CN115656910B - Remote calibration system, method and equipment for mutual inductor calibration instrument - Google Patents
Remote calibration system, method and equipment for mutual inductor calibration instrument Download PDFInfo
- Publication number
- CN115656910B CN115656910B CN202211678776.XA CN202211678776A CN115656910B CN 115656910 B CN115656910 B CN 115656910B CN 202211678776 A CN202211678776 A CN 202211678776A CN 115656910 B CN115656910 B CN 115656910B
- Authority
- CN
- China
- Prior art keywords
- signal
- standard
- standard device
- calibration
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
本申请涉及一种互感器校验仪器远程校准系统、方法及装备,涉及电能计量装置中互感器校验仪器的技术领域,包括远端服务器和现场校准子系统,远端服务器与现场校准子系统网络连接;现场校准子系统包括整检溯源装置、标准装置、摄像头和智能终端,整检溯源装置分别连接于智能终端和标准装置,标准装置电连接于待检仪器;远端服务器用于对至少一个现场校准子系统进行监督监视;整检溯源装置用于对标准装置进行溯源以及实现自检,并将校准结果传输至智能终端及远端服务器;智能终端用于传输溯源、自检和/或检定校准命令,并接收检测数据信息;摄像头用于实现在线监拍。本申请具有随时随地对标准装置和待检仪器进行校准,加快量值溯源和传递的效果。
This application relates to a remote calibration system, method and equipment for transformer calibration instruments, and relates to the technical field of transformer calibration instruments in electric energy metering devices, including remote servers and on-site calibration subsystems, remote servers and on-site calibration subsystems Network connection; the on-site calibration subsystem includes an overall inspection and traceability device, a standard device, a camera, and an intelligent terminal. An on-site calibration subsystem is used for supervision and monitoring; the whole inspection and traceability device is used to trace the source of the standard device and realize self-inspection, and transmit the calibration results to the intelligent terminal and remote server; the intelligent terminal is used to transmit traceability, self-inspection and/or Verify the calibration command and receive the detection data information; the camera is used to realize online monitoring. The application has the effect of calibrating the standard device and the instrument to be tested anytime and anywhere, and speeding up the traceability and transfer of the value.
Description
技术领域technical field
本申请涉及互感器校验仪器的技术领域,尤其是涉及一种互感器校验仪器远程校准系统、方法及装备。The present application relates to the technical field of transformer calibration instruments, in particular to a remote calibration system, method and equipment for transformer calibration instruments.
背景技术Background technique
电能计量装置包括互感器及其二次回路设备和各种类型的电能表及其采控终端,互感器校验仪器是指互感器及其二次回路的校验设备包括互感器校验仪、二次回路压降和负荷测试仪、互感器负荷箱校准仪、互感器变比测试仪等,互感器校验仪整体检定装置是检定和校准互感器校验仪器的标准装置设备。每种互感器校验仪器和标准装置设备每年都需要定期送检校准和溯源,互感器校验仪器应用于电网电能计量装置中互感器及其二次回路的检测,从而使互感器及其二次回路都能符合电网规范。Electric energy metering devices include transformers and their secondary circuit equipment, various types of electric energy meters and their acquisition and control terminals. Transformer calibration instruments refer to the calibration equipment of transformers and their secondary circuits, including transformer calibrators, Secondary circuit voltage drop and load tester, transformer load box calibrator, transformer transformation ratio tester, etc. The overall verification device of transformer calibrator is the standard device for verifying and calibrating transformer calibrating instruments. Every kind of transformer calibration instrument and standard equipment needs to be sent for inspection, calibration and traceability every year. The secondary circuit can comply with the grid code.
在相关量值传递过程中,互感器校验仪器在对互感器和其二次回路进行检定和检测之前,国家计量检定规程规定需要定期把互感器校验仪器等其它标准设备送到上级检定机构进行检定和校准,规程规定互感器校验仪器检定校准周期为一年,在对互感器校验仪器进行检定和校准之前,通常需要将互感器校验仪器的标准装置送到再上一级或者有资质的第三方检测机构进行校准,互感器校验仪器的标准装置通常是互感器校验仪整体检定装置,在完成量值溯源后,再对互感器及其二次回路进行检定和检测。In the process of transferring relevant values, before the transformer calibration instrument verifies and detects the transformer and its secondary circuit, the national metrology verification regulations stipulate that other standard equipment such as transformer calibration instruments need to be sent to the superior verification agency on a regular basis For verification and calibration, the regulations stipulate that the verification and calibration cycle of the transformer calibration instrument is one year. Before the verification and calibration of the transformer calibration instrument, it is usually necessary to send the standard device of the transformer calibration instrument to the next level or A qualified third-party testing organization performs calibration. The standard device of the transformer calibrator is usually the overall calibration device of the transformer calibrator. After the traceability of the value is completed, the transformer and its secondary circuit are calibrated and tested.
一方面,在将互感器校验仪器及其标准装置等设备送至上级检定机构实验室进行检定和校准时,在运输的过程中经常会遇到路途颠簸和野蛮装卸,导致仪器损坏几率增大,量值传递不及时甚至计量失准,且在对互感器校验仪器及其标准装置设备进行检定和校准时,需要专业检定员进行操作,经常是排队等待,耗时耗力效率低下。On the one hand, when the transformer calibration instrument and its standard device are sent to the laboratory of the superior verification institution for verification and calibration, bumpy roads and rough loading and unloading are often encountered during transportation, which increases the probability of instrument damage , the value transmission is not timely or even the measurement is inaccurate, and when verifying and calibrating the transformer calibration instrument and its standard device equipment, professional verifiers are required to operate, often waiting in line, which is time-consuming, labor-intensive and inefficient.
另一方面,在对互感器校验仪器及其标准装置等设备进行校准时,都是在实验室环境下进行,国家计量检定规程对实验室有着比较高的要求,现场检定校准不是同样的环境状态也不在同一个时间段内,对误差精度的附加影响,可能导致检定校准结果不准确,影响使用。On the other hand, when calibrating equipment such as transformer calibration instruments and standard devices, they are all carried out in a laboratory environment. The national metrology verification regulations have relatively high requirements for laboratories, and on-site calibration is not the same environment. The status is not in the same time period, and the additional impact on the error accuracy may lead to inaccurate verification and calibration results and affect the use.
再一方面,由于互感器校验仪器没有相关的国家或者行业通信规约,只有国家电网公司企业标准《Q/GDW1987-2013互感器校验仪通信协议》公开,其他生产厂家的互感器校验仪器的通信协议不公开,目前待检仪器的技术参数和测试示数采集多是通过人眼识别手工录入,或者要求待检仪器生产厂家提供通信协议,或者破译待检仪器通信协议但此做法会触及相关法律,影响检测效能且无法确认检测过程数据的真实性,降低量值溯源和传递效率。On the other hand, since there is no relevant national or industry communication protocol for the transformer calibrator, only the enterprise standard of the State Grid Corporation of China "Q/GDW1987-2013 Communication Protocol for Transformer Calibrator" is published, and the transformer calibrator of other manufacturers The communication protocol is not public. At present, the technical parameters and test data collection of the instrument to be inspected are mostly manually entered through human eye recognition, or the manufacturer of the instrument to be inspected is required to provide a communication protocol, or the communication protocol of the instrument to be inspected is deciphered. Relevant laws affect the detection efficiency and cannot confirm the authenticity of the detection process data, reducing the traceability and transmission efficiency of the value.
发明内容Contents of the invention
为了随时随地对标准装置和待检仪器进行校准和检定,提高检测效能,精确校准和检定结果,加快量值溯源和传递效率,本申请提供了一种互感器校验仪器远程校准系统、方法及装备。In order to calibrate and verify the standard device and the instrument to be tested anytime and anywhere, improve the detection efficiency, accurately calibrate and verify the results, and speed up the traceability and transfer efficiency of the value, the application provides a remote calibration system, method and equipment.
第一方面,本申请提供一种互感器校验仪器远程校准系统,采用如下的技术方案:In the first aspect, the present application provides a remote calibration system for a transformer calibration instrument, which adopts the following technical solution:
一种互感器校验仪器远程校准系统,包括远端服务器和至少一个现场校准子系统,所述远端服务器与所述现场校准子系统网络连接;所述现场校准子系统包括整检溯源装置、标准装置、摄像头和智能终端,所述整检溯源装置分别连接于智能终端和标准装置,所述摄像头与所述智能终端电连接,所述标准装置电连接有需要检定或校准的待检仪器;A remote calibration system for a transformer calibration instrument, comprising a remote server and at least one on-site calibration subsystem, the remote server is connected to the on-site calibration subsystem network; the on-site calibration subsystem includes an overall inspection and traceability device, A standard device, a camera and an intelligent terminal, the whole inspection and traceability device is respectively connected to the intelligent terminal and the standard device, the camera is electrically connected to the intelligent terminal, and the standard device is electrically connected to an instrument to be inspected that needs to be verified or calibrated;
所述远端服务器用于对所述至少一个现场校准子系统进行在线实时监督监视;The remote server is used for online real-time supervision and monitoring of the at least one on-site calibration subsystem;
所述整检溯源装置用于实现自检和对所述标准装置的溯源;The whole inspection and traceability device is used to realize self-inspection and traceability to the standard device;
所述标准装置用于对所述待检仪器进行检定或校准,得到检定校准结果,并将所述检定校准结果传输至所述智能终端,以使所述智能终端将所述检定或校准结果同步传输至所述远端服务器;The standard device is used to verify or calibrate the instrument to be inspected, obtain the verification and calibration results, and transmit the verification and calibration results to the smart terminal, so that the smart terminal can synchronize the verification or calibration results transmitted to the remote server;
所述智能终端用于传输检定校准命令和/或自检溯源命令,并接收所述整检溯源装置、标准装置、摄像头和所述待检仪器传输的检测结果;The smart terminal is used to transmit verification and calibration commands and/or self-inspection and traceability commands, and receive the detection results transmitted by the overall inspection and traceability device, standard device, camera and the instrument to be inspected;
所述摄像头用于对所述待检仪器技术参数和显示示数进行在线监拍,得到拍摄视频图像,并对所述拍摄视频图像进行图像AI自主识别,得到识别结果,并将所述识别结果传输至所述智能终端,以使所述智能终端将所述识别结果传输至所述远端服务器。The camera is used for on-line monitoring of the technical parameters and display numbers of the instrument to be inspected, to obtain a video image, and to perform image AI autonomous recognition on the video image to obtain a recognition result, and to record the recognition result transmitting to the smart terminal, so that the smart terminal transmits the recognition result to the remote server.
通过采用上述技术方案,在对待检仪器进行远程检定或校准时,首先智能终端向整检溯源装置传输校准命令、溯源命令或自检命令,整检溯源装置根据接收的校准命令或自检命令进行自检或校准,首先整检溯源装置根据接收的自检命令实现自检,在自检合格之后再执行标准装置溯源命令,溯源符合标准后根据校准命令对待检仪器进行检定或校准,在对待检仪器进行检定或校准和整检溯源装置自检或溯源的过程中,智能终端将自检溯源结果或检定结果传输至远端服务器,从而使远端服务器对现场校准子系统进行全流程监督监视,通过将标准装置和整检溯源装置放置在现场校准子系统内,能够随时随地对标准装置和随时送来的待检仪器进行检定或校准,提高检测效能,精确校准结果,加快量值溯源和传递效率。By adopting the above technical scheme, when performing remote verification or calibration of the instrument to be inspected, the intelligent terminal first transmits a calibration command, a traceability command or a self-inspection command to the whole inspection and traceability device, and the whole inspection and traceability device performs according to the received calibration order or self-test command. Self-inspection or calibration, firstly, the whole inspection and traceability device realizes self-inspection according to the received self-inspection command, and then executes the standard device traceability order after the self-inspection is qualified, and then performs verification or calibration according to the calibration order for the instrument to be inspected after the traceability meets the standard. During the process of instrument verification or calibration and self-inspection or traceability of the whole inspection and traceability device, the intelligent terminal transmits the self-inspection and traceability results or verification results to the remote server, so that the remote server can supervise and monitor the whole process of the on-site calibration subsystem, By placing the standard device and the whole inspection and traceability device in the on-site calibration subsystem, the standard device and the instruments to be inspected at any time can be verified or calibrated anytime, anywhere, improving the detection efficiency, accurate calibration results, and speeding up the traceability and transmission of the value efficiency.
可选的,所述整检溯源装置包括交流信号调理模块、标准装置幅值处理模块、卫星授时模块、标准电池和控制模块;Optionally, the whole inspection and traceability device includes an AC signal conditioning module, a standard device amplitude processing module, a satellite timing module, a standard battery and a control module;
所述标准装置的控制端与所述智能终端电连接,所述标准装置的输出端与所述交流信号调理模块的输入端电连接,所述交流信号调理模块的输出端与所述标准装置幅值处理模块的第一输入端电连接,所述标准装置幅值处理模块的输出端与所述控制模块的输入端电连接,所述控制模块的输出端与所述智能终端电连接,所述卫星授时模块的输出端与所述标准装置幅值处理模块的第二输入端电连接,所述标准电池的输出端与所述标准装置幅值处理模块的第三输入端电连接;The control end of the standard device is electrically connected to the smart terminal, the output end of the standard device is electrically connected to the input end of the AC signal conditioning module, and the output end of the AC signal conditioning module is electrically connected to the standard device amplitude The first input end of the value processing module is electrically connected, the output end of the standard device amplitude processing module is electrically connected to the input end of the control module, the output end of the control module is electrically connected to the intelligent terminal, and the The output end of the satellite timing module is electrically connected to the second input end of the standard device amplitude processing module, and the output end of the standard battery is electrically connected to the third input end of the standard device amplitude processing module;
所述标准装置用于响应于智能终端传输的开始溯源命令,断开与所述待检仪器的连接并与所述整检溯源装置连接,产生且传输交流电信号至交流信号调理模块;The standard device is used to respond to the traceability command transmitted by the intelligent terminal, disconnect the connection with the instrument to be inspected and connect with the whole inspection traceability device, generate and transmit the AC signal to the AC signal conditioning module;
所述交流信号调理模块用于接收所述交流电信号,并对所述交流电信号进行放大或缩小处理,得到放大或缩小后的交流电信号,并将所述放大或缩小后的交流电信号传输至所述标准装置幅值处理模块;The AC signal conditioning module is used to receive the AC signal, amplify or reduce the AC signal to obtain an amplified or reduced AC signal, and convert the amplified or reduced AC signal transmitted to the amplitude processing module of the standard device;
所述标准装置幅值处理模块用于在得到所述放大或缩小后的交流电信号之前进行自检,获取所述卫星授时模块提供的基准时钟下的卫星时频信号以及所述标准电池提供的标准电压信号,并将所述卫星时频信号和所述标准电压信号转换的第一频率信号并传输至所述控制模块,其中,所述第一频率信号包括标准电压信号转换的标准电压频率信号;The standard device amplitude processing module is used to perform self-test before obtaining the amplified or reduced alternating current signal, and obtain the satellite time-frequency signal under the reference clock provided by the satellite timing module and the time-frequency signal provided by the standard battery. standard voltage signal, and transmit the satellite time-frequency signal and the first frequency signal converted from the standard voltage signal to the control module, wherein the first frequency signal includes a standard voltage frequency signal converted from the standard voltage signal ;
所述控制模块用于根据所述卫星时频信号和所述第一频率信号判断所述标准装置幅值处理模块是否自检合格,得到第一判断结果,并将所述第一判断结果传输至所述智能终端,以使所述智能终端将所述第一判断结果同步传输至所述远端服务器;The control module is used to judge whether the amplitude processing module of the standard device is self-inspected or not according to the satellite time-frequency signal and the first frequency signal, obtain a first judgment result, and transmit the first judgment result to The smart terminal, so that the smart terminal synchronously transmits the first judgment result to the remote server;
当所述标准装置幅值处理模块自检合格之后,所述标准装置幅值处理模块还用于切换至标准装置溯源电路,接收所述放大或缩小后的交流电信号,并将所述放大或缩小后的交流电信号进行频率转换并在与所述卫星授时模块获取基准时钟下卫星时频信号经过所述标准装置幅值处理模块的与门相与后,得到第二频率信号,并将所述第二频率信号和所述卫星时频信号输入至所述控制模块内;After the standard device amplitude processing module passes the self-test, the standard device amplitude processing module is also used to switch to the standard device traceability circuit, receive the amplified or reduced AC signal, and convert the amplified or The reduced alternating current signal is subjected to frequency conversion and after obtaining the satellite time-frequency signal under the reference clock with the satellite timing module and passing through the AND gate of the standard device amplitude processing module, a second frequency signal is obtained, and the obtained The second frequency signal and the satellite time-frequency signal are input into the control module;
所述控制模块还用于根据接收的所述第二频率信号和所述卫星时频信号判断所述标准装置的幅值是否符合标准,得到第二判断结果,并将所述第二判断结果传输至所述智能终端,以使所述智能终端将所述第二判断结果同步传输至所述远端服务器。The control module is also used to judge whether the amplitude of the standard device meets the standard according to the received second frequency signal and the satellite time-frequency signal, obtain a second judgment result, and transmit the second judgment result to the smart terminal, so that the smart terminal synchronously transmits the second judgment result to the remote server.
可选的,所述标准装置幅值处理模块包括RMS-DC真有效值转换器U2、V/F电压频率转换器U3、与门U4和继电器J4;Optionally, the standard device amplitude processing module includes an RMS-DC true effective value converter U2, a V/F voltage-frequency converter U3, an AND gate U4 and a relay J4;
所述RMS-DC真有效值转换器U2的输入端与交流信号调理模块电连接,所述RMS-DC真有效值转换器U2的输出端与继电器J4的第一辅助触点电连接,所述继电器J4的第二辅助触点与所述标准电池电连接,所述继电器J4的第三辅助触点分别与所述控制模块的数字信号输入端和所述V/F电压频率转换器U3的输入端电连接,所述V/F电压频率转换器U3的输出端和所述卫星授时模块的输出端均连接于所述与门U4的输入端,所述与门U4的输出端连接于所述控制模块的脉冲信号输入端;The input end of the RMS-DC true effective value converter U2 is electrically connected to the AC signal conditioning module, the output end of the RMS-DC true effective value converter U2 is electrically connected to the first auxiliary contact of the relay J4, and the The second auxiliary contact of the relay J4 is electrically connected to the standard battery, and the third auxiliary contact of the relay J4 is respectively connected to the digital signal input terminal of the control module and the input of the V/F voltage-frequency converter U3 The terminals are electrically connected, the output terminal of the V/F voltage-frequency converter U3 and the output terminal of the satellite timing module are connected to the input terminal of the AND gate U4, and the output terminal of the AND gate U4 is connected to the The pulse signal input terminal of the control module;
所述RMS-DC真有效值转换器U2用于将所述放大或缩小后的交流电信号转换为数字信号,并将所述数字信号输入至所述V/F电压频率转换器U3;The RMS-DC true effective value converter U2 is used to convert the amplified or reduced AC signal into a digital signal, and input the digital signal to the V/F voltage-to-frequency converter U3;
所述继电器J4用于在对标准装置进行校准时,控制所述RMS-DC真有效值转换器U2和V/F电压频率转换器U3导通,或者在进行自检时控制所述标准电池与所述V/F电压频率转换器U3导通;The relay J4 is used to control the conduction of the RMS-DC true effective value converter U2 and the V/F voltage-frequency converter U3 when calibrating the standard device, or control the connection between the standard battery and the The V/F voltage-to-frequency converter U3 is turned on;
所述V/F电压频率转换器U3用于将所述数字信号或所述标准电池的标准电压信号转换为脉冲信号,并传输至所述与门U4内;The V/F voltage-to-frequency converter U3 is used to convert the digital signal or the standard voltage signal of the standard battery into a pulse signal, and transmit it to the AND gate U4;
所述与门U4用于将所述脉冲信号和所述时频信号进行相与,得到基准时钟下所述放大或缩小后的交流电信号的第一频率信号,并将所述第一频率信号和所述卫星时频信号传输至所述控制模块内;The AND gate U4 is used for ANDing the pulse signal and the time-frequency signal to obtain the first frequency signal of the amplified or reduced AC signal under the reference clock, and the first frequency signal and the satellite time-frequency signal is transmitted to the control module;
所述控制模块用于根据所述标准电池的第一频率信号判断所述V/F电压频率转换器U3是否自检合格。The control module is used for judging whether the V/F voltage-to-frequency converter U3 is self-tested or not according to the first frequency signal of the standard battery.
可选的,所述交流电信号包括工作电流信号、工作电压信号、差值电流信号和差值电压信号,所述交流信号调理模块包括程控放大器U1、程控放大器U5和继电器J3;所述程控放大器U1的输入端连接于所述标准装置的工作电流或工作电压输出端,所述程控放大器U1的输出端连接于所述继电器J3的第一辅助触点,所述程控放大器U5的输入端连接于所述标准装置的差值电流信号或差值电压信号的输出端,所述程控放大器U5的输出端连接于所述继电器J3的第二辅助触点,所述继电器J3的第三辅助触点连接于所述标准装置幅值处理模块的输入端;Optionally, the AC signal includes an operating current signal, an operating voltage signal, a differential current signal, and a differential voltage signal, and the AC signal conditioning module includes a program-controlled amplifier U1, a program-controlled amplifier U5, and a relay J3; the program-controlled amplifier The input end of U1 is connected to the operating current or operating voltage output end of the standard device, the output end of the program-controlled amplifier U1 is connected to the first auxiliary contact of the relay J3, and the input end of the program-controlled amplifier U5 is connected to The output terminal of the differential current signal or differential voltage signal of the standard device, the output terminal of the program-controlled amplifier U5 is connected to the second auxiliary contact of the relay J3, and the third auxiliary contact of the relay J3 is connected to at the input end of the amplitude processing module of the standard device;
所述程控放大器U1用于对所述标准装置输出的工作电流信号或工作电压信号进行放大或缩小至设计阈值;The program-controlled amplifier U1 is used to amplify or reduce the working current signal or working voltage signal output by the standard device to a design threshold;
所述程控放大器U5用于对所述标准装置输出的差值工作电流信号或所述差值电压信号进行放大或缩小至设计阈值。The program-controlled amplifier U5 is used to amplify or reduce the differential operating current signal or the differential voltage signal output by the standard device to a design threshold.
可选的,所述整检溯源装置还包括标准装置相位处理模块,所述标准装置相位处理模块的输入端连接于所述交流信号调理模块的输出端,所述标准装置相位处理模块的输出端连接于所述控制模块的输入端;Optionally, the whole inspection and traceability device further includes a standard device phase processing module, the input end of the standard device phase processing module is connected to the output end of the AC signal conditioning module, and the output end of the standard device phase processing module connected to the input end of the control module;
所述标准装置相位处理模块用于测量工作和差值交流电矢量信号的相位,并将相位值传输至控制模块内运算处理,所述控制模块将相位测量结果传输至智能终端,以使所述智能终端将所述相位测量结果同步传输至所述远端服务器;The phase processing module of the standard device is used to measure the phase of the working and differential AC vector signals, and transmit the phase value to the operation processing in the control module, and the control module transmits the phase measurement result to the intelligent terminal, so that the intelligent The terminal synchronously transmits the phase measurement result to the remote server;
所述控制模块用于接收所述相位值,并根据所述相位值判定所述标准装置输出相位值是否符合标准,得到第三判断结果,并将所述第三判断结果同步传输至所述智能终端。The control module is used to receive the phase value, judge whether the output phase value of the standard device meets the standard according to the phase value, obtain a third judgment result, and synchronously transmit the third judgment result to the intelligent terminal.
可选的,所述标准装置相位处理模块包括第一过零检测子模块Φ6、第二过零检测子模块Φ4、第一分频器Φ5、第二分频器Φ3、与非门Φ1、锁相环Φ8、第三分频器Φ7和与门Φ2;Optionally, the standard device phase processing module includes a first zero-crossing detection sub-module Φ6, a second zero-crossing detection sub-module Φ4, a first frequency divider Φ5, a second frequency divider Φ3, a NAND gate Φ1, a lock Phase loop Φ8, third frequency divider Φ7 and AND gate Φ2;
所述第一过零检测子模块Φ6的输入端连接于所述程控放大器U1的输出端,所述第一过零检测子模块Φ6的输出端分别连接于所述第一分频器Φ5的输入端和所述锁相环Φ8的输入端,所述第一分频器Φ5的输出端连接于所述与非门Φ1的第一输入端,所述锁相环Φ8的输出端连接于所述与门Φ2的第一输入端,所述第三分频器Φ7的输入端连接于所述锁相环Φ8的输出端,所述第三分频器Φ7的输出端连接于所述锁相环Φ8的输入端;The input terminal of the first zero-crossing detection sub-module Φ6 is connected to the output terminal of the program-controlled amplifier U1, and the output terminals of the first zero-crossing detection sub-module Φ6 are respectively connected to the input of the first frequency divider Φ5 end and the input end of the phase-locked loop Φ8, the output end of the first frequency divider Φ5 is connected to the first input end of the NAND gate Φ1, the output end of the phase-locked loop Φ8 is connected to the The first input end of the AND gate Φ2, the input end of the third frequency divider Φ7 is connected to the output end of the phase-locked loop Φ8, and the output end of the third frequency divider Φ7 is connected to the phase-locked loop The input terminal of Φ8;
所述第二过零检测子模块Φ4的输入端连接于所述程控放大器U5的输出端,所述第二过零检测子模块Φ4的输出端连接于所述第二分频器Φ3的输入端,所述第二分频器Φ3的输出端连接于所述与非门Φ1的第二输入端,所述与非门Φ1的输出端连接于所述与门Φ2的第二输入端,所述与门Φ2的输出端连接于所述控制模块的输入端。The input end of the second zero-crossing detection sub-module Φ4 is connected to the output end of the program-controlled amplifier U5, and the output end of the second zero-crossing detection sub-module Φ4 is connected to the input end of the second frequency divider Φ3 , the output end of the second frequency divider Φ3 is connected to the second input end of the NAND gate Φ1, the output end of the NAND gate Φ1 is connected to the second input end of the AND gate Φ2, the The output end of the AND gate Φ2 is connected to the input end of the control module.
第二方面,本申请提供一种互感器校验仪器远程校准方法,采用如下的技术方案:In the second aspect, the present application provides a remote calibration method for a transformer calibration instrument, which adopts the following technical solution:
一种应用于如第一方面任一项所述的互感器校验仪器远程校准系统的互感器校验仪器远程校准方法,所述方法包括:A remote calibration method for a transformer calibration instrument applied to the remote calibration system for a transformer calibration instrument according to any one of the first aspect, the method comprising:
所述标准装置响应于所述智能终端发出的开始溯源命令,断开与所述待检仪器的连接并与所述整检溯源装置连接,产生且传输交流电信号至交流信号调理模块;The standard device responds to the start tracing command issued by the smart terminal, disconnects the connection with the instrument to be inspected and connects with the whole inspection traceability device, generates and transmits an AC signal to the AC signal conditioning module;
所述交流信号调理模块接收所述交流电信号,并对所述交流电信号进行放大或缩小处理,得到放大或缩小后的交流电信号,并将所述放大或缩小后的交流电信号传输至所述标准装置幅值处理模块和所述标准装置相位处理模块;The AC signal conditioning module receives the AC signal, and amplifies or reduces the AC signal to obtain an amplified or reduced AC signal, and transmits the amplified or reduced AC signal to The standard device amplitude processing module and the standard device phase processing module;
所述标准装置幅值处理模块在得到所述放大或缩小后的交流电信号之前进行自检,获取所述卫星授时模块提供的基准时钟下的卫星时频信号以及所述标准电池提供的标准电压信号,并将所述卫星时频信号和所述标准电压信号转换的第一频率信号并传输至所述控制模块,其中,所述第一频率信号包括标准电压信号转换的标准电压频率信号;The standard device amplitude processing module performs a self-test before obtaining the amplified or reduced AC signal, and obtains the satellite time-frequency signal under the reference clock provided by the satellite timing module and the standard voltage provided by the standard battery signal, and transmit the first frequency signal converted from the satellite time-frequency signal and the standard voltage signal to the control module, wherein the first frequency signal includes a standard voltage frequency signal converted from a standard voltage signal;
所述控制模块根据所述卫星时频信号和所述第一频率信号判断所述标准装置幅值处理模块是否自检合格,得到第一判断结果,并将所述第一判断结果传输至所述智能终端,以使所述智能终端将所述第一判断结果同步传输至所述远端服务器;The control module judges whether the standard device amplitude processing module is self-inspected or not according to the satellite time-frequency signal and the first frequency signal, obtains a first judgment result, and transmits the first judgment result to the an intelligent terminal, so that the intelligent terminal synchronously transmits the first judgment result to the remote server;
当所述第一判断结果为所述标准装置幅值处理模块自检合格之后,所述标准装置幅值处理模块切换至标准装置溯源电路,接收所述放大或缩小后的交流电信号,并将所述放大或缩小后的交流电信号进行频率转换并在与所述卫星授时模块获取基准时钟下卫星时频信号经过所述标准装置幅值处理模块的与门相与后,得到第二频率信号,将所述第二频率信号和所述卫星时频信号输入至所述控制模块内;When the first judgment result is that the standard device amplitude processing module passes the self-test, the standard device amplitude processing module switches to the standard device traceability circuit, receives the amplified or reduced AC signal, and The amplified or reduced AC signal is subjected to frequency conversion and after the satellite time-frequency signal obtained by the satellite timing module and the reference clock is passed through the AND gate of the standard device amplitude processing module, a second frequency signal is obtained , inputting the second frequency signal and the satellite time-frequency signal into the control module;
所述控制模块根据接收的所述第二频率信号和所述卫星时频信号判断所述标准装置的幅值是否符合标准,得到第二判断结果,并将所述第二判断结果传输至所述智能终端,以使所述智能终端将所述第二判断结果同步传输至所述远端服务器;The control module judges whether the amplitude of the standard device meets the standard according to the received second frequency signal and the satellite time-frequency signal, obtains a second judgment result, and transmits the second judgment result to the an intelligent terminal, so that the intelligent terminal synchronously transmits the second judgment result to the remote server;
所述标准装置相位处理模块测量所述交流电信号的相位值,并将所述相位值输入至所述控制模块内;The standard device phase processing module measures the phase value of the AC signal, and inputs the phase value into the control module;
所述控制模块接收所述相位值,并根据所述相位值判定所述标准装置输出相位值是否符合标准,得到第三判断结果,并将所述第三判断结果传输至所述智能终端,以使所述智能终端将所述第三判断结果同步传输至所述远端服务器;The control module receives the phase value, and judges whether the output phase value of the standard device conforms to the standard according to the phase value, obtains a third judgment result, and transmits the third judgment result to the smart terminal for causing the smart terminal to synchronously transmit the third judgment result to the remote server;
所述智能终端根据接收的第二判断结果和第三判断结果判定所述标准装置的幅值和相位是否符合标准;The intelligent terminal determines whether the amplitude and phase of the standard device meet the standard according to the received second judgment result and third judgment result;
当所述标准装置的幅值和相位均符合标准之后,所述智能终端控制所述标准装置与所述待检仪器电连接,同时断开与整检溯源装置的连接,利用所述标准装置对所述待检仪器进行检定或校准。When the amplitude and phase of the standard device meet the standards, the intelligent terminal controls the electrical connection between the standard device and the instrument to be tested, and at the same time disconnects the connection with the whole inspection traceability device, and uses the standard device to The instrument to be inspected is verified or calibrated.
可选的,在利用所述标准装置对所述待检仪器进行检定或校准之后,所述方法还包括:Optionally, after using the standard device to verify or calibrate the instrument to be tested, the method further includes:
获取待检仪器的拍摄视频图像;Obtain the captured video image of the instrument to be inspected;
基于预设特征模型对所述拍摄视频进行基于深度学习的特征提取,得到准确的待检仪器示数信息;Perform feature extraction based on deep learning on the captured video based on a preset feature model to obtain accurate display information of the instrument to be inspected;
基于所述示数信息和标准装置输出的电信号数据生成所述待检仪器的检定证书或校准报告以及结果通知书;Generate a verification certificate or a calibration report and a result notification of the instrument to be tested based on the indication information and the electrical signal data output by the standard device;
基于所述检定证书或校准报告以及结果通知书生成所述待检仪器的待检仪器档案,并进行保存。An instrument file for the instrument to be inspected is generated based on the verification certificate or calibration report and the result notification, and stored.
第三方面,本申请提供一种智能终端,采用如下的技术方案:In a third aspect, the present application provides an intelligent terminal, which adopts the following technical solution:
一种智能终端,包括处理器,所述处理器与存储器耦合;An intelligent terminal, including a processor, the processor is coupled with a memory;
所述存储器上存储有能够被处理器加载并执行第二方面任一项所述的互感器校验仪器远程校准方法的计算机程序。The memory stores a computer program that can be loaded by a processor and execute the remote calibration method for a transformer calibration instrument according to any one of the second aspect.
附图说明Description of drawings
图1是本申请实施例一种互感器校验仪器远程校准系统的结构框图。Fig. 1 is a structural block diagram of a remote calibration system for a transformer calibrating instrument according to an embodiment of the present application.
图2是本申请实施例整检溯源装置的电路原理图。Fig. 2 is a schematic circuit diagram of the whole inspection and traceability device of the embodiment of the present application.
图3是本申请实施例一种互感器校验仪器远程校准方法的流程示意图。Fig. 3 is a schematic flowchart of a remote calibration method for a transformer calibration instrument according to an embodiment of the present application.
图4是本申请实施例提供的智能装置的结构框图。Fig. 4 is a structural block diagram of a smart device provided by an embodiment of the present application.
附图标记说明:1、远端服务器;2、现场校准子系统;21、整检溯源装置;22、标准装置;211、交流信号调理模块;212、标准装置幅值处理模块;213、卫星授时模块;214、标准电池;215、控制模块;216、标准装置相位处理模块;23、待检仪器;24、摄像头;300、智能终端。Explanation of reference signs: 1. Remote server; 2. On-site calibration subsystem; 21. Overall inspection and traceability device; 22. Standard device; 211. AC signal conditioning module; 212. Amplitude processing module of standard device; 213. Satellite timing Module; 214, standard battery; 215, control module; 216, standard device phase processing module; 23, instrument to be inspected; 24, camera; 300, intelligent terminal.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图1-4及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings 1-4 and the embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, not to limit the present application.
本申请实施例公开一种互感器校验仪器远程校准系统。参照图1,互感器校验仪器远程校准系统包括远端服务器1和至少一个现场校准子系统2,远端服务器1与所有现场校准子系统2网络连接;现场校准子系统2包括整检溯源装置21、标准装置22、摄像头24和智能终端300,整检溯源装置21分别连接于智能终端300和标准装置22,摄像头24与智能终端300电连接,标准装置22电连接有需要校准的待检仪器23;The embodiment of the present application discloses a remote calibration system for a transformer calibration instrument. Referring to Figure 1, the remote calibration system for instrument transformer calibration includes a remote server 1 and at least one on-
远端服务器1用于对至少一个现场校准子系统2进行在线实时监督监视;The remote server 1 is used for online real-time supervision and monitoring of at least one on-
整检溯源装置21用于实现自检和对标准装置22的溯源,并将自检和/或溯源结果传输至智能终端300,并且通过智能终端300同步传输至远端服务器1;The overall inspection and
标准装置22用于对待检仪器23进行检定和校准,得到检定校准结果,并将检定校准结果传输至智能终端300,且通过智能终端300同步传输至远端服务器1;The
智能终端300用于传输检定校准命令和/或自检溯源命令,并接收整检溯源装置21、标准装置22、摄像头24和待检仪器23传输的检测数据信息。The
其中,检测数据信息包括检定校准结果和自检溯源结果;待检仪器可以是互感器校验仪、二次压降负荷测试仪、互感器负荷箱校准仪、互感器变比测试仪等。Among them, the detection data information includes verification and calibration results and self-inspection traceability results; the instrument to be inspected can be a transformer calibrator, a secondary voltage drop load tester, a transformer load box calibrator, and a transformer ratio tester.
在本实施例中,一台远端服务器1能够连接若干个现场校准子系统2,同时通过互联网同步在线实时监督监视多个现场校准子系统2的检测过程。在现场校准子系统2中对待检仪器23进行检定或校准时,智能终端300首先控制整检溯源装置21实现自检,当整检溯源装置21自检合格之后再利用整检溯源装置21对标准装置22进行溯源,标准装置22的溯源符合标准后才能利用整检溯源装置21对待检仪器23进行检定或校准。In this embodiment, one remote server 1 can be connected to several on-
在利用标准装置22对待检仪器23进行检定或校准时,标准装置22断开与整检溯源装置21的连接而与待检仪器23电连接,智能终端300向标准装置22传输检定或校准命令,使标准装置22对待检仪器23进行检定或校准,得到检定或校准结果,然后标准装置22向智能终端300传输检定或校准结果,智能终端300将接收的检定或校准结果传输至远端服务器1,远端服务器1将检定或校准结果进行保存。When using the
在本实施例中,检定或校准结果包括检定证书和校准报告,对于检定不合格的待检仪器开具结果通知书。In this embodiment, the verification or calibration result includes a verification certificate and a calibration report, and a result notification is issued for the unqualified instrument to be tested.
作为本实施例的一种可选实施方式,整检溯源装置21包括交流信号调理模块211、标准装置幅值处理模块212、卫星授时模块213、标准电池214和控制模块215;As an optional implementation of this embodiment, the whole inspection and
标准装置22的控制端与智能终端300电连接,标准装置22的输出端与交流信号调理模块211的输入端电连接,交流信号调理模块211的输出端与标准装置幅值处理模块212的第一输入端电连接,标准装置幅值处理模块212的输出端与控制模块215的输入端电连接,控制模块215的输出端与智能终端300电连接,卫星授时模块213的输出端与标准装置幅值处理模块212的第二输入端电连接,标准电池214的输出端与标准装置幅值处理模块212的第三输入端电连接;The control terminal of the
标准装置22用于响应于智能终端300传输的自检指令,断开与待检仪器23的连接并与整检溯源装置21连接,产生且传输交流电信号至交流信号调理模块;The
交流信号调理模块211用于接收交流电信号,并对交流电信号进行放大或缩小处理,得到放大或缩小后的交流电信号,并将放大或缩小后的交流电信号传输至标准装置幅值处理模块212;The AC
标准装置幅值处理模块212用于在得到放大或缩小后的交流电信号之前进行自检,获取卫星授时模块213提供的基准时钟下的卫星时频信号以及标准电池214提供的标准电压信号,并将基准时钟下的卫星时频信号和标准电压信号转换的第一频率信号传输至控制模块215,第一频率信号包括标准电压信号转换的标准电压频率信号;The standard device
控制模块215用于根据基准时钟下的卫星时频信号和第一频率信号判断标准装置幅值处理模块212是否自检合格,得到第一判断结果,并将第一判断结果传输至智能终端300,并通过智能终端300同步传输至远端服务器1;The
当标准装置幅值处理模块212自检合格之后,标准装置幅值处理模块212还用于切换至标准装置22溯源电路,接收放大或缩小后的交流电信号,并将放大或缩小后的交流电信号进行频率转换并在与卫星授时模块213获取基准时钟下卫星时频信号经过所述标准装置幅值处理模块212的与门相与后,得到第二频率信号,并将第二频率信号和卫星时频信号输入至控制模块215内;After the standard device
控制模块215还用于根据接收的第二频率信号和卫星时频信号判断标准装置22是否符合标准,得到第二判断结果,并将第二判断结果传输至智能终端300,并通过智能终端300同步传输至远端服务器1。The
在本实施例中,在对待检仪器23进行检定或校准之前,需要对标准装置22进行溯源,以保证待检仪器23检定或校准的准确性。In this embodiment, before the verification or calibration of the
其中,在标准装置22溯源时,首先响应溯源命令,断开与待检仪器23的连接而连接整检溯源装置21,启动标准装置22溯源程序,标准装置22将交流电信号传输至交流信号调理模块211内,在交流电信号经过交流信号调理模块211进行放大或缩小处理之后,将放大或缩小后的交流电信号传输至标准装置幅值处理模块212,其中,交流电信号包括工作电压信号、工作电流信号、差值电流信号和差值电压信号。Among them, when the
在根据放大或缩小后的交流电信号对标准装置22进行溯源之前,先利用标准电池214的标准电压信号转换成基准时钟下的频率信号和卫星授时模块213的基准时钟下的卫星时频信号对标准装置幅值处理模块212进行自检,判断标准装置幅值处理模块212是否合格,得到第一判断结果,当标准装置幅值处理模块212合格之后,再利用标准装置幅值处理模块212对标准装置22进行溯源,即将放大或缩小后的交流电信号转换为直流电压信号,然后将直流电压信号和卫星时频信号经过标准装置幅值处理模块212和卫星授时模块213配合处理之后,传输至控制模块215内,控制模块215根据接收的处理后的直流电压信号和卫星时频信号判断标准装置22是否符合标准,得到第二判断结果,然后控制模块215将第一判断结果和第二判断结果均同步传输至智能终端300,并通过智能终端300同步传输至远端服务器1,以进行存档。Before the source of the standard device 22 is traced according to the amplified or reduced AC signal, the standard voltage signal of the standard battery 214 is used to convert the frequency signal under the reference clock and the satellite time-frequency signal pair under the reference clock of the satellite timing module 213 The standard device amplitude processing module 212 carries out self-inspection, judges whether the standard device amplitude processing module 212 is qualified, obtains the first judgment result, after the standard device amplitude processing module 212 is qualified, then utilizes the standard device amplitude processing module 212 to standard The device 22 traces the source, that is, the amplified or reduced AC signal is converted into a DC voltage signal, and then the DC voltage signal and the satellite time-frequency signal are processed by the standard device amplitude processing module 212 and the satellite timing module 213, and then transmitted to the control In the module 215, the control module 215 judges whether the standard device 22 conforms to the standard according to the received processed DC voltage signal and the satellite time-frequency signal, and obtains the second judgment result, and then the control module 215 combines the first judgment result and the second judgment result Synchronously transmitted to the smart terminal 300, and synchronously transmitted to the remote server 1 through the smart terminal 300 for archiving.
在本实施例中,第一判断结果包括标准装置幅值处理模块212符合标准和标准装置幅值处理模块212不符合标准;第二判断结果包括标准装置22符合标准和标准装置22不符合标准。In this embodiment, the first judgment result includes that the standard device
在本实施例中,标准装置22的可选型号为授权实用新型专利ZL201620305227.1的数字分压式互感器校验仪整体检定装置,卫星授时模块213的可选型号为GPS卫星授时模块、北斗卫星授时模块、格洛纳斯卫星授时模块和伽利略卫星授时模块中的任意一种或多种的组合;控制模块215的可选型号为STM32F103C8T6的MCU微处理器。In this embodiment, the optional model of the
作为本实施例的一种可选实施方式,标准装置幅值处理模块212包括RMS-DC真有效值转换器U2、V/F电压频率转换器U3、与门U4和继电器J4;As an optional implementation of this embodiment, the standard device
RMS-DC真有效值转换器U2的输入端与交流信号调理电路电连接,RMS-DC真有效值转换器U2的输出端与继电器J4的第一辅助触点电连接,继电器J4的第二辅助触点与标准电池214电连接,继电器J4的第三辅助触点分别与控制模块215的数字信号输入端和V/F电压频率转换器U3的输入端电连接,V/F电压频率转换器U3的输出端和卫星授时模块213的输出端均连接于与门U4的输入端,与门U4的输出端连接于控制模块215的脉冲信号输入端;The input end of the RMS-DC true effective value converter U2 is electrically connected with the AC signal conditioning circuit, the output end of the RMS-DC true effective value converter U2 is electrically connected with the first auxiliary contact of the relay J4, and the second auxiliary contact of the relay J4 The contact is electrically connected to the
RMS-DC真有效值转换器U2用于将放大或缩小后的交流电信号转换为数字信号,并将数字信号输入至V/F电压频率转换器U3;The RMS-DC true effective value converter U2 is used to convert the amplified or reduced AC signal into a digital signal, and input the digital signal to the V/F voltage-frequency converter U3;
继电器J4用于在对标准装置22进行校准时,控制RMS-DC真有效值转换器U2和V/F电压频率转换器U3导通,或者在进行自检时控制标准电池214与V/F电压频率转换器U3导通;The relay J4 is used to control the conduction of the RMS-DC true effective value converter U2 and the V/F voltage-frequency converter U3 when the
V/F电压频率转换器U3用于将数字信号转换为脉冲信号,并传输至与门U4内;The V/F voltage-frequency converter U3 is used to convert the digital signal into a pulse signal and transmit it to the AND gate U4;
与门U4用于将脉冲信号和卫星时频信号进行相与,得到基准时钟下放大后的交流电信号的第二频率信号,并将基准时钟下第二频率信号和卫星时频信号传输至控制模块215内。The AND gate U4 is used to AND the pulse signal and the satellite time-frequency signal to obtain the second frequency signal of the amplified AC signal under the reference clock, and transmit the second frequency signal under the reference clock and the satellite time-frequency signal to the control within
当对标准装置幅值处理模块212进行自检时,首先控制模块215控制继电器J4使标准电池214与V/F电压频率转换器U3导通,标准电池214输出1V标准电压至V/F电压频率转换器U3,V/F电压频率转换器U3将1V标准电压信号转换为脉冲信号,然后将脉冲信号传输至与门U4内,然后将卫星授时模块213接收的基准时钟下的卫星时频信号同步传输至与门U4内,与门U4将该脉冲信号和卫星时频信号相与后,得到基准时钟下的标准电池214的第一频率信号,然后将基准时钟下的标准电池214的第一频率信号传输至控制模块215中,控制模块215根据基准时钟下的标准电池214通过V/f电压频率转换器U3转换的第一频率信号和预设的频率信号判断V/F电压频率转换器U3是否合格。When performing a self-test on the standard device
例如,选择卫星的基准时钟为1秒,则第二转换频率为10kHz,此时标准电池214选用0.01级1V二等标准电池214,则标准电池214输出的电压为1V,当1V标准电压经过V/F电压频率转换器U3的将1V标准电压转换为脉冲信号的频率为10kHz时,V/F电压频率转换器U3符合标准,可以利用V/F电压频率转换器U3对标准装置22校准。当第一转换频率超出预设范围时,其中预设范围为9.998kHz-10.002kHz,则此时V/F电压频率转换器U3存在误差,需要对V/F电压频率转换器U3进行维修或更换,再次自检合格才能对标准装置22进行溯源。For example, if the reference clock of the satellite is selected as 1 second, then the second conversion frequency is 10kHz. Now, the
作为本实施例的一种可选实施方式,交流信号调理模块211包括用于放大或缩小工作电流或工作电压信号的程控放大器U1、调理工作电流信号的一次电流1A和5A可调变比通过电磁转换为二次电流固定20mA的电流互感器CT及转电压信号的电阻器R0、工作电压分压用的电阻器R1、电阻器R2和电阻器R6、用于放大差流或差压信号程控放大器U5、差值电流分压电阻器R3和电阻器R7、差值电压电阻器R4、电阻器R5和电阻器R8、用于切换工作电流和工作电压信号的继电器J1、用于切换差流和差压信号继电器J2、用于切换工作电压100V/√3和100V等电压等级的继电器J5、用于切换工作电流1A和5A等电流等级的差流信号的继电器J6、用于切换工作电压100V/√3和100V等电压等级的差压信号的继电器J7,其中,本实施例中的电阻器均为精密电阻。As an optional implementation of this embodiment, the AC
电流互感器CT的一次侧连接于标准装置22的第一工作电流输出端,电流互感器CT二次侧的两端并联电阻器R0,其中二次侧的一端接地,另一端连接于继电器J1的第一辅助触点;继电器J5的第一辅助触点连接于标准装置22的第一工作电压信号输出端,继电器J5的第二辅助触点连接于电阻器R1的一端,电阻器R1的另一端连接于电阻器R2的一端,电阻器R2的另一端分别连接于标准装置22的第二工作电压信号输出端和接地,电阻器R1与电阻器R2的连接点连接于继电器J1的第二辅助触点;继电器J5的第三辅助触点连接于电阻器R6的一端,电阻器R6的另一端连接于继电器J1的第二辅助触点,继电器J1的第三辅助触点连接于程控放大器U1的输入端,其中,本实施例中的电阻器均为精密电阻。The primary side of the current transformer CT is connected to the first working current output terminal of the
在本实施例中,差值电压和差值电流的放大处理的电路连接方式与工作电流和工作电压的连接方式类似,在此不多做赘述。In this embodiment, the circuit connection mode of the amplification processing of the differential voltage and the differential current is similar to the connection mode of the working current and the working voltage, and will not be repeated here.
在对标准装置22溯源时,标准装置22输出不同类型的交流电信号,然后根据《JJG169互感器校验仪》的规程设定检定点后将放大或缩小处理后的交流电信号传输至标准装置幅值处理模块212内,以便对标准装置22进行校准和溯源。When tracing the source of the
例如,按照电流互感器检定规程,当待检测工作电流信号为电流5A或者1A时,校准点为1%、5%、20%、100%、120%,经过1A-or-5A/20mA的电流互感器CT调理电流信号是0.0002A、0.001A、0.004A、0.02A、0.024A,转电压信号是0.01V、0.05V、0.2V、1V、1.2V,对待检测信号的放大倍数分别为×100、×20、×5、×1、×1。工作电流信号除了5A或者1A,还有0.5A等其它工作电流信号;For example, according to the verification regulations of current transformers, when the working current signal to be detected is 5A or 1A, the calibration points are 1%, 5%, 20%, 100%, 120%, and the current of 1A-or-5A/20mA Transformer CT conditioning current signal is 0.0002A, 0.001A, 0.004A, 0.02A, 0.024A, the conversion voltage signal is 0.01V, 0.05V, 0.2V, 1V, 1.2V, the magnification of the signal to be detected is ×100 , ×20, ×5, ×1, ×1. In addition to 5A or 1A, the working current signal also has other working current signals such as 0.5A;
按照电压互感器检定规程,当待检测工作电压信号为电压100V/√3或者100V时,校准点为20%、50%、80%、100%、120%,调理电压信号是0.2V、0.5V、0.8V、1V、1.2V,对待检测信号的放大倍数对应为×5、×2、×1.25、×1、×1。工作电压信号除了100V/√3或者100V,还有150V和220V等其它工作电压信号;According to the verification regulations of voltage transformers, when the working voltage signal to be detected is 100V/√3 or 100V, the calibration points are 20%, 50%, 80%, 100%, 120%, and the conditioning voltage signals are 0.2V, 0.5V , 0.8V, 1V, 1.2V, the amplification factor of the signal to be detected corresponds to ×5, ×2, ×1.25, ×1, ×1. In addition to 100V/√3 or 100V, there are other working voltage signals such as 150V and 220V;
按照电流互感器检定规程,待检测差流信号一般不超过工作额定电流1A或者5A的10%,差流信号最大设0.1A或者0.5A,校准点为1%、5%、20%、100%、120%,调理电压信号是0.01V、0.05V、0.2V、1V、1.2V,对待检测信号的放大倍数分别为×1000、×200、×50、×10、×10;According to the current transformer verification regulations, the differential current signal to be detected generally does not exceed 10% of the rated operating current of 1A or 5A, the maximum differential current signal is set to 0.1A or 0.5A, and the calibration points are 1%, 5%, 20%, and 100%. , 120%, the conditioning voltage signal is 0.01V, 0.05V, 0.2V, 1V, 1.2V, the magnification of the signal to be detected is ×1000, ×200, ×50, ×10, ×10 respectively;
按照电压互感器检定规程,待检测差压信号一般不超过电流100V/√3或者100V的10%即5.7737V或者10V,校准点为20%、50%、80%、100%、120%,调理电压信号是0.2V、0.5V、0.8V、1V、1.2V,对待检测信号的放大倍数分别为×50、×20、×12.5、×10、×10。According to the verification regulations of voltage transformers, the differential pressure signal to be detected generally does not exceed 10% of the current 100V/√3 or 100V, that is, 5.7737V or 10V, and the calibration points are 20%, 50%, 80%, 100%, and 120%. The voltage signals are 0.2V, 0.5V, 0.8V, 1V, 1.2V, and the amplification factors of the signals to be detected are ×50, ×20, ×12.5, ×10, ×10 respectively.
为了使标准装置22交流矢量信号真实准确,整检溯源装置21还包括标准装置相位处理模块216,标准装置相位处理模块216的输入端分别连接于交流信号调理模块211的输出端A和输出端B,标准装置相位处理模块216的输出端连接于控制模块215的输入端;In order to make the AC vector signal of the
标准装置相位处理模块216用于测量工作和差值交流矢量信号的相位值,并将相位值传输至控制模块215内;The standard device
控制模块215用于接收相位值,并根据相位值判定标准装置22输出相位值是否符合标准,得到第三判断结果,并将第三判断结果传输至智能终端300,并通过智能终端300同步传输至远端服务器1;The
在交流信号调理模块211对标准装置22输出的交流电信号进行处理之后,需要对放大或缩小处理后的交流电信号的相位进行判断,以交流矢量信号处理方式进一步判断标准装置22的准确度。After the AC
作为本实施例的一种可选实施方式,标准装置相位处理模块216包括第一过零检测子模块Φ6、第二过零检测子模块Φ4、第一分频器Φ5、第二分频器Φ3、与非门Φ1、锁相环Φ8、第三分频器Φ7和与门Φ2;As an optional implementation of this embodiment, the standard device
第一过零检测子模块Φ6的输入端连接于程控放大器U1的输出端,第一过零检测子模块Φ6的输出端分别连接于第一分频器Φ5的输入端和锁相环Φ8的输入端,第一分频器Φ5的输出端连接于与非门Φ1的第一输入端,锁相环Φ8的输出端连接于与门Φ2的第一输入端,第三分频器Φ7的输入端连接于所述锁相环Φ8的输出端,第三分频器Φ7的输出端连接于锁相环Φ8的输入端;The input end of the first zero-crossing detection sub-module Φ6 is connected to the output end of the program-controlled amplifier U1, and the output end of the first zero-crossing detection sub-module Φ6 is respectively connected to the input end of the first frequency divider Φ5 and the input of the phase-locked loop Φ8 The output terminal of the first frequency divider Φ5 is connected to the first input terminal of the NAND gate Φ1, the output terminal of the phase-locked loop Φ8 is connected to the first input terminal of the AND gate Φ2, and the input terminal of the third frequency divider Φ7 Connected to the output end of the phase-locked loop Φ8, the output end of the third frequency divider Φ7 is connected to the input end of the phase-locked loop Φ8;
第二过零检测子模块Φ4的输入端连接于程控放大器U5的输出端,第二过零检测子模块Φ4的输出端连接于第二分频器Φ3的输入端,第二分频器Φ3的输出端连接于与非门Φ1的第二输入端,与非门Φ1的输出端连接于与门Φ2的第二输入端,与门Φ2的输出端连接于控制模块215的输入端。The input end of the second zero-crossing detection sub-module Φ4 is connected to the output end of the program-controlled amplifier U5, the output end of the second zero-crossing detection sub-module Φ4 is connected to the input end of the second frequency divider Φ3, and the output end of the second frequency divider Φ3 The output end is connected to the second input end of the NAND gate Φ1 , the output end of the NAND gate Φ1 is connected to the second input end of the AND gate Φ2 , and the output end of the AND gate Φ2 is connected to the input end of the
在本实施例中,在对标准装置22进行校准的过程中,标准装置22通过交流信号调理模块211将交流电信号传输至标准装置相位处理模块216内,交流信号调理模块211对交流工作电压、交流工作电流、差值工作电压或差值工作电流进行放大或缩小至设计阈值为1V(校准点100%),并同时传输至第一过零检测子模块Φ6和第二过零检测子模块Φ4内,交流工作电压或差值工作电压传输至第一过零检测子模块Φ6,交流工作电流或差值工作电流传输至第二过零检测子模块Φ4,经过第一过零检测子模块Φ6和第二过零检测子模块Φ4将50Hz交流电信号转换为50Hz正脉冲信号,然后分别用第一分频器Φ5和第二分频器Φ3将交流工作信号和差值工作信号的正脉冲信号由50Hz转换为0.5Hz,在经过与非门Φ1得到相位差;交流工作电压或交流工作电流的过零脉冲信号同时输入至锁相环Φ8和第三分频器Φ7把50Hz的工频信号倍频成1080000Hz,与非门Φ1相位值和1080000Hz同时经与门Φ2生成相位脉冲信号传输至控制模块215的计数器计数,完成相位测量,得到相位测量数据。In this embodiment, during the process of calibrating the standard device 22, the standard device 22 transmits the AC signal to the standard device phase processing module 216 through the AC signal conditioning module 211, and the AC signal conditioning module 211 controls the AC operating voltage, The AC operating current, differential operating voltage or differential operating current is amplified or reduced to a design threshold of 1V (calibration point 100%), and simultaneously transmitted to the first zero-crossing detection sub-module Φ6 and the second zero-crossing detection sub-module Φ4 Inside, the AC operating voltage or differential operating voltage is transmitted to the first zero-crossing detection sub-module Φ6, the AC operating current or differential operating current is transmitted to the second zero-crossing detection sub-module Φ4, and passes through the first zero-crossing detection sub-module Φ6 and The second zero-crossing detection sub-module Φ4 converts the 50Hz AC signal into a 50Hz positive pulse signal, and then uses the first frequency divider Φ5 and the second frequency divider Φ3 to convert the positive pulse signal of the AC working signal and the differential working signal into 50Hz is converted to 0.5Hz, and the phase difference is obtained through the NAND gate Φ1; the zero-crossing pulse signal of the AC operating voltage or AC operating current is simultaneously input to the phase-locked loop Φ8 and the third frequency divider Φ7 to multiply the frequency of the 50Hz power frequency signal 1080000Hz, the phase value of the NAND gate Φ1 and 1080000Hz are simultaneously generated by the AND gate Φ2 and transmitted to the counter of the control module 215 for counting, and the phase measurement is completed to obtain the phase measurement data.
用1080000Hz的脉冲对50Hz计数,即每1个脉冲等于1′,由于对50Hz分频100倍使相位也扩大了100倍,即每个脉冲对应的值是0.01′,50000个脉冲对应的值就是500′,控制模块215根据接收的相位测量数据范围判断标准装置22的相位是否符合标准,得到第三判断结果,第三判断结果包括标准装置22符合标准或标准装置22不符合标准。Use 1080000Hz pulses to count 50Hz, that is, every 1 pulse is equal to 1′, and the phase is also enlarged by 100 times due to the frequency division of 50Hz by 100 times, that is, the value corresponding to each pulse is 0.01′, and the value corresponding to 50000 pulses is 500', the
只有经过标准装置幅值处理模块212和标准装置相位处理模块216判定标准装置22的幅值和相位均符合标准时,标准装置22才是符合标准。Only when the standard device
当标准装置幅值处理模块212和标准装置22先后完成自检和溯源时并且标准装置相位处理模块216相位测量准确无误,标准装置22才能够对待检仪器23进行检定或校准。When the standard device
在整检溯源装置21自检和溯源均完成之后,智能终端300启动标准装置22检定或校准程序,此时控制标准装置22断开与整检溯源装置21的连接并切换连接至待检仪器23,开始对待检仪器23进行检定或校准。After the self-inspection and traceability of the whole inspection and
在本实施例中,由于其他厂家的待检仪器23的通信协议不公开,且无国家和行业针对互感器校验仪器制订的通信规约,远程检定校准过程需要采用摄像头24在线实时监督监视。In this embodiment, since the communication protocol of the equipment to be tested 23 of other manufacturers is not disclosed, and there is no communication protocol formulated by the country and the industry for the transformer calibration instrument, the remote verification and calibration process needs to use the camera 24 for online real-time supervision and monitoring.
摄像头24用于对待检仪器23技术参数和显示示值进行在线监拍,得到拍摄视频图像,并对拍摄视频图像进行图像AI自主识别,得到识别结果,并将识别结果传输至智能终端300,并通过智能终端300同步传输至远端服务器1。The camera 24 is used for on-line monitoring of the technical parameters and display values of the instrument to be inspected 23, obtains the captured video images, and performs image AI autonomous identification on the captured video images to obtain the identification results, and transmits the identification results to the
在得到拍摄视频图像之后,经过软件深度学习识别确认,然后转换成待检仪器23的示值数据,提高识别率,并传输至智能终端300,通过互联网同步传输至远端服务器1进行在线实时监督监视,再根据示值数据转换成误差数据,方便对待检仪器进行检定或校准。After obtaining the captured video image, it is recognized and confirmed by software deep learning, and then converted into the indication data of the
在本实施例中,需要说明的是,本申请的图像AI自主识别采用的为现有技术,只要能够实现自动补光、自主变焦和自主识别功能即可,故本申请不再做过多阐述和具体限定。In this embodiment, it should be noted that the image AI self-recognition of this application adopts the existing technology, as long as it can realize the functions of automatic light supplement, automatic zoom and self-recognition, so this application will not elaborate too much and specific limits.
在得到待检仪器23的示值数据之后,智能终端300能够根据待检仪器23的示值数据判断待检仪器23的准确度,从而根据准确度符合标准出具检定证书或校准报告,不符合标准则出具结果通知书。After obtaining the indication data of the instrument to be inspected 23, the
本申请实施例提供的一种互感器校验仪器远程校准系统的实施原理为:在对待检仪器23进行校准之前,需要对整检溯源装置21进行自检,在整检溯源装置21进行自检的过程中,首先控制继电器J4使标准电池214与V/F电压频率转换器U3导通,使标准电池214输出的标准电压输入至与门U4,同时卫星授时模块213获取的基准时钟下的卫星时频信号传输至与门U4,经过与门U4相与后,得到V/F电压频率转换器U3转换的基准时钟下的第一频率信号,将第一转换频率输入至控制模块215内,控制模块215根据接收到的基准时钟下的第一频率信号和卫星时频信号判断V/F电压频率转换器U3是否合格,当第一频率信号相对卫星时频信号的误差在V/F电压频率转换器U3的精度范围内时,控制模块215判定V/F电压频率转换器U3合格;当第一频率信号相对卫星时频信号的误差不在V/F电压频率转换器U3的精度范围内时,控制模块215判定V/F电压频率转换器U3不合格,生成报警信号进行运维和更换。The implementation principle of a remote calibration system for a transformer calibration instrument provided in the embodiment of the present application is as follows: before the
在判定V/F电压频率转换器U3合格之后,控制标准装置22断开与待检仪器23的连接,对标准装置22进行校准,在对标准装置22进行校准时,标准装置22输出交流电信号至交流信号调理模块211,然后交流电信号经过对应的程控放大器U1和程控放大器U5进行放大或缩小处理之后,将放大或缩小后的交流电信号分别传输至标准装置幅值处理模块212和标准装置相位处理模块216,使标准装置幅值处理模块212对交流电信号的幅值进行判定得到第二判断结果,标准装置相位处理模块216对交流电信号的相位差进行判定,得到第三判断结果,控制模块215将第二判断结果和第三判断结果传输至智能终端300并通过智能终端300同步传输至远端服务器1,智能终端300根据第二判断结果和第三判断结果确定标准装置22是否符合标准。After judging that the V/F voltage-frequency converter U3 is qualified, the control
当第二判断结果和第三判断结果均为符合标准时,才能判定标准装置22符合标准;当第二判断结果和/或第三判断结果为标准装置22不符合标准时,标准装置22不符合标准。When both the second judgment result and the third judgment result meet the standard, it can be determined that the
在判定标准装置22符合标准之后,控制标准装置22断开与整检溯源装置21的连接并切换至于待检仪器23连接,对待检仪器23进行检定或校准。After judging that the
参照图3,本申请实施例还提供一种互感器校验仪器远程校准方法,该方法的主要流程描述如下(步骤S101~步骤S110):Referring to Fig. 3, the embodiment of the present application also provides a remote calibration method for a transformer calibration instrument, the main flow of the method is described as follows (step S101 to step S110):
步骤S101,标准装置22响应于智能终端300发出的开始溯源命令,断开与待检仪器23的连接并与整检溯源装置21连接,产生且传输交流电信号至交流信号调理模块211。Step S101 , the
步骤S102,交流信号调理模块211接收交流电信号,并对交流电信号进行放大或缩小处理,得到放大或缩小后的交流电信号,并将放大或缩小后的交流电信号传输至标准装置幅值处理模块212和标准装置相位处理模块216。Step S102, the AC
步骤S103,标准装置幅值处理模块212在得到放大或缩小后的交流电信号之前进行自检,获取卫星授时模块213提供的基准时钟下的卫星时频信号以及标准电池214提供的标准电压信号,并将卫星时频信号和标准电压信号转换的第一频率信号并传输至所述控制模块215,其中,所述第一频率信号包括标准电压信号转换的标准电压频率信号。Step S103, the standard device
步骤S104,控制模块215根据卫星时频信号和第一频率信号判断标准装置幅值处理模块212是否自检合格,得到第一判断结果,并将第一判断结果传输至智能终端300,以使智能终端300将第一判断结果同步传输至远端服务器1。Step S104, the
步骤S105,当第一判断结果为标准装置幅值处理模块212自检合格之后,标准装置幅值处理模块212切换至标准装置22溯源电路,接收放大或缩小后的交流电信号,并将放大或缩小后的交流电信号进行频率转换并在与卫星授时模块213获取基准时钟下卫星时频信号与门U4相与后,得到第二频率信号,将第二频率信号和卫星时频信号输入至控制模块215内。Step S105, when the first judgment result is that the standard device
步骤S106,控制模块215根据接收的第二频率信号和卫星时频信号判断标准装置22的幅值是否符合标准,得到第二判断结果,并将第二判断结果传输至智能终端300,以使智能终端300将第二判断结果同步传输至远端服务器1。Step S106, the
步骤S107,标准装置相位处理模块216用于测量交流电信号的相位值,并将相位值传输至控制模块215内。Step S107 , the standard device
步骤S108,控制模块215接收相位值,并根据相位值范围判定标准装置22输出相位值是否符合标准,得到第三判断结果,并将第三判断结果传输至智能终端300,以使智能终端300将第三判断结果同步传输至远端服务器1。Step S108, the
步骤S109,智能终端300根据接收的第二判断结果和第三判断结果判定标准装置22的幅值和相位是否符合标准。In step S109, the
步骤S110,当标准装置22的幅值符合标准之后,智能终端300控制标准装置22与待检仪器23连接,同时断开与整检溯源装置21的连接,利用标准装置22对待检仪器23进行检定或校准。Step S110, when the amplitude of the
在本实施例中,在利用标准装置22对待检仪器23进行检定或校准之后,方法还包括:获取待检仪器23的拍摄视频图像;基于预设特征模型对拍摄视频进行基于深度学习的特征提取,得到准确的待检仪器23示数信息;基于示数信息和标准装置22输出的电信号数据生成待检仪器23的检定证书或校准报告以及结果通知书;基于检定证书或校准报告生成待检仪器23的待检仪器档案,并进行保存。In this embodiment, after using the
在本实施例中,为了增加检定或校准过程的真实有效和数据结论的权威性,在控制标准装置22对待检仪器23进行检定或校准时,利用拍摄设备对待检仪器23的示值进行在线监拍,得到拍摄视频,利用预设特征模型对拍摄视频中的示值进行特征提取,得到特征信息,根据特征信息生成检定证书或校准报告以及结果通知书,并根据检定证书或校准报告生成待检仪器档案;其中,待检仪器档案包括拍摄视频和待检仪器23的基础信息,待检仪器23的基础信息包括待检仪器23的名称、编号和所属单位,特征信息包括第一转换频率和第二转换频率。In this embodiment, in order to increase the veracity and validity of the verification or calibration process and the authority of the data conclusion, when the control
将得到的特征信息输入至检定证书或校准报告以及结果通知书的模板内,并在每个检定证书或校准报告以及结果通知书模板内生成与待检仪器23相关的二维码,方便用户通过扫描二维码了解校准报告的内容。Input the obtained characteristic information into the template of the verification certificate or calibration report and the result notice, and generate a two-dimensional code related to the
在得到检定证书或校准报告以及结果通知书之后,需要在智能终端300中进行存储,以便后续对待检仪器23进行追踪和了解历史情况。After the verification certificate or calibration report and the result notification are obtained, they need to be stored in the
进一步地,在基于检定证书或校准报告以及结果通知书生成待检仪器23的待检仪器档案,并进行保存之后,方法还包括:基于检定或校准过程各种实时数据采集信息建立数字孪生模型;基于数字孪生模型生成校准过程文件;将检定校准过程文件通过区块链技术传输至远端服务器1;在远端服务器1内建立信息数据库;基于信息数据库对校准过程文件进行存储。Further, after generating and saving the file of the instrument to be inspected 23 based on the verification certificate or calibration report and the result notification, the method further includes: establishing a digital twin model based on various real-time data collection information during the verification or calibration process; Generate a calibration process file based on the digital twin model; transmit the calibration process file to the remote server 1 through blockchain technology; establish an information database in the remote server 1; store the calibration process file based on the information database.
在本实施例中,由于在对待检仪器23进行校准之后,对待检仪器23的校准过程进行存储,减小丢失的可能性,故需要根据检定或校准过程实时数据采集信息建立数字孪生模型,根据数字孪生模型的模拟过程生成检定或校准过程文件,为了保证待检仪器23在传输至远端服务器1过程中不被篡改和丢失,采用区块链传输技术对检定或校准文件进行传输,能够增强检定或校准文件在传输过程中的稳定性和安全性,更加方便。In this embodiment, since the calibration process of the
同时在远端服务器1建立信息数据库,将每一个待检仪器23的待检仪器档案存储在信息数据库内,能够保留对待检仪器23的检定或校准过程,方便进行存档和查询。At the same time, an information database is established on the remote server 1, and the file of each
图4为本申请实施例提供的智能终端300的结构框图。FIG. 4 is a structural block diagram of a
如图4所示,智能终端300包括处理器301和存储器302,还可以进一步包括信息输入/信息输出(I/O)接口303、通信组件304中的一种或多种以及通信总线305。As shown in FIG. 4 , the
其中,处理器301用于控制智能终端300的整体操作,以完成上述的互感器校验仪器远程校准方法的全部或部分步骤;存储器302用于存储各种类型的数据以支持在智能终端300的操作,这些数据例如可以包括用于在该智能终端300上操作的任何应用程序或方法的指令,以及应用程序相关的数据。该存储器302可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,SRAM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-OnlyMemory,EEPROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、只读存储器(Read-Only Memory,ROM)、磁存储器、快闪存储器、磁盘或光盘中的一种或多种。Among them, the
I/O接口303为处理器301和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件304用于智能终端300与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(NearField Communication,简称NFC),2G、3G或4G,或它们中的一种或几种的组合,因此相应的该通信组件304可以包括:Wi-Fi部件,蓝牙部件,NFC部件。The I/
智能终端300可以被一个或多个应用专用集成电路 (Application SpecificIntegrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field ProgrammableGate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述实施例给出的互感器校验仪器远程校准方法。The
通信总线305可包括一通路,在上述组件之间传输信息。通信总线305可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA (ExtendedIndustry Standard Architecture,扩展工业标准结构)总线等。通信总线305可以分为地址总线、数据总线、控制总线等。
智能终端300可以包括但不限于移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端,还可以为服务器等。The
术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。The term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements but also other elements not expressly listed elements, or also elements inherent in such a process, method, article, or apparatus.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的申请范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离前述申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中申请的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principle. Those skilled in the art should understand that the application scope involved in this application is not limited to the technical solutions formed by the specific combination of the above-mentioned technical features, but should also cover the technical solutions made by the above-mentioned technical features or Other technical solutions formed by any combination of equivalent features. For example, a technical solution formed by replacing the above-mentioned features with (but not limited to) technical features with similar functions in this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211678776.XA CN115656910B (en) | 2022-12-27 | 2022-12-27 | Remote calibration system, method and equipment for mutual inductor calibration instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211678776.XA CN115656910B (en) | 2022-12-27 | 2022-12-27 | Remote calibration system, method and equipment for mutual inductor calibration instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115656910A CN115656910A (en) | 2023-01-31 |
CN115656910B true CN115656910B (en) | 2023-04-21 |
Family
ID=85023260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211678776.XA Active CN115656910B (en) | 2022-12-27 | 2022-12-27 | Remote calibration system, method and equipment for mutual inductor calibration instrument |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115656910B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117310240B (en) * | 2023-11-30 | 2024-02-09 | 国网山西省电力公司营销服务中心 | Signal source generation system and method for calibrating device of transformer calibrator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109725281A (en) * | 2019-01-18 | 2019-05-07 | 国网江苏省电力有限公司电力科学研究院 | A method and system for remote traceability of digital electric energy meter based on quantum technology |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2308684C1 (en) * | 2006-06-20 | 2007-10-20 | Общество с ограниченной ответственностью "ВИНТЕЛ" | Method of producing multi-dimension calibrating models |
CN101738592B (en) * | 2010-01-05 | 2013-05-15 | 国网电力科学研究院武汉南瑞有限责任公司 | Intelligent overall verification device of transformer calibrator and its intelligent overall verification system |
JP5864313B2 (en) * | 2012-03-14 | 2016-02-17 | 株式会社ダイヘン | Calibration parameter generation system |
CN104330759B (en) * | 2014-11-06 | 2018-05-04 | 国家电网公司 | The magnitude tracing method of low-voltage current mutual inductor automatic calibration system |
CN104330765B (en) * | 2014-11-12 | 2017-07-18 | 成都天兴电气有限公司 | Electric energy meter field calibrating installation based on satellite navigation system |
CN107748344A (en) * | 2017-09-06 | 2018-03-02 | 国家电网公司 | Full-automatic mutual inductor tester whole checking device and calibration method |
CN207473077U (en) * | 2017-11-16 | 2018-06-08 | 云南电网有限责任公司电力科学研究院 | A kind of transformer checking system based on image recognition technology |
CN109407036B (en) * | 2018-12-29 | 2023-12-15 | 太原山互科技有限公司 | A fully automatic calibration device for batch current transformers based on PLC control |
CN112162231A (en) * | 2020-09-30 | 2021-01-01 | 中国电力科学研究院有限公司 | Calibration system and method for electronic transformer calibrator |
CN113156356B (en) * | 2021-05-17 | 2022-03-29 | 河北大学 | A voltage source remote calibration system and calibration method |
CN113093087A (en) * | 2021-06-04 | 2021-07-09 | 武汉磐电科技股份有限公司 | Method, device and equipment for checking instrument integrity of mutual inductor and storage medium |
CN114280526B (en) * | 2022-03-03 | 2022-05-31 | 武汉格蓝若智能技术有限公司 | Digital differential traceability system and method for electronic transformer calibrator |
-
2022
- 2022-12-27 CN CN202211678776.XA patent/CN115656910B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109725281A (en) * | 2019-01-18 | 2019-05-07 | 国网江苏省电力有限公司电力科学研究院 | A method and system for remote traceability of digital electric energy meter based on quantum technology |
Also Published As
Publication number | Publication date |
---|---|
CN115656910A (en) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106338706B (en) | A kind of methods, devices and systems of electric energy metering device global error detection | |
CN108761375A (en) | A kind of low-power consumption program control type current mutual inductor field detecting device | |
CN105577753A (en) | A remote verification system of digital multimeter based on cloud service mode | |
CN105116369A (en) | Radio frequency radiation disturbance rejection degree test apparatus and system | |
CN103487695A (en) | Detection device for merging unit based on analog input | |
CN113760718A (en) | Automatic testing method and device | |
CN115656910B (en) | Remote calibration system, method and equipment for mutual inductor calibration instrument | |
CN114879122A (en) | Method, device and equipment for detecting abnormal operation of three-phase three-wire intelligent electric energy meter | |
CN109975607B (en) | Power distribution station area capacity identification method, device, storage medium and electronic equipment | |
CN110687492A (en) | Method and system for monitoring detection quality of automatic verification system of low-voltage current transformer on line | |
CN110888100A (en) | A single-phase smart energy meter online on-load detection system and method | |
CN107144809A (en) | A kind of portable system and method for being used to carry out digitalized electrical energy meter live on-line testing | |
CN111781553B (en) | System and method for verifying voltage divider | |
CN107102287A (en) | Electric energy meter field calibration method | |
CN103926550A (en) | Device and method for checking electric transformer based on virtual instrument | |
CN201392602Y (en) | A program-controlled instrument virtual experiment system with network control and management functions | |
CN103983935A (en) | Indicating instrument detecting system and method | |
CN116359833B (en) | Centralized verification method, device and equipment for electric energy meter and storage medium | |
CN103675746A (en) | High-voltage switch tester calibration device and calibration method | |
CN203799005U (en) | Error verification system for high-voltage metering box | |
CN111693924A (en) | System and method for detecting monitoring performance of voltage transformer metering performance on-line monitoring device | |
CN206773168U (en) | Clamp on amperemeter automatic checkout system | |
CN205017271U (en) | Photovoltaic power plant system efficiency detection device | |
CN204855771U (en) | Electric energy quality on -line monitoring device's test system | |
CN115877311A (en) | A Detection Method Based on Meter Measurement Error Compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |