evaluation process of the hemodialysis effect according to the blood viscosity, and avoid the occurrence of cardiovascular disease in patients. And other related complications, so as to further ensure the safety of patients undergoing hemodialysis, and overcome the problem in the prior art that the patient's blood viscosity cannot be detected during hemodialysis, resulting in low safety of patients' hemodialysis treatment.
附图说明Description of drawings
图1为本发明实施例中提供的血液净化设备的第一种结构示意图;Fig. 1 is a schematic diagram of the first structure of the blood purification equipment provided in the embodiment of the present invention;
图2为本发明实施例中提供的血液净化设备的第二种结构示意图;Fig. 2 is a second structural schematic diagram of the blood purification equipment provided in the embodiment of the present invention;
图3为本发明实施例中提供的血液净化设备的第三种结构示意图;Fig. 3 is a schematic diagram of the third structure of the blood purification equipment provided in the embodiment of the present invention;
图4为本发明实施例中提供的血液净化设备的处理器执行方法的流程示意图;Fig. 4 is a schematic flowchart of a method executed by a processor of a blood purification device provided in an embodiment of the present invention;
图5为本发明实施例中第一血液粘度随时间的变化曲线的示意图;Fig. 5 is a schematic diagram of the variation curve of the first blood viscosity with time in the embodiment of the present invention;
图6为本发明实施例中目标脱水量和第二血液粘度的变化曲线的示意图;Fig. 6 is a schematic diagram of the change curve of the target dehydration amount and the second blood viscosity in the embodiment of the present invention;
图7为本发明实施例中提供的血液净化设备的显示屏的结构示意图。Fig. 7 is a schematic structural diagram of the display screen of the blood purification device provided in the embodiment of the present invention.
附图标记说明:Explanation of reference signs:
1-细长管;2-动力组件;3-透析器;4-动脉管路;5-静脉管路;6-压力传感器;7-血液探测器;8-血泵;9-肝素泵;10-第一液体储存袋;11-第二液体存储袋;12-第三液体存储袋;13-滤过泵;14-透析液泵;15-置换液泵;16-静脉壶;17-液位检测器;18-前置换;19-后置换;20-第一加热器;21-第一断流检测器;22-漏液检测器;23-第二加热器;24-第二断流检测器;25-气泡检测器;26-显示器。1-slender tube; 2-power component; 3-dialyzer; 4-arterial line; 5-venous line; 6-pressure sensor; 7-blood detector; 8-blood pump; 9-heparin pump; 10 -first fluid storage bag; 11-second fluid storage bag; 12-third fluid storage bag; 13-filtration pump; 14-dialysis fluid pump; 15-replacement fluid pump; 16-venous pot; 17-fluid level Detector; 18-pre-displacement; 19-post-displacement; 20-first heater; 21-first cut-off detector; 22-leakage detector; 23-second heater; 24-second cut-off detection device; 25-bubble detector; 26-display.
具体实施方式Detailed ways
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。The technical solution of the present application and how the technical solution of the present application solves the above technical problems will be described in detail below with specific embodiments. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. Embodiments of the present application will be described below in conjunction with the accompanying drawings.
需要说明的是,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。It should be noted that examples of embodiments of the present application are shown in the drawings, wherein the same or similar reference numerals represent the same or similar elements or elements having the same or similar functions. The embodiments described below by referring to the figures are exemplary only for explaining the present application, and are not construed as limiting the present application.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。Those skilled in the art will understand that the singular forms "a", "an" and "the" used herein may also include plural forms unless otherwise stated. It should be further understood that the word "comprising" used in the description of the present application refers to the presence of features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, integers, Steps, operations, elements, components and/or groups thereof. It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Additionally, "connected" or "coupled" as used herein may include wireless connection or wireless coupling. The expression "and/or" used herein includes all or any elements and all combinations of one or more associated listed items.
参见图1和图2,图1为本申请实施例中血液净化设备一实施例的结构示意图,图2为本申请实施例中血液净化设备另一实施例的结构示意图。该血液净化设备包括:细长管1、动力组件2、透析器3、动脉管路4和静脉管路5和压力传感器6,动脉管路4与透析器3的血液输入端连接,静脉管路5与透析器3的血液输出端连接,细长管1的第一端与静脉管路5连接,细长管1的第二端与动力组件2连接,动脉管路4将患者的血液输出至透析器3,通过透析器3对血液进行血液透析,静脉管路5将血液透析后的血液回输至人体的静脉,动力组件2提供驱动力以使得细长管1接入静脉管路内的液体,通过动力组件2能够控制细长管1两端的压力差,以控制细长管1内的液体流动速率和液体流动时间;压力传感器6设置在细长管1上,通过压力传感器6能够测量细长管1内的液体压力得到压力测量数据。Referring to Fig. 1 and Fig. 2, Fig. 1 is a schematic structural diagram of an embodiment of the blood purification device in the embodiment of the present application, and Fig. 2 is a schematic structural diagram of another embodiment of the blood purification device in the embodiment of the present application. The blood purification equipment includes: a slender tube 1, a
该血液净化设备还包括:血液探测器7,用于检测静脉管路5内是否存在血液;血泵8,控制血泵8的运转速度和运转方向,可以改变动脉管路4中血液的流速和流向;肝素泵9,用于注射肝素;第一液体存储袋10,用于存储滤过液;第二液体存储袋11,用于存储透析液;第三液体存储袋12,用于存储置换液;滤过泵13,位于透析器3的一端和第一液体存储袋10之间;透析液泵14,位于透析器3的另一端和第二液体存储袋11之间;置换液泵15,位于第三液体存储袋12的前端;位于透析器3和静脉管路5之间的静脉壶16,以及位于静脉壶16上的液位检测器17;位于动脉管路4和静脉壶16之间的前置换18和后置换19;位于透析器3和透析液泵14之间的第一加热器20,位于透析液泵14和第二液体存储袋11之间的第一断流检测器21;位于透析器3和滤过泵13之间的漏液检测器22;位于后置换19和置换液泵15之间的第二加热器23,以及位于置换液泵15和第三液体存储袋12之间的第二断流检测器24;位于静脉管路5上的气泡检测器25。The blood purification equipment also includes: a blood detector 7, which is used to detect whether there is blood in the venous line 5; Flow direction: heparin pump 9, used for injecting heparin; first liquid storage bag 10, used for storing filtrate; second liquid storage bag 11, used for storing dialysate; third liquid storage bag 12, used for storing replacement fluid The filter pump 13 is located between one end of the dialyzer 3 and the first liquid storage bag 10; the dialysate pump 14 is located between the other end of the dialyzer 3 and the second liquid storage bag 11; the replacement fluid pump 15 is located The front end of the third liquid storage bag 12; The venous pot 16 between the dialyzer 3 and the venous line 5, and the liquid level detector 17 on the venous pot 16; Pre-replacement 18 and post-replacement 19; a first heater 20 between the dialyzer 3 and the dialysate pump 14, a first cut-off detector 21 between the dialysate pump 14 and the second liquid storage bag 11; A leak detector 22 between the dialyzer 3 and the filtration pump 13; a second heater 23 between the post-displacement 19 and the replacement fluid pump 15, and between the replacement fluid pump 15 and the third fluid storage bag 12 The second cut-off detector 24; the bubble detector 25 located on the venous line 5.
为了更好地说明本申请实施例中血液净化设备检测血液粘度的方法,下面对液体的粘度检测原理进行说明:In order to better illustrate the method of detecting blood viscosity by the blood purification equipment in the embodiment of the present application, the principle of liquid viscosity detection is described below:
粘度检测原理:根据流体力学泊素叶定律:Viscosity detection principle: According to Poisson's law of fluid mechanics:
Q=ΔP×πR4/(8μL)Q=ΔP×πR 4 /(8μL)
其中Q为流量,单位为m3/s,R为细长管1的半径,单位m,ΔP为细长管1出入口压降,单位为Pa,L为细长管1的长度,单位m,u为动力粘度,单位为Pa.s。Wherein Q is the flow rate, the unit is m 3 /s, R is the radius of the slender tube 1, the unit is m, ΔP is the pressure drop at the inlet and outlet of the slender tube 1, the unit is Pa, L is the length of the slender tube 1, the unit is m, u is the dynamic viscosity, the unit is Pa.s.
由于当细长管1内吸入液体后,液体产生的阻尼接近u(粘度)×t(动力注射器吸入液体的时长),故此时的变化因子只跟阻尼成线性,即ΔP1的变化值=ku×t,该公式转换后得到:u=ΔP1/k×t,其中,ΔP1代表细长管1内液体压力的变化量,t代表细长管1内液体压力的变化时间,k代表系统参数;ΔP1和t这两者都是可以通过测量得到的数值,k只与血液净化设备的本身的管路结构存在关联。Since the liquid is sucked into the slender tube 1, the damping produced by the liquid is close to u (viscosity) × t (the time for the power injector to suck the liquid), so the change factor at this time is only linear with the damping, that is, the change value of ΔP1 = ku × t, after conversion of this formula, it is obtained: u=ΔP1/k×t, wherein, ΔP1 represents the change amount of the liquid pressure in the slender tube 1, t represents the change time of the liquid pressure in the slender tube 1, and k represents the system parameter; ΔP1 Both k and t are values that can be obtained by measurement, and k is only related to the pipeline structure of the blood purification equipment itself.
因此本实施例中在预冲阶段,利用置换液在细长管1内的流动状态,先确定k值,然后在血液治疗阶段,利用血液在细长管1内的流动状态,就可以计算出血液的粘度,从而能够在血液透析过程中实时检测血液动力学参数-血液粘度,以供医护人员对血液透析效果的评价过程进行参考,以进一步确保患者进行血液透析的安全性和高效性。Therefore, in this embodiment, in the preflushing stage, the value of k is first determined by using the flow state of the replacement fluid in the slender tube 1, and then in the blood treatment stage, using the flow state of the blood in the slender tube 1, it can be calculated Blood viscosity, so that the hemodynamic parameter-blood viscosity can be detected in real time during hemodialysis, which can be used as a reference for medical staff to evaluate the effect of hemodialysis, so as to further ensure the safety and efficiency of patients undergoing hemodialysis.
参见图3和图4,本申请实施例中提供的血液净化设备还包括:处理器301和存储器303,处理器301通过总线302与存储器303和压力传感器6进行电连接,存储器303存储有可被处理器301执行的程序指令,处理器301调用程序指令能够执行如下方法:3 and 4, the blood purification device provided in the embodiment of the present application also includes: a
步骤S410、根据用户输出的预冲启动指令,将置换液输出至动脉管路4、透析器3和静脉管路5,以及通过动力组件2输出至细长管1。Step S410 , output the replacement fluid to the arterial line 4 , the dialyzer 3 and the
在启动血液净化设备之前,需要先对血液净化设备进行装管,即将血液净化设备按照结构示意图(例如图1所示)进行管路连接,并且确保不同部件之间能够进行紧密连接,没有任何的连接缝隙,例如将动脉管路4的第一端连接至透析器3的血液输入端,将动脉管路4的第二端连接至患者的动脉等等,从而能够保证血液净化设备处于正常的物理连接状态。Before starting the blood purification equipment, it is necessary to install the tubes of the blood purification equipment, that is, to connect the pipelines of the blood purification equipment according to the structural diagram (such as shown in Figure 1), and to ensure that the different parts can be tightly connected without any Connecting gaps, such as connecting the first end of the arterial line 4 to the blood input end of the dialyzer 3, connecting the second end of the arterial line 4 to the patient's artery, etc., so as to ensure that the blood purification equipment is in normal physical condition. Connection Status.
当血液净化设备装管完成后,则可以发出预冲启动指令,处理器用于控制血液净化设备根据预冲启动指令进入预冲阶段,预冲阶段是血液净化设备运转过程中的必备步骤,经过预冲阶段后能够防止动脉管路4、透析器3和静脉管路5中残留杂质,影响后续血液治疗过程。下面结合图1对预冲阶段进行说明,在预冲阶段,动脉管路4的一端连接至第三液体存储袋12,第三液体存储袋12用于存储置换液,将静脉管路5的另一端连接至废液袋,动脉管路4的一端接入置换液,置换液依次流经至动脉管路4、透析器3和静脉管路5,以对血液净化设备中的管路进行冲洗,经过冲洗后的置换液变为废液,通过废液袋存储废液,当静脉管路5内存在流动的置换液时,通过动力组件2提供驱动力,使细长管1从静脉管路5中吸入置换液,即使置换液通过动力组件2输出至细长管1。After the blood purification equipment is installed, a pre-flush start instruction can be issued, and the processor is used to control the blood purification equipment to enter the pre-flush stage according to the pre-flush start instruction. The pre-flush stage is a necessary step in the operation of the blood purification equipment. After the pre-flushing stage, impurities remaining in the arterial line 4 , the dialyzer 3 and the
本实施例中的细长管1可以选用小孔细长管,该小孔细长管的直径为1mm,长度为200mm,通过小孔细长管能够模拟血液在毛细血管内的流动方式,以便于压力传感器6能够更加精确地检测出细长管1的压力变化量,并能够避免造成静脉管路5内的液体浪费的现象。The elongated tube 1 in the present embodiment can be selected as the elongated tube with small holes. The diameter of the elongated tube with small holes is 1 mm and the length is 200 mm. The elongated tube with small holes can simulate the flow mode of blood in capillaries, so that Because the
步骤S420、根据压力测量数据计算细长管1的置换液压力变化量和细长管1的置换液压力变化时间。Step S420 , calculating the change amount of the replacement fluid pressure of the elongated tube 1 and the change time of the replacement fluid pressure of the elongated tube 1 according to the pressure measurement data.
当细长管1接入置换液时,细长管1的置换液压力会逐渐增大,例如:细长管1的置换液压力变化量为100mmHg(置换液压力变化量为正值代表细长管1的置换液压力逐渐增大,置换液压力变化量为负值代表细长管1的置换液压力逐渐减小),压力传感器6能够测量细长管1的置换液压力,得到压力测量数据,并通过压力测量数据计算细长管1的置换液压力变化量和细长管1的置换液压力变化时间。When the slender tube 1 is connected to the replacement fluid, the pressure of the replacement fluid in the slender tube 1 will gradually increase, for example: the change in the replacement fluid pressure of the slender tube 1 is 100mmHg (a positive value of the change in the pressure of the replacement fluid represents a slender The pressure of the replacement fluid in the tube 1 gradually increases, and the change in the pressure of the replacement fluid is negative, which means that the pressure of the replacement fluid in the slender tube 1 gradually decreases), and the
具体地,作为一种可选的实施方式,参见图1可以在细长管1的第一端设置压力传感器6,根据压力测量数据计算细长管1的置换液压力变化量,包括:Specifically, as an optional implementation, referring to FIG. 1, a
若细长管1接入的置换液的总量大于或者等于预设体积时,通过压力传感器6测量细长管1的置换液压力值,根据细长管1的置换液压力值和细长管1未接入置换液的压力值,计算细长管1的置换液压力变化量。If the total amount of the replacement fluid connected to the slender tube 1 is greater than or equal to the preset volume, the
其中,预设体积是提前设定的值,预设体积与细长管1的直径和细长管1的长度相关,本领域的技术人员可以根据实际情况进行设置,例如:细长管1的直径为1mm,细长管1的长度为200mm,则预设体积可以为200uL,当检测出细长管1接入的置换液的总量大于或者等于200uL时,采用压力传感器6测量细长管1的置换液压力值。Wherein, the preset volume is a value set in advance, and the preset volume is related to the diameter of the slender tube 1 and the length of the slender tube 1, and those skilled in the art can set it according to the actual situation, for example: the length of the slender tube 1 If the diameter is 1mm and the length of the slender tube 1 is 200mm, the preset volume can be 200uL. When it is detected that the total amount of replacement fluid connected to the slender tube 1 is greater than or equal to 200uL, the
置换液压力变化量=第二压力检测值-第一压力检测值,其中,第一压力检测值代表细长管1未接入置换液时,压力传感器6测量到的细长管1的置换液压力值;第二压力检测值代表细长管1接入的置换液的总量大于或者等于预设体积时,压力传感器6测量到的细长管1的置换液压力值。例如:当细长管1未接入置换液时,压力传感器6测量到的细长管1的置换液压力为10mmHg,当置换液通过动力组件2输出至细长管1,细长管1接入的置换液的总量大于或者等于200uL时,压力传感器6测量到的细长管1的置换液压力为100mmHg,则置换液压力变化量为100mmHg-10mmHg=90mmHg。Change in displacement fluid pressure = second pressure detection value - first pressure detection value, wherein the first pressure detection value represents the displacement hydraulic pressure of the elongated tube 1 measured by the
作为另一种可选的实施方式,参见图2,压力传感器6也可以包括第一压力传感器和第二压力传感器,第一压力传感器位于细长管1的第一端,第二压力传感器位于细长管1的第二端,根据压力测量数据计算细长管1的置换液压力变化量,包括:As another optional implementation, referring to Fig. 2, the
细长管1接入置换液后,通过第一压力传感器检测细长管1的第一端的置换液压力值,得到第一压力检测值,通过第二压力传感器检测细长管1的第二端的置换液压力值,得到第二压力检测值,根据第一压力检测值和第二压力检测值之间的差值,计算细长管1的置换液压力变化量。After the slender tube 1 is connected to the replacement fluid, the pressure value of the replacement fluid at the first end of the slender tube 1 is detected by the first pressure sensor to obtain the first pressure detection value, and the second pressure of the slender tube 1 is detected by the second pressure sensor. The pressure value of the displacement fluid at the end is obtained to obtain the second pressure detection value, and the change in the displacement fluid pressure of the elongated tube 1 is calculated according to the difference between the first pressure detection value and the second pressure detection value.
其中,第一压力检测值代表细长管1从静脉管路5接入的置换液压力,第二压力检测值代表动力组件2从细长管1吸入置换液的压力,根据第一压力检测值和第二压力检测值之间的差值,便能够得到细长管1的置换液压力变化量,从而便于后续计算出血液净化设备的粘度系统参数和患者血液的第一血液粘度。Among them, the first pressure detection value represents the pressure of the replacement fluid connected to the slender tube 1 from the
细长管1的置换液压力变化时间与细长管1的置换液压力变化量这两者存在一一对应关系,细长管1的置换液压力变化时间代表细长管1的置换液压力发生变化的时间段,例如:细长管1的置换液压力变化量为100mmHg,则细长管1的置换液压力变化时间指的是细长管1的置换液压力发生100mmHg变化时对应的时间。There is a one-to-one correspondence between the change time of the displacement fluid pressure of the slender tube 1 and the change amount of the displacement fluid pressure of the slender tube 1, and the change time of the displacement fluid pressure of the slender tube 1 represents the occurrence The time period of change, for example: the displacement fluid pressure of the elongated tube 1 changes by 100mmHg, then the displacement fluid pressure change time of the elongated tube 1 refers to the corresponding time when the displacement fluid pressure of the elongated tube 1 changes by 100mmHg.
具体地,作为一种可选的实施方式,根据压力测量数据计算细长管1的置换液压力变化时间,包括:Specifically, as an optional implementation, calculating the change time of the displacement fluid pressure of the elongated tube 1 according to the pressure measurement data includes:
若细长管1接入的置换液的总量大于或者等于预设体积时,则以细长管1未接入置换液的时间点作为时间起始点,以细长管1接入的置换液的总量大于或者等于预设体积的时间点作为时间截止点,细长管1的置换液压力变化时间=时间截止点-时间起始点。If the total amount of the replacement fluid inserted into the slender tube 1 is greater than or equal to the preset volume, the time point when the slender tube 1 is not connected with the replacement fluid is taken as the starting point of time, and the replacement fluid inserted into the slender tube 1 The time point at which the total amount is greater than or equal to the preset volume is taken as the time cut-off point, and the change time of the replacement fluid pressure of the elongated tube 1 = time cut-off point - time start point.
步骤S430、根据预设的置换液的粘度、细长管1的置换液压力变化量和细长管1的置换液压力变化时间,确定粘度系统参数。Step S430 : Determine the parameters of the viscosity system according to the preset viscosity of the replacement fluid, the amount of change in pressure of the replacement fluid in the elongated tube 1 , and the change time of the pressure of the replacement fluid in the elongated tube 1 .
一般情况下,置换液为注射用水,而水的粘度通常是一个定值,且水不存在浓度的问题,本领域技术人员可以查阅相关技术文献确定水的粘度,并通过水的粘度近似拟合预设的置换液的粘度,例如:水的粘度为100Pa.S,预设的置换液的粘度为100Pa.S。Under normal circumstances, the replacement fluid is water for injection, and the viscosity of water is usually a fixed value, and there is no concentration problem in water. Those skilled in the art can refer to relevant technical documents to determine the viscosity of water, and approximate fitting by the viscosity of water The preset viscosity of the replacement fluid, for example: the viscosity of water is 100Pa.S, and the preset viscosity of the replacement fluid is 100Pa.S.
确定预设的置换液的粘度、细长管1的置换液压力变化量和细长管1的置换液压力变化时间,可以通过如下公式计算粘度系统参数:To determine the preset viscosity of the replacement fluid, the amount of change in pressure of the replacement fluid in the elongated tube 1, and the change time of the pressure of the replacement fluid in the elongated tube 1, the viscosity system parameters can be calculated by the following formula:
粘度系统参数k=置换液压力变化量/(预设的置换液的粘度×置换液压力变化时间)。Viscosity system parameter k=variation of displacement fluid pressure/(preset viscosity of displacement fluid×change time of displacement fluid pressure).
步骤S440、根据用户输出的血液治疗指令,通过透析器3对血液进行透析,将透析后的血液通过动力组件2输出至所述细长管1。Step S440 , according to the blood therapy instruction output by the user, the blood is dialyzed through the dialyzer 3 , and the dialyzed blood is output to the elongated tube 1 through the
当血液净化设备经过预冲阶段之后,处理器会控制血液净化设备进入血液治疗阶段,当用户输出血液治疗指令后,根据血液治疗指令控制血液净化设备进入血液治疗阶段。在血液治疗阶段,动脉管路4的一端接入血液,血液依次流经至动脉管路4、透析器3和静脉管路5,并控制透析器3对血液进行血液透析,通过静脉管路5将血液透析后的血液回输至患者的静脉,当静脉管路5内存在流动的血液时,通过动力组件2提供驱动力,使细长管1从静脉管路5中吸入血液,即通过动力组件2使得细长管1接入血液。After the blood purification device has passed the pre-flushing stage, the processor will control the blood purification device to enter the blood treatment stage, and when the user outputs a blood therapy instruction, control the blood purification device to enter the blood therapy stage according to the blood therapy instruction. In the blood treatment stage, one end of the arterial line 4 is connected to blood, and the blood flows through the arterial line 4, the dialyzer 3 and the
步骤S450、根据压力测量数据计算细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间。Step S450, calculating the first blood pressure change amount of the elongated tube 1 and the first blood pressure change time of the elongated tube 1 according to the pressure measurement data.
当细长管1接入血液时,细长管1的血液压力会逐渐增大,例如:细长管1的血液压力变化量为100mmHg(血液压力变化量为正值代表细长管1的血液压力逐渐增大,血液压力变化量为负值代表细长管1的血液压力逐渐减小),压力传感器6能够测量细长管1的血液压力,得到压力测量数据,并通过压力测量数据计算细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间。When the slender tube 1 is connected to the blood, the blood pressure of the slender tube 1 will gradually increase, for example: the blood pressure change of the slender tube 1 is 100mmHg (a positive value of the blood pressure change represents the blood pressure of the slender tube 1 The pressure gradually increases, and the blood pressure variation is a negative value representing that the blood pressure of the slender tube 1 gradually decreases), the
具体地,作为一种可选的实施方式,参见图1可以在细长管1的第一端设置压力传感器6,根据压力测量数据计算细长管1的第一血液压力变化量,包括:Specifically, as an optional implementation manner, referring to FIG. 1 , a
若细长管1接入的血液的总量大于或者等于预设体积时,通过压力传感器6测量细长管1的血液压力值,根据细长管1的血液压力值和细长管1未接入血液的压力值,计算细长管1的第一血液压力变化量。If the total amount of blood inserted into the slender tube 1 is greater than or equal to the preset volume, the blood pressure value of the slender tube 1 is measured by the
其中,预设体积是提前设定的值,预设体积与细长管1的直径和细长管1的长度相关,本领域的技术人员可以根据实际情况进行设置,例如:细长管1的直径为1mm,细长管1的长度为200mm,则预设体积可以为200uL,当检测出细长管1接入的血液的总量大于或者等于200uL时,采用压力传感器6测量细长管1的血液压力值。Wherein, the preset volume is a value set in advance, and the preset volume is related to the diameter of the slender tube 1 and the length of the slender tube 1, and those skilled in the art can set it according to the actual situation, for example: the length of the slender tube 1 If the diameter is 1mm and the length of the slender tube 1 is 200mm, the preset volume can be 200uL. When it is detected that the total amount of blood inserted into the slender tube 1 is greater than or equal to 200uL, the
第一血液压力变化量=第四压力检测值-第三压力检测值,其中,第三压力检测值代表细长管1未接入血液时,压力传感器6测量到的细长管1的血液压力值;第四压力检测值代表细长管1接入的血液的总量大于或者等于预设体积时,压力传感器6测量到的细长管1的血液压力值。First blood pressure variation=fourth pressure detection value−third pressure detection value, wherein the third pressure detection value represents the blood pressure of the elongated tube 1 measured by the
作为另一种可选的实施方式,参见图2,压力传感器6也可以包括第一压力传感器和第二压力传感器,第一压力传感器位于细长管1的第一端,第二压力传感器位于细长管1的第二端,根据压力测量数据计算细长管1的第一血液压力变化量,包括:As another optional implementation, referring to Fig. 2, the
细长管1接入血液后,通过第一压力传感器检测细长管1的第一端的血液压力值,得到第三压力检测值,通过第二压力传感器检测细长管1的第二端的血液压力值,得到第四压力检测值,根据第三压力检测值和第四压力检测值之间的差值,计算细长管1的第一血液压力变化量。After the slender tube 1 is connected to the blood, the blood pressure value at the first end of the slender tube 1 is detected by the first pressure sensor to obtain a third pressure detection value, and the blood at the second end of the slender tube 1 is detected by the second pressure sensor The pressure value is to obtain a fourth pressure detection value, and calculate the first blood pressure change amount of the elongated tube 1 according to the difference between the third pressure detection value and the fourth pressure detection value.
其中,第三压力检测值代表细长管1从静脉管路5接入的血液压力,第四压力检测值代表动力组件2从细长管1吸入血液的压力,根据第三压力检测值和第四压力检测值之间的差值,便能够得到细长管1的第一血液压力变化量,从而便于后续计算出患者血液的第一血液粘度。Wherein, the third pressure detection value represents the blood pressure connected by the slender tube 1 from the
细长管1的第一血液压力变化时间与细长管1的第一血液压力变化量这两者存在一一对应关系,细长管1的第一血液压力变化时间代表细长管1的第一血液压力发生变化的时间段。There is a one-to-one correspondence between the first blood pressure change time of the slender tube 1 and the first blood pressure change amount of the slender tube 1, and the first blood pressure change time of the slender tube 1 represents the first blood pressure change time of the slender tube 1. A period of time during which changes in blood pressure occur.
具体地,作为一种可选的实施方式,根据压力测量数据计算细长管1的第一血液压力变化时间,包括:Specifically, as an optional implementation, calculating the first blood pressure change time of the elongated tube 1 according to the pressure measurement data includes:
若细长管1接入的血液的总量大于或者等于预设体积时,则以细长管1未接入血液的时间点作为时间起始点,以细长管1接入的血液的总量大于或者等于预设体积的时间点作为时间截止点,细长管1的血液压力变化时间=时间截止点-时间起始点。If the total amount of blood inserted into the slender tube 1 is greater than or equal to the preset volume, the time point when the slender tube 1 is not connected with blood is used as the starting point of time, and the total amount of blood inserted into the slender tube 1 The time point greater than or equal to the preset volume is taken as the time cut-off point, and the blood pressure change time of the elongated tube 1 = time cut-off point - time start point.
步骤S460、根据粘度系统参数、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,确定第一血液粘度。Step S460 : Determine the first blood viscosity according to the viscosity system parameters, the first blood pressure change amount of the elongated tube 1 and the first blood pressure change time of the elongated tube 1 .
确定粘度系统参数k、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,可以通过如下公式计算第一血液粘度:To determine the viscosity system parameter k, the first blood pressure change amount of the elongated tube 1 and the first blood pressure change time of the elongated tube 1, the first blood viscosity can be calculated by the following formula:
第一血液粘度=第一血液压力变化量/(粘度系统参数k×第一血液压力变化时间)。First blood viscosity=first blood pressure change amount/(viscosity system parameter k×first blood pressure change time).
第一血液压力变化量、粘度系统参数k和第一血液压力变化时间都是已知量,根据上述公式就可以计算出第一血液粘度。本实施例中能够在血液治疗阶段获得第一血液粘度,根据第一血液粘度便能够监控出患者的血液透析状态。The first blood pressure change amount, the viscosity system parameter k and the first blood pressure change time are all known quantities, and the first blood viscosity can be calculated according to the above formula. In this embodiment, the first blood viscosity can be obtained during the blood treatment stage, and the patient's hemodialysis status can be monitored according to the first blood viscosity.
本申请实施例中提供的血液净化设备,利用血液透析过程中的操作步骤,在预冲阶段提前获取粘度检测过程中必备的粘度系统参数,以便于后期对血液粘度的计算过程提供数据基础,在患者进行血液透析时,便于精确地计算出患者的血液粘度,本申请实施例将血液粘度检测和血液透析过程完美结合,有效的将粘度检测融入血液透析过程中,在血液治疗阶段中可实时检测、监控患者的血液粘度,具有很强的实际操作性和便利性;此外本申请实施例中,巧妙地利用吸入流体介质时压力随时间变化,从而确定血液粘度的方法,能够有效地获取血液粘度值,检测成本低,检测可行性高,检测的可靠性高,并且能够在血液透析过程中实时检测血液粘度,以供医护人员根据血液粘度能够对血液透析效果的评价过程进行参考,避免患者出现心血管等相关的并发症,从而进一步确保患者进行血液透析的安全性,克服了现有技术中无法在血液透析过程中检测患者的血液粘度,导致患者的血液透析治疗安全性低的问题。The blood purification equipment provided in the embodiment of the present application uses the operation steps in the hemodialysis process to obtain the necessary viscosity system parameters in the viscosity detection process in advance in the preflushing stage, so as to provide a data basis for the later calculation process of blood viscosity. When the patient is undergoing hemodialysis, it is convenient to accurately calculate the blood viscosity of the patient. The embodiment of the present application perfectly combines the blood viscosity detection with the hemodialysis process, and effectively integrates the viscosity detection into the hemodialysis process. Detecting and monitoring the patient's blood viscosity has strong practicality and convenience; in addition, in the embodiment of the present application, the method of determining the blood viscosity by cleverly using the pressure change with time when the fluid medium is inhaled can effectively obtain blood Viscosity value, low detection cost, high detection feasibility, high detection reliability, and can detect blood viscosity in real time during hemodialysis, so that medical staff can refer to the evaluation process of hemodialysis effect according to blood viscosity, avoiding patients Cardiovascular and other related complications occur, thereby further ensuring the safety of patients undergoing hemodialysis, and overcoming the problem in the prior art that the patient's blood viscosity cannot be detected during hemodialysis, resulting in low safety of patients' hemodialysis treatment.
在上述实施例的基础上,该血液净化设备还包括显示屏26,在步骤S460根据粘度系统参数、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,确定第一血液粘度之后,还包括:On the basis of the above-mentioned embodiments, the blood purification device further includes a
处理器还用于通过显示屏26显示第一血液粘度随时间的变化曲线。The processor is also used to display the change curve of the first blood viscosity with time through the
其中,第一血液粘度并不是一个定值,而是在血液治疗阶段,根据实时检测和计算得到的数值,在血液治疗阶段,不同时间得到的第一血液粘度也会发生变化,从而可以绘制第一血液粘度随时间的变化曲线,用户根据第一血液粘度随时间的变化曲线,能够判断患者的血液透析治疗效果。Among them, the first blood viscosity is not a fixed value, but in the blood treatment stage, according to the value obtained by real-time detection and calculation, in the blood treatment stage, the first blood viscosity obtained at different times will also change, so that the first blood viscosity can be plotted A time-varying curve of blood viscosity. According to the first blood viscosity-varying curve with time, the user can judge the hemodialysis treatment effect of the patient.
图5为第一血液粘度随时间的变化曲线,结合图5所示,一般情况下,第一血液粘度随时间的增加而逐渐增加,用户根据第一血液粘度随时间的变化曲线,便能够得到患者的血液透析治疗效果,并能够根据第一血液粘度随时间的变化曲线获取血液透析治疗的波动状态,从而确保患者的血液透析治疗的安全性。例如,当第一血液粘度随时间的变化曲线变为一条水平线时,则说明血液治疗阶段处于故障状态,用户根据显示屏26上显示的第一血液粘度随时间的变化曲线,能够及时处理透析器3的故障状态,从而能够确保患者的血液透析治疗的安全性。Figure 5 is the change curve of the first blood viscosity with time, combined with what is shown in Figure 5, in general, the first blood viscosity gradually increases with time, and the user can get The patient's hemodialysis treatment effect, and the fluctuation state of the hemodialysis treatment can be obtained according to the change curve of the first blood viscosity with time, so as to ensure the safety of the patient's hemodialysis treatment. For example, when the change curve of the first blood viscosity with time turns into a horizontal line, it indicates that the blood treatment stage is in a fault state, and the user can timely process the dialyzer according to the change curve of the first blood viscosity with time displayed on the
需要说明的是,血液透析治疗效果包括了透析器的脱水量、透析器对血液内尿素的清除率等多个指标,本领域的技术人员可以根据第一血液粘度随时间的变化曲线,判断这些指标是否正常。It should be noted that the treatment effect of hemodialysis includes multiple indicators such as the amount of dehydration of the dialyzer, the clearance rate of urea in the blood by the dialyzer, and those skilled in the art can judge these according to the change curve of the first blood viscosity with time. Whether the indicator is normal.
在上述实施例的基础上,在步骤S440根据用户输出的血液治疗指令,通过透析器3对血液进行透析,将透析后的血液通过动力组件2输出至细长管1之前,处理器还用于执行:On the basis of the above-mentioned embodiments, in step S440, according to the blood treatment instruction output by the user, the blood is dialyzed through the dialyzer 3, and before the dialyzed blood is output to the elongated tube 1 through the
判断动脉管路4接入置换液的时间是否大于预设预冲时间,若动脉管路4接入置换液的时间大于预设预冲时间,则发出引血启动指令。It is judged whether the time when the arterial line 4 is connected to the replacement fluid is longer than the preset pre-flush time, and if the time when the arterial line 4 is connected to the replacement fluid is longer than the preset pre-flush time, then a blood drainage start command is issued.
血液净化设备的控制过程可依次为:预冲阶段、引血阶段和血液治疗阶段,当动脉管路4接入置换液的时间大于预设预冲时间时,则说明血液净化设备已经完成预冲阶段,通过引血启动指令便可控制血液净化设备进入引血阶段。其中,预设预冲时间代表血液净化设备进行预冲的最大时间,预设预冲时间可以由本领域的技术人员根据临床经验进行设定,例如在血液透析模式下,预设预冲时间通常为5min至8min。The control process of the blood purification equipment can be followed in sequence: the preflushing stage, the blood introduction stage and the blood treatment stage. When the time for the arterial line 4 to be connected to the replacement fluid is greater than the preset preflushing time, it means that the blood purification equipment has completed the preflushing stage, the blood purification device can be controlled to enter the blood-drawing stage through the blood-drawing start command. Wherein, the preset pre-flush time represents the maximum time for the blood purification equipment to pre-flush, and the preset pre-flush time can be set by those skilled in the art based on clinical experience. For example, in the hemodialysis mode, the preset pre-flush time is usually 5min to 8min.
在上述实施例的基础上,该血液净化设备还包括血液探测器7,血液探测器7设在静脉管路5上,具体地,静脉管路5的第一端连接透析器3的血液输出端,静脉管路5的第二端连接患者的静脉,细长管1的第一端连接至静脉管路5的连接点,血液探测器7位于静脉管路5的连接点和静脉管路5的第二端之间的管线上,血液探测器7用于检测静脉管路5内是否存在血液,处理器还用于执行:On the basis of the above-mentioned embodiments, the blood purification equipment also includes a
根据用户输出的引血启动指令,将血液输出至动脉管路4、透析器3和静脉管路5,当血液探测器7检测到静脉管路5内存在血液时,通过动力组件2将血液输出至细长管1。According to the blood extraction start command output by the user, the blood is output to the arterial line 4, the dialyzer 3 and the
在引血阶段,通过动脉管路4接入血液,血液依次流经至动脉管路4、透析器3和静脉管路5,血液探测器7利用感光的原理检测静脉管路5内是否存在血液,当血液探测器7检测到静脉管路5内存在血液时,则控制动力组件2提供驱动力,使细长管1从静脉管路5中吸入血液,即使血液通过动力组件2输出至细长管1。In the blood extraction stage, the blood is inserted through the arterial line 4, and the blood flows through the arterial line 4, the dialyzer 3, and the
根据压力测量数据计算细长管1的第二血液压力变化量和细长管1的第二血液压力变化时间。The second blood pressure change amount of the elongated tube 1 and the second blood pressure change time of the elongated tube 1 are calculated according to the pressure measurement data.
当细长管1接入血液时,细长管1的血液压力会逐渐增大,压力传感器6能够测量细长管1的血液压力,得到压力测量数据,并通过压力测量数据计算细长管1的第二血液压力变化量和细长管1的第二血液压力变化时间,其中,通过压力测量数据计算细长管1的第二血液压力变化量和细长管1的第二血液压力变化时间的方法,与通过压力测量数据计算细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间的方法相同,此处不再赘述。When the slender tube 1 is connected to the blood, the blood pressure of the slender tube 1 will gradually increase. The
根据粘度系统参数、细长管1的第二血液压力变化量和细长管1的第二血液压力变化时间,确定第二血液粘度。The second blood viscosity is determined according to the viscosity system parameters, the second blood pressure change amount of the elongated tube 1 and the second blood pressure change time of the elongated tube 1 .
确定粘度系统参数k、细长管1的第二血液压力变化量和细长管1的第二血液压力变化时间之后,可以通过如下公式计算第二血液粘度:After determining the viscosity system parameter k, the second blood pressure change amount of the slender tube 1 and the second blood pressure change time of the slender tube 1, the second blood viscosity can be calculated by the following formula:
第二血液粘度=第二血液压力变化量/(粘度系统参数k×第二血液压力变化时间)。Second blood viscosity=second blood pressure variation/(viscosity system parameter k×second blood pressure variation time).
需要说明的是,第一血液粘度和第二血液粘度具有完全不同的生理参考价值。第一血液粘度为血液治疗阶段检测得到的患者的血液粘度,代表血液治疗阶段的血液粘度;第二血液粘度为引血阶段检测得到的患者的血液粘度,代表患者在血液透析之前的血液粘度。在患者进行血液透析治疗时,在引血阶段下,患者的血液粘度通常比较低(因为此时患者的血液中会存在比较多的水分);在血液治疗阶段下,患者的血液粘度通常比较高(因为患者的血液经过血液透析后会去除血液内多余的水分),根据第一血液粘度和第二血液粘度,能够判断出透析器的脱水效果。It should be noted that the first blood viscosity and the second blood viscosity have completely different physiological reference values. The first blood viscosity is the blood viscosity of the patient detected in the blood treatment stage, representing the blood viscosity of the blood treatment stage; the second blood viscosity is the patient's blood viscosity detected in the blood drainage stage, representing the blood viscosity of the patient before hemodialysis. When a patient undergoes hemodialysis treatment, the patient's blood viscosity is usually relatively low during the blood drainage phase (because there will be more water in the patient's blood at this time); during the blood treatment phase, the patient's blood viscosity is usually relatively high (Because the patient's blood will remove excess water in the blood after hemodialysis), according to the first blood viscosity and the second blood viscosity, the dehydration effect of the dialyzer can be judged.
在上述实施例的基础上,该处理器还用于执行:On the basis of the foregoing embodiments, the processor is also configured to execute:
根据第一血液粘度和第二血液粘度之间的差值,判断透析器3的脱水效果。According to the difference between the first blood viscosity and the second blood viscosity, the dehydration effect of the dialyzer 3 is judged.
其中,第一血液粘度代表血液治疗阶段的血液粘度,第二血液粘度代表血液透析之前的血液粘度。第一血液粘度和第二血液粘度之间的差值代表经过血液透析后患者的血液粘度的变化量,第一血液粘度和第二血液粘度之间的差值越大,则说明患者经过血液透析后的脱水量越大,第一血液粘度和第二血液粘度之间的差值越小,则说明患者经过血液透析后的脱水量越小,而患者在血液透析过程中,通过透析器3对血液实现脱水,正常情况下,随着血液透析治疗时间的增长,患者的血液粘度也会逐渐增长,因此第一血液粘度会随着血液透析治疗时间的增加而增大,当第一血液粘度和第二血液粘度这两者之间的差值越大,则透析器3的脱水效果也越好,患者的血液的实际脱水量也越大;当第一血液粘度和第二血液粘度这两者之间的差值越小时,则透析器3的脱水效果也越差,患者的血液的实际脱水量也越小,根据第一血液粘度和第二血液粘度这两者之间的差值,直接判断出透析器3的脱水效果,无需先计算患者的血液的实际脱水量之后再判断透析器3的脱水效果,简化了判断透析器3的脱水效果的步骤,有利于提高判断的精度,且本实施例中判断透析器3的脱水效果的方法科学、合理。Wherein, the first blood viscosity represents the blood viscosity in the blood treatment stage, and the second blood viscosity represents the blood viscosity before hemodialysis. The difference between the first blood viscosity and the second blood viscosity represents the change in the blood viscosity of the patient after hemodialysis, and the greater the difference between the first blood viscosity and the second blood viscosity, it means that the patient has undergone hemodialysis The greater the amount of dehydration after the end, the smaller the difference between the first blood viscosity and the second blood viscosity, it means that the dehydration amount of the patient after hemodialysis is smaller, and the patient passes through the dialyzer 3 pairs during hemodialysis. The blood is dehydrated. Under normal circumstances, with the increase of hemodialysis treatment time, the patient's blood viscosity will gradually increase, so the first blood viscosity will increase with the increase of hemodialysis treatment time. When the first blood viscosity and The greater the difference between the second blood viscosity, the better the dehydration effect of the dialyzer 3, and the greater the actual dehydration amount of the patient's blood; when both the first blood viscosity and the second blood viscosity The smaller the difference, the worse the dehydration effect of the dialyzer 3, and the smaller the actual dehydration amount of the patient's blood. According to the difference between the first blood viscosity and the second blood viscosity, directly To judge the dehydration effect of the dialyzer 3, there is no need to calculate the actual dehydration amount of the patient's blood before judging the dehydration effect of the dialyzer 3, which simplifies the steps of judging the dehydration effect of the dialyzer 3, which is conducive to improving the accuracy of judgment, and this The method for judging the dehydration effect of the dialyzer 3 in the embodiment is scientific and reasonable.
在上述实施例的基础上,根据第一血液粘度和第二血液粘度之间的差值,判断透析器3的脱水效果,具体可以采用如下方法:On the basis of the foregoing embodiments, according to the difference between the first blood viscosity and the second blood viscosity, the dehydration effect of the dialyzer 3 can be judged, specifically the following method can be adopted:
若判断出第一血液粘度和第二血液粘度之间的差值满足第一预设条件,则透析器3的脱水效果为差,发出第一提示;If it is judged that the difference between the first blood viscosity and the second blood viscosity satisfies the first preset condition, the dehydration effect of the dialyzer 3 is poor, and a first prompt is issued;
若判断出第一血液粘度和第二血液粘度之间的差值满足第二预设条件,则透析器3的脱水效果为良好,发出第二提示;If it is judged that the difference between the first blood viscosity and the second blood viscosity satisfies the second preset condition, the dehydration effect of the dialyzer 3 is good, and a second prompt is issued;
若判断出第一血液粘度和第二血液粘度之间的差值满足第三预设条件,则透析器3的脱水效果为好,发出第三提示;If it is judged that the difference between the first blood viscosity and the second blood viscosity satisfies the third preset condition, the dehydration effect of the dialyzer 3 is good, and a third prompt is issued;
其中,第一预设条件为:|第一血液粘度-第二血液粘度|≤第一预设差值;Wherein, the first preset condition is: |first blood viscosity-second blood viscosity|≤first preset difference;
第二预设条件为:第一预设差值<|第一血液粘度-第二血液粘度|≤第二预设差值;The second preset condition is: first preset difference<|first blood viscosity-second blood viscosity|≤second preset difference;
第三预设条件为:第二预设差值<|第一血液粘度-第二血液粘度|。The third preset condition is: second preset difference<|first blood viscosity−second blood viscosity|.
其中,第一预设差值和第二预设差值均为提前设定的数值,本领域的技术人员可以根据临床经验进行设定,本申请的实施例对此不做进一步地限定,例如:第一预设差值为10Pa.S,第二预设差值为30Pa.S。Wherein, the first preset difference and the second preset difference are values set in advance, which can be set by those skilled in the art based on clinical experience, which is not further limited in the embodiments of the present application, for example : The first preset difference is 10Pa.S, and the second preset difference is 30Pa.S.
本实施例中根据第一血液粘度和第二血液粘度与第一预设差值和第二预设差值之间的关系,将透析器3的脱水效果划分为三档,差、一般、好,且不同的脱水效果发出不同的提示,从而能够清楚的了解透析器3的实际脱水效果。其中,第一提示、第二提示和第三提示可以为不同的光源提示,也可以为不同的声音提示,例如:第一提示可以为红光,第二提示为蓝光,第三提示为绿光,当用户看到不同颜色的光源时,根据不同的光源便可知道透析器3的实际脱水效果,从而能够直接了解患者的实际血液透析状态。In this embodiment, according to the relationship between the first blood viscosity and the second blood viscosity and the first preset difference and the second preset difference, the dehydration effect of the dialyzer 3 is divided into three levels, poor, average, good , and different dehydration effects give different prompts, so that the actual dehydration effect of the dialyzer 3 can be clearly understood. Wherein, the first prompt, the second prompt and the third prompt can be prompted by different light sources, and can also be prompted by different sounds, for example: the first prompt can be a red light, the second prompt can be a blue light, and the third prompt can be a green light , when the user sees light sources of different colors, the actual dehydration effect of the dialyzer 3 can be known according to the different light sources, so that the actual hemodialysis status of the patient can be directly known.
在上述实施例的基础上,在根据粘度系统参数、细长管1的第二血液压力变化量和细长管1的第二血液压力变化时间,确定第二血液粘度之后,还包括:On the basis of the above embodiments, after determining the second blood viscosity according to the viscosity system parameters, the second blood pressure change amount of the elongated tube 1 and the second blood pressure change time of the elongated tube 1, it also includes:
根据第二血液粘度确定透析器3的目标脱水量,处理器还用于通过显示屏26显示透析器3的目标脱水量。The target dehydration amount of the dialyzer 3 is determined according to the second blood viscosity, and the processor is also used to display the target dehydration amount of the dialyzer 3 through the
其中,第二血液粘度代表患者在血液透析之前血液内的含水量,例如:第二血液粘度为50Pa.S,透析器3的目标脱水量代表患者在血液治疗阶段从患者的血液中去除的水分的特定总量。第二血液粘度与目标脱水量这两者之间存在负相关关系,也即,当第二血液粘度较大时,则说明患者的血液内的含水量不高,对患者的血液进行脱水,此时的目标脱水量较低;当第二血液粘度较小时,则说明患者的血液内的含水量较高,对患者的血液进行脱水,此时的目标含水量较高。第二血液粘度与目标脱水量这两者之间也存在一一对应关系,第二血液粘度和目标脱水量之间的关系图如图6所示,图6是本领域的技术人员根据临床经验总结得到的第二血液粘度和目标脱水量之间的对应曲线图。当确定第二血液粘度后,根据图6对应的曲线图,便能够确定该第二血液粘度下,对应的目标脱水量。由此,在血液治疗阶段,当透析器3对血液进行透析时,可以检测透析器3的实际脱水量,当透析器3的实际脱水量等于目标脱水量,则可控制透析器3停止进行血液透析,从而使患者达到最佳的血液透析治疗效果,本实施例中根据第二血液粘度科学、合理地确定透析器3的目标脱水量,便于在后期控制透析器3能够在合适的时间中止血液透析过程,从而确保较好的血液透析治疗效果。Wherein, the second blood viscosity represents the water content in the patient's blood before hemodialysis, for example: the second blood viscosity is 50 Pa.S, and the target dehydration amount of the dialyzer 3 represents the moisture that the patient removes from the patient's blood during the blood treatment stage a specific total amount. There is a negative correlation between the second blood viscosity and the target dehydration amount, that is, when the second blood viscosity is higher, it means that the water content in the patient's blood is not high, and the patient's blood is dehydrated. When the target dehydration amount is low; when the viscosity of the second blood is low, it means that the water content in the patient's blood is high, and the target water content is high when the patient's blood is dehydrated. There is also a one-to-one correspondence between the second blood viscosity and the target dehydration amount. The relationship diagram between the second blood viscosity and the target dehydration amount is shown in Figure 6. Figure 6 is based on clinical experience of those skilled in the art The obtained correspondence graph between the second blood viscosity and the target dehydration amount is summarized. After the second blood viscosity is determined, according to the graph corresponding to FIG. 6 , the corresponding target dehydration amount under the second blood viscosity can be determined. Thus, in the stage of blood treatment, when the dialyzer 3 dialyzes the blood, the actual dehydration volume of the dialyzer 3 can be detected, and when the actual dehydration volume of the dialyzer 3 is equal to the target dehydration volume, the dialyzer 3 can be controlled to stop blood flow. Dialysis, so that the patient can achieve the best hemodialysis treatment effect. In this embodiment, according to the second blood viscosity, the target dehydration amount of the dialyzer 3 is scientifically and reasonably determined, so that the dialyzer 3 can be controlled at a later stage to stop the blood at an appropriate time. Dialysis process, so as to ensure better hemodialysis treatment effect.
本实施例中,根据患者在引血阶段的血液粘度和血液治疗阶段的血液粘度之间的差值可判断出透析器的脱水效果,并为医护人员提供有效、科学的参考指标,使医护人员能够根据第一血液粘度和第二血液粘度之间的差值直接判断患者在进行血液透析时是否处于正常的脱水状态,有利于提高判断的精度,从而防止透析器在进行血液透析过程中水分流失过多或者补液过多,导致血液浓度过低和血细胞形态变形等问题,有效防止血液透析过程中引起的心血管相关的并发症,提高患者在血液治疗过程中的安全性。In this embodiment, the dehydration effect of the dialyzer can be judged according to the difference between the blood viscosity of the patient in the blood drawing stage and the blood viscosity in the blood treatment stage, and an effective and scientific reference index can be provided for the medical staff, so that the medical staff It can directly judge whether the patient is in a normal dehydration state during hemodialysis according to the difference between the first blood viscosity and the second blood viscosity, which is conducive to improving the accuracy of judgment, thereby preventing the water loss of the dialyzer during hemodialysis Too much or too much fluid replacement will lead to problems such as low blood concentration and blood cell shape deformation, which can effectively prevent cardiovascular-related complications caused by hemodialysis and improve the safety of patients in the blood treatment process.
在上述实施例的基础上,该血液净化设备还包括:第一温度传感器和第二温度传感器(图中未画出),第一温度传感器用于检测动脉管路4内的血液温度,获得第一检测温度,第二温度传感器用于检测静脉管路5内的血液温度,获得第二检测温度,处理器还用于执行:On the basis of the above embodiments, the blood purification device also includes: a first temperature sensor and a second temperature sensor (not shown in the figure), the first temperature sensor is used to detect the blood temperature in the arterial pipeline 4, and obtain the second First detect the temperature, the second temperature sensor is used to detect the blood temperature in the
判断第一检测温度和第二检测温度之间的差值的绝对值是否小于预设温度差值,若第一检测温度和第二检测温度之间的差值的绝对值小于预设温度差值,则根据粘度系统参数、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,确定第一血液粘度。Judging whether the absolute value of the difference between the first detected temperature and the second detected temperature is less than the preset temperature difference, if the absolute value of the difference between the first detected temperature and the second detected temperature is smaller than the preset temperature difference , then the first blood viscosity is determined according to the viscosity system parameters, the first blood pressure change amount of the elongated tube 1 and the first blood pressure change time of the elongated tube 1 .
其中,第一检测温度代表从患者体内直接抽取的血液温度,第二检测温度代表经过血液透析后的血液温度,第一检测温度和第二检测温度之间的差值代表患者的血液经过血液透析后所引起的温度变化量。预设温度差值代表患者的血液在血液透析过程中容许的温度变化误差,本申请的实施例中对预设温度差值的具体数值不做进一步地限定,本领域的技术人员可以根据临床治疗经验进行设定,例如:预设温度差值为2℃。Wherein, the first detection temperature represents the temperature of blood directly drawn from the patient, the second detection temperature represents the blood temperature after hemodialysis, and the difference between the first detection temperature and the second detection temperature represents the blood of the patient after hemodialysis The resulting temperature change. The preset temperature difference represents the allowable temperature change error of the patient's blood during the hemodialysis process. In the embodiments of the present application, the specific value of the preset temperature difference is not further limited. Those skilled in the art can according to the clinical treatment Set by experience, for example: the preset temperature difference is 2°C.
当患者的血液透析过程处于正常状态时,则第一检测温度和第二检测温度相差不会太大,也即第一检测温度和第二检测温度之间的差值的绝对值小于预设温度差值,在正常的血液透析状态下,才能根据粘度系统参数、细长管的第一血液压力变化量和细长管的第一血液压力变化时间,计算出第一血液粘度,从而根据第一血液粘度可监控患者的血液透析状态。但是当患者的血液透析过程处于异常状态时,第一检测温度和第二检测温度相差较大,也即第一检测温度和第二检测温度之间的差值的绝对值大于或者等于预设温度差值,这说明患者的血液在透析过程中的温度出现了故障,这些故障可能为透析器出现破膜故障、血液在透析器内流动时出现堵塞等导致温度异常,而在患者的血液在透析过程中的温度出现了故障时,再计算第一血液粘度没有任何实质性的意义。由此,本实施例在血液治疗阶段,可以实时检测第一检测温度和第二检测温度,并判断在血液透析过程中的温度是否出现了故障,以及在第一检测温度和第二检测温度之间的差值的绝对值小于预设温度差值时,计算第一血液粘度,并根据第一血液粘度监控患者的血液透析状态。When the patient's hemodialysis process is in a normal state, the difference between the first detected temperature and the second detected temperature will not be too large, that is, the absolute value of the difference between the first detected temperature and the second detected temperature is less than the preset temperature In the normal hemodialysis state, the first blood viscosity can be calculated according to the viscosity system parameters, the first blood pressure change amount of the slender tube and the first blood pressure change time of the slender tube, so that the first blood viscosity can be calculated according to the first Blood viscosity monitors a patient's hemodialysis status. However, when the patient's hemodialysis process is in an abnormal state, the difference between the first detected temperature and the second detected temperature is relatively large, that is, the absolute value of the difference between the first detected temperature and the second detected temperature is greater than or equal to the preset temperature This indicates that the temperature of the patient's blood during dialysis has malfunctioned. These failures may be due to the rupture of the dialyzer, blockage of the blood flowing in the dialyzer, etc., resulting in abnormal temperature. There is no real point in recalculating the first blood viscosity when the process temperature fails. Therefore, in the blood treatment stage of this embodiment, the first detection temperature and the second detection temperature can be detected in real time, and it can be judged whether there is a fault in the temperature during the hemodialysis process, and the difference between the first detection temperature and the second detection temperature When the absolute value of the difference between them is less than the preset temperature difference, the first blood viscosity is calculated, and the hemodialysis status of the patient is monitored according to the first blood viscosity.
示例性地,若第一检测温度为36℃,第二检测温度为35℃,预设温度差值为2℃,第一检测温度和第二检测温度之间的差值的绝对值为1℃,其小于预设温度差值,则患者的血液透析过程处于正常状态,可根据粘度系统参数、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,计算出第一血液粘度,从而根据第一血液粘度可监控患者的血液透析状态。若第一检测温度为38℃,第二检测温度为34℃,预设温度差值为2℃,第一检测温度和第二检测温度之间的差值的绝对值为4℃,其大于预设温度差值,则患者的血液透析过程处于异常状态,此时便无需再计算第一血液粘度。Exemplarily, if the first detection temperature is 36°C, the second detection temperature is 35°C, the preset temperature difference is 2°C, and the absolute value of the difference between the first detection temperature and the second detection temperature is 1°C , which is less than the preset temperature difference, the patient’s hemodialysis process is in a normal state, and can be calculated according to the viscosity system parameters, the first blood pressure change amount of the slender tube 1 and the first blood pressure change time of the slender tube 1 The first blood viscosity is obtained, so that the patient's hemodialysis status can be monitored according to the first blood viscosity. If the first detection temperature is 38°C, the second detection temperature is 34°C, and the preset temperature difference is 2°C, the absolute value of the difference between the first detection temperature and the second detection temperature is 4°C, which is greater than the preset temperature. If the temperature difference is set, the patient's hemodialysis process is in an abnormal state, and there is no need to calculate the first blood viscosity at this time.
在上述实施例的基础上,在步骤S460根据粘度系统参数、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,确定第一血液粘度之后,该处理器还用于执行:On the basis of the above embodiments, after determining the first blood viscosity in step S460 according to the viscosity system parameters, the first blood pressure change amount of the slender tube 1 and the first blood pressure change time of the slender tube 1, the processor Also used to execute:
控制动力组件2通过细长管1将动力组件2内残留的血液和细长管1内残留的血液全部回输至静脉管路5。The
为了保证能够实时监控患者的血液透析状态,在血液治疗阶段会对患者的第一血液粘度进行周期性的检测并计算,在每次确定第一血液粘度时,均需要通过动力组件2提供驱动力,使细长管1从静脉管路5中吸入血液,动力组件2和细长管1内都会存储血液,这部分血液不仅会导致血液的浪费,而且这部分血液还会影响后续的第一血液粘度的准确性,由此,在每次确定第一血液粘度后,均需要将残留的血液全部回输至静脉管路5,从而保证在血液治疗阶段实时检测患者的血液粘度时,不仅能够避免静脉管路5内的血液浪费现象,降低了患者的血液粘度检测成本,也提高了血液粘度检测的准确性和可靠性。In order to ensure real-time monitoring of the patient's hemodialysis status, the patient's first blood viscosity is periodically detected and calculated during the blood treatment phase. When the first blood viscosity is determined each time, the driving force needs to be provided by the
本实施例的动力组件2可以包括注射筒和驱动组件,驱动组件用于为注射筒提供驱动力,注射筒用于接入并存储液体。在血液治疗阶段,在每次对患者的第一血液粘度进行检测时,通过驱动组件控制注射筒移动,注射筒通过细长管1接入静脉管路5内的血液,细长管1将静脉管路5内的血液输送至注射筒进行存储,在细长管1传输血液时,根据压力测量数据计算细长管1的第一血液压力变化量、细长管1的第一血液压力变化时间,从而计算获得第一血液粘度;当每次对患者的第一血液粘度进行检测并计算后,注射筒和细长管1这两者内就会存在残留的血液,为了避免在检测患者的第一血液粘度时出现血液浪费,以及影响后续的第一血液粘度检测的准确性,本实施例中在每次检测第一血液粘度之后,将注射筒和细长管1这两者内残留的血液全部回输至静脉管路5,通过静脉管路5将残留的血液回输至患者的静脉,从而解决了在每次第一血液粘度计算过程中出现的血液浪费问题,以及影响后续的第一血液粘度检测的准确性的问题。当然,本申请实施例中的动力组件2也可以为其它的装置,只要实现上述功能即可。本申请的实施例中对驱动组件的具体组成不做进一步地限定,本领域的技术人员可以根据实际情况进行设置。The
在上述实施例的基础上,在步骤S460根据粘度系统参数、细长管1的第一血液压力变化量和细长管1的第一血液压力变化时间,确定第一血液粘度之后,处理器还用于执行:On the basis of the above-mentioned embodiment, after determining the first blood viscosity according to the viscosity system parameters, the first blood pressure change amount of the elongated tube 1 and the first blood pressure change time of the elongated tube 1 in step S460, the processor further for executing:
检测静脉管路5内的血液是否出现凝血现象,若静脉管路5内的血液出现凝血现象,则发出故障提示操作。Detect whether the coagulation phenomenon occurs in the blood in the
其中,凝血现象是指:血液与静脉管路5的管壁接触,触发了血液的凝血机制,从而导致静脉管路5内的血液出现凝血的现象。由于在血液治疗阶段检测患者的第一血液粘度时,需要通过细长管1将静脉管路5内的血液引出,这会导致静脉管路5内的血液流量会降低,因此静脉管路5内的血液更容易出现凝血现象,为了保证患者的血液透析治疗的安全性,需要检测静脉管路内的血液是否出现凝血现象。Wherein, the coagulation phenomenon refers to: the contact between the blood and the wall of the
本实施例中,在确定第一血液粘度时,同时检测静脉管路5内的血液是否出现凝血现象,若检测到静脉管路5内的血液出现凝血现象,则发出故障提示操作,使用户能够及时处理静脉管路5的凝血现象,从而防止静脉管路5的凝血现象危害患者的血液透析治疗的安全性。In this embodiment, when determining the first blood viscosity, at the same time, it is detected whether the blood in the
需要说明的是,本实施例中的故障提示操作属于声光信号,若静脉管路内的血液出现凝血现象,可发出声音提示操作,或者在显示屏26上显示文字提示操作,以达到故障警报的效果。It should be noted that the fault prompt operation in this embodiment belongs to the acousto-optic signal. If the blood coagulation phenomenon occurs in the venous line, the sound prompt operation can be issued, or the text prompt operation can be displayed on the
在上述实施例的基础上,在步骤S410根据用户输出的预冲启动指令,将置换液输出至动脉管路4、透析器3和静脉管路5,以及通过动力组件2输出至细长管1之前,处理器还用于执行:On the basis of the above-mentioned embodiments, in step S410, according to the pre-flushing start command output by the user, the replacement fluid is output to the arterial line 4, the dialyzer 3 and the
检测静脉管路5内的置换液流量,并判断静脉管路5内的置换液流量是否大于或等于预设置换液流量,若静脉管路5内的置换液流量大于或者等于预设置换液流量时,则将置换液通过动力组件2输出至细长管1。Detect the replacement fluid flow in the
在预冲阶段,置换液会依次流经至动脉管路4、透析器3和静脉管路5,而预冲阶段主要是为了检测出血液净化设备的粘度系统参数,为了提高粘度系统参数的检测精度,通过提高静脉管路5内的置换液流量,能够使静脉管路5内的置换液流量下检测得到的粘度系统参数具有更高的精确度。当静脉管路5内的置换液流量大于或者等于预设置换液流量时,检测得到的细长管1的置换液压力变化量可以真实地反应出置换液的粘度,进而得到更加精确的粘度系统参数,但是当静脉管路5内的置换液流量小于预设置换液流量时,说明静脉管路5内的置换液流量偏少,这种情况下检测得到的粘度系统参数会受到置换液流量的干扰,从而导致血液治疗阶段中患者的第一血液粘度会出现较大的检测误差。本实施例通过限定预冲阶段静脉管路5内的置换液流量与预设置换液流量之间的关系,能够排除置换液流量变化引起的粘度系统参数的误差,从而能够提高本实施例中第一血液粘度检测的精确性。In the preflushing stage, the replacement fluid will flow through the arterial line 4, the dialyzer 3 and the
在上述实施例的基础上,在步骤S420根据压力测量数据计算细长管1的置换液压力变化量和细长管1的置换液压力变化时间之后,以及在步骤S430根据预设的置换液的粘度、细长管1的置换液压力变化量和细长管1的置换液压力变化时间,确定粘度系统参数之前,处理器还用于执行:On the basis of the above-mentioned embodiments, after calculating the change in pressure of the replacement fluid in the elongated tube 1 and the change time of the pressure of the replacement fluid in the elongated tube 1 according to the pressure measurement data in step S420, and in step S430 according to the preset pressure of the replacement fluid Viscosity, the displacement fluid pressure change amount of the slender tube 1 and the displacement fluid pressure change time of the slender tube 1, before determining the viscosity system parameters, the processor is also used to execute:
检测静脉管路5内的置换液是否存在气泡,若静脉管路5内的置换液存在气泡,则对细长管1的置换液压力变化量进行校准,并根据预设的置换液的粘度、校准后的细长管1的置换液压力变化量和细长管1的置换液压力变化时间,确定粘度系统参数。Detect whether there are bubbles in the replacement fluid in the
若静脉管路5内的置换液不存在气泡,则无需对细长管1的置换液压力变化量进行校准,可直接根据预设的置换液的粘度、细长管1的置换液压力变化量和细长管1的置换液压力变化时间,确定粘度系统参数。If there are no air bubbles in the replacement fluid in the
其中,在预冲阶段,通过置换液对动脉管路4、透析器3及静脉管路5依次进行冲洗的过程中,静脉管路5内的置换液可能会夹杂一些气泡,在用压力传感器6检测细长管1的置换液压力变化量时,置换液内的气泡会影响压力传感器6的压力检测精度。为了排除气泡对细长管1的置换液压力变化量的干扰,本实施例中先检测静脉管路5内的置换液是否存在气泡,若检测出静脉管路5内的置换液存在气泡时,则对细长管1的置换液压力变化量进行校准,经过校准后的细长管1的置换液压力变化量可能会增加或者减少,但依据校准后的细长管1的置换液压力变化量能够更加精确地计算出粘度系统参数,以便于后期能够精确地计算出患者的第一血液粘度,从而提高本申请实施例中的第一血液粘度的检测精度。Among them, in the pre-flushing stage, during the process of sequentially flushing the arterial line 4, dialyzer 3, and
本实施例中可以在静脉管路5上设置气泡检测器25,检测静脉管路5内的置换液是否存在气泡。本实施例中对检测静脉管路5内的置换液是否存在气泡的方法不做进一步地限定,本领域的技术人员可以根据实际情况进行选择,例如:可以采用超声检测方式,对静脉管路5内的置换液进行超声检测,将置换液内的气泡量由非电量转化为电信号,例如将置换液内的气泡量由非电量转化为电压信号,通过比较电压信号与预设电压信号这两者之间的差异程度,就能够识别出静脉管路5内的置换液是否存在气泡。In this embodiment, a
本领域的技术人员可以根据临床经验设置一个固定的压力校准值,根据该压力校准值对细长管1的置换液压力变化量进行校准,例如压力校准值为-10mmHg,则校准后的细长管1的置换液压力变化量=细长管1的置换液压力变化量-10mmHg;本领域的技术人员还可以根据临床经验设定静脉管路5内置换液的气泡量和压力校准值之间的对应曲线,通过检测静脉管路5内置换液的气泡量,并通过对应曲线找到对应的压力校准值,根据细长管1的置换液压力变化量和压力校准值,获得校准后的细长管1的置换液压力变化量。当然,本领域的技术人员还可以根据传统的智能算法(例如遗传算法)对细长管1的置换液压力变化量进行校准,本实施例中对细长管1的置换液压力变化量进行校准的方法不做进一步地限定,本领域的技术人员可以根据实际情况进行选择。Those skilled in the art can set a fixed pressure calibration value based on clinical experience, and calibrate the displacement fluid pressure variation of the slender tube 1 according to the pressure calibration value. For example, if the pressure calibration value is -10mmHg, the calibrated slender Change in pressure of replacement fluid in tube 1 = change in pressure of replacement fluid in slender tube 1-10mmHg; those skilled in the art can also set the value between the volume of bubbles in the replacement fluid in
在一个可选实施例中提供了一种血液净化设备,如图3所示,图3所示的血液净化设备300包括:处理器301和存储器303。其中,处理器301和存储器303相连,如通过总线302相连。可选地,血液净化设备300还可以包括收发器304。需要说明的是,实际应用中收发器304不限于一个,该电子设备300的结构并不构成对本申请实施例的限定。In an optional embodiment, a blood purification device is provided. As shown in FIG. 3 , the
处理器301可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application SpecificIntegrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器301也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。The
总线302可包括一通路,在上述组件之间传送信息。总线302可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(ExtendedIndustry Standard Architecture,扩展工业标准结构)总线等。总线302可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器303可以是ROM(Read Only Memory,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically ErasableProgrammable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact DiscRead Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器303用于存储执行本申请方案的应用程序代码,并由处理器301来控制执行。处理器301用于执行存储器303中存储的应用程序代码,以实现前述方法实施例所示的内容。The
本申请实施例的第二方面提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如图4所示的方法,具体过程可参照图4的方法实施例的说明,此处不再赘述。The second aspect of the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the method shown in FIG. 4 is implemented. The specific process can refer to the method in FIG. 4 The description of the embodiment will not be repeated here.
与现有技术相比,该计算机可读存储介质,利用血液透析过程中的操作步骤,在预冲阶段提前获取粘度检测过程中必备的粘度系统参数,以便于后期对血液粘度的计算过程提供数据基础,在患者进行血液透析时,便于精确地计算出患者的血液粘度,本申请实施例将血液粘度检测和血液透析过程完美结合,有效的将粘度检测融入血液透析过程中,在血液治疗阶段中可实时检测、监控患者的血液粘度,具有很强的实际操作性和便利性;此外本申请实施例中,巧妙地利用吸入流体介质时压力随时间变化,从而确定血液粘度的方法,能够有效地获取血液粘度值,检测成本低,检测可行性高,检测的可靠性高,并且能够在血液透析过程中实时检测血液粘度,以供医护人员根据血液粘度能够对血液透析效果的评价过程进行参考,避免患者出现心血管等相关的并发症,从而进一步确保患者进行血液透析的安全性,克服了现有技术中无法在血液透析过程中检测患者的血液粘度,导致患者的血液透析治疗安全性低的问题。Compared with the prior art, the computer-readable storage medium utilizes the operation steps in the hemodialysis process to obtain the necessary viscosity system parameters in the viscosity detection process in advance in the pre-flushing stage, so as to facilitate the later calculation process of blood viscosity. Data basis, when the patient is undergoing hemodialysis, it is convenient to accurately calculate the blood viscosity of the patient. The embodiment of this application perfectly combines the blood viscosity detection with the hemodialysis process, and effectively integrates the viscosity detection into the hemodialysis process. During the blood treatment stage The blood viscosity of the patient can be detected and monitored in real time, which has strong practicality and convenience; in addition, in the embodiment of the present application, the method of determining the blood viscosity by skillfully utilizing the pressure change with time when the fluid medium is inhaled can be effectively Accurately obtain the blood viscosity value, the detection cost is low, the detection feasibility is high, the detection reliability is high, and the blood viscosity can be detected in real time during the hemodialysis process, so as to provide reference for the medical staff to evaluate the hemodialysis effect according to the blood viscosity , to prevent patients from cardiovascular and other related complications, thereby further ensuring the safety of patients undergoing hemodialysis, and overcoming the inability to detect the patient's blood viscosity during hemodialysis in the prior art, resulting in low safety of patients' hemodialysis treatment The problem.
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the various steps in the flow chart of the accompanying drawings are displayed sequentially according to the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and they can be executed in other orders. Moreover, at least some of the steps in the flowcharts of the accompanying drawings may include multiple sub-steps or multiple stages, and these sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and the order of execution is also It is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。Although the present disclosure is disclosed as above, the protection scope of the present disclosure is not limited thereto. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure, and these changes and modifications will all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211160191.9A CN115671425A (en) | 2022-09-22 | 2022-09-22 | Blood purification equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211160191.9A CN115671425A (en) | 2022-09-22 | 2022-09-22 | Blood purification equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115671425A true CN115671425A (en) | 2023-02-03 |
Family
ID=85061931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211160191.9A Pending CN115671425A (en) | 2022-09-22 | 2022-09-22 | Blood purification equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115671425A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030006175A1 (en) * | 2001-07-03 | 2003-01-09 | Colin Corporation | Dialyzing apparatus |
US20100280761A1 (en) * | 2007-12-22 | 2010-11-04 | Klaus Balschat | Method and device for determining the transmembrane pressure in an extracorporeal blood treatment |
CN102293644A (en) * | 2011-06-08 | 2011-12-28 | 何宗彦 | Blood flowing condition detection device and method |
WO2013141309A1 (en) * | 2012-03-22 | 2013-09-26 | 旭化成メディカル株式会社 | Method for evaluating albumin leakage quantity from blood purifier |
US20140305869A1 (en) * | 2013-04-16 | 2014-10-16 | B. Braun Avitum Ag | Method and apparatus for the determination of an internal filtration during an extracorporeal blood treatment |
-
2022
- 2022-09-22 CN CN202211160191.9A patent/CN115671425A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030006175A1 (en) * | 2001-07-03 | 2003-01-09 | Colin Corporation | Dialyzing apparatus |
US20100280761A1 (en) * | 2007-12-22 | 2010-11-04 | Klaus Balschat | Method and device for determining the transmembrane pressure in an extracorporeal blood treatment |
CN102293644A (en) * | 2011-06-08 | 2011-12-28 | 何宗彦 | Blood flowing condition detection device and method |
WO2013141309A1 (en) * | 2012-03-22 | 2013-09-26 | 旭化成メディカル株式会社 | Method for evaluating albumin leakage quantity from blood purifier |
CN104220108A (en) * | 2012-03-22 | 2014-12-17 | 旭化成医疗株式会社 | Method for evaluating albumin leakage quantity from blood purifier |
US20140305869A1 (en) * | 2013-04-16 | 2014-10-16 | B. Braun Avitum Ag | Method and apparatus for the determination of an internal filtration during an extracorporeal blood treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10391224B2 (en) | Pressure sensing extracorporeal circulation device | |
CN101918053B (en) | Device for determining the recirculation in a fistula or the cardiopulmonary recirculation, and a blood treatment device comprising a device for determining the fistula recirculation or the cardiopulmonary recirculation part | |
AU2004208554B2 (en) | An apparatus and method for monitoring a vascular access of a patient | |
US6533747B1 (en) | Extracorporeal circuit for peripheral vein fluid removal | |
US5830365A (en) | Means for determining hemodynamic parameters during extracorporeal blood treatment | |
Baldwin et al. | Blood flow reductions during continuous renal replacement therapy and circuit life | |
JP4546544B2 (en) | Apparatus and method for detecting complications during extracorporeal blood treatment | |
JP6362267B2 (en) | Device and method for detecting operating state of extracorporeal blood treatment | |
US7780620B2 (en) | System and method for determining the hematocrit and/or blood volume | |
CN113975508B (en) | Failure determination method for blood purification device, and storage medium | |
KR102220982B1 (en) | Device and method for detecting the recirculation during an extracorporeal blood treatment | |
US20060047193A1 (en) | Method and device for determining blood volume during an extracorporeal blood treatment | |
JP2014097224A (en) | Dialysis unit and method for measuring access recirculation rate | |
JP2005503179A (en) | Method and apparatus for peripheral venous fluid removal in heart failure | |
CN108853622A (en) | A kind of haemodialysis fault detection alarm device | |
JP4905475B2 (en) | Dialysis machine | |
JP5574147B2 (en) | Blood viscosity estimation method, blood viscosity ratio estimation method, blood viscosity monitoring device, and blood viscosity ratio monitoring device | |
CN115671425A (en) | Blood purification equipment and storage medium | |
JP4311242B2 (en) | Dialysis machine | |
Shibata et al. | Re‐evaluation of Pre‐pump Arterial Pressure to Avoid Inadequate Dialysis and Hemolysis: Importance of Prepump Arterial Pressure Monitoring in Hemodialysis Patients | |
CN113499495B (en) | Dialysis device, method for measuring coagulation status of dialyzer and monitoring system | |
CN115753506A (en) | A blood viscosity detection method, device and equipment | |
CN115192805A (en) | A kind of pre-flushing method of combined artificial kidney pipeline | |
JP2527122B2 (en) | Apparatus for measuring relative fluctuation of circulating blood volume in dialysis treatment | |
CN115252936B (en) | A blood purification device and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |