CN115646155A - Oil-cooled sulfur hexafluoride degradation device and method based on sliding arc discharge - Google Patents
Oil-cooled sulfur hexafluoride degradation device and method based on sliding arc discharge Download PDFInfo
- Publication number
- CN115646155A CN115646155A CN202211260867.1A CN202211260867A CN115646155A CN 115646155 A CN115646155 A CN 115646155A CN 202211260867 A CN202211260867 A CN 202211260867A CN 115646155 A CN115646155 A CN 115646155A
- Authority
- CN
- China
- Prior art keywords
- oil
- degradation
- gas
- cooling box
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 57
- 230000015556 catabolic process Effects 0.000 title claims abstract description 47
- 238000010891 electric arc Methods 0.000 title claims abstract description 35
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910018503 SF6 Inorganic materials 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 22
- 229960000909 sulfur hexafluoride Drugs 0.000 title claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 80
- 238000001816 cooling Methods 0.000 claims abstract description 43
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000002912 waste gas Substances 0.000 claims abstract description 24
- 238000010521 absorption reaction Methods 0.000 claims abstract description 21
- 239000007921 spray Substances 0.000 claims abstract description 20
- 239000000919 ceramic Substances 0.000 claims abstract description 17
- 239000012159 carrier gas Substances 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 8
- 238000007664 blowing Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 238000007689 inspection Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000013049 sediment Substances 0.000 claims 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 6
- 208000028659 discharge Diseases 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 10
- 239000003570 air Substances 0.000 description 9
- 238000009413 insulation Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 238000000746 purification Methods 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000000593 degrading effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 101000856246 Arabidopsis thaliana Cleavage stimulation factor subunit 77 Proteins 0.000 description 2
- 238000001241 arc-discharge method Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- LSJNBGSOIVSBBR-UHFFFAOYSA-N thionyl fluoride Chemical compound FS(F)=O LSJNBGSOIVSBBR-UHFFFAOYSA-N 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- -1 OH - ions Chemical class 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种基于滑动弧放电的油冷式六氟化硫降解装置,包括等离子体喷枪、金属电极、陶瓷反应管、油冷箱和尾气吸收池,所述油冷箱是半封闭结构,能够将所述陶瓷反应管完全置入其中,并在所述油冷箱顶部设置有若干个散热风扇;所述油冷箱侧面距底面一定距离处设置有温度传感器。还公来了其降解方法。本发明不仅能够降解浓度和气体流速相对更高的SF6废气,还能够长时间维持反应工作温度在200℃以下,有效解决了滑动弧放电处理气体能量效率过低的问题。
The invention discloses an oil-cooled sulfur hexafluoride degradation device based on sliding arc discharge, which includes a plasma spray gun, a metal electrode, a ceramic reaction tube, an oil cooling box and an exhaust gas absorption pool, and the oil cooling box is a semi-closed structure , the ceramic reaction tube can be completely inserted into it, and several heat dissipation fans are arranged on the top of the oil cooling box; a temperature sensor is arranged at a certain distance from the bottom surface of the oil cooling box side. Also disclosed its degradation method. The invention can not only degrade SF 6 waste gas with relatively higher concentration and gas flow rate, but also maintain the reaction working temperature below 200°C for a long time, effectively solving the problem of low energy efficiency of sliding arc discharge treatment gas.
Description
技术领域technical field
本发明涉及六氟化硫降解技术领域,尤其涉及一种基于滑动弧放电的油冷式六氟化硫降解装置及降解方法。The invention relates to the technical field of sulfur hexafluoride degradation, in particular to an oil-cooled sulfur hexafluoride degradation device and degradation method based on sliding arc discharge.
背景技术Background technique
在电力、冶炼等行业中,六氟化硫(Sulfur Hexafluoride,SF6)气体由于其优异的绝缘性、稳定性等逐年来被广泛使用,其排放量也在逐年增长。然而,SF6本身也是一种温室气体,其温室效应潜在值(Global Warming Potential,GWP)是CO2的23500倍,肆意排放对大气环境的威胁十分巨大。同时,随着我国“双碳”目标的提出, SF6的治理已经迫在眉睫。In industries such as electric power and smelting, sulfur hexafluoride (SF 6 ) gas has been widely used year by year due to its excellent insulation and stability, and its emissions are also increasing year by year. However, SF 6 itself is also a greenhouse gas, and its Global Warming Potential (GWP) is 23,500 times that of CO 2 . Indiscriminate emission poses a huge threat to the atmospheric environment. At the same time, with the proposal of the "double carbon" goal in our country, the treatment of SF 6 is imminent.
从使用前的SF6气体的角度来说,近年来有学者提出利用能够满足绝缘需求且GWP值低的气体,来对SF6进行替代,降低SF6的使用,从而减少其排放,来逐步摆脱目前的现状。但替代气体目前由于安全性等原因,目前不可能对SF6进行大规模的替代,因而仍处于研究和小范围使用的阶段。而对于使用后的SF6气体,由于电力工业环境影响,使用了一定时间后,SF6会被分解,形成SO2F2、 SO2、SOF2等分解气体,同时还会混入空气、灰尘、水气等杂质,使其SF6浓度降低,直到无法满足绝缘的需求,被称为SF6废气,此时需要重新充入新的SF6气体以满足气体绝缘设备的需求。From the perspective of SF 6 gas before use, in recent years, some scholars have proposed to replace SF 6 with a gas that can meet the insulation requirements and have a low GWP value, reduce the use of SF 6 , thereby reducing its emissions, and gradually get rid of current status quo. However, due to safety and other reasons, it is currently impossible to replace SF 6 on a large scale with alternative gases, so it is still in the stage of research and small-scale use. As for the used SF 6 gas, due to the influence of the power industry environment, after a certain period of use, SF 6 will be decomposed to form SO 2 F 2 , SO 2 , SOF 2 and other decomposition gases, and it will also be mixed with air, dust, Impurities such as water and gas reduce the concentration of SF 6 until it cannot meet the requirements of insulation, which is called SF 6 waste gas. At this time, new SF 6 gas needs to be refilled to meet the needs of gas insulation equipment.
对于SF6废气的处理问题,国内外学者提出了诸多手段,除了替代气体外,回收净化和降解处理是目前来说最为可能改变现状的两种手段。回收净化是通过对SF6废气中的除SF6之外的杂质进行吸收、吸附、沉淀、静置等手段,提高气体中SF6的纯度,使其能够再次满足绝缘的需求,从而完成回收净化。例如: 2021年11月26日公开号为CN113701047A的六氟化硫气体分离回收装置,2022 年1月4日公开号为CN113877228A的一种六氟化硫回收气体精馏提纯系统。两者均通过蒸馏、过滤、分离、低温液化等模块进行多种组合,形成完整的六氟化硫分离回收装置,能够实现对六氟化硫进行回收净化。但整个回收净化流程非常复杂,对工艺流程要求严苛,且需要进行多次循环才能达到目标水平;同时,装置体积偏大、造价颇为昂贵,使得其只适用于一对一的大型气体绝缘设备使用,难以顾及到一些小型绝缘设备,更不用说一些服役于偏远地区的绝缘设备,因此回收净化手段没有从根本上解决SF6废气的问题。For the treatment of SF 6 waste gas, scholars at home and abroad have proposed many methods. In addition to alternative gases, recycling purification and degradation treatment are currently the two most likely methods to change the status quo. Recovery and purification is to improve the purity of SF 6 in the gas by absorbing, adsorbing, precipitating, standing and other means of impurities other than SF 6 in the SF 6 waste gas, so that it can meet the needs of insulation again, thus completing the recovery and purification . For example: a sulfur hexafluoride gas separation and recovery device with publication number CN113701047A on November 26, 2021, and a rectification and purification system for sulfur hexafluoride recovery gas with publication number CN113877228A on January 4, 2022. Both are combined through distillation, filtration, separation, low-temperature liquefaction and other modules to form a complete sulfur hexafluoride separation and recovery device, which can realize the recovery and purification of sulfur hexafluoride. However, the entire recovery and purification process is very complicated, with strict requirements on the process, and requires multiple cycles to reach the target level; at the same time, the device is too large and expensive, making it only suitable for one-to-one large-scale gas insulation The use of equipment is difficult to take into account some small insulation equipment, let alone some insulation equipment serving in remote areas, so recovery and purification methods have not fundamentally solved the problem of SF 6 waste gas.
降解处理是近年来被广泛应用于污染物气体处理的一种手段,通过高温、放电等手段产生等离子体,与污染物气体分子之间发生碰撞、离解等作用,使其发生断键,分解形成其他气体,从而达到无害化降解的目的。利用介质阻挡放电手段降解六氟化硫是一种比较有效的手段,2021年3月16日,董晓虎等人于《高压电器》上发表的“H2O浓度对填充床式反应器降解SF6影响的实验研究”中,通过外加H2O进入到SF6降解体系中,能够达到90%以上的降解率。但这种处理方式需要SF6的气流量和浓度均保持在较低水平,限制了其处理效率,仍需进行一定程度的改进。Degradation treatment is a method that has been widely used in the treatment of pollutant gases in recent years. Plasma is generated by means of high temperature and discharge, which collides with and dissociates molecules of pollutant gases, causing them to break bonds and decompose to form Other gases, so as to achieve the purpose of harmless degradation. Using dielectric barrier discharge to degrade sulfur hexafluoride is a relatively effective method. On March 16, 2021, Dong Xiaohu et al. published "H 2 O concentration on the degradation of SF 6 in packed bed reactors" published in "High Voltage Electrical Appliances". In the "Experimental Research on the Impact", by adding H 2 O into the SF 6 degradation system, the degradation rate can reach more than 90%. However, this treatment method requires the gas flow and concentration of SF 6 to be kept at a low level, which limits its treatment efficiency and still needs to be improved to a certain extent.
利用滑动弧放电产生等离子体来降解污染物气体是一种非常有潜力的手段,例如:2021年07月13日公开号为CN113101389A的一种等离子体杀菌装置、杀菌气体的制备方法及杀菌方法,介绍了一种基于滑动弧放电的等离子体反应装置,利用其产生气体中的活性物质消灭病菌;2017年01月04日公开号为 CN106268217A的一种NaOH协同气-液两相滑动弧放电脱出SO2的方法,将待处理的烟气与汽化NaOH溶液混合均匀,通入滑动弧反应器之中放电处理,从而达到脱硫的目的。以上两例基于滑动弧放电的气体处理装置,均能够对相应的处理对象产生良好的作用。然而,滑动弧放电在使用过程中,由于电弧长期放电的原因,会使得气体温度急剧升高,常规可达到600℃以上,长期使用温度则会更高,可能会对设备造成潜在损伤、安全隐患等问题,这是滑动弧放电手段相比于介质阻挡放电等手段一大不可忽视的缺点。对于SF6降解来说,放电反应过程中,反应器温度升高意味着更多的能量损耗,导致SF6降解的能量效率变低,无法对SF6废气产生良好的降解效果。Using sliding arc discharge to generate plasma to degrade pollutant gases is a very potential means, for example: a plasma sterilization device, a preparation method of sterilization gas and a sterilization method published on July 13, 2021 with the publication number CN113101389A, A plasma reaction device based on sliding arc discharge is introduced, which uses the active substances in the generated gas to eliminate germs; the publication number is CN106268217A on January 4, 2017, a kind of NaOH synergistic gas-liquid two-phase sliding arc discharge to remove SO 2 method, mix the flue gas to be treated with the vaporized NaOH solution evenly, and pass it into the sliding arc reactor for discharge treatment, so as to achieve the purpose of desulfurization. The above two gas treatment devices based on sliding arc discharge can both produce good effects on the corresponding treatment objects. However, during the use of sliding arc discharge, due to the long-term discharge of the arc, the gas temperature will rise sharply, which can reach above 600°C in general, and the temperature will be higher for long-term use, which may cause potential damage to equipment and potential safety hazards And other problems, this is a major disadvantage that the sliding arc discharge method cannot be ignored compared with the dielectric barrier discharge and other methods. For the degradation of SF 6 , during the discharge reaction process, the rise of the reactor temperature means more energy loss, resulting in lower energy efficiency of SF 6 degradation, and cannot produce a good degradation effect on SF 6 exhaust gas.
发明内容Contents of the invention
本发明的目的是提供一种基于滑动弧放电的油冷式六氟化硫降解装置及降解方法,不仅能够降解浓度和气体流速相对更高的SF6废气,还能够长时间维持反应工作温度在200℃以下,有效解决了滑动弧放电处理气体能量效率过低的问题。The purpose of the present invention is to provide an oil-cooled sulfur hexafluoride degradation device and degradation method based on sliding arc discharge, which can not only degrade SF 6 waste gas with relatively higher concentration and gas flow rate, but also maintain the reaction working temperature at Below 200°C, it effectively solves the problem of low energy efficiency of sliding arc discharge treatment gas.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
本发明一种基于滑动弧放电的油冷式六氟化硫降解装置,包括等离子体喷枪、金属电极、陶瓷反应管、油冷箱和尾气吸收池;所述等离子体喷枪尾部连接有电源线、接地线和气管,所述电源线用于等离子体电源为喷枪供电所使用,所述接地线则使等离子体喷枪外壳接地以保证设备安全可靠,所述气管用于使 SF6废气进入等离子体喷枪发生降解反应;所述陶瓷反应管内壁设置有金属内网,所述陶瓷反应管的中心还设置有所述金属电极,所述金属电极周面呈现有螺纹,在放电过程中金属电极靠近等离子体喷枪端部会与金属内网发生放电,电弧会沿着金属电极表面的螺纹逐渐向前延伸,反应区域逐渐被拉长;陶瓷反应管另一端通过法兰连接有一个快插接口,并通过连接气管引入尾气吸收池中;所述陶瓷反应管完全置入所述油冷箱,所述油冷箱是半封闭结构,并在所述油冷箱顶部设置有若干个散热风扇;所述油冷箱侧面距底面一定距离处设置有温度传感器以便于能够实时显示油冷箱内部的油温。The present invention is an oil-cooled sulfur hexafluoride degradation device based on sliding arc discharge, comprising a plasma spray gun, a metal electrode, a ceramic reaction tube, an oil cooling box and an exhaust gas absorption pool; the tail of the plasma spray gun is connected with a power line, Ground wire and air pipe, the power wire is used for the plasma power supply to supply power to the spray gun, the ground wire grounds the shell of the plasma spray gun to ensure the safety and reliability of the equipment, and the air pipe is used to allow SF6 waste gas to enter the plasma spray gun to generate Degradation reaction; the inner wall of the ceramic reaction tube is provided with a metal inner mesh, and the center of the ceramic reaction tube is also provided with the metal electrode, and the peripheral surface of the metal electrode is threaded, and the metal electrode is close to the plasma spray gun during the discharge process The end will discharge with the metal inner net, and the arc will gradually extend forward along the thread on the surface of the metal electrode, and the reaction area will be gradually elongated; the other end of the ceramic reaction tube is connected with a quick-plug interface through a flange, and is introduced through the connecting air pipe. In the exhaust absorption pool; the ceramic reaction tube is completely placed in the oil cooling box, the oil cooling box is a semi-closed structure, and several cooling fans are arranged on the top of the oil cooling box; the side of the oil cooling box A temperature sensor is arranged at a certain distance from the bottom surface so as to display the oil temperature inside the oil cooling box in real time.
进一步的,所述油冷箱顶部设置有四个散热风扇。Further, four cooling fans are arranged on the top of the oil cooling box.
进一步的,所述油冷箱侧面距底面20cm处设置有温度传感器。Further, a temperature sensor is provided on the side of the oil cooler box 20 cm away from the bottom surface.
进一步的,所述尾气吸收池侧面一半位置设置有检视窗,能够观察吸收池内部金属碱溶液容量和浑浊状态。Further, an inspection window is provided on half of the side of the exhaust gas absorption pool, so that the capacity and turbid state of the metal alkali solution inside the absorption pool can be observed.
进一步的,所述油冷箱一侧设置有用于显示温度传感器监测的实时温度的显示屏。Further, a display screen for displaying the real-time temperature monitored by the temperature sensor is provided on one side of the oil cooling box.
一种基于滑动弧放电的油冷式六氟化硫降解装置的降解方法,包括如下步骤:A method for degrading an oil-cooled sulfur hexafluoride degradation device based on sliding arc discharge, comprising the steps of:
步骤1、降解前准备:先按照本发明所述基于滑动弧放电的油冷式SF6降解装置机理图,分别对电路和气路进行连接,电路包括高压线(等离子体电源-等离子体喷枪)、接地线(大地-等离子体喷枪)、油冷箱电源线(散热风扇、温度传感器)以及等离子体电源相关接线,气路包括进气气管、出气气管(反应器-尾气吸收池、尾气吸收池-大气),保证连接稳固可靠;检查油冷箱中变压器油的液位,保证液位处在二分之一至三分之二之间;再从尾气吸收池侧面检视窗观察金属碱溶液的液位和浑浊状态,据此判断是否需要对其中的金属碱溶液进行添加或者更换,还需观察尾气吸收池底部沉淀的多少,若沉淀较多,则需进行清扫,由于沉淀物为常见硫酸盐,在大自然中广泛存在,因此能够直接丢弃;Step 1, preparation before degradation: first according to the mechanism diagram of the oil-cooled SF6 degradation device based on sliding arc discharge according to the present invention, the circuit and the gas path are connected respectively, and the circuit includes a high-voltage line (plasma power supply-plasma spray gun), ground wire (Earth-plasma spray gun), oil cooling box power line (cooling fan, temperature sensor) and plasma power supply related wiring, gas path includes air inlet pipe, air outlet pipe (reactor-exhaust gas absorption pool, exhaust gas absorption pool-atmosphere) , to ensure that the connection is stable and reliable; check the liquid level of the transformer oil in the oil cooler to ensure that the liquid level is between 1/2 and 2/3; then observe the liquid level and According to this, it is judged whether it is necessary to add or replace the metal alkali solution. It is also necessary to observe the amount of precipitation at the bottom of the exhaust gas absorption tank. If there is a lot of precipitation, it needs to be cleaned. Widely present in nature, so it can be discarded directly;
步骤2、启动降解装置:先打开载气气阀,调整气体流量计,保持恒定且稳定的气体流速,再打开油冷箱散热风扇后,启动等离子体电源,正常状态下能够观察到从喷枪内延伸出电弧,并在陶瓷反应管内部滑动;若启动电源后,没有观察到明显电弧,则需对等离子体电源进行检查。电弧能够正常滑动后,打开SF6废气气阀,调整流量至合适水平,开始降解反应;连续工作一个小时后,需开始对油冷箱温度进行观察,正常情况下温度应处于200℃以下,最大不应超过250℃,若温度超过了250℃,则表明反应器工作温度过高,需关闭装置进行自然冷却;
步骤3、关闭降解装置:先关闭SF6废气气阀,SF6废气流量会逐渐降低,待 SF6气源流速降到0,装置继续工作一分钟以后关闭等离子体电源,在此期间需保持载气持续吹动,一方面,能够确保反应器内大部分SF6废气被降解,并将降解后的尾气吹入尾气吸收池中,另一方面是对反应管内部进行一定程度的散热。载气吹动一分钟后,即可关闭载气气阀,完成了降解,待油冷箱中变压器油冷却后,可再次开机工作。
与现有技术相比,本发明的有益技术效果:Compared with prior art, beneficial technical effect of the present invention:
1、本发明基于滑动弧放电手段降解SF6废气,通过设置油冷箱很大程度降低了放电过程中的温升,使得更多地能量被利用在了降解SF6废气上,提高了降解率和能量效率;1. The present invention degrades SF 6 waste gas based on sliding arc discharge method. By setting an oil cooler, the temperature rise in the discharge process is greatly reduced, so that more energy is used to degrade SF 6 waste gas, which improves the degradation rate and energy efficiency;
2、进行油冷方式滑动弧放电降解SF6废气,能够使SF6分解得更加彻底,能够使SF6分解产物中SO2F2进一步反应,使难以被碱液所吸收的SO2F2,分解形成SO2、SOF2等易于被金属碱溶液吸收的气体,利于无害化处理;2. Degrading SF 6 waste gas by sliding arc discharge in oil cooling mode can decompose SF 6 more thoroughly, further react SO 2 F 2 in SF 6 decomposition products, and decompose SO 2 F 2 that is difficult to be absorbed by lye to form SO2, SOF2 and other gases that are easily absorbed by the metal alkali solution are conducive to harmless treatment;
3、为了更加方便地结合油冷方式散热,本发明对在常规滑动弧放电螺旋电极的基础上做出了改进,采用了圆柱型电极,并在上面设置了螺纹,相比于常规螺旋电极,更有利于电弧的发展延伸;3. In order to combine the heat dissipation with oil cooling more conveniently, the present invention makes improvements on the basis of the conventional sliding arc discharge spiral electrode, adopts a cylindrical electrode, and sets threads on it, compared with the conventional spiral electrode, It is more conducive to the development and extension of the arc;
4、本发明通过在反应管内壁设置金属内网,达到增强散热的目的,同时金属内网还能够有效促进电弧的发展衍生,提高了降解率和能量效率;4. The present invention achieves the purpose of enhancing heat dissipation by setting a metal inner net on the inner wall of the reaction tube. At the same time, the metal inner net can also effectively promote the development and derivation of the arc, improving the degradation rate and energy efficiency;
5、本发明所述油冷箱顶部还设置有散热风扇,能够对油冷箱中的变压器油进行散热,使降解过程能够保持长时间且稳定可靠的运行;5. The top of the oil cooling box of the present invention is also equipped with a cooling fan, which can dissipate heat from the transformer oil in the oil cooling box, so that the degradation process can maintain a long-term and stable and reliable operation;
6、本发明中陶瓷反应管与等离子体喷枪喷嘴通过螺纹相互嵌入连接,能够进行拆卸并检查,有必要时能够进行更换,保证了设备运行的可靠性。6. In the present invention, the ceramic reaction tube and the nozzle of the plasma spray gun are embedded and connected with each other through threads, which can be disassembled and inspected, and can be replaced when necessary, ensuring the reliability of equipment operation.
附图说明Description of drawings
下面结合附图说明对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1示出了本发明所述基于滑动弧放电的油冷式六氟化硫结构示意图;Fig. 1 shows the structural representation of oil-cooled sulfur hexafluoride based on sliding arc discharge according to the present invention;
图2示出了本发明基于滑动弧放电的油冷式SF6降解装置机理图;Fig. 2 shows the oil-cooled SF degrading device mechanism diagram based on sliding arc discharge of the present invention;
图3示出了本发明所述的金属电极示意图;Fig. 3 shows the metal electrode schematic diagram of the present invention;
图中:1-电缆线,2-等离子体喷枪,3-油冷箱,4-特制反应管,5-出气口, 6-金属内网,7-金属电极,8-变压器油。In the figure: 1-cable wire, 2-plasma spray gun, 3-oil cold box, 4-special reaction tube, 5-gas outlet, 6-metal inner net, 7-metal electrode, 8-transformer oil.
具体实施方式Detailed ways
一种基于滑动弧放电的油冷式六氟化硫结构,如图1所示,示出了其等离子体喷枪和反应管部分的结构图。如图2所示,基于上述油冷式六氟化硫结构,形成了一种油冷式的滑动弧放电SF6废气降解装置,主要包括了等离子体喷枪、金属电极、金属内网、陶瓷反应管和尾气吸收池五个部分。An oil-cooled sulfur hexafluoride structure based on sliding arc discharge, as shown in Figure 1, shows the structural diagram of its plasma torch and reaction tube. As shown in Figure 2, based on the above oil-cooled SF6 structure, an oil-cooled sliding arc discharge SF 6 waste gas degradation device is formed, which mainly includes a plasma spray gun, metal electrodes, metal inner mesh, ceramic reaction There are five parts of the pipe and the exhaust gas absorption pool.
本发明所述基于滑动弧放电的油冷式SF6降解装置,如图1至3所示。电缆线1在等离子体喷枪尾部,其中包含电源线、接地线和进气气管,电源线为等离子体喷枪带来能量,接地线连接大地,维护设备稳定可靠进气气管连接SF6废气及载气气源,将SF6废气送入等离子体喷枪中发生降解反应。The oil-cooled SF 6 degradation device based on sliding arc discharge of the present invention is shown in Figures 1 to 3 . Cable 1 is at the tail of the plasma spray gun, which includes the power line, grounding line and air intake pipe. The power line brings energy to the plasma spray gun, and the grounding line is connected to the earth to maintain stable and reliable equipment. The air intake pipe is connected to SF 6 waste gas and carrier gas. The gas source is to send SF 6 waste gas into the plasma spray gun for degradation reaction.
等离子体喷枪2内部具有高压电极和低压电极,高压电极连接从电缆线1 引入的高压线8,而低压电极连接同样从电源线1引入的电缆线。通过等离子体电源提供高频高压交流电,在等离子体喷枪2内部形成高频高压的交变电场,使其中的气体发生电离,产生自由电子,形成诸多种类复杂的高能粒子,随着自由电子越来越多,高压电极和低压电极之间会形成电弧。而电弧会在从进气气管进入的SF6混合气体的吹动下被拉伸,此时SF6气体分子会和电弧中的高能活性粒子之间发生碰撞、断键、离解等作用,使SF6气体分子发生断键,形成SFx+自由基和F-离子。SFx+自由基会结合其他阴离子,如OH-离子等等,形成性质比较稳定的分子,如SO2、SO2F2、SOF2等,从而达到了对SF6的降解作用。The
等离子体喷枪2的喷嘴和陶瓷反应管4连接部分是发生放电反应的主要部分,电弧会在SF6混合气体的吹动下逐渐延伸,电弧长度逐渐变长,发生SF6降解反应的区域也逐渐变大,但同时发生的放电损耗也逐渐增大。当电弧长度延伸到达一定长度之后,等离子体电源所提供的能量无法再维持电弧向前延伸,因而电弧会在SF6气流的吹动下熄灭,同时在高压电极和低压电极之间最短处重新形成电弧,并再次在SF6混合气流的吹动下向前延伸,重复上述过程。不锈钢螺旋电极4能够辅助电弧向前延伸,使电弧能够被拉伸得更长,进而增大了SF6气体分子发生降解的区域。电弧在产生以及延伸过程中,会造成能量损耗,表现为发光发热,正常使用时温度可保持在600℃以上,会造成严重的能量损耗,降低了SF6降解的能量效率。如图1和2所示,通过将反应管发生降解反应的部分置于半封闭油冷箱3中,油冷箱3中放置有三分之二的变压器油,能够保证将反应管部分完全浸没。油冷箱顶部还设有4个散热风扇,能够有效及时地对油冷箱3中的变压器油进行散热。在油冷盒风扇散热的作用下,能够保证放电反应时反应管的工作温度不超过200℃,使更多的能量用于SF6气体的降解上,大大提高了SF6废气降解的能量效率。The nozzle of the
经过滑动弧放电降解后的气体经过剩余部分的反应管,从出气快插接口5 流出到尾气吸收池中。SF6分解产物主要有SO2F2、SOF2、SO2、HF等物质,而由于滑动弧放电产生等离子体具有强度高、密度高等优势,能够使SF6降解得更加充分,使部分分解产物能够发生进一步的分解,例如SO2F2和SOF2能够进一步分解为SO2和HF。而SOF2、SO2和HF均为酸性气体,能够与金属碱溶液发生反应并被固定,因此SF6放电降解后的有毒气体经过尾气吸收池后会被完全吸收,使最终排入大气的气体完全无害化,从而实现SF6废气无害化处理。The gas degraded by the sliding arc discharge passes through the remaining part of the reaction tube, and flows out from the gas outlet quick-
图2为本发明基于滑动弧放电的油冷式SF6降解装置机理图。使用本发明所述基于滑动弧放电的油冷式六氟化硫降解装置具体操作方法如下所示:先按照装置机理图依次对装置的气路、电路进行连接,保证气管连接稳固不漏气、相关电路连接稳固可靠;检查油冷箱中变压器油是否在二分之一和三分之二容量之间;再观察尾气吸收吃侧面检视窗中,金属碱溶液的容量和浑浊状态,据此判断是否需要添加或更换碱液;检查完毕后,先打开载气气阀和散热风扇,然后启动等离子体电源,观察等离子体喷枪是否能够正常产生电弧;待电弧正常后,打开六氟化硫废气气阀,开始进行降解反应;长时间工作以后,需对油冷箱温度进行观察,若温度超过了250℃,则表明温度过高,需关停装置降温;装置准备停止时,先关闭SF6气源,待SF6气源流速为0后,关闭等离子体电源,此时保持载气继续吹动,一是确保SF6分解产生的有毒气体完全排入尾气吸收池中,二是对反应管内部进行散热;载气吹动一分钟左右,即可关闭,即整个降解流程结束,待油冷箱中变压器油冷却后,可再次开机工作。Fig. 2 is the mechanism diagram of the oil-cooled SF 6 degradation device based on the sliding arc discharge of the present invention. The specific operation method of using the oil-cooled sulfur hexafluoride degradation device based on sliding arc discharge in the present invention is as follows: firstly connect the gas circuit and circuit of the device in sequence according to the mechanism diagram of the device to ensure that the gas pipe connection is stable and air-tight, The relevant circuit connections are stable and reliable; check whether the transformer oil in the oil cooler is between 1/2 and 2/3 of the capacity; then observe the capacity and turbidity of the metal alkali solution in the side inspection window of the exhaust gas absorption, and judge accordingly Whether it is necessary to add or replace lye; after the inspection, first turn on the carrier gas valve and cooling fan, then start the plasma power supply, and observe whether the plasma spray gun can generate an arc normally; after the arc is normal, turn on the sulfur hexafluoride exhaust gas valve to start degradation reaction; after working for a long time, it is necessary to observe the temperature of the oil cooler box, if the temperature exceeds 250 ° C, it indicates that the temperature is too high, and the device needs to be shut down to cool down; when the device is ready to stop, first turn off the SF 6 gas After the flow rate of the SF6 gas source is 0, turn off the plasma power supply, and keep the carrier gas blowing at this time. One is to ensure that the toxic gas generated by the decomposition of SF6 is completely discharged into the exhaust gas absorption pool. Heat dissipation; the carrier gas can be blown for about one minute, then it can be turned off, that is, the entire degradation process is over, and after the transformer oil in the oil cooling box is cooled, it can be turned on again.
本发明主要创新点在于结合了滑动弧放电的特点,提出了油冷式散热方式并完善了具体结构和功能细节,并对滑动弧电极结构进行了改变,对金属电极进行了优化,增设了特制反应管内壁的金属内网,两者能够更好地契合采用油冷式滑动弧放电降解SF6的特点。能够达到解决背景技术所述的温度过高的问题,同时还能够促进降解率和能量效率的提升,具有比较好的创造性。The main innovation of this invention is that it combines the characteristics of sliding arc discharge, proposes an oil-cooled heat dissipation method and improves the specific structure and function details, and changes the structure of the sliding arc electrode, optimizes the metal electrode, and adds a special The metal inner mesh on the inner wall of the reaction tube can better meet the characteristics of degrading SF6 by oil-cooled sliding arc discharge. It can solve the problem of excessive temperature mentioned in the background technology, and at the same time, it can also promote the improvement of degradation rate and energy efficiency, which has relatively good creativity.
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-mentioned embodiments are only to describe the preferred mode of the present invention, not to limit the scope of the present invention. Without departing from the design spirit of the present invention, those skilled in the art may make various Variations and improvements should fall within the scope of protection defined by the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211260867.1A CN115646155B (en) | 2022-10-14 | 2022-10-14 | Oil-cooled sulfur hexafluoride degradation device and degradation method based on sliding arc discharge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211260867.1A CN115646155B (en) | 2022-10-14 | 2022-10-14 | Oil-cooled sulfur hexafluoride degradation device and degradation method based on sliding arc discharge |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115646155A true CN115646155A (en) | 2023-01-31 |
CN115646155B CN115646155B (en) | 2024-07-16 |
Family
ID=84986729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211260867.1A Active CN115646155B (en) | 2022-10-14 | 2022-10-14 | Oil-cooled sulfur hexafluoride degradation device and degradation method based on sliding arc discharge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115646155B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101066791A (en) * | 2007-06-19 | 2007-11-07 | 中山大学 | Three-phase AC sliding arc unbalanced plasma sewage treatment device |
CN101279715A (en) * | 2008-05-29 | 2008-10-08 | 中山大学 | A device that uses non-equilibrium plasma to eliminate volatile organic compounds and simultaneously produce hydrogen |
KR20100024108A (en) * | 2008-08-25 | 2010-03-05 | 인하대학교 산학협력단 | Apparatus for decomposition of pfcs gas using gliding arc discharge |
DE102013004514B3 (en) * | 2013-03-15 | 2014-07-10 | Al-Ko Kober Ag | Electrode device for a plasma discharge with a sliding arc |
CN107218623A (en) * | 2017-05-25 | 2017-09-29 | 航天神洁(北京)环保科技有限公司 | A kind of sliding arc auxiliary combustion equipment for producing atmospheric non-equilibrium plasma |
CN108966475A (en) * | 2018-08-07 | 2018-12-07 | 中国人民解放军空军工程大学 | A kind of miniature rotation arc plasma flow reactor |
CN113082952A (en) * | 2021-04-20 | 2021-07-09 | 湖北工业大学 | Sulfur hexafluoride degradation treatment device and method based on sliding arc discharge |
-
2022
- 2022-10-14 CN CN202211260867.1A patent/CN115646155B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101066791A (en) * | 2007-06-19 | 2007-11-07 | 中山大学 | Three-phase AC sliding arc unbalanced plasma sewage treatment device |
CN101279715A (en) * | 2008-05-29 | 2008-10-08 | 中山大学 | A device that uses non-equilibrium plasma to eliminate volatile organic compounds and simultaneously produce hydrogen |
KR20100024108A (en) * | 2008-08-25 | 2010-03-05 | 인하대학교 산학협력단 | Apparatus for decomposition of pfcs gas using gliding arc discharge |
DE102013004514B3 (en) * | 2013-03-15 | 2014-07-10 | Al-Ko Kober Ag | Electrode device for a plasma discharge with a sliding arc |
CN107218623A (en) * | 2017-05-25 | 2017-09-29 | 航天神洁(北京)环保科技有限公司 | A kind of sliding arc auxiliary combustion equipment for producing atmospheric non-equilibrium plasma |
CN108966475A (en) * | 2018-08-07 | 2018-12-07 | 中国人民解放军空军工程大学 | A kind of miniature rotation arc plasma flow reactor |
CN113082952A (en) * | 2021-04-20 | 2021-07-09 | 湖北工业大学 | Sulfur hexafluoride degradation treatment device and method based on sliding arc discharge |
Also Published As
Publication number | Publication date |
---|---|
CN115646155B (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113082952B (en) | Sulfur hexafluoride degradation treatment device and method based on sliding arc discharge | |
TWI615543B (en) | Energy-saving type dielectric barrier discharge plasma nox reduction device | |
CN104548890B (en) | Double; two medium low-temperature plasma smoke processing systems | |
CN101274213A (en) | Device and method for combined treatment of waste gas by dielectric barrier discharge plasma oxidation/solution absorption | |
CN115624848B (en) | A two-stage sulfur hexafluoride degradation reactor based on dielectric barrier discharge and treatment method thereof | |
CN108298506A (en) | Oil immersed type sulfur hexafluoride degradation treatment device based on medium discharge and processing method | |
CN103055674B (en) | Injection type low-temperature plasma waste gas treatment system | |
CN115337763A (en) | Circulating treatment device and method for degrading sulfur hexafluoride based on sliding arc discharge | |
CN115646155A (en) | Oil-cooled sulfur hexafluoride degradation device and method based on sliding arc discharge | |
CN115430268A (en) | SF6 waste gas water-cooled dielectric barrier discharge treatment device and method | |
CN1293934C (en) | Method for removing multipollutant in flue gas by combining free radical showering and absorption of alkali liquor | |
CN202907328U (en) | Plasma generation system by tubular dielectric barrier discharge | |
CN108905541A (en) | A kind of method of microwave plasma decomposition NO | |
CN209901036U (en) | A device for large-scale degradation of industrial waste gas | |
CN104689692B (en) | Device and method for treating waste gas by air plasma | |
CN115475499B (en) | Thermal plasma treatment method for sulfur hexafluoride degradation | |
CN106268217A (en) | SO2 Removal by Gas-Liquid Two-Phase Sliding Arc Discharge with NaOH | |
CN1086307C (en) | Technology for treating low temperature plasma waste gas | |
CN205760519U (en) | A kind of plasma waste gas cleaning equipment | |
CN108355469A (en) | A kind of method of two-part plasmon coupling deep purifying food and drink exhaust gas | |
CN203508201U (en) | Low-temperature plasma treatment device with function of removing fine particles from flue gas | |
CN208943805U (en) | Sulfur hexafluoride degradation treatment device based on dielectric barrier discharge | |
CN203663673U (en) | Flue gas pollutant treatment device | |
CN113181744A (en) | Mixed gas treatment equipment based on plasma technology | |
CN2698769Y (en) | Double discharging air gap two way monotube parallel ozone generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |