CN115657185A - Ultraviolet filter lens and preparation method and application thereof - Google Patents
Ultraviolet filter lens and preparation method and application thereof Download PDFInfo
- Publication number
- CN115657185A CN115657185A CN202211147366.2A CN202211147366A CN115657185A CN 115657185 A CN115657185 A CN 115657185A CN 202211147366 A CN202211147366 A CN 202211147366A CN 115657185 A CN115657185 A CN 115657185A
- Authority
- CN
- China
- Prior art keywords
- index material
- material layer
- refractive
- refractive index
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Filters (AREA)
Abstract
Description
技术领域technical field
本发明属于光学元件及气体检测技术领域,尤其涉及一种紫外滤光镜及其制备方法和应用。The invention belongs to the technical field of optical elements and gas detection, and in particular relates to an ultraviolet filter, a preparation method and application thereof.
背景技术Background technique
目前SO2气体浓度检测系统,一般使用的检测光源是锌灯,锌灯光源后加入准直透镜进行光束准直,再配合透过式干涉滤光片进行滤光,获得有效激发光波段的光束,光束进入测量腔对SO2气体进行浓度检测。At present, the detection system of SO 2 gas concentration generally uses a zinc lamp as the detection light source. After the zinc lamp light source, a collimating lens is added to collimate the beam, and then it is filtered with a transmission interference filter to obtain a beam in the effective excitation light band. , the light beam enters the measurement cavity to detect the concentration of SO 2 gas.
紫外荧光光谱法SO2气体浓度检测中,需要紫外光(213nm-214nm附近)作为激发光,使被测的SO2气体发出荧光(300nm-420nm),由于紫外波段光学特性,213nm的紫外光源价格昂贵,通常使用滤光的方式,从含有213nm的光源的锌灯中滤除掉其他波长成分,仅保留所需的有效波长,目前通用的方法是采用透过式干涉式滤光片,虽然其体积小便于集成,但这种滤光片价格高,透光效率极低、通常有效波长只有10-20%的透射率,而其他无效波长也会有接近5%的透射率,导致在进行SO2气体光学检测时,本底信号过大,淹没SO2气体的特征信号,使分析无法进行,且透过式干涉式滤光片寿命短、光谱纯度低(主要由于膜层均匀性不一致导致的针孔漏光),同时是目前该类仪器中最主要的耗材之一。In the detection of SO2 gas concentration by ultraviolet fluorescence spectroscopy, ultraviolet light (near 213nm-214nm) is needed as excitation light to make the measured SO2 gas emit fluorescence (300nm-420nm). Expensive, usually use the filter method to filter out other wavelength components from the zinc lamp containing the 213nm light source, and only keep the required effective wavelength. The size is small and easy to integrate, but this kind of filter is expensive, and the light transmission efficiency is extremely low. Usually, the effective wavelength has only 10-20% transmittance, and other invalid wavelengths will also have a transmittance close to 5%, resulting in SO 2. When the gas is detected optically, the background signal is too large, submerging the characteristic signal of SO 2 gas, so that the analysis cannot be carried out, and the transmission interference filter has a short life and low spectral purity (mainly due to the inconsistency of the film layer uniformity) pinhole light leakage), and is currently one of the most important consumables in this type of instrument.
发明内容Contents of the invention
有鉴于此,本发明的一个目的在于提出一种紫外滤光镜,通过在基片相对的两侧设置不同的交替设置的高折射率材料层和低折射率材料层,将反射带一分为二,整体膜层分布更为合理,且基片相对的两侧表面应力相对均匀,同时避免了单面应力过大出现的裂膜现象。In view of this, an object of the present invention is to propose a kind of ultraviolet light filter mirror, by arranging different high-refractive-index material layers and low-refractive-index material layers alternately arranged on the opposite sides of the substrate, the reflection band is divided into two parts: Second, the distribution of the overall film layer is more reasonable, and the surface stress on the opposite sides of the substrate is relatively uniform, and at the same time, the phenomenon of film cracking caused by excessive stress on one side is avoided.
本发明的另一个目的在于提出一种紫外滤光镜的制备方法。Another object of the present invention is to provide a method for preparing an ultraviolet filter.
本发明的又一个目的在于提出一种滤光装置。Another object of the present invention is to provide a filter device.
本发明的又一个目的在于提出一种滤光方法。Another object of the present invention is to provide a filtering method.
本发明的又一个目的在于提出一种滤光方法在二氧化硫气体浓度检测中的应用。Another object of the present invention is to propose an application of a filtering method in the detection of sulfur dioxide gas concentration.
为达到上述目的,本发明第一方面实施例提出了一种紫外滤光镜,包括In order to achieve the above purpose, the embodiment of the first aspect of the present invention proposes an ultraviolet filter, including
基片,所述基片具有相对设置的第一表面和第二表面;a substrate having oppositely disposed first and second surfaces;
第一膜层,所述第一膜层设在所述第一表面,所述第一膜层由若干第一高折射率材料层和若干第一低折射率材料层交替设置而成,所述第一膜层靠近所述第一表面一侧和远离所述第一表面一侧均为第一高折射率材料层;The first film layer, the first film layer is arranged on the first surface, the first film layer is formed by alternately setting several first high refractive index material layers and several first low refractive index material layers, the The side of the first film layer close to the first surface and the side away from the first surface are both first high refractive index material layers;
第二膜层,所述第二膜层设在所述第二表面,所述第二膜层由若干第二高折射率材料层和若干第二低折射率材料层交替设置而成,所述第二膜层靠近所述第二表面一侧为第二低折射率材料层,所述第二膜层远离所述第二表面一侧为第二高折射率材料层。The second film layer, the second film layer is arranged on the second surface, and the second film layer is formed by alternately setting several second high-refractive index material layers and several second low-refractive index material layers. The side of the second film layer close to the second surface is a second low refractive index material layer, and the side of the second film layer away from the second surface is a second high refractive index material layer.
本发明实施例的紫外滤光镜,通过在基片相对的两侧设置不同的交替设置的高折射率材料层和低折射率材料层,将反射带一分为二,整体膜层分布更为合理,且基片相对的两侧表面应力相对均匀,同时避免了单面应力过大出现的裂膜现象。In the ultraviolet filter of the embodiment of the present invention, different high-refractive-index material layers and low-refractive-index material layers are arranged alternately on opposite sides of the substrate, so that the reflection band is divided into two, and the overall film layer distribution is more precise. Reasonable, and the surface stress on the opposite sides of the substrate is relatively uniform, and at the same time, the film cracking phenomenon caused by excessive stress on one side is avoided.
在本发明的一些实施例中,所述第一高折射率材料层的单位厚度为27-33nm,第一高折射率材料层的厚度20-43.9nm之间;所述第一低折射率材料层的单位厚度为35-41nm,第一低折射率材料层的厚度在32.66-53.78nm之间;所述第二高折射率材料层的单位厚度为27-33nm,第二高折射率材料层的厚度在22.91-43.09nm之间;所述第二低折射率材料层的单位厚度为35-41nm,第二低折射率材料层的厚度在30.63-84.54nm之间。In some embodiments of the present invention, the unit thickness of the first high refractive index material layer is 27-33 nm, and the thickness of the first high refractive index material layer is between 20-43.9 nm; the first low refractive index material The unit thickness of the layer is 35-41nm, the thickness of the first low refractive index material layer is between 32.66-53.78nm; the unit thickness of the second high refractive index material layer is 27-33nm, and the second high refractive index material layer The thickness of the second low refractive index material layer is between 22.91-43.09 nm; the unit thickness of the second low refractive index material layer is 35-41 nm, and the thickness of the second low refractive index material layer is between 30.63-84.54 nm.
在本发明的一些实施例中,所述第一膜层中第一高折射率材料层和第一低折射率材料层的总数为19-39层;所述第二膜层中第二高折射率材料层和第二低折射率材料层的总数为18-38层。In some embodiments of the present invention, the total number of the first high refractive index material layer and the first low refractive index material layer in the first film layer is 19-39 layers; the second high refractive index material layer in the second film layer The total number of the high-index material layer and the second low-refractive-index material layer is 18-38 layers.
在本发明的一些实施例中,所述基片材质为紫外熔融石英或氟化钙;所述第一高折射率材料层和第二高折射率材料层的材质均为二氧化铪或氧化铝;所述第一低折射率材料层和所述第二低折射率材料层的材质均为氟化铝或氟化镁。In some embodiments of the present invention, the material of the substrate is ultraviolet fused silica or calcium fluoride; the materials of the first high refractive index material layer and the second high refractive index material layer are both hafnium dioxide or aluminum oxide ; The materials of the first low-refractive index material layer and the second low-refractive index material layer are aluminum fluoride or magnesium fluoride.
为达到上述目的,本发明第二方面实施例提出了一种紫外滤光镜的制备方法,包括将所述基片进行预处理;In order to achieve the above purpose, the embodiment of the second aspect of the present invention proposes a method for preparing an ultraviolet filter, which includes pretreating the substrate;
将所述第一高折射率材料层材料、所述第一低折射率材料层材料、所述第二高折射率材料层材料和所述第二低折射率材料层材料依次预熔和烧结;sequentially premelting and sintering the first high refractive index material layer material, the first low refractive index material layer material, the second high refractive index material layer material and the second low refractive index material layer material;
采用真空蒸镀的方法在预处理后的所述基片的第一表面和第二表面分别形成所述第一膜层和所述第二膜层。The first film layer and the second film layer are respectively formed on the first surface and the second surface of the pretreated substrate by vacuum evaporation.
本发明实施例的紫外滤光镜的制备方法,对基片预处理,并将膜层材料预熔和烧结后真空蒸镀,工艺简单,所形成的膜层与基片的结合力强,膜层更为牢固,且膜层不含杂质。The preparation method of the ultraviolet filter mirror of the embodiment of the present invention pretreats the substrate, pre-melts and sinters the film layer material and vacuum evaporates it, the process is simple, the formed film layer and the substrate have strong bonding force, and the film The layer is stronger, and the film layer does not contain impurities.
在本发明的一些实施例中,所述预处理的方法为:将所述基片进行超声波清洗,再用惰性气体吹扫烘干,随后用离子源高能离子处理。In some embodiments of the present invention, the pretreatment method is as follows: the substrate is ultrasonically cleaned, then purged and dried with an inert gas, and then treated with high-energy ions from an ion source.
在本发明的一些实施例中,对所述第一高折射率材料层材料和所述第二高折射率材料层材料进行预熔的方法为:采用电子枪在电流0.1-180mA的条件下进行预熔,且电流自0.1mA开始每增加30mA对所述第一高折射率材料层材料或所述第二高折射率材料层材料表面反复预熔,直至所述第一高折射率材料层材料或所述第二高折射率材料层材料颗粒全部熔实,所述第一高折射率材料层材料或所述第二高折射率材料层材料表面全部熔平为止。In some embodiments of the present invention, the method of pre-melting the material of the first high refractive index material layer and the material of the second high refractive index material layer is: using an electron gun to perform pre-melting under the condition of a current of 0.1-180mA Melting, and the current increases from 0.1mA to the surface of the first high refractive index material layer material or the surface of the second high refractive index material layer material repeatedly by 30mA until the first high refractive index material layer material or The material particles of the second high refractive index material layer are all melted, and the surface of the first high refractive index material layer material or the material surface of the second high refractive index material layer is completely melted and flat.
在本发明的一些实施例中,对所述第一低折射率材料层材料和所述第二低折射率材料层材料进行预熔的方法为:采用电子枪在电流0.1-15mA、扫描半径10-20mm的条件下进行反复预熔。In some embodiments of the present invention, the method of pre-melting the material of the first low refractive index material layer and the material of the second low refractive index material layer is: using an electron gun at a current of 0.1-15mA and a scanning radius of 10- Repeated premelting under the condition of 20mm.
在本发明的一些实施例中,所述第一高折射率材料层材料和所述第二高折射率材料层材料真空蒸镀的工艺条件为:真空度(0.5×10-3)-(2×10-3)Pa,蒸发速率1-3nm/s,烘烤温度270-310℃,烘烤时间30-60min。In some embodiments of the present invention, the process conditions for vacuum evaporation of the first high refractive index material layer material and the second high refractive index material layer material are: vacuum degree (0.5×10 -3 )-(2 ×10 -3 ) Pa, evaporation rate 1-3nm/s, baking temperature 270-310°C, baking time 30-60min.
在本发明的一些实施例中,所述第一低折射率材料层材料和所述第二低折射率材料层材料真空蒸镀的工艺条件为:真空度(0.5×10-3)-(2×10-3)Pa,蒸发速率0.3-1.3nm/s,烘烤温度270-310℃,烘烤时间30-60min。In some embodiments of the present invention, the process conditions for vacuum evaporation of the first low refractive index material layer material and the second low refractive index material layer material are: vacuum degree (0.5×10 -3 )-(2 ×10 -3 ) Pa, evaporation rate 0.3-1.3nm/s, baking temperature 270-310°C, baking time 30-60min.
为达到上述目的,本发明第三方面实施例提出了一种滤光装置,包括依次设置的光源、准直透镜和至少两片本发明实施例所述的紫外滤光镜,所述光源发出的光束以相同的角度依次入射至每一片紫外滤光镜。In order to achieve the above purpose, the embodiment of the third aspect of the present invention proposes a filter device, including a light source, a collimator lens and at least two ultraviolet filters described in the embodiment of the present invention arranged in sequence, the light emitted by the light source The light beam is incident on each UV filter sequentially at the same angle.
本发明实施例的滤光装置除了具有本发明实施例的紫外滤光镜的有益效果外,还具有以下有益效果:光源经准直透镜准直后,依次经过多个紫外滤光镜滤光,每次滤光后出射的反射光综合反射率按滤光次数的幂指数递减,光谱强度和半高全宽都有所降低和收敛。In addition to the beneficial effects of the ultraviolet filter of the embodiment of the present invention, the filter device of the embodiment of the present invention also has the following beneficial effects: after the light source is collimated by the collimating lens, it is filtered by a plurality of ultraviolet filters in sequence, The comprehensive reflectance of the reflected light emitted after each filter decreases exponentially according to the power of the filter times, and the spectral intensity and full width at half maximum are reduced and converged.
在本发明的一些实施例中,所述紫外滤光镜的第一膜层为所述光束的入射面。In some embodiments of the present invention, the first film layer of the ultraviolet filter is the incident surface of the light beam.
在本发明的一些实施例中,所述光束的入射角度为22.5-45°;所述紫外滤光镜的数量为4片。In some embodiments of the present invention, the incident angle of the light beam is 22.5-45°; the number of the ultraviolet filters is four.
在本发明的一些实施例中,每片所述紫外滤光镜后面均设有一个光电探测器,且所述光电探测器与所述光束的透射方向垂直设置。In some embodiments of the present invention, a photodetector is provided behind each ultraviolet filter, and the photodetector is arranged perpendicular to the transmission direction of the light beam.
为达到上述目的,本发明第四方面实施例提出了一种滤光方法,该方法应用于本发明实施例所述的滤光装置,包括In order to achieve the above purpose, the embodiment of the fourth aspect of the present invention proposes a light filtering method, which is applied to the light filtering device described in the embodiment of the present invention, including
所述光源发出的光束经所述准直透明准直,获得准直光;The light beam emitted by the light source is collimated through the collimation transparency to obtain collimated light;
所述准直光以相同的入射角依次经过各片所述紫外滤光镜反射滤光,获得光谱范围收敛的光源光束。The collimated light is sequentially reflected and filtered by each piece of the ultraviolet filter at the same incident angle to obtain a light source beam with a converged spectral range.
本发明实施例的滤光方法所具有的有益效果与本发明实施例的滤光装置的有益效果基本相同,在此不再赘述。The beneficial effects of the light filtering method in the embodiment of the present invention are basically the same as those of the light filtering device in the embodiment of the present invention, and will not be repeated here.
在本发明的一些实施例中,所述的滤光方法,还包括:每个所述光电探测器同步检测其所对应的所述紫外滤光镜的透射光强度,并对该紫外滤光镜的参考光强进行修正。In some embodiments of the present invention, the filtering method further includes: each of the photodetectors synchronously detects the transmitted light intensity of the corresponding ultraviolet filter, and The reference light intensity is corrected.
为达到上述目的,本发明第五方面实施例提出了如本发明实施例所述的滤光方法在二氧化硫气体浓度检测中的应用,包括In order to achieve the above purpose, the embodiment of the fifth aspect of the present invention proposes the application of the filtering method in the detection of sulfur dioxide gas concentration as described in the embodiment of the present invention, including
所述光源锌灯或闪烁氙灯;Said light source zinc lamp or flashing xenon lamp;
所述光束的入射角度为22.5-45°;The incident angle of the light beam is 22.5-45°;
所述紫外滤光镜的数量为4片;The number of the ultraviolet filter is 4;
所述光源经所有紫外滤光镜滤光后的光谱范围收敛至200-230nm。The spectral range of the light source converges to 200-230nm after being filtered by all ultraviolet filters.
本发明实施例所述的滤光方法在二氧化硫气体浓度检测中的应用,利用紫外光特定角度(22.5-45°)照射在具有高反射率特性的紫外滤光镜上,结合多次滤光使紫外光的光谱范围整体覆盖SO2分子200-230nm波段吸收截面,同时抑制230nm之后的噪声波段,在利用每次滤光后的透射光强实时的检测光源的发光效率,及时修正光源升压波动,减小背景信号干扰,降低SO2检测限,经过长时间的测试以及Allen方差的计算,可以把SO2气体的检测下限降低至85ppt。The application of the filter method described in the embodiments of the present invention in the detection of sulfur dioxide gas concentration uses ultraviolet light at a specific angle (22.5-45°) to irradiate on the ultraviolet filter mirror with high reflectivity characteristics, combined with multiple filters to make The spectral range of ultraviolet light covers the 200-230nm band absorption cross section of SO2 molecules as a whole, and at the same time suppresses the noise band after 230nm, and uses the transmitted light intensity after each filter to detect the luminous efficiency of the light source in real time, and timely correct the fluctuation of the light source boost , Reduce background signal interference, lower the detection limit of SO 2 , after a long time of testing and calculation of Allen variance, the lower detection limit of SO 2 gas can be reduced to 85ppt.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1为根据本发明一个实施例的紫外滤光镜的简单结构示意图。FIG. 1 is a schematic diagram of a simple structure of an ultraviolet filter according to an embodiment of the present invention.
图2为根据本发明一个实施例的紫外滤光镜的反射特性原理图。FIG. 2 is a schematic diagram of reflection characteristics of an ultraviolet filter according to an embodiment of the present invention.
图3为根据本发明一个实施例的紫外滤光镜在入射角22.5-45°范围内的反射特性原理图。Fig. 3 is a schematic diagram of reflection characteristics of an ultraviolet filter according to an embodiment of the present invention in the range of incident angle 22.5-45°.
图4为根据本发明一个实施例的紫外滤光镜200-700nm的反射率曲线。Fig. 4 is a reflectance curve of an ultraviolet filter according to an embodiment of the present invention at 200-700nm.
图5为根据本发明一个实施例的紫外滤光镜的膜层设计及制备方法的流程图。FIG. 5 is a flow chart of a method for designing and manufacturing a film layer of an ultraviolet filter according to an embodiment of the present invention.
图6为根据本发明一个实施例的滤光装置的简单结构示意图。FIG. 6 is a schematic diagram of a simple structure of a filter device according to an embodiment of the present invention.
图7为根据本发明另一个实施例的滤光装置的简单结构示意图。Fig. 7 is a schematic structural diagram of a filter device according to another embodiment of the present invention.
图8为二氧化硫气体紫外波波段吸收截面图。Figure 8 is a cross-sectional view of the absorption of sulfur dioxide gas in the ultraviolet band.
图9为传统透射式滤光与本发明实施例3反射式滤光比较图。FIG. 9 is a comparison diagram between the traditional transmission filter and the reflective filter in
图10为紫外光源经过多次反射强度图。Fig. 10 is a graph of the intensity of the ultraviolet light source after multiple reflections.
图11为本发明实施例3中Allen方差计算的二氧化硫气体浓度检测下限结果图。Fig. 11 is a result diagram of the lower detection limit of sulfur dioxide gas concentration calculated by Allen variance in Example 3 of the present invention.
附图标记:Reference signs:
1-基片;101-第一表面;102-第二表面;2-第一膜层;201-第一高折射率材料层;202-第一低折射率材料层;3-第二膜层;301-第二高折射率材料层;302-第二低折射率材料层;4-光源;5-准直透镜;6-紫外滤光镜;7-光电探测器;8-反射光束;9-投射光束。1-substrate; 101-first surface; 102-second surface; 2-first film layer; 201-first high refractive index material layer; 202-first low refractive index material layer; 3-second film layer ; 301-the second high refractive index material layer; 302-the second low refractive index material layer; 4-light source; 5-collimating lens; 6-ultraviolet filter mirror; 7-photodetector; - Cast beams.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the invention are described in detail below, examples of which are illustrated in the accompanying drawings. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
发明人发现,目前SO2气体浓度检测系统,紫外光源升压闪烁时输出电压不稳定,同时在经过光学整形、滤光处理后,所保留的有效紫外激发光光谱相对强度低、覆盖有效激发光谱区域不完整且透过部分无效紫外光相对强度较高,引入大量背景噪声,导致测量系统的本底信号增大,出现零点漂移,湮没SO2气体的特征信号,造成测量系统无法对痕量浓度的SO2气体进行准确测量的问题。基于以上,本发明研发设计了一种紫外滤光镜,提供了紫外滤光镜的制备方法、滤光装置、滤光方法及其在二氧化硫气体浓度检测中的应用。The inventors found that in the current SO2 gas concentration detection system, the output voltage is unstable when the ultraviolet light source is boosted and flickered. The area is incomplete and the relative intensity of the transmitted part of the invalid ultraviolet light is relatively high, which introduces a large amount of background noise, which leads to an increase in the background signal of the measurement system, zero point drift, and an obliteration of the characteristic signal of SO 2 gas, resulting in the measurement system being unable to measure the trace concentration. The problem of accurate measurement of SO 2 gas. Based on the above, the present invention develops and designs an ultraviolet filter, and provides a preparation method of the ultraviolet filter, a filter device, a filter method and its application in the detection of sulfur dioxide gas concentration.
下面结合附图来描述本发明实施例的紫外滤光镜、紫外滤光镜的制备方法、滤光装置和滤光方法。The ultraviolet filter, the preparation method of the ultraviolet filter, the filter device and the filter method of the embodiments of the present invention will be described below with reference to the accompanying drawings.
图1是根据本发明一个实施例的紫外滤光镜的简单结构示意图。FIG. 1 is a schematic diagram of a simple structure of an ultraviolet filter according to an embodiment of the present invention.
如图1所示,本发明实施例的紫外滤光镜,包括基片1、第一膜层2和第二膜层3;基片1具有相对设置的第一表面101和第二表面102;第一膜层2设在第一表面101,第一膜层2由若干第一高折射率材料层201和若干第一低折射率材料层202交替设置而成,第一膜层2靠近第一表面101一侧和远离第一表面101一侧均为第一高折射率材料层201;第二膜层3设在第二表面102,第二膜层3由若干第二高折射率材料层301和若干第二低折射率材料层302交替设置而成,第二膜层3靠近第二表面102一侧为第二低折射率材料层302,第二膜层3远离第二表面102一侧为第二高折射率材料层301。As shown in Figure 1, the ultraviolet filter of the embodiment of the present invention comprises a
本发明实施例的紫外滤光镜,通过在基片相对的两侧设置不同的交替设置的高折射率材料层和低折射率材料层,将反射带一分为二,整体膜层分布更为合理,且基片相对的两侧表面应力相对均匀,同时避免了单面应力过大出现的裂膜现象。其中,第一膜层靠近第一表面一侧和远离第一表面一侧均为第一高折射率材料层,第二膜层靠近第二表面一侧为第二低折射率材料层,第二膜层远离第二表面一侧为第二高折射率材料层,这样的设计,可以有效抑制、降低与光束入射面相对的一侧表面反射回来的背景杂散光。In the ultraviolet filter of the embodiment of the present invention, different high-refractive-index material layers and low-refractive-index material layers are arranged alternately on opposite sides of the substrate, so that the reflection band is divided into two, and the overall film layer distribution is more precise. Reasonable, and the surface stress on the opposite sides of the substrate is relatively uniform, and at the same time, the film cracking phenomenon caused by excessive stress on one side is avoided. Wherein, the side of the first film layer close to the first surface and the side away from the first surface are the first high refractive index material layer, the side of the second film layer close to the second surface is the second low refractive index material layer, and the second film layer is the second low refractive index material layer. The side of the film layer away from the second surface is the second high refractive index material layer. This design can effectively suppress and reduce the background stray light reflected back from the surface on the side opposite to the incident surface of the light beam.
在本发明实施例的紫外滤光镜中,第一表面和第二表面可以分别为基片的前表面和后表面,或者上表面和下表面,或者左表面和右表面等。In the ultraviolet filter of the embodiment of the present invention, the first surface and the second surface may be the front surface and the rear surface of the substrate, or the upper surface and the lower surface, or the left surface and the right surface, etc. of the substrate.
可选的,基片1材质为石英或氟化钙;第一高折射率材料层201和第二高折射率材料层301的材质均为二氧化铪或氧化铝;第一低折射率材料层202和第二低折射率材料层302的材质均为氟化铝或氟化镁。Optionally, the
本发明实施例的紫外滤光镜的设计思路为:The design thought of the ultraviolet light filter mirror of the embodiment of the present invention is:
通过分析SO2气体的紫外光谱吸收截面,SO2的基态是在紫外光谱区185nm-320nm有两个吸收区域,270nm-320nm有一个吸收强度低于1e-18的光谱区,在290nm左右吸收最强,在此区域的振动转动结构比较复杂,195nm-230nm是吸收最强的波段,呈现连续的吸收峰特征,吸收强度在1e-18-1.4e-17之间,从200nm-230nm随着波长变短吸收逐渐增强,吸收200nm-212nm的吸收强度超过1e-17量级,如图8所示。By analyzing the ultraviolet spectrum absorption cross section of SO2 gas, the ground state of SO2 is There are two absorption regions in the ultraviolet spectral region 185nm-320nm, there is a spectral region with an absorption intensity lower than 1e-18 in 270nm-320nm, and the strongest absorption is around 290nm. The vibration and rotation structure in this region is more complicated. 195nm-230nm is The band with the strongest absorption shows continuous absorption peak characteristics. The absorption intensity is between 1e-18-1.4e-17. From 200nm-230nm, the absorption gradually increases as the wavelength becomes shorter. The absorption intensity of 200nm-212nm exceeds 1e- 17 magnitude, as shown in Figure 8.
在200nm-230nm波段所涉及的电子跃迁中,只有一个比基态高5.279eV的激发态振动转动结构相对简单,跃迁归属从而辐射出荧光信号。本发明实施例的紫外滤光镜在基底相对的两侧分别交替设置第一高折射率材料层、第一低折射率材料层、第二高折射率材料层和第二低折射率材料层,通过对膜料光学常数拟合模拟计算,将反射带一分为二,第一膜层实现200-230nm高反射、230-700nm高透射,第二膜层实现220-290nm反射、290nm-700nm高透射,235nm-290nm为透—反射的过渡带,把反射带一分为二整体膜层分布更加合理,第一膜层和第二膜层应力相对均匀、同时避免了单面应力过大出现的裂膜现象,对膜系初始单元设计如下:其中以210nm-214nm为参考波长H代表高折射率材料,L代表低折射率材料,S代表周期数,Air代表空气。Among the electronic transitions involved in the 200nm-230nm band, there is only one excited state 5.279eV higher than the ground state The vibration and rotation structure is relatively simple, and the transition belongs to A fluorescent signal is thereby emitted. In the ultraviolet filter of the embodiment of the present invention, the first high refractive index material layer, the first low refractive index material layer, the second high refractive index material layer and the second low refractive index material layer are alternately arranged on opposite sides of the substrate, Through the simulation calculation of the optical constants of the film material, the reflection band is divided into two parts. The first film layer achieves 200-230nm high reflection and 230-700nm high transmission, and the second film layer realizes 220-290nm reflection and 290nm-700nm high Transmission, 235nm-290nm is the transmission-reflection transition zone, it is more reasonable to divide the reflection zone into two parts, the overall film distribution is more reasonable, the stress of the first film layer and the second film layer is relatively uniform, and at the same time, it avoids the occurrence of excessive stress on one side Film cracking phenomenon, the initial unit design of the film system is as follows: where 210nm-214nm is used as the reference wavelength H represents high refractive index materials, L represents low refractive index materials, S represents the period number, and Air represents air.
Sub|(0.5H L 0.5H)s|Air;Sub|(0.5HL 0.5H) s |Air;
第一膜层膜系结构:第一高折射率材料层的单位厚度为27-33nm,例如30nm;第一低折射率材料层的单位厚度为35-41nm,例如38nm;The film structure of the first film layer: the unit thickness of the first high refractive index material layer is 27-33nm, such as 30nm; the unit thickness of the first low refractive index material layer is 35-41nm, such as 38nm;
Sub|(0.5H L 0.5H)7 1.15(0.5H L 0.5H)7|Air;Sub|(0.5HL 0.5H) 7 1.15(0.5HL 0.5H) 7 |Air;
第二膜层膜系结构:第二高折射率材料层的单位厚度为27-33nm,例如30nm;第二低折射率材料层的单位厚度为35-41nm,例如38nm;The second film layer structure: the unit thickness of the second high refractive index material layer is 27-33nm, such as 30nm; the unit thickness of the second low refractive index material layer is 35-41nm, such as 38nm;
Sub|0.85(0.5H L 0.5H)7(0.5H L 0.5H)7|Air。Sub|0.85(0.5HL 0.5H) 7 (0.5HL 0.5H) 7 |Air.
分别对第一膜层、第二膜层进行膜系结构优化,优化后:Optimize the film structure of the first film layer and the second film layer respectively. After optimization:
在一些实施例中,第一膜层2中第一高折射率材料层201和第一低折射率材料层202的总数为19-39层,第一高折射率材料层201的厚度在20-43.9nm之间,第一低折射率材料层202的厚度在32.66-53.78nm之间。In some embodiments, the total number of the first high refractive
在一些实施例中,第二膜层3中第二高折射率材料层301和第二低折射率材料层302的总数为18-38层,第二高折射率材料层301的厚度在22.91-43.09nm之间,第二低折射率材料层302的厚度在30.63-84.54nm之间。In some embodiments, the total number of the second high refractive
需要说明的是,本发明实施例的紫外滤光镜中,第一膜层中第一高折射率材料层和第一低折射率材料层的层数、第二膜层中第二高折射率材料层和第二低折射率材料层的层数选择,均与周期数S相关,周期数S越大增加反射率越高,层数越多。这里周期数S对第一膜层是指第一高折射率材料层和第一低折射率材料层交替设置的次数,对第二膜层是指第二高折射率材料层和第二低折射率材料层交替设置的次数。It should be noted that in the ultraviolet filter of the embodiment of the present invention, the number of layers of the first high refractive index material layer and the first low refractive index material layer in the first film layer, the second high refractive index material layer in the second film layer The selection of the number of layers of the material layer and the second low refractive index material layer is related to the period number S, the greater the period number S, the higher the reflectivity, and the more layers there are. The period number S here refers to the number of times that the first high refractive index material layer and the first low refractive index material layer are alternately arranged for the first film layer, and refers to the second high refractive index material layer and the second low refractive index material layer for the second film layer Rate material layer alternates the number of times it is set.
本发明实施例的紫外滤光镜,以第一膜层为入射光侧,其反射特性原理图如图2所示。当波长200-700nm之间的光源入射至第一膜层时,波长在200-230nm之间的光束被第一膜层反射,波长在220-290nm之间的光束被第二膜层反射,波长在290-700nm之间的光束被透射。当光源在第一膜层上的入射角在22.5-45°角度范围照射时,本发明实施例的紫外滤光镜的反射特性原理图如图3所示。在22.5-45°角度范围内200nm-230nm反射率均超过60%,波长214nm附近反射率超过80%,而230nm-290nm的波段反射率均在30%以下,290nm-700nm不超过10%。可见,本发明实施例的紫外滤光镜在230nm波长前后反射率存在巨大的差异。The ultraviolet filter of the embodiment of the present invention takes the first film layer as the incident light side, and the principle diagram of its reflection characteristics is shown in FIG. 2 . When a light source with a wavelength between 200-700nm is incident on the first film layer, the light beam with a wavelength between 200-230nm is reflected by the first film layer, and the light beam with a wavelength between 220-290nm is reflected by the second film layer. Beams between 290-700nm are transmitted. When the incident angle of the light source on the first film layer is within the range of 22.5°-45°, the schematic diagram of the reflection characteristics of the ultraviolet filter according to the embodiment of the present invention is shown in FIG. 3 . In the angle range of 22.5-45°, the reflectivity of 200nm-230nm exceeds 60%, and the reflectivity near the wavelength of 214nm exceeds 80%, while the reflectivity of 230nm-290nm is below 30%, and the reflectivity of 290nm-700nm does not exceed 10%. It can be seen that there is a huge difference in reflectance before and after the wavelength of 230 nm in the ultraviolet filter of the embodiment of the present invention.
整体膜系结构设计优化完成后,进行本实施例紫外滤光镜制备。本实施例紫外滤光镜的制备方法包括但不限于化学气相沉积(CVD)工艺、原子层沉积(ALD)工艺、物理气相沉积(PVD)工艺或其他合适的工艺,例如物理气相沉积工艺可为真空蒸镀或溅镀。After the optimization of the overall film structure design is completed, the ultraviolet filter of this embodiment is prepared. The preparation method of the ultraviolet filter mirror of this embodiment includes but not limited to chemical vapor deposition (CVD) process, atomic layer deposition (ALD) process, physical vapor deposition (PVD) process or other suitable processes, such as physical vapor deposition process can be Vacuum evaporation or sputtering.
作为一种可能的示例,如图5所示,本发明实施例的紫外滤光镜的制备方法,采用双面拆分真空蒸镀法,包括As a possible example, as shown in Figure 5, the method for preparing the ultraviolet filter of the embodiment of the present invention adopts a double-sided split vacuum evaporation method, including
将基片进行预处理;Pretreat the substrate;
将第一高折射率材料层材料、第一低折射率材料层材料、第二高折射率材料层材料和第二低折射率材料层材料依次预熔和烧结;Premelting and sintering the first high refractive index material layer material, the first low refractive index material layer material, the second high refractive index material layer material and the second low refractive index material layer material in sequence;
采用真空蒸镀的方法在预处理后的基片的第一表面和第二表面分别形成第一膜层和第二膜层。A first film layer and a second film layer are respectively formed on the first surface and the second surface of the pretreated substrate by means of vacuum evaporation.
在本发明实施例的紫外滤光镜的制备方法中,预处理的目的是除去基片表面吸附的杂质,填充基片表面凹陷,同时活化表面粒子,提高基片与膜料分子的结合力,使膜层更加牢固。预处理的方法包括但不限于超声波清洗、离子源处理等。作为一种可能的示例,预处理的方法为:将基片进行超声波清洗,再用惰性气体吹扫烘干,随后用离子源高能离子处理。可选的,超声波清洗分两次进行,第一次是将基片放入酒精、乙醚等体积混合的溶液中进行,第二次是将第一次清洗后的基片放入去离子水中进行,第一次清洗时间和第二次清洗时间均为5-15min。可选的,惰性气体可以选择氮气、氩气、氦气中的一种或几种。可选的,离子源高能离子采用阳极离子源高能离子、霍尔离子源高能离子等。In the preparation method of the ultraviolet filter in the embodiment of the present invention, the purpose of pretreatment is to remove the impurities adsorbed on the surface of the substrate, fill the depressions on the surface of the substrate, activate the surface particles at the same time, and improve the binding force between the substrate and the film material molecules. Make the film layer more firm. Pretreatment methods include, but are not limited to, ultrasonic cleaning, ion source treatment, and the like. As a possible example, the pretreatment method is as follows: the substrate is ultrasonically cleaned, then purged and dried with an inert gas, and then treated with high-energy ions from an ion source. Optionally, the ultrasonic cleaning is carried out twice, the first time is to put the substrate into a mixed solution of alcohol, ether and other volumes, and the second time is to put the substrate after the first cleaning into deionized water. , the first cleaning time and the second cleaning time are 5-15min. Optionally, one or more of nitrogen, argon, and helium may be selected as the inert gas. Optionally, the high-energy ions of the ion source are high-energy ions of the anode ion source, high-energy ions of the Hall ion source, and the like.
在本发明实施例的紫外滤光镜的制备方法中,对第一高折射率材料层材料、第二高折射率材料层材料、第一低折射率材料层材料和第二低折射率材料层材料进行烧结、预熔的目的在于:去除膜料间隙及表面吸附的气体和杂质。In the preparation method of the ultraviolet filter mirror of the embodiment of the present invention, for the first high refractive index material layer material, the second high refractive index material layer material, the first low refractive index material layer material and the second low refractive index material layer The purpose of sintering and pre-melting the material is to remove the gas and impurities adsorbed in the film material gap and surface.
在一些实施例中,对第一高折射率材料层材料和第二高折射率材料层材料进行预熔的方法为:采用电子枪在电流从0.1-180mA的条件下进行预熔,且电流自0.1mA开始每增加30mA对第一高折射率材料层材料或第二高折射率材料层材料表面反复预熔,直至第一高折射率材料层材料或第二高折射率材料层材料颗粒全部熔实,第一高折射率材料层材料或第二高折射率材料层材料表面全部熔平为止。In some embodiments, the method of pre-melting the material of the first high refractive index material layer and the material of the second high refractive index material layer is: using an electron gun to pre-melt the current from 0.1-180mA, and the current is from 0.1 The mA starts to be increased by 30mA to repeatedly premelt the surface of the first high refractive index material layer material or the second high refractive index material layer material until all the particles of the first high refractive index material layer material or the second high refractive index material layer material are melted , until the surface of the material of the first high refractive index material layer or the material of the second high refractive index material layer is completely melted.
在一些实施例中,对第一低折射率材料层材料和第二低折射率材料层材料进行预熔的方法为:采用电子枪在电流0.1-15mA、扫描半径10-20mm的条件下进行反复预熔。In some embodiments, the method of pre-melting the material of the first low-refractive index material layer and the material of the second low-refractive index material layer is: using an electron gun to perform repeated pre-melting under the conditions of a current of 0.1-15mA and a scanning radius of 10-20mm. melt.
需要说明的是,对第一高折射率材料层材料和第二高折射率材料层材料进行预熔和对第一低折射率材料层材料和第二低折射率材料层材料进行预熔,都是将电击枪连接220V电压进行的。It should be noted that pre-melting the first high refractive index material layer material and the second high refractive index material layer material and pre-melting the first low refractive index material layer material and the second low refractive index material layer material are both It is performed by connecting the stun gun to 220V voltage.
在一些实施例中,第一高折射率材料层材料和第二高折射率材料层材料真空蒸镀的工艺条件为:真空度(0.5×10-3)-(2×10-3)Pa,蒸发速率1-3nm/s,烘烤温度270-310℃,烘烤时间30-60min。In some embodiments, the process conditions for vacuum evaporation of the first high refractive index material layer material and the second high refractive index material layer material are: vacuum degree (0.5×10 -3 )-(2×10 -3 ) Pa, The evaporation rate is 1-3nm/s, the baking temperature is 270-310℃, and the baking time is 30-60min.
在一些实施例中,第一低折射率材料层材料和第二低折射率材料层材料真空蒸镀的工艺条件为:真空度(0.5×10-3)-(2×10-3)Pa,蒸发速率0.3-1.3nm/s,烘烤温度270-310℃,烘烤时间30-60min。In some embodiments, the process conditions for vacuum evaporation of the first low-refractive index material layer material and the second low-refractive index material layer material are: vacuum degree (0.5×10 -3 )-(2×10 -3 ) Pa, The evaporation rate is 0.3-1.3nm/s, the baking temperature is 270-310℃, and the baking time is 30-60min.
在一些实施例中,第一高折射率材料层材料的烧结温度为1650-1950℃,保温时间为200-300min;第二高折射率材料层材料的烧结温度为1650-1950℃,保温时间为200-300min;第一低折射率材料层材料的烧结温度为1250-1350℃,保温时间为250-350min;第二低折射率材料层材料的烧结温度为1250-1350℃,保温时间为250-350min。In some embodiments, the sintering temperature of the first high refractive index material layer is 1650-1950°C, and the holding time is 200-300min; the sintering temperature of the second high refractive index material layer is 1650-1950°C, and the holding time is 200-300min; the sintering temperature of the first low refractive index material layer is 1250-1350°C, and the holding time is 250-350min; the sintering temperature of the second low refractive index material layer is 1250-1350°C, and the holding time is 250- 350min.
基于本发明实施例的紫外滤光镜的滤光特性,可设置多组本发明实施例的紫外滤光镜进行滤光。Based on the filtering characteristics of the ultraviolet filter of the embodiment of the present invention, multiple sets of ultraviolet filter of the embodiment of the present invention can be set for light filtering.
本发明实施例的滤光装置及滤光方法的发明构思为:The inventive idea of the light filtering device and the light filtering method of the embodiment of the present invention is:
利用本发明实施例的紫外滤光镜在230nm波长前后反射率存在巨大的差异,采用光束多次反射滤光的传输方式,使光束中的低反射率波长形成光强的指数衰减,从而使光束的高反射率光谱区域逐步收敛、压缩,光束整体光谱的综合反射率R总与反射次数(N=1、2、3、4…)成指数递减关系(R总=R单 N),使得多次滤光后光谱强度I和半高全宽(FWHM)整体降低和收敛,逐步抑制230nm之后的波段传输,最终保留高强度的200nm-230nm有效波段的紫外光,200nm-230nm波段的紫外光整体覆盖SO2气体吸收截面的强吸收区和弱吸收区,可以最大程度的激发SO2气体辐射荧光信号。There is a huge difference in the reflectivity of the ultraviolet filter mirror in the embodiment of the present invention before and after the wavelength of 230nm, and the transmission mode of light beam multiple reflection filtering is adopted to make the low reflectivity wavelength in the light beam form an exponential attenuation of light intensity, thereby making the light beam The high-reflectivity spectral region gradually converges and compresses, and the comprehensive reflectance R total of the overall spectrum of the light beam has an exponentially decreasing relationship with the number of reflections (N=1, 2, 3, 4...) (R total = R single N ), making many After the second filter, the spectral intensity I and the full width at half maximum (FWHM) are reduced and converged as a whole, and the transmission of the band after 230nm is gradually suppressed, and finally the high-intensity ultraviolet light in the effective band of 200nm-230nm is retained, and the ultraviolet light in the band of 200nm-230nm covers the SO 2 The strong absorption area and weak absorption area of the gas absorption cross section can excite the SO 2 gas radiation fluorescence signal to the greatest extent.
基于以上构思,如图6和图7所示,本发明实施例的滤光装置,包括依次设置的光源4、准直透镜5和至少两片本发明实施例的紫外滤光镜6,光源4发出的光束以相同的角度依次入射至每一片紫外滤光镜6。Based on the above ideas, as shown in Figure 6 and Figure 7, the filter device of the embodiment of the present invention includes a light source 4, a
可选的,光源4为锌灯或闪烁氙灯。光源4、准直透镜5和多个紫外滤光镜,相邻两者之间均留有间距。需要说明的是,只要可以保证光源发出的光束以相同的角度依次入射至每一片紫外滤光镜,各紫外滤光镜的设置位置不限。同时,基于本发明实施例的紫外滤光镜的滤光特性,可根据滤光的需求,设置紫外滤光镜的数量,其具体原则为:若需要光源经滤光装置后,出射的反射光综合反射率越低,则需滤光次数越多,相应紫外滤光镜的数量也需要越多。作为一种可能的示例,光源选择锌灯,光源发出的光束的入射角度为22.5-45°,紫外滤光镜6的数量为4片。Optionally, the light source 4 is a zinc lamp or a flashing xenon lamp. The light source 4, the
可选的,紫外滤光镜的第一膜层2为光束的入射面。Optionally, the
可选的,作为本发明一种可能的实施方式,当光源为锌灯时,由于紫外光源脉冲式触发特性,光源升压闪烁时输出光强不稳定,而且长时间连续升压闪烁会对光源有损耗,导致相同电压下发光效率会降低,需要实时监测光源的强度,从而调控光源的升压区间,在光源发光效率降低时,及时调整升压,保持光源发光效率与损耗前一致,减少测量系统的零点漂移,利用紫外滤光镜进行多次滤光的同时,在每片紫外滤光镜后面沿光束透射方向垂直加入一个光电探测器7,同步的检测每片紫外滤光镜的透射光谱强度IT,通过每个光电探测器检测到的光信号强度对紫外光源脉冲升压范围不断的修正,使光源的发光效率稳定、强度区间收敛。每个紫外滤光镜后面的光电探测器探测与其对应的滤光片透过率最高的波段的光强变化量,与各阶段滤光后的参考光强进行对比实时修正。以紫外滤光镜的数量为4片为例,按光源入射的顺序定义4片紫外滤光镜分别为第一片紫外滤光镜、第二片紫外滤光镜、第三片紫外滤光镜和第四片紫外滤光镜,则它们所对应的光电探测器分别为第一个光电探测器、第二个光电探测器、第三个光电探测器和第四个光电探测器,则第一个光电探测器测量一次滤光后400-700nm段光谱强度为IT1,第二个光电探测器测量两次滤光后230-290nm段光谱强度为IT2,第三个光电探测器测量三次滤光后的230-290nm段光谱强度为IT3,第四个光电探测器测量四次滤光后的200-230nm段光谱强度为IT4,通过相对强度IT1-IT4实时与标准光强对比,得到整体的相对强度的偏差比例P,用此偏差比例P,调整光源的输出电压值,从而控制相对光强的输出。Optionally, as a possible implementation of the present invention, when the light source is a zinc lamp, due to the pulsed trigger characteristics of the ultraviolet light source, the output light intensity is unstable when the light source boosts and flickers, and the continuous boost and flicker for a long time will affect the light source. There is loss, which leads to a decrease in luminous efficiency at the same voltage. It is necessary to monitor the intensity of the light source in real time, so as to adjust the boosting range of the light source. When the luminous efficiency of the light source decreases, adjust the boost in time to maintain the luminous efficiency of the light source. The zero point drift of the system, while using the ultraviolet filter for multiple filtering, a
以光源为锌灯,且设置4片紫外滤光镜的情形为例(如图6和图7所示),本发明实施例的滤光装置的工作原理为:Taking the case where the light source is a zinc lamp and four ultraviolet filters are set as an example (as shown in Figures 6 and 7), the working principle of the filter device in the embodiment of the present invention is:
紫外光经过准直透镜5准直后,以特定的角度入射到第一片紫外滤光镜6的第一膜层上(R总=R单),经过第一次滤光的光束再以相同的角度入射至第二片紫外滤光镜6上,此时出射光经过两次滤光,出射的反射光综合反射率按平方递减(R总=R单 2),使得两次滤光后的光谱强度I和半高全宽(FWHM)都有所降低和收敛。出射的反射光以相同的角度入射到第三片紫外滤光镜6上,经过第3次滤光后,出射的反射光综合反射率按三次方递减(R总=R单 3),使得三次滤光后的光谱强度I和半高全宽(FWHM)都再次降低和收敛。出射的反射光入射到第四片紫外滤光镜6,经过第4次滤光后,出射的反射光综合反射率按四次方递减(R总=R单 4),使得谱线强度和半峰全宽都再次降低和收敛。整个滤光过程,每个紫外滤光镜后面的光电探测器探测与其对应的滤光片透过率最高的波段的光强变化量,与各阶段滤光后的参考光强进行对比实时修正。After the ultraviolet light is collimated by the
本发明实施例的滤光方法,应用于本发明实施例的滤光装置,该方法包括The light filtering method of the embodiment of the present invention is applied to the light filtering device of the embodiment of the present invention, and the method includes
光源发出的光束经准直透明准直,获得准直光;The light beam emitted by the light source is collimated and transparently collimated to obtain collimated light;
准直光以相同的入射角依次经过各片紫外滤光镜反射滤光,获得光谱范围收敛的光源光束。The collimated light passes through the reflection and filtering of each ultraviolet filter sequentially at the same incident angle to obtain a light source beam with a convergent spectral range.
在一些实施例中,本发明实施例的滤光方法,还包括:每个光电探测器7同步检测其所对应的紫外滤光镜的透射光强度,并对该紫外滤光镜的参考光强进行修正。In some embodiments, the light filtering method of the embodiment of the present invention also includes: each
本发明实施例的滤光方法的具体过程与本发明实施例的滤光装置的工作原理类似,在此不再赘述。The specific process of the light filtering method in the embodiment of the present invention is similar to the working principle of the light filtering device in the embodiment of the present invention, and will not be repeated here.
本发明实施例的滤光方法可用于二氧化硫气体浓度检测,用来降低紫外荧光痕量SO2气体浓度检测限,在降低紫外荧光痕量SO2气体浓度检测限的滤光过程中,光源采用锌灯或闪烁氙灯,光束的入射角度为22.5-45°,紫外滤光镜的数量为4片;光源经所有紫外滤光镜滤光后的光谱范围收敛至200-230nm。The filtering method of the embodiment of the present invention can be used for the detection of sulfur dioxide gas concentration, and is used to reduce the detection limit of ultraviolet fluorescence trace SO2 gas concentration. In the filtering process of reducing the detection limit of ultraviolet fluorescence trace SO2 gas concentration, the light source adopts zinc Lamp or flashing xenon lamp, the incident angle of the beam is 22.5-45°, and the number of ultraviolet filters is 4 pieces; the spectral range of the light source converges to 200-230nm after being filtered by all ultraviolet filters.
下面结合本发明较佳的实施方式来说明本发明的紫外滤光镜及其制备方法。The ultraviolet filter of the present invention and its preparation method will be described below in combination with preferred embodiments of the present invention.
实施例1紫外滤光镜
本发明实施例的紫外滤光镜,包括基片1、第一膜层2和第二膜层3;基片1具有相对设置的第一表面101和第二表面102;第一膜层2设在第一表面101,第一膜层2由若干第一高折射率材料层201和若干第一低折射率材料层202交替设置而成,第一膜层2靠近第一表面101一侧和远离第一表面101一侧均为第一高折射率材料层201;第二膜层3设在第二表面102,第二膜层3由若干第二高折射率材料层301和若干第二低折射率材料层302交替设置而成,第二膜层3靠近第二表面102一侧为第二低折射率材料层302,第二膜层3远离第二表面102一侧为第二高折射率材料层301。The ultraviolet light filter of the embodiment of the present invention comprises a
其中,第一表面101为基片的上表面,第二表面102为基片的下表面。基片1材质为紫外熔融石英(F_silica);第一高折射率材料层201和第二高折射率材料层301的材质均为二氧化铪;第一低折射率材料层202和第二低折射率材料层302的材质均为氟化铝。第一膜层为29层膜,总厚度为1.14μm;第二膜层为28层膜,总厚度为1μm。第一膜层和第二膜层的具体结构组成如表1所示,其中膜层1均为远离基片表面一侧最外层的膜。Wherein, the
表1实施例1紫外滤光镜的第一膜层和第二膜层结构The first film layer and the second film layer structure of table 1
实施例2实施例1中紫外滤光镜的制备方法The preparation method of ultraviolet filter mirror in
将石英基片放入酒精和乙醚等体积比混合的混合溶液中超声波清洗10min,再用去离子水对石英基片超声波清洗10min。随后将清洗后的石英基片用Ar气吹扫烘干,再用霍尔离子源高能离子对清洗后的石英基片进行二次处理。之后对HfO2、AlF3两种膜料进行预熔(HfO2熔点在2750℃,AlF3在1300℃),其中HfO2的预熔方法为:电子枪束流从0mA-180mA,每增加30mA对HfO2膜料表面反复预熔,直至HfO2膜料颗粒全部熔实,HfO2膜料表面全部熔平为止;AlF3的预熔方法为:在,将电子枪束流缓慢增加15mA,且加大电子枪扫描半径至15mm,使光斑能覆盖整体对AlF3膜料表面进行反复预熔。之后将预熔后HfO2放入马弗炉中于1900℃烧结240min,再将预熔后的AlF3放入马弗炉中于1250℃烧结300min,去除两种膜料间隙及表面吸附的气体和杂质。最后,对真空蒸镀的参数进行设置,其中真空度设置为1×10-3Pa,蒸发速率设置为HfO2—2nm/s、AlF3—0.8nm/s,石英基片烘烤温度设置为290℃,烘烤时间设置为30min。最终完成第一膜层与第二膜层的蒸镀,获得实施例1的紫外滤光镜。Put the quartz substrate into a mixed solution of alcohol and ether in an equal volume ratio and ultrasonically clean it for 10 minutes, and then use deionized water to ultrasonically clean the quartz substrate for 10 minutes. Subsequently, the cleaned quartz substrate is blown and dried with Ar gas, and then the cleaned quartz substrate is subjected to secondary treatment with Hall ion source high-energy ions. Afterwards, pre-melt HfO 2 and AlF 3 (the melting point of HfO 2 is at 2750°C, and the melting point of AlF 3 is at 1300°C). The surface of the HfO 2 film material is repeatedly pre-melted until the particles of the HfO 2 film material are completely melted and the surface of the HfO 2 film material is completely melted; The scanning radius of the electron gun is up to 15mm, so that the light spot can cover the whole and repeatedly pre-melt the surface of the AlF 3 film. Then put the pre-melted HfO 2 into the muffle furnace and sinter at 1900°C for 240min, then put the pre-melted AlF 3 into the muffle furnace and sinter at 1250°C for 300min to remove the gas adsorbed on the gap between the two membrane materials and the surface and impurities. Finally, set the parameters of the vacuum evaporation, in which the vacuum degree is set to 1×10-3Pa, the evaporation rate is set to HfO 2 —2nm/s, AlF 3 —0.8nm/s, and the baking temperature of the quartz substrate is set to 290 ℃, and the baking time is set to 30 minutes. Finally, the vapor deposition of the first film layer and the second film layer is completed, and the ultraviolet filter of Example 1 is obtained.
对本实施例所制备的实施例1的紫外滤光镜的滤光效果进行检测,检测结果如图4所示。从图4可以看出,200-230nm波段为高反射区间,235nm-290nm波段为透—反射的过渡区间,290nm-700nm波段为高透射区间。The filter effect of the ultraviolet filter prepared in this example 1 was tested, and the test results are shown in FIG. 4 . It can be seen from Figure 4 that the 200-230nm band is a high reflection range, the 235nm-290nm band is a transmission-reflection transition range, and the 290nm-700nm band is a high transmission range.
实施例3含有实施例1的紫外滤光镜的滤光装置及降低紫外荧光痕量二氧化硫气体浓度检测限的滤光方法
如图7所示,包括依次设置的光源4、准直透镜5和4片实施例1的紫外滤光镜6,光源4、准直透镜5和4片紫外滤光镜6,相邻两者之间均留有间距。每片紫外滤光镜6后面均设有一个光电探测器7,且光电探测器7与光束的透射方向垂直设置。As shown in Figure 7, comprise the
其中,光源4中轴线与准直透镜5的中轴线重合,按光源入射的顺序定义4片紫外滤光镜分别为第一片紫外滤光镜、第二片紫外滤光镜、第三片紫外滤光镜和第四片紫外滤光镜,则它们所对应的光电探测器分别为第一个光电探测器、第二个光电探测器、第三个光电探测器和第四个光电探测器。第一片紫外滤光镜与准直透镜5的中轴线成45°设置;第二片紫外滤光镜位于第一片紫外滤光镜的正下方,且两者平行设置;第三片紫外滤光镜位于第一片紫外滤光镜的右下方,且第三片紫外滤光镜与准直透镜5的中轴线成-45°设置;第四片紫外滤光镜位于第一片紫外滤光镜的右侧,且第四片紫外滤光镜与第三片紫外滤光镜平行设置。Among them, the central axis of the light source 4 coincides with the central axis of the
其中,光源4采用锌灯;光源4发出的光束以相对于紫外滤光片45°的相对角度依次入射至第一片紫外滤光镜、第二片紫外滤光镜、第三片紫外滤光镜和第四片紫外滤光镜,各紫外滤光镜的第一膜层2均为光束的入射面。Among them, the light source 4 adopts a zinc lamp; the light beam emitted by the light source 4 is sequentially incident on the first ultraviolet filter, the second ultraviolet filter, and the third ultraviolet filter at a relative angle of 45° relative to the ultraviolet filter. Mirror and the fourth ultraviolet filter mirror, the
采用本实施例的滤光装置降低紫外荧光痕量二氧化硫气体浓度检测限的滤光方法为:The filter method for reducing the detection limit of ultraviolet fluorescence trace sulfur dioxide gas concentration by using the filter device of the present embodiment is:
紫外光经过准直透镜5准直后,以相对于紫外滤光片45°的相对角度入射到第一片紫外滤光镜6的第一膜层上(R总=R单),经过第一次滤光的光束再以相同的角度45°入射至第二片紫外滤光镜6上,此时出射光经过两次滤光,出射的反射光综合反射率按平方递减(R总=R单 2),使得两次滤光后的光谱强度I和半高全宽(FWHM)都有所降低和收敛。出射的反射光以相同的角度45°入射到第三片紫外滤光镜6上,经过第3次滤光后,出射的反射光综合反射率按三次方递减(R总=R单 3),使得三次滤光后的光谱强度I和半高全宽(FWHM)都再次降低和收敛。出射的反射光以相同的角度45°入射到第四片紫外滤光镜6,经过第4次滤光后,出射的反射光综合反射率按四次方递减(R总=R单 4),使得谱线强度和半峰全宽都再次降低和收敛。经过4次滤光后,紫外光的光谱范围收敛至200nm-230nm,而230nm之后的光强强度小于1%,最终形成适用于SO2气体检测需要的覆盖整体SO2分子强吸收截面的高强度、窄带紫外光,同时抑制230nm之后的噪声波段,如图10所示。整个滤光过程,每个紫外滤光镜后面的光电探测器探测与其对应的滤光片透过率最高的波段的光强变化量,与各阶段滤光后的参考光强进行对比实时修正,减小背景信号干扰,降低的SO2检测限。具体来说,第一个光电探测器测量一次滤光后400nm-700nm段光谱强度为IT1,第二个光电探测器测量两次滤光后230nm-290nm段光谱强度为IT2,第三个光电探测器测量三次滤光后的230nm-290nm段光谱强度为IT3,第四个光电探测器测量四次滤光后的200nm-230nm段光谱强度为IT4,通过相对强度IT1-IT4实时与标准光强对比,得到整体的相对强度的偏差比例P,用此偏差比例P,调整光源的输出电压值,从而控制相对光强的输出。After the ultraviolet light is collimated by the
经过800s的测试以及Allen方差的计算,采用本实施例的滤光装置及滤光方法,可以把SO2气体的检测下限降低至85ppt,如图11所示。After 800 s of testing and calculation of Allen variance, the detection limit of SO 2 gas can be reduced to 85ppt by using the filter device and filter method of this embodiment, as shown in FIG. 11 .
将本实施例的滤光装置及滤光方法的多次反射式的滤光效果与传统的透射式干涉滤光效果比较,结果如图9所示。从图9可以看出,紫外光经过本实施例的滤光装置和滤光方法的4次反射式滤光后,在200nm-230nm波段中心波长光谱强度超过50%,在230nm波段之后光谱强度不超过1%,而紫外光在经过透过式滤光后中心波长光谱强度不超过20%,在230nm波段之后光谱强度部分超过5%,如图9所示。可见,本发明的滤光装置及滤光方法的多次反射式的滤光效果明显优于传统的透射式干涉滤光的滤光效果。Comparing the filtering effect of the multi-reflective filtering device and the filtering method of this embodiment with the traditional transmission interference filtering effect, the results are shown in FIG. 9 . As can be seen from Fig. 9, after the ultraviolet light passes through the filter device and filter method of the present embodiment for 4 reflective filters, the spectral intensity of the central wavelength in the 200nm-230nm band exceeds 50%, and the spectral intensity is lower after the 230nm band. The spectral intensity of the central wavelength of ultraviolet light after the transmission filter does not exceed 20%, and the spectral intensity part exceeds 5% after the 230nm band, as shown in Figure 9. It can be seen that the multiple reflection filtering effect of the optical filtering device and filtering method of the present invention is obviously better than that of the traditional transmission interference filtering.
实施例4含有实施例1的紫外滤光镜的滤光装置及降低紫外荧光痕量二氧化硫气体浓度检测限的滤光方法Embodiment 4 Contains the filter device of the ultraviolet filter lens of
本实施例与实施例3基本相同,不同之处在于:This embodiment is basically the same as
如图6所示,滤光装置中:As shown in Figure 6, in the filter device:
第一片紫外滤光镜与准直透镜5的中轴线成67.5°设置;第二片紫外滤光镜位于第一片紫外滤光镜的左下方,且两者平行设置;第三片紫外滤光镜与准直透镜5的中轴线成-67.5°设置;第四片紫外滤光镜位于第一片紫外滤光镜的右侧,且第四片紫外滤光镜与位于第一片紫外滤光镜和第三片紫外滤光镜之间。The central axis of the first UV filter and the
光源4发出的光束以相当于滤光片22.5°的相对角度依次入射至第一片紫外滤光镜、第二片紫外滤光镜、第三片紫外滤光镜和第四片紫外滤光镜。The light beam emitted by the light source 4 is sequentially incident on the first ultraviolet filter, the second ultraviolet filter, the third ultraviolet filter and the fourth ultraviolet filter at a relative angle equivalent to 22.5° of the optical filter .
采用本实施例的滤光装置降低紫外荧光痕量二氧化硫气体浓度检测限的滤光方法中:In the filtering method of reducing the detection limit of ultraviolet fluorescence trace sulfur dioxide gas concentration by using the filtering device of the present embodiment:
紫外光经过准直透镜5准直后,以相当于紫外滤光片22.5°的相对角度依次入射至第一片紫外滤光镜、第二片紫外滤光镜、第三片紫外滤光镜和第四片紫外滤光镜。After the ultraviolet light is collimated by the
本实施例的滤光装置及滤光方法的滤光效果与实施例3中的滤光效果基本一致,在此不再赘述。The light filtering effect of the light filtering device and the light filtering method of this embodiment is basically the same as that of the light filtering effect in the third embodiment, and will not be repeated here.
综上所述,本发明采用双面拆分真空蒸镀法将反射带一分为二,制备具有第一膜层和第二膜层的紫外滤光镜,利用紫外光特定角度(22.5°-45°)照射在具有高反射率特性的紫外滤光镜第一膜层和第二膜层上,结合多次滤光使紫外光的光谱范围整体覆盖SO2分子200-230nm波段吸收截面,同时抑制230nm之后的噪声波段,在利用每次滤光后的透射光强实时的检测光源的发光效率,及时修正光源升压波动,减小背景信号干扰,降低SO2检测限,经过长时间的测试以及Allen方差的计算,可以把SO2气体的检测下限降低至85ppt。In summary, the present invention adopts double-sided splitting vacuum evaporation method to divide the reflective band into two, and prepares an ultraviolet filter mirror with a first film layer and a second film layer, and utilizes a specific angle of ultraviolet light (22.5°- 45°) is irradiated on the first film layer and the second film layer of the ultraviolet filter with high reflectivity characteristics, combined with multiple filtering to make the spectral range of the ultraviolet light cover the absorption cross section of the 200-230nm band of the SO2 molecule as a whole, and at the same time Suppress the noise band after 230nm, use the transmitted light intensity after each filter to detect the luminous efficiency of the light source in real time, correct the fluctuation of the light source boost voltage in time, reduce the background signal interference, and reduce the detection limit of SO 2. After a long time of testing And the calculation of Allen variance can reduce the detection limit of SO 2 gas to 85ppt.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial", The orientation or positional relationship indicated by "radial", "circumferential", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the referred device or element Must be in a particular orientation, be constructed in a particular orientation, and operate in a particular orientation, and therefore should not be construed as limiting the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; can be mechanically connected, can also be electrically connected or can communicate with each other; can be directly connected, can also be indirectly connected through an intermediary, can be the internal communication of two components or the interaction relationship between two components, unless expressly defined otherwise. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。As used herein, the terms "one embodiment," "some embodiments," "example," "specific examples," or "some examples" mean specific features, structures, materials, or features described in connection with the embodiment or example. A feature is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211147366.2A CN115657185A (en) | 2022-09-19 | 2022-09-19 | Ultraviolet filter lens and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211147366.2A CN115657185A (en) | 2022-09-19 | 2022-09-19 | Ultraviolet filter lens and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115657185A true CN115657185A (en) | 2023-01-31 |
Family
ID=85024462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211147366.2A Pending CN115657185A (en) | 2022-09-19 | 2022-09-19 | Ultraviolet filter lens and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115657185A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI866584B (en) * | 2023-11-06 | 2024-12-11 | 澤米科技股份有限公司 | Uv-curable band pass filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4714308A (en) * | 1984-02-29 | 1987-12-22 | Canon Kabushiki Kaisha | Ultraviolet reflecting mirror |
US6030717A (en) * | 1997-01-23 | 2000-02-29 | Nikon Corporation | Multilayer antireflection coatings for grazing ultraviolet incident light |
CN101046524A (en) * | 2007-04-06 | 2007-10-03 | 中山大学 | Optical filter for dental light curing machine |
CN205427223U (en) * | 2015-12-03 | 2016-08-03 | 中国电子科技集团公司第十八研究所 | An ultraviolet reflective film for space |
CN113802093A (en) * | 2021-09-22 | 2021-12-17 | 武汉正源高理光学有限公司 | Preparation method of high-transmittance deep ultraviolet filter |
-
2022
- 2022-09-19 CN CN202211147366.2A patent/CN115657185A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4714308A (en) * | 1984-02-29 | 1987-12-22 | Canon Kabushiki Kaisha | Ultraviolet reflecting mirror |
US6030717A (en) * | 1997-01-23 | 2000-02-29 | Nikon Corporation | Multilayer antireflection coatings for grazing ultraviolet incident light |
CN101046524A (en) * | 2007-04-06 | 2007-10-03 | 中山大学 | Optical filter for dental light curing machine |
CN205427223U (en) * | 2015-12-03 | 2016-08-03 | 中国电子科技集团公司第十八研究所 | An ultraviolet reflective film for space |
CN113802093A (en) * | 2021-09-22 | 2021-12-17 | 武汉正源高理光学有限公司 | Preparation method of high-transmittance deep ultraviolet filter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI866584B (en) * | 2023-11-06 | 2024-12-11 | 澤米科技股份有限公司 | Uv-curable band pass filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6527709B2 (en) | Light source device for endoscopes | |
EP1232407B1 (en) | Heat-absorbing filter and method for making same | |
US9558858B2 (en) | System and method for imaging a sample with a laser sustained plasma illumination output | |
JP2005505909A (en) | Irradiation unit | |
CN104155712A (en) | Near-infrared filter for optical communication | |
DE112016004526T5 (en) | System and method for electrodeless ignition of plasma in a laser-based plasma light source | |
CN1821753A (en) | Fluorescence measuring device | |
EP3357081B1 (en) | Laser sustained plasma light source with graded absorption features | |
CN115657185A (en) | Ultraviolet filter lens and preparation method and application thereof | |
JP6313941B2 (en) | Eyeglass lenses | |
US9897539B2 (en) | Apparatus and method for measuring deposition rate | |
CN100434937C (en) | A high temperature resistant optical film doped with stabilized zirconia and its preparation method | |
FR2962124A1 (en) | Glass-ceramic plate useful in display device and cooking appliance, comprises waveguides that are housed in core of plate and diffuse electromagnetic radiations, where waveguides include part for collecting light emitted by source | |
JP2006515827A5 (en) | ||
JP2006515827A (en) | Permeable zirconium oxide-tantalum and / or tantalum oxide coating | |
CN106067652B (en) | Dual-wavelength antireflection film for excimer laser and optical film thickness monitoring system | |
CN104614795B (en) | A kind of broadband cut-off feux rouges fluorescent optical filter deeply | |
US20020195943A1 (en) | Plasma lamp and method | |
JP2002258035A (en) | Multilayer film cut filter and method for manufacturing the same | |
JP2001215325A (en) | Narrow band optical filter and method of manufacturing the same | |
Bellum | Coatings for petawatt-class high-energy lasers | |
CN220912950U (en) | Light intensity adjusting mechanism, lighting device and optical detection system | |
CN116773504A (en) | Platinized metal film capillary, gas Raman spectrum detection system and use method | |
JP3404765B2 (en) | Metal halide lamp with functionally gradient film and lighting equipment therefor | |
CN102754024A (en) | Discharge tube and stroboscopic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |