CN115660994A - Image enhancement method based on regional least square estimation - Google Patents
Image enhancement method based on regional least square estimation Download PDFInfo
- Publication number
- CN115660994A CN115660994A CN202211365819.9A CN202211365819A CN115660994A CN 115660994 A CN115660994 A CN 115660994A CN 202211365819 A CN202211365819 A CN 202211365819A CN 115660994 A CN115660994 A CN 115660994A
- Authority
- CN
- China
- Prior art keywords
- image
- gray
- enhanced
- boundary pixel
- boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Image Processing (AREA)
Abstract
一种基于区域最小二乘估计的图像增强方法,它属于图像处理技术领域。本发明解决了采用现有方法获得的增强图像的质量差的问题。本发明方法由基于分段亮度线性映射的区域边界亮度计算方法以及基于区域最小二乘法的非边界像素亮度计算方法两部分构成,基于分段亮度线性映射的区域边界亮度计算方法决定了增强图像整体的亮度分布,基于区域最小二乘法的非边界像素亮度计算方法计算非边界像素点的亮度从而使增强图像的细节特性与原始图像保持一致。本发明设计的算法能够增强图像的亮度分布,提升图像整体的可视化效果,增强图像的局部细节得到有效地保持,提高了增强图像的质量。本发明方法可以应用于图像处理领域用。
The invention relates to an image enhancement method based on area least square estimation, which belongs to the technical field of image processing. The invention solves the problem of poor quality of the enhanced image obtained by the existing method. The method of the present invention is composed of two parts: the calculation method of the area boundary brightness based on the segmental brightness linear mapping and the non-boundary pixel brightness calculation method based on the regional least squares method, and the area boundary brightness calculation method based on the segmental brightness linear mapping determines the overall enhanced image The non-boundary pixel brightness calculation method based on the regional least squares method calculates the brightness of the non-boundary pixel points so that the details of the enhanced image are consistent with the original image. The algorithm designed by the invention can enhance the brightness distribution of the image, improve the overall visualization effect of the image, effectively maintain the local details of the enhanced image, and improve the quality of the enhanced image. The method of the invention can be applied in the field of image processing.
Description
技术领域technical field
本发明属于图像处理技术领域,具体涉及一种基于区域最小二乘估计的图像增强方法。The invention belongs to the technical field of image processing, and in particular relates to an image enhancement method based on region least square estimation.
背景技术Background technique
图像增强通过增强图像中的对比度、局部细节纹理等特征,从而解决图像在采集与传输过程中由较差的环境光以及设备缺陷引起的图像视觉效果欠佳问题,提升数字图像的图像质量。早期的图像增强算法包括:直方图均衡化算法,自适应滤波算法,对比度增强算法。这三种算法都能在一定程度上提高图像质量,但是增强图像的局部细节、清晰度以及图像整体亮度分布提升幅度较为有限,导致采用现有方法获得的增强图像的质量仍然较差,有待进一步提高。Image enhancement solves the problem of poor image visual effect caused by poor ambient light and equipment defects in the process of image acquisition and transmission by enhancing the contrast and local detail texture of the image, and improves the image quality of digital images. Early image enhancement algorithms include: histogram equalization algorithm, adaptive filtering algorithm, and contrast enhancement algorithm. These three algorithms can improve the image quality to a certain extent, but the local details and clarity of the enhanced image and the improvement of the overall brightness distribution of the image are relatively limited, resulting in the poor quality of the enhanced image obtained by the existing method, which needs to be further improved. improve.
发明内容Contents of the invention
本发明的目的是为解决采用现有方法获得的增强图像的质量差的问题,而提出的一种基于区域最小二乘估计的图像增强方法,在保证原始图像局部细节特性的前提下,提升增强图像整体的明暗对比效果。The purpose of the present invention is to solve the problem of poor quality of the enhanced image obtained by the existing method, and propose an image enhancement method based on regional least squares estimation, under the premise of ensuring the local detail characteristics of the original image, improve the enhancement The overall chiaroscuro effect of the image.
本发明为解决上述技术问题所采取的技术方案是:The technical scheme that the present invention takes for solving the problems of the technologies described above is:
一种基于区域最小二乘估计的图像增强方法,所述方法具体包括以下步骤:An image enhancement method based on regional least squares estimation, the method specifically includes the following steps:
步骤一、将待增强图像平面划分为N个8×8区域,获得N个图像分块;
步骤二、计算出待增强图像的低照度分段点和高亮度分段点
步骤三、利用步骤二中计算出的低照度分段点和高亮度分段点对各个图像分块中的每个边界像素分别进行分段亮度线性映射,得到各个图像分块中的每个边界像素所对应的增强后亮度值;
步骤四、再根据各个图像分块中的每个边界像素所对应的增强后亮度值,计算出各个图像分块中每个非边界像素所对应的增强后亮度值。Step 4: Calculate the enhanced brightness value corresponding to each non-boundary pixel in each image block according to the enhanced brightness value corresponding to each boundary pixel in each image block.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明方法由基于分段亮度线性映射的区域边界亮度计算方法以及基于区域最小二乘法的非边界像素亮度计算方法两部分构成,基于分段亮度线性映射的区域边界亮度计算方法决定了增强图像整体的亮度分布,基于区域最小二乘法的非边界像素亮度计算方法计算非边界像素点的亮度从而使增强图像的细节特性与原始图像保持一致。The method of the present invention is composed of two parts: the area boundary brightness calculation method based on the segmental brightness linear mapping and the non-boundary pixel brightness calculation method based on the regional least squares method. The area boundary brightness calculation method based on the segmental brightness linear mapping determines the overall enhanced image The non-boundary pixel brightness calculation method based on the regional least squares method calculates the brightness of the non-boundary pixel points so that the details of the enhanced image are consistent with the original image.
实验结果表明,本发明设计的算法能够增强图像的亮度分布,提升图像整体的可视化效果,增强图像的局部细节得到有效地保持,提高了增强图像的质量。Experimental results show that the algorithm designed by the invention can enhance the brightness distribution of the image, improve the overall visualization effect of the image, effectively maintain the local details of the enhanced image, and improve the quality of the enhanced image.
附图说明Description of drawings
图1为边界像素和非边界像素编号的示意图;Fig. 1 is a schematic diagram of boundary pixels and non-boundary pixel numbers;
图2为图像kodim;Figure 2 is the image kodim;
图3为图像kodim对应的分段亮度线性映射函数的示意图;Fig. 3 is the schematic diagram of the segmental luminance linear mapping function corresponding to the image kodim;
图4为图像kodim对应的增强图像;Fig. 4 is the enhanced image corresponding to image kodim;
图5为原始图像road;Figure 5 is the original image road;
图6为原始图像road对应的分段亮度线性映射函数的示意图;Fig. 6 is a schematic diagram of a segmented luminance linear mapping function corresponding to the original image road;
图7为图像road对应的增强图像;Figure 7 is an enhanced image corresponding to the image road;
图8为图像seabed;Figure 8 is the image seabed;
图9为图像seabed对应的分段亮度线性映射函数的示意图;Fig. 9 is a schematic diagram of a segmented luminance linear mapping function corresponding to an image seabed;
图10为图像seabed对应的增强图像。Figure 10 is the enhanced image corresponding to the image seabed.
具体实施方式Detailed ways
具体实施方式一、本实施方式所述的一种基于区域最小二乘估计的图像增强方法,所述方法具体包括以下步骤:
步骤一、将待增强图像平面划分为N个8×8区域,获得N个图像分块;
若待增强图像的宽度或者高度无法被8整除,则通过复制图像右端边界和底部边界的方式使复制边界之后的图像的宽度和高度均能被8整除。由于每个图像分块的区域大小均为8×8,则每个区域均包括28个边界像素以及36个非边界像素。如图1所示,是8×8区域以及边界像素和非边界像素编号的示意图;If the width or height of the image to be enhanced cannot be divisible by 8, the width and height of the image after the copied border are both divisible by 8 by copying the right and bottom borders of the image. Since the area size of each image block is 8×8, each area includes 28 boundary pixels and 36 non-boundary pixels. As shown in Figure 1, it is a schematic diagram of an 8×8 area and the numbers of boundary pixels and non-boundary pixels;
步骤二、计算出待增强图像的低照度分段点和高亮度分段点
步骤三、利用步骤二中计算出的低照度分段点和高亮度分段点对各个图像分块中的每个边界像素分别进行分段亮度线性映射,得到各个图像分块中的每个边界像素所对应的增强后亮度值;
步骤四、再根据各个图像分块中的每个边界像素所对应的增强后亮度值,计算出各个图像分块中每个非边界像素所对应的增强后亮度值。Step 4: Calculate the enhanced brightness value corresponding to each non-boundary pixel in each image block according to the enhanced brightness value corresponding to each boundary pixel in each image block.
具体实施方式二:本实施方式与具体实施方式一不同的是,所述低照度分段点的计算方法为:Specific embodiment two: the difference between this embodiment and specific embodiment one is that the low-illuminance segmentation point The calculation method is:
步骤1、在灰度区间[0,127]内任意选中一个灰度作为低照度分段点Tl;
步骤2、计算待增强图像在灰度区间[0,Tl]的灰度中位数Ml(Tl),Ml(Tl)的计算方式如式(1)所示:
其中,符号表示向下取整运算;Among them, the symbol Indicates the rounding down operation;
步骤3、根据灰度直方图计算待增强图像在灰度区间[Tl+1,127]的灰度均值Al(Tl),Al(Tl)的计算方式如式(2)所示:
其中,b表示灰阶,Hb表示灰阶b对应的灰度分布;Wherein, b represents the gray scale, and H b represents the gray distribution corresponding to the gray scale b;
步骤4、计算均值Al(Tl)与中位数Ml(Tl)的差值Dl(Tl),Dl(Tl)的计算方式如式(3)所示:
Dl(Tl)=Al(Tl)-Ml(Tl) (3)D l (T l )=A l (T l )-M l (T l ) (3)
步骤5、重复步骤1至步骤4的过程,使低照度分段点Tl在灰度区间[0,127]内进行遍历,找到最大的差值Dl(Tl)所对应的低照度分段点作为最终的低照度分段点即
其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as those in
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述高亮度分段点的计算方法为:Specific Embodiment 3: The difference between this embodiment and
步骤(1)、在灰度区间[128,255]内任意选中一个灰度作为高照度分段点Th;Step (1), arbitrarily select a gray level in the gray level interval [128,255] as the high-illuminance segmentation point T h ;
步骤(2)、计算待增强图像在灰度区间[Th,255]的灰度中位数Mh(Th),Mh(Th)的计算方式如式(5)所示:Step (2), calculating the gray-scale median M h (T h ) of the image to be enhanced in the gray-scale interval [T h , 255], the calculation method of M h ( T h ) is shown in formula (5):
其中,符号表示向上取整运算;Among them, the symbol Represents an upward rounding operation;
步骤(3)、根据灰度直方图计算待增强图像在灰度区间[128,Th+1]的灰度均值Ah(Th),Ah(Th)的计算方式如式(6)所示:Step (3), calculate the gray value A h (T h ) of the image to be enhanced in the gray range [128, T h +1] according to the gray histogram, and the calculation method of A h (T h ) is as formula (6 ) as shown:
其中,b表示灰阶,Hb表示灰阶b对应的灰度分布;Wherein, b represents the gray scale, and H b represents the gray distribution corresponding to the gray scale b;
步骤(4)、计算灰度均值Ah(Th)与灰度中位数Mh(Th)的差值Dh(Th),Dh(Th)的计算方式如式(7)所示:Step (4), calculating the difference D h (T h ) between the gray-scale mean A h (T h ) and the gray-scale median M h (T h ), the calculation method of D h ( T h ) is as in formula (7 ) as shown:
Dh(Th)=Mh(Th)-Ah(Th) (7)D h (T h ) = M h (T h )-A h (T h ) (7)
步骤(5)、重复步骤(1)至步骤(4)的过程,使高照度分段点Th在灰度区间[128,255]内进行遍历,找到最大的差值Dh(Th)所对应的分段点作为最终的高照度分段点 的计算方式如式(8)所示:Step (5), repeat the process from step (1) to step (4), make the high-illuminance segmentation point T h traverse in the gray scale interval [128,255], and find the maximum difference D h (T h ) corresponding to The segmentation point of is used as the final high-illuminance segmentation point The calculation method of is shown in formula (8):
其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as those in
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述步骤三的具体过程为:Specific implementation mode four: this implementation mode is different from one of the specific implementation modes one to three in that the specific process of the step three is:
低照度分段点和高照度分段点所对应的灰度值如式(9)所示:low light segment and high-illuminance segment points The corresponding gray value is shown in formula (9):
其中,为对应的灰度值,为对应的灰度值,为对应的累计概率分布,为对应的累计概率分布;in, for The corresponding gray value, for The corresponding gray value, for The corresponding cumulative probability distribution, for The corresponding cumulative probability distribution;
对各个图像分块中的每个边界像素分别进行分段线性亮度映射,得到各个图像分块中的每个边界像素所对应的增强后亮度值;performing piecewise linear luminance mapping on each boundary pixel in each image block to obtain an enhanced luminance value corresponding to each boundary pixel in each image block;
分段线性亮度映射表达式如式(10)所示:The piecewise linear brightness mapping expression is shown in formula (10):
其中,I代表边界像素的亮度值,代表边界像素所对应的增强后亮度值。Among them, I represents the brightness value of the boundary pixel, Represents the enhanced brightness value corresponding to the boundary pixel.
如图1所示,每个图像分块均包括28个边界像素,根据本实施方式的方法可以获得每个图像分块的28个边界像素所对应的增强后亮度值。As shown in FIG. 1 , each image block includes 28 boundary pixels, and the enhanced brightness value corresponding to the 28 boundary pixels of each image block can be obtained according to the method of this embodiment.
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as those in
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述步骤四的具体过程为:Specific implementation mode five: the difference between this implementation mode and one of the specific implementation modes one to four is that the specific process of the step four is:
步骤S1、对于全部N个区域内的第k个非边界像素,构建一个关于28个边界权重且具有累加形式的函数fk(ω1,ω2,...,ω28),函数fk(ω1,ω2,...,ω28)如式(11)所示:Step S1. For the k-th non-boundary pixel in all N regions, construct a function f k (ω 1 ,ω 2 ,...,ω 28 ) with respect to 28 boundary weights and in cumulative form, the function f k (ω 1 ,ω 2 ,...,ω 28 ) is shown in formula (11):
fk(ω1,ω2,...,ω28)=∑i(ω1Ii,1+ω2Ii,2+···+ω28Ii,28-Ii(k))2 (11)f k (ω 1 ,ω 2 ,...,ω 28 )=∑ i (ω 1 I i,1 +ω 2 I i,2 +···+ω 28 I i,28 -I i (k) ) 2 (11)
其中,ω1,ω2,...,ω28为各个边界像素对应的权重,Ii,1代表第i个区域内的第1个边界像素所对应的增强后亮度值,i=1,2,…,N,Ii(k)表示第i个区域内的第k个非边界像素在待增强图像中的原始亮度值;Among them, ω 1 , ω 2 ,..., ω 28 are the weights corresponding to each boundary pixel, I i,1 represents the enhanced brightness value corresponding to the first boundary pixel in the i-th region, i=1, 2,...,N, I i (k) represents the original brightness value of the kth non-boundary pixel in the i-th region in the image to be enhanced;
根据最小二乘准则,对函数fk(ω1,ω2,...,ω28)的任意边界像素权重ωj的导函数为0,即公式(12)成立:According to the least squares criterion, the derivative function of any boundary pixel weight ω j to the function f k (ω 1 ,ω 2 ,...,ω 28 ) is 0, that is, formula (12) holds:
其中,j=1,2,…,28;Among them, j=1,2,...,28;
将全部边界权重带入公式(12),并结合公式(11)得到式(13)所示的关于边界权重的线性方程组:Bring all the boundary weights into formula (12), and combine with formula (11) to get the linear equations about the boundary weight shown in formula (13):
通过雅克比迭代法对公式(13)进行求解,得到任意边界权重的最优解,如式(14)所示:Formula (13) is solved by the Jacobian iteration method, and the optimal solution of any boundary weight is obtained, as shown in formula (14):
其中,上标t表示迭代次数,表示第t次迭代获得的第j个边界像素的权重,表示第t-1次迭代获得的第j个边界像素的权重;Among them, the superscript t represents the number of iterations, Indicates the weight of the jth boundary pixel obtained in the tth iteration, Indicates the weight of the jth boundary pixel obtained in the t-1th iteration;
当对于全体边界像素公式(15)恒成立时雅克比迭代法收敛:When the formula (15) holds true for all boundary pixels, the Jacobian iteration method converges:
即为边界像素权重的最小二乘估计结果;不同区域内同一位置的非边界像素均对应一组相同的边界权重; That is, the least squares estimation result of the boundary pixel weight; the non-boundary pixels at the same position in different regions correspond to the same set of boundary weights;
步骤S2、计算第i个区域内第k个非边界像素的增强后亮度值 Step S2. Calculating the enhanced brightness value of the kth non-boundary pixel in the i-th region
步骤S3、重复步骤S1至步骤S2的过程,分别得到各个图像分块中每个非边界像素所对应的增强后亮度值。Step S3, repeating the process from step S1 to step S2 to obtain the enhanced brightness value corresponding to each non-boundary pixel in each image block.
其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as in one of the
实验结果与分析Experimental results and analysis
本发明通过台式机对算法进行仿真实验。台式机的硬件配置:中央处理器的型号为i5-12400F,显示卡规格为RTX3060,内存容量为128G。台式机的操作系统为Windows 11,仿真软件平台为Matlab 2020a。算法的输入和输出均为jpg格式的灰度图像。仿真结果如图2至图10所示。The present invention carries out simulation experiments on the algorithm through a desktop computer. The hardware configuration of the desktop computer: the model of the central processing unit is i5-12400F, the specification of the display card is RTX3060, and the memory capacity is 128G. The desktop operating system is
对比原始图像和增强图像可知:本发明设计算法能够提高图像整体的视觉观感,增强图像的对比度得到有效地提升。光照不充分的区域像素的亮度得到有效地拉伸从而提高区域的可视性。另外,增强图像对于原始图像的局部细节保持能力较为突出,增强图像中各目标的边缘和轮廓较为清晰。因此本发明设计算法可以有效地提高图像质量,增强图像的视觉效果得到大幅度的改善。Comparing the original image and the enhanced image, it can be seen that the design algorithm of the present invention can improve the overall visual perception of the image, and the contrast of the enhanced image can be effectively improved. The brightness of pixels in poorly lit areas is effectively stretched to improve the visibility of the area. In addition, the enhanced image has a better ability to maintain the local details of the original image, and the edges and contours of each target in the enhanced image are clearer. Therefore, the design algorithm of the present invention can effectively improve the image quality, and the visual effect of the enhanced image is greatly improved.
本发明的上述算例仅为详细地说明本发明的计算模型和计算流程,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。The above calculation example of the present invention is only to describe the calculation model and calculation process of the present invention in detail, but not to limit the implementation of the present invention. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in different forms can also be made, and all implementation modes cannot be exhaustively listed here. Obvious changes or modifications are still within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211365819.9A CN115660994B (en) | 2022-10-31 | 2022-10-31 | Image enhancement method based on regional least square estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211365819.9A CN115660994B (en) | 2022-10-31 | 2022-10-31 | Image enhancement method based on regional least square estimation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115660994A true CN115660994A (en) | 2023-01-31 |
CN115660994B CN115660994B (en) | 2023-06-09 |
Family
ID=84995294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211365819.9A Expired - Fee Related CN115660994B (en) | 2022-10-31 | 2022-10-31 | Image enhancement method based on regional least square estimation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115660994B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116703888A (en) * | 2023-07-28 | 2023-09-05 | 菏泽城建新型工程材料有限公司 | Auxiliary abnormality detection method and system for bored pile construction |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6236751B1 (en) * | 1998-09-23 | 2001-05-22 | Xerox Corporation | Automatic method for determining piecewise linear transformation from an image histogram |
CN101340511A (en) * | 2008-08-07 | 2009-01-07 | 中兴通讯股份有限公司 | Adaptive video image enhancing method based on lightness detection |
CN102298770A (en) * | 2011-08-11 | 2011-12-28 | 奇瑞汽车股份有限公司 | Method and apparatus for enhancing image contrast |
CN105654438A (en) * | 2015-12-27 | 2016-06-08 | 西南技术物理研究所 | Gray scale image fitting enhancement method based on local histogram equalization |
CN106897972A (en) * | 2016-12-28 | 2017-06-27 | 南京第五十五所技术开发有限公司 | A kind of self-adapting histogram underwater picture Enhancement Method of white balance and dark primary |
CN109064426A (en) * | 2018-07-26 | 2018-12-21 | 电子科技大学 | A kind of method and device for inhibiting dazzle in low-light (level) image and enhancing image |
JP2019207603A (en) * | 2018-05-30 | 2019-12-05 | 株式会社朋栄 | Tone mapping processing method by maximizing edge intensity, and hdr video conversion device |
CN112037144A (en) * | 2020-08-31 | 2020-12-04 | 哈尔滨理工大学 | A low-light image enhancement method based on local contrast stretching |
CN114429426A (en) * | 2021-12-20 | 2022-05-03 | 哈尔滨理工大学 | Low-illumination image quality improvement method based on Retinex model |
-
2022
- 2022-10-31 CN CN202211365819.9A patent/CN115660994B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6236751B1 (en) * | 1998-09-23 | 2001-05-22 | Xerox Corporation | Automatic method for determining piecewise linear transformation from an image histogram |
CN101340511A (en) * | 2008-08-07 | 2009-01-07 | 中兴通讯股份有限公司 | Adaptive video image enhancing method based on lightness detection |
CN102298770A (en) * | 2011-08-11 | 2011-12-28 | 奇瑞汽车股份有限公司 | Method and apparatus for enhancing image contrast |
CN105654438A (en) * | 2015-12-27 | 2016-06-08 | 西南技术物理研究所 | Gray scale image fitting enhancement method based on local histogram equalization |
CN106897972A (en) * | 2016-12-28 | 2017-06-27 | 南京第五十五所技术开发有限公司 | A kind of self-adapting histogram underwater picture Enhancement Method of white balance and dark primary |
JP2019207603A (en) * | 2018-05-30 | 2019-12-05 | 株式会社朋栄 | Tone mapping processing method by maximizing edge intensity, and hdr video conversion device |
CN109064426A (en) * | 2018-07-26 | 2018-12-21 | 电子科技大学 | A kind of method and device for inhibiting dazzle in low-light (level) image and enhancing image |
CN112037144A (en) * | 2020-08-31 | 2020-12-04 | 哈尔滨理工大学 | A low-light image enhancement method based on local contrast stretching |
CN114429426A (en) * | 2021-12-20 | 2022-05-03 | 哈尔滨理工大学 | Low-illumination image quality improvement method based on Retinex model |
Non-Patent Citations (3)
Title |
---|
ZHENGHUA HUANG等: "Global–local image enhancement with contrast improvement based on weighted least squares" * |
武治国等: "一种基于直方图非线性变换的图像对比度增强方法" * |
章刚玄: "红外影像增强与硬件加速技术研究", pages 9 - 20 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116703888A (en) * | 2023-07-28 | 2023-09-05 | 菏泽城建新型工程材料有限公司 | Auxiliary abnormality detection method and system for bored pile construction |
CN116703888B (en) * | 2023-07-28 | 2023-10-20 | 菏泽城建新型工程材料有限公司 | Auxiliary abnormality detection method and system for bored pile construction |
Also Published As
Publication number | Publication date |
---|---|
CN115660994B (en) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108510485B (en) | A reference-free image quality assessment method based on convolutional neural network | |
CN108876743B (en) | A kind of image fast dehazing method, system, terminal and storage medium | |
Wang et al. | Dehazing for images with large sky region | |
CN112037144B (en) | A low-light image enhancement method based on local contrast stretching | |
CN110807742B (en) | A low-light image enhancement method based on integrated network | |
CN108564597B (en) | Video foreground object extraction method fusing Gaussian mixture model and H-S optical flow method | |
CN110443778B (en) | A method for detecting irregular defects in industrial products | |
CN107767349B (en) | A kind of method of Image Warping enhancing | |
CN106204447A (en) | The super resolution ratio reconstruction method with convolutional neural networks is divided based on total variance | |
CN108537756A (en) | Single image to the fog method based on image co-registration | |
CN103353987A (en) | Superpixel segmentation method based on fuzzy theory | |
CN108765336A (en) | Image defogging method based on dark bright primary colors priori with auto-adaptive parameter optimization | |
CN103530847A (en) | Infrared image enhancing method | |
CN107292842A (en) | The image deblurring method suppressed based on prior-constrained and outlier | |
CN107154026B (en) | A Method of Eliminating Pavement Shadows Based on Adaptive Luminance Elevation Model | |
CN103606137A (en) | Histogram equalization method for maintaining background and detail information | |
CN110400274B (en) | An infrared image enhancement method for vehicle-mounted infrared pedestrian detection | |
CN111311512B (en) | Random noise correction method | |
CN109345525B (en) | Ghost-removed high-dynamic-range image quality evaluation method | |
CN113327206B (en) | Image fuzzy processing method of intelligent power transmission line inspection system based on artificial intelligence | |
CN102622729A (en) | Spatial self-adaptive block-matching image denoising method based on fuzzy set theory | |
CN116309435A (en) | Medical image specular reflection restoration method and system | |
CN115660994B (en) | Image enhancement method based on regional least square estimation | |
CN105913391B (en) | A kind of defogging method can be changed Morphological Reconstruction based on shape | |
CN104268845A (en) | Self-adaptive double local reinforcement method of extreme-value temperature difference short wave infrared image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230609 |
|
CF01 | Termination of patent right due to non-payment of annual fee |