CN115651641A - Water vapor fluorescence sensor and preparation method thereof - Google Patents
Water vapor fluorescence sensor and preparation method thereof Download PDFInfo
- Publication number
- CN115651641A CN115651641A CN202211156457.2A CN202211156457A CN115651641A CN 115651641 A CN115651641 A CN 115651641A CN 202211156457 A CN202211156457 A CN 202211156457A CN 115651641 A CN115651641 A CN 115651641A
- Authority
- CN
- China
- Prior art keywords
- water vapor
- fluorescence sensor
- fluorescence
- sensor according
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 238000002360 preparation method Methods 0.000 title abstract description 25
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000013329 compounding Methods 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000000376 reactant Substances 0.000 claims description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 9
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 7
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 claims description 6
- 150000007530 organic bases Chemical class 0.000 claims description 5
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 claims description 4
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 claims description 3
- PIWMYUGNZBJTID-UHFFFAOYSA-N 2,5-dihydroxyterephthalaldehyde Chemical compound OC1=CC(C=O)=C(O)C=C1C=O PIWMYUGNZBJTID-UHFFFAOYSA-N 0.000 claims description 3
- 238000004440 column chromatography Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000000706 filtrate Substances 0.000 claims description 3
- 239000012074 organic phase Substances 0.000 claims description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 238000003828 vacuum filtration Methods 0.000 claims description 3
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 claims description 2
- 229920001661 Chitosan Polymers 0.000 claims description 2
- 229920001046 Nanocellulose Polymers 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims description 2
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 2
- 239000012046 mixed solvent Substances 0.000 claims description 2
- 239000011540 sensing material Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims 2
- 239000001257 hydrogen Substances 0.000 abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 abstract description 7
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 4
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002189 fluorescence spectrum Methods 0.000 description 4
- -1 phenylene vinylene Chemical class 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- VSTXCZGEEVFJES-UHFFFAOYSA-N 1-cycloundecyl-1,5-diazacycloundec-5-ene Chemical compound C1CCCCCC(CCCC1)N1CCCCCC=NCCC1 VSTXCZGEEVFJES-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1
- 238000003109 Karl Fischer titration Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
技术领域technical field
本发明涉及荧光化学传感器领域,特别是涉及一种水汽荧光传感器及其制备方法。The invention relates to the field of fluorescent chemical sensors, in particular to a water vapor fluorescent sensor and a preparation method thereof.
背景技术Background technique
水是许多有机溶剂中最常见的杂质,其诊断在实验室化学、精细化工、生物医学分析和 食品加工等许多领域都具有重要意义。卡尔费休滴定法是目前测定有机溶剂中水分含量的常 用方法。它最初是在20世纪30年代开发的,其中水与试剂反应,并转换成非导电性物质。 虽然该技术具有绝对测量、灵敏度高、液体和固体样品均适用、成本低、应用范围广等优点, 但同时存在不容忽视的一些缺点,包括需要专门的设备和熟练的操作人员,限制了它的应用。 电化学和电物理传感器是定量水含量的其他传感机制。它们稳定性高且易于校准和使用,使 其在工业领域得到应用。然而,据报道,这些方法的局限性是缺乏足够的精度和便携性,无 法进行实时分析,而且由于电子特性,容易受到电磁辐射的影响。与上述技术相比,基于荧 光团或发色团材料的光学水传感技术具有操作简单、灵敏度高、制备方便、现场检测方便等 诸多优点,为水传感技术提供了另一种选择。Water is the most common impurity in many organic solvents, and its diagnosis is of great significance in many fields such as laboratory chemistry, fine chemical industry, biomedical analysis and food processing. Karl Fischer titration is a commonly used method for the determination of water content in organic solvents. It was originally developed in the 1930s in which water reacts with a reagent and converts it into a non-conductive substance. Although this technique has the advantages of absolute measurement, high sensitivity, applicable to both liquid and solid samples, low cost, and wide application range, there are also some disadvantages that cannot be ignored, including the need for specialized equipment and skilled operators, which limits its application. application. Electrochemical and electrophysical sensors are other sensing mechanisms for quantifying water content. Their high stability and ease of calibration and use make them suitable for industrial applications. However, the reported limitations of these methods are lack of sufficient precision and portability for real-time analysis, and susceptibility to electromagnetic radiation due to electronic properties. Compared with the above technologies, the optical water sensing technology based on fluorophore or chromophore materials has many advantages such as simple operation, high sensitivity, convenient preparation, and convenient on-site detection, which provides another choice for water sensing technology.
发明内容Contents of the invention
基于此,本发明通过在亚苯基乙烯衍生物上引入亲水性醚链,赋予其双亲性特性,开发出 一种新型水汽荧光传感器。利用硅胶中羟基与醚氧原子及水分子间的氢键作用,诱导传感器 分子发生缔合-解缔合现象,从而展现出显著不同的荧光性质,达到水汽传感的目的。Based on this, the present invention develops a new type of water vapor fluorescence sensor by introducing hydrophilic ether chains on phenylene vinylene derivatives to endow them with amphiphilic properties. The hydrogen bond between the hydroxyl group in the silica gel, the ether oxygen atom, and the water molecule is used to induce the association-disassociation phenomenon of the sensor molecule, thereby exhibiting significantly different fluorescent properties and achieving the purpose of water vapor sensing.
为实现上述目的,本发明提供的技术方案是:To achieve the above object, the technical solution provided by the invention is:
一种水汽荧光传感器,该水汽荧光传感器由化合物M1和基体材料M2复合得到,化合物 M1的结构式如下:A kind of water vapor fluorescent sensor, this water vapor fluorescent sensor is obtained by compounding compound M1 and matrix material M2, and the structural formula of compound M1 is as follows:
其中m的范围为1-3。Wherein the range of m is 1-3.
所述基体材料M2为壳聚糖、纳米纤维素、二氧化硅中的一种。The matrix material M2 is one of chitosan, nanocellulose and silicon dioxide.
所述基体材料M2为多孔结构。The matrix material M2 has a porous structure.
水汽荧光传感器的制备方法,包括以下步骤:The preparation method of water vapor fluorescent sensor comprises the following steps:
a)将2,5-二羟基对苯二甲醛、溴丁烷、无水碳酸钾和溶剂N,N-二甲基甲酰胺一次性投入 圆底烧瓶中,80℃下恒温反应48小时;反应完成后,真空抽滤除去不溶性的无机盐,滤液经 旋转蒸发仪浓缩后,采用甲醇重结晶获得第一反应物1;a) Put 2,5-dihydroxyterephthalaldehyde, bromobutane, anhydrous potassium carbonate and solvent N,N-dimethylformamide into a round-bottomed flask at one time, and react at a constant temperature of 80°C for 48 hours; After completion, the insoluble inorganic salts were removed by vacuum filtration, and the filtrate was concentrated by a rotary evaporator, and recrystallized with methanol to obtain the
b)将第一反应物1、第二反应物2、有机碱及叔丁醇/四氢呋喃混合溶剂一次性投入圆底 烧瓶中;70℃下恒温搅拌反应20分钟;反应完成后,冷却至室温,将反应物倾入水中,用二 氯甲烷萃取,有机相经无水Na2SO4干燥,用旋转蒸发仪浓缩后,采用柱色谱法获得目标分子 M1;b) Put the
c)将步骤b所得M1分子溶于四氢呋喃溶剂中,以此为浸渍液对基体M2进行浸渍,待溶剂干燥后得到最终的水汽荧光传感器。c) dissolving the molecule M1 obtained in step b in a tetrahydrofuran solvent, using this as an impregnating solution to impregnate the substrate M2, and obtaining the final water vapor fluorescence sensor after the solvent is dried.
步骤b)中的有机碱为叔丁醇钾、叔丁醇钠、四丁基氢氧化铵、四甲基胍、1,8-二氮杂二 环十一碳-7-烯中的一种或几种。The organic base in step b) is one or more of potassium tert-butoxide, sodium tert-butoxide, tetrabutylammonium hydroxide, tetramethylguanidine, 1,8-diazabicycloundec-7-ene kind.
步骤c)中浸渍液中M1的浓度范围为0.001-0.005摩尔/升,所述基体材料M2的浸渍时 间在20分钟以上。The concentration range of M1 in the immersion liquid in step c) is 0.001-0.005 mol/liter, and the immersion time of the base material M2 is more than 20 minutes.
本发明还保护所述的水汽荧光传感器在水汽传感材料中的应用。The present invention also protects the application of the water vapor fluorescent sensor in water vapor sensing materials.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明通过在亚苯基乙烯衍生物上引入亲水性醚链,赋予其双亲性特性,开发出一种新 型水汽荧光传感器。利用硅胶中羟基与醚氧原子及水分子间的氢键作用,诱导传感器分子发 生缔合-解缔合现象,从而展现出显著不同的荧光性质,达到水汽传感的目的。研究结果表明, 该水汽传感器分子分散在以硅胶为基体的材料上时,传感器分子中的醚氧原子与硅胶形成氢 键,导致其分散于基体表面,从而发出单分散的绿色荧光;由于水分子更易与硅羟基形成氢 键,当水汽浓度升高时,传感器分子从基体材料中游离出来,从而形成橙色的缔合物荧光, 因此表现出良好的水汽传感性能。The present invention develops a new type of water vapor fluorescence sensor by introducing hydrophilic ether chains on phenylene vinylene derivatives to endow them with amphiphilic properties. The hydrogen bond between the hydroxyl group in the silica gel, the ether oxygen atom and the water molecule is used to induce the association-disassociation phenomenon of the sensor molecule, thereby exhibiting significantly different fluorescent properties and achieving the purpose of water vapor sensing. The research results show that when the water vapor sensor molecules are dispersed on the silica gel-based material, the ether oxygen atoms in the sensor molecules form hydrogen bonds with the silica gel, causing them to disperse on the surface of the substrate, thereby emitting monodisperse green fluorescence; It is easier to form hydrogen bonds with silicon hydroxyl groups. When the water vapor concentration increases, the sensor molecules will dissociate from the matrix material, thereby forming an orange associate fluorescence, thus showing good water vapor sensing performance.
本发明设计的该水汽传感器表现出良好的水汽传感性能。M1分子中的醚氧原子与基体材 料中的羟基形成氢键,导致其分散于基体表面,从而发出单分散的绿色荧光;由于水分子更 易与基体上的羟基形成氢键,当水汽浓度升高时,M1分子从基体材料中游离出来,从而形成 橙色的缔合物荧光。该方法具有操作简单、灵敏度高、制备方便、可现场检测等诸多优点, 为水传感技术提供了另一种选择。The water vapor sensor designed in the present invention exhibits good water vapor sensing performance. The ether oxygen atoms in the M1 molecule form hydrogen bonds with the hydroxyl groups in the matrix material, causing them to disperse on the surface of the matrix, thus emitting monodisperse green fluorescence; since water molecules are more likely to form hydrogen bonds with the hydroxyl groups on the matrix, when the water vapor concentration increases When , M1 molecules dissociate from the matrix material, thus forming orange-colored association fluorescence. This method has many advantages such as simple operation, high sensitivity, convenient preparation, and on-site detection, which provides another choice for water sensing technology.
附图说明Description of drawings
图1为VS-1在不同湿度下的荧光照片。Figure 1 is the fluorescence photo of VS-1 under different humidity.
图2为RS-4静置2h前后的荧光光谱。Figure 2 is the fluorescence spectrum of RS-4 before and after standing for 2 hours.
图3为VS-1、VS-2、VS-3及VS-4的荧光及可见光照片。Fig. 3 is the fluorescence and visible light photos of VS-1, VS-2, VS-3 and VS-4.
图4为RS-4在不同湿度下的荧光照片。Figure 4 is the fluorescence photo of RS-4 under different humidity.
图5为RS-1、RS-2及RS-3在不同湿度下的荧光照片。Fig. 5 is the fluorescent photos of RS-1, RS-2 and RS-3 under different humidity.
具体实施方式Detailed ways
以下通过实施例的形式对本发明的上述内容再作进一步的详细说明,但不应将此理解为本 发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容所实现的技术均属于本发 明的范围。The above-mentioned content of the present invention will be described in further detail below by the form of the embodiment, but this should not be interpreted as the scope of the above-mentioned theme of the present invention being limited to the following embodiments, all technologies realized based on the above-mentioned content of the present invention belong to scope of the invention.
本发明制备得到的水汽荧光传感器,按照下述方法进行测试:The water vapor fluorescence sensor prepared by the present invention is tested according to the following method:
核磁共振氢谱和碳谱用Bruker AVANCEⅡ核磁共振仪测定,四甲基硅为内标,溶剂为氘 代氯仿或氘代二甲亚砜。荧光光谱用Shimadzu RF-5301PC荧光分光光度计测得。H NMR spectrum and C NMR spectrum were determined by Bruker AVANCE II NMR instrument, tetramethyl silicon was used as internal standard, and solvent was deuterated chloroform or deuterated dimethyl sulfoxide. Fluorescence spectra were measured with a Shimadzu RF-5301PC fluorescence spectrophotometer.
实施例1:水汽荧光传感器VS-1的制备Example 1: Preparation of Water Vapor Fluorescence Sensor VS-1
制备路线如下:The preparation route is as follows:
a)将2,5-二羟基对苯二甲醛(2g,121mmol)、溴丁烷(2.41mL,228mmol)、无水碳酸钾(3.3g,239mol)和30ml的N,N-二甲基甲酰胺一次性投入圆底烧瓶中,油浴锅加热至80℃,恒温搅拌反应回流48小时,用薄层色谱检测至原料消失,停止反应。反应完成后,用真空抽滤除去不溶性的无机盐,并用N,N-二甲基甲酰胺清洗三次滤饼,滤液经旋转蒸发仪浓缩后,以甲醇作为溶剂进行重结晶得到第一反应物1。a)
b)将第一反应物1(100mg,0.299mmol)、第二反应物2(190mg,0.719mmol)、有机碱和8mL叔丁醇、8mL四氢呋喃一次性投入圆底烧瓶中,油浴锅加热至70℃。接着往圆底烧 瓶中加入叔丁醇钾(36mg,0.321mmol)和四丁基氢氧化铵(1.8mL,2.53mmol),恒温搅拌 反应20分钟,用薄层色谱检测至原料消失,停止反应。反应完成后,冷却至室温,将反应物 倾入水中,用二氯甲烷萃取,有机相经无水Na2SO4干燥,用旋转蒸发仪浓缩后,采用柱色谱 法获得目标分子M1。b) The first reactant 1 (100mg, 0.299mmol), the second reactant 2 (190mg, 0.719mmol), an organic base, 8mL tert-butanol, and 8mL tetrahydrofuran are thrown into a round-bottomed flask at one time, and the oil bath is heated to 70°C. Then, potassium tert-butoxide (36mg, 0.321mmol) and tetrabutylammonium hydroxide (1.8mL, 2.53mmol) were added into the round-bottomed flask, stirred at constant temperature for 20 minutes, and the reaction was stopped until the raw materials disappeared by thin-layer chromatography. After the reaction was completed, it was cooled to room temperature, the reactant was poured into water, extracted with dichloromethane, the organic phase was dried over anhydrous Na 2 SO 4 , concentrated with a rotary evaporator, and the target molecule M1 was obtained by column chromatography.
c)将步骤b所得M1分子溶于四氢呋喃溶剂中,以此为浸渍液对基体M2进行浸渍,室温下静置干燥5h,得到最终的水汽荧光传感器。c) Dissolving the M1 molecule obtained in step b in a tetrahydrofuran solvent, using this as an impregnating solution to impregnate the substrate M2, and standing and drying at room temperature for 5 hours to obtain the final water vapor fluorescence sensor.
其中目标分子M1中m值为2,步骤c中M1浸渍液的浓度为0.003摩尔/升,基体M2 为二氧化硅。Wherein the value of m in the target molecule M1 is 2, the concentration of the M1 impregnation solution in step c is 0.003 mol/L, and the matrix M2 is silicon dioxide.
实施例2:水汽荧光传感器VS-2的制备Example 2: Preparation of Water Vapor Fluorescence Sensor VS-2
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中M1浸渍液的浓度为0.001摩尔/升。The specific preparation steps are as follows: the same part as in Example 1 will not be repeated, and the difference with Example 1 is that the concentration of the M1 soaking solution in step c is 0.001 mol/liter.
实施例3:水汽荧光传感器VS-3的制备Example 3: Preparation of Water Vapor Fluorescence Sensor VS-3
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中M1浸渍液的浓度为0.002摩尔/升。The specific preparation steps are as follows: the same part as in Example 1 will not be repeated, and the difference with Example 1 is that the concentration of the M1 soaking solution in step c is 0.002 mol/liter.
实施例4:水汽荧光传感器VS-4的制备Example 4: Preparation of Water Vapor Fluorescence Sensor VS-4
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中M1浸渍液的浓度为0.004摩尔/升。The specific preparation steps are as follows: the same part as in Example 1 will not be repeated, and the difference with Example 1 is that the concentration of the M1 soaking solution in step c is 0.004 mol/liter.
对照例1:RS-1的制备Comparative Example 1: Preparation of RS-1
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中所用的基体材料M2为涤纶无纺布。Concrete preparation steps are as follows: its identical part with
对照例2:RS-2的制备Comparative Example 2: Preparation of RS-2
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中所用的基体材料M2为聚丙烯无纺布。Concrete preparation steps are as follows: its identical part with
对照例3:RS-3的制备Comparative Example 3: Preparation of RS-3
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中所用的基体材料M2为滤纸。The specific preparation steps are as follows: the same part as in Example 1 will not be repeated, and the difference with Example 1 is that the matrix material M2 used in step c is filter paper.
对照例4:RS-4的制备Comparative Example 4: Preparation of RS-4
具体的制备步骤如下:其与实施例1的相同部分不再赘述,与实施例1的不同在于,步 骤c中M1浸渍液的浓度为0.0001摩尔/升。The specific preparation steps are as follows: the same part as in Example 1 will not be repeated, and the difference with Example 1 is that the concentration of the M1 soaking solution in step c is 0.0001 mol/liter.
以下,将结合部分实施例对本发明的水汽荧光传感器及其制备方法进一步说明。Hereinafter, the water vapor fluorescence sensor and its preparation method of the present invention will be further described in conjunction with some embodiments.
由不同水汽下的传感器VS-1的荧光照片可知(图1),随着水汽从1g/m3逐渐升高到25g/m3,体系的荧光颜色逐渐从绿色转变为橙黄色,展现出非常明显的比率型荧光传感特性。 该过程可以直接通过肉眼进行观察。水分子可以可硅胶表面的羟基形成更强的氢键作用,其 会破坏M1分子中的醚氧原子和硅羟基所形成的氢键。因此我们初步推测水汽作用下的荧光 颜色转变是由于其诱导的M1分子再聚集所致。It can be seen from the fluorescence photos of the sensor VS-1 under different water vapors (Fig. 1), as the water vapor gradually increases from 1g/m 3 to 25g/m 3 , the fluorescence color of the system gradually changes from green to orange yellow, showing a very Obvious ratiometric fluorescent sensing characteristics. This process can be observed directly with the naked eye. Water molecules can form stronger hydrogen bonds with the hydroxyl groups on the surface of the silica gel, which will destroy the hydrogen bonds formed between the ether oxygen atoms in the M1 molecule and the silicon hydroxyl groups. Therefore, we preliminarily speculate that the fluorescence color change under the action of water vapor is due to the re-aggregation of M1 molecules induced by it.
在M1浓度较低时,静置前后荧光光谱没有发生明显的偏移,RS-4均显示出亮绿色荧光 (图2)。造成这种现象的主要原因在于M1浓度较低时,分子本就呈现分散状态,并不会出 现聚集-氢键诱导分散过程。当M1负载浓度达到0.004M/L时,由于浓度过高,硅胶表面的氢键不足以诱导所有的M1分子分散于其表面,因此静置过后VS-4体系任然呈现比较明显的聚集态橙黄色荧光,荧光光谱的蓝移程度也因此减弱(图3)。对照例RS-4并不会表现出明显的水汽荧光传感特性。由图4可知,当M1溶液的浓度低至0.0001M/L时,随着水汽从1g/m3升高到25g/m3,体系的荧光颜色没有发生明显变化。此现象进一步证实了我们所推测的水汽 传感机理。When the concentration of M1 was low, there was no significant shift in the fluorescence spectrum before and after standing, and RS-4 showed bright green fluorescence (Fig. 2). The main reason for this phenomenon is that when the concentration of M1 is low, the molecules are already in a dispersed state, and there is no aggregation-hydrogen bond-induced dispersion process. When the M1 loading concentration reaches 0.004M/L, because the concentration is too high, the hydrogen bonds on the surface of the silica gel are not enough to induce all the M1 molecules to disperse on the surface, so the VS-4 system still shows a relatively obvious aggregated orange after standing. Yellow fluorescence, the degree of blue shift of the fluorescence spectrum is also weakened (Figure 3). The control example RS-4 does not exhibit obvious water vapor fluorescence sensing characteristics. It can be seen from Figure 4 that when the concentration of the M1 solution is as low as 0.0001M/L, the fluorescence color of the system does not change significantly as the water vapor increases from 1g/m 3 to 25g/m 3 . This phenomenon further confirmed our speculated water vapor sensing mechanism.
以涤纶(PET)及聚丙烯(PP)无纺布作为浸渍基材所制备的复合物并没有表现出明显 的水汽传感特性(图5)。在水含量分别为1g/m3、10g/m3、25g/m3下,RS-1、RS-2及RS-3 体系荧光颜色均未发生明显改变,表现出橙黄色荧光。造成这种现象的主要原因是基材表面基团含量不同所致。PET和PP表面均不含羟基,因此无法通过氢键作用诱导M1分子在基材表面分散。而滤纸虽然是纤维素所制备,但由于纤维素的结晶性很强,纤维表面的羟基含量不及多孔性的硅胶,因此也不具备明显的水汽传感特性。The composites prepared with polyester (PET) and polypropylene (PP) non-woven fabrics as impregnated substrates did not show obvious water vapor sensing properties (Fig. 5). Under the water content of 1g/m 3 , 10g/m 3 , and 25g/m 3 respectively, the fluorescence colors of RS-1, RS-2 and RS-3 systems did not change significantly, showing orange-yellow fluorescence. The main reason for this phenomenon is that the content of groups on the surface of the substrate is different. Both PET and PP surfaces do not contain hydroxyl groups, so they cannot induce M1 molecules to disperse on the substrate surface through hydrogen bonding. Although filter paper is made of cellulose, due to the strong crystallinity of cellulose, the hydroxyl content on the surface of the fiber is not as good as that of porous silica gel, so it does not have obvious water vapor sensing characteristics.
由此可以看出本发明提供的水汽荧光传感器可以在较宽的湿度范围内进行传感响应。该 技术路线具有操作简单、灵敏度高、制备方便、可现场检测等诸多优点,为水传感技术提供 了另一种选择。It can be seen that the water vapor fluorescence sensor provided by the present invention can respond in a wide range of humidity. This technical route has many advantages such as simple operation, high sensitivity, convenient preparation, and on-site detection, which provides another choice for water sensing technology.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专 业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所 作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any skilled person who is familiar with the profession, without departing from the scope of the technical solutions of the present invention, according to the technical essence of the present invention, Any simple modifications, equivalent replacements and improvements made in the above embodiments still fall within the protection scope of the technical solution of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211156457.2A CN115651641B (en) | 2022-09-22 | 2022-09-22 | Water vapor fluorescence sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211156457.2A CN115651641B (en) | 2022-09-22 | 2022-09-22 | Water vapor fluorescence sensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115651641A true CN115651641A (en) | 2023-01-31 |
CN115651641B CN115651641B (en) | 2024-08-23 |
Family
ID=84985605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211156457.2A Active CN115651641B (en) | 2022-09-22 | 2022-09-22 | Water vapor fluorescence sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115651641B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102977341A (en) * | 2012-11-15 | 2013-03-20 | 南京邮电大学 | Preparation method and application of multiblock conjugated polymer containing phenylene ethylene skeleton |
US20150183956A1 (en) * | 2013-12-30 | 2015-07-02 | Council Of Scientific And Industrial Research | Highly fluorescent monodisperse, cross-linked polymer microbeads |
US20150376505A1 (en) * | 2014-06-27 | 2015-12-31 | Jnc Corporation | Polymerizable compound having triple bond, liquid crystal composition and liquid crystal display device |
CN111378178A (en) * | 2019-01-01 | 2020-07-07 | 翁秋梅 | Energy absorption method based on force-induced response polymer |
-
2022
- 2022-09-22 CN CN202211156457.2A patent/CN115651641B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102977341A (en) * | 2012-11-15 | 2013-03-20 | 南京邮电大学 | Preparation method and application of multiblock conjugated polymer containing phenylene ethylene skeleton |
US20150183956A1 (en) * | 2013-12-30 | 2015-07-02 | Council Of Scientific And Industrial Research | Highly fluorescent monodisperse, cross-linked polymer microbeads |
US20150376505A1 (en) * | 2014-06-27 | 2015-12-31 | Jnc Corporation | Polymerizable compound having triple bond, liquid crystal composition and liquid crystal display device |
CN111378178A (en) * | 2019-01-01 | 2020-07-07 | 翁秋梅 | Energy absorption method based on force-induced response polymer |
Non-Patent Citations (2)
Title |
---|
MAKKAD SK等: "Surface Functionalized Fluorescent PS Nanobead Based Dual-Distinct Solid State Sensor for Detection of Volatile Organic Compounds", ANALYTICAL CHEMISTRY, vol. 90, no. 12, 19 June 2018 (2018-06-19), pages 7434 - 7441 * |
TANIOKA M等: "Water-tunable solvatochromic and nanoaggregate fluorescence: dual colour visualisation and quantification of trace water in tetrahydrofuran", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 19, no. 2, 14 January 2017 (2017-01-14), pages 1209 - 1216 * |
Also Published As
Publication number | Publication date |
---|---|
CN115651641B (en) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5580527A (en) | Polymeric luminophores for sensing of oxygen | |
EP0455730B1 (en) | Material and method for oxygen sensing | |
EP0363993B1 (en) | Chimically sensitive, dimensionally-stable organosilicon material composition and techniques | |
US5194391A (en) | Chemically sensitive, dimensionally-stable organosilicon material composition and techniques | |
CN109836586B (en) | Fluorescent dye and metal organic framework MOFs composite material as well as preparation method and application thereof | |
Dang et al. | Tunable white-light emission hybrids based on lanthanide complex functionalized poly (ionic liquid): Assembly and chemical sensing | |
EP3060564B1 (en) | Azatriangulenium salts as pet-quenched fluorescent probes | |
Gao et al. | Fluorometric determination of water in organic solvents using europium ion-based luminescent nanospheres | |
CN109438700B (en) | A kind of polymethyltriazole formate and its preparation method and application | |
JPH01230639A (en) | Silicone polymer, its production and detection of oxygen concentration using same | |
CN115651641A (en) | Water vapor fluorescence sensor and preparation method thereof | |
Gaspar et al. | Luminescent oxygen probes based on TbIII complexes chemically bonded to polydimethylsiloxane | |
KR100692623B1 (en) | Aromatic Amine Polymer Compounds for Chemical Sensors and Reaction Intermediates and Resin Compositions Comprising the Same | |
Egan et al. | Influence of water on the chirality of camphorsulfonic acid-doped polyaniline | |
CN113666966A (en) | Synthesis and application of fluorescent probe for detecting trace water in dimethyl sulfoxide | |
CN105778897B (en) | PH sensitive fluorescence dyes and its preparation method and application | |
CN111533692B (en) | Fluorescent molecular probe for detecting mercury ions and preparation method and application thereof | |
CN118791473A (en) | A triphenylamine derivative and preparation method thereof, pH-responsive color-changing fiber and preparation method thereof | |
CN109596593B (en) | Method for detecting nitrofuran antibiotics or quinolone antibiotics in drinking water | |
CN111995763A (en) | MOF material and its application in the detection of nitrobenzene | |
US20040062683A1 (en) | Sensitive single-layer sensing device of covalently attached luminescent indicator on glass surface for measuring the concentration of analytes | |
Lee et al. | Synthesis of VOC-sensing dyes for fabrication of cotton-based chromogenic sensors | |
Boukhriss et al. | Luminescent hybrid coatings prepared by a sol–gel process for a textile-based pH sensor | |
EP0413114A2 (en) | Method for bonding an analyte-sensitive dye compound to an addition-cure silicone | |
CN113637111B (en) | Synthesis of an ionic liquid-based fluorescent hydrogel sensor and its application in the detection of p-nitroaniline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |