[go: up one dir, main page]

CN115642972A - Dynamic channel communication detection method, device, equipment and readable storage medium - Google Patents

Dynamic channel communication detection method, device, equipment and readable storage medium Download PDF

Info

Publication number
CN115642972A
CN115642972A CN202211660563.4A CN202211660563A CN115642972A CN 115642972 A CN115642972 A CN 115642972A CN 202211660563 A CN202211660563 A CN 202211660563A CN 115642972 A CN115642972 A CN 115642972A
Authority
CN
China
Prior art keywords
network model
dynamic
detection
communication
dynamic channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211660563.4A
Other languages
Chinese (zh)
Other versions
CN115642972B (en
Inventor
吕宣涛
高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peng Cheng Laboratory
Original Assignee
Peng Cheng Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peng Cheng Laboratory filed Critical Peng Cheng Laboratory
Priority to CN202211660563.4A priority Critical patent/CN115642972B/en
Publication of CN115642972A publication Critical patent/CN115642972A/en
Application granted granted Critical
Publication of CN115642972B publication Critical patent/CN115642972B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Image Analysis (AREA)

Abstract

本申请公开了一种动态信道通信检测方法、装置、设备及可读存储介质,该方法包括步骤:获取动态信道的通信数据;将所述通信数据输入到检测网络模型,得到输出结果,所述检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,所述检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的;根据所述输出结果,计算得到所述通信数据的检测结果。本申请实现了检测网络模型适应动态信道的变化情况,从而对动态信道进行检测,提高了动态通信信道的检测性能。

Figure 202211660563

The present application discloses a dynamic channel communication detection method, device, equipment and readable storage medium. The method includes the steps of: obtaining communication data of a dynamic channel; inputting the communication data into a detection network model to obtain an output result, the The detection network model is based on the dynamic change information of the dynamic channel, and is obtained by adjusting the calculation parameters of each neuron to adapt to the change of the dynamic channel. The detection network model is based on the preset communication data training samples and the obtained The sample label of the preset communication data training sample is obtained after iteratively training the preset deep neural network model; according to the output result, the detection result of the communication data is obtained by calculation. The present application realizes that the detection network model adapts to the change of the dynamic channel, thereby detecting the dynamic channel and improving the detection performance of the dynamic communication channel.

Figure 202211660563

Description

动态信道通信检测方法、装置、设备及可读存储介质Dynamic channel communication detection method, device, equipment and readable storage medium

技术领域technical field

本申请涉及通信技术领域,尤其涉及一种动态信道通信检测方法、装置、设备及可读存储介质。The present application relates to the field of communication technology, and in particular to a dynamic channel communication detection method, device, equipment and readable storage medium.

背景技术Background technique

海上运动场景下的无线宽带通信信道,由于海上通信环境动态变化引起的信道动态特性,从时间上来说,主要表现为时变特性;从统计模型上来说,通常表现为信道的统计非平稳性,即无法用单一的统计模型对信道进行建模,从而导致传统的基于数学统计模型的建模方法不适用,进而导致常规的通信接收端的检测方法性能较差。The wireless broadband communication channel in the sea sports scene, due to the dynamic characteristics of the channel caused by the dynamic change of the maritime communication environment, from the time point of view, it mainly shows time-varying characteristics; from the point of view of the statistical model, it usually shows the statistical non-stationarity of the channel, That is, the channel cannot be modeled with a single statistical model, which makes the traditional modeling method based on the mathematical statistical model inapplicable, which in turn leads to poor performance of the conventional detection method at the communication receiving end.

发明内容Contents of the invention

有鉴于此,本申请提供一种动态信道通信检测方法、装置、设备及可读存储介质,旨在提高动态通信信道的检测性能。In view of this, the present application provides a dynamic channel communication detection method, device, device and readable storage medium, aiming at improving the detection performance of dynamic communication channels.

为实现上述目的,本申请提供一种动态信道通信检测方法,所述动态信道通信检测方法包括以下步骤:In order to achieve the above purpose, the present application provides a dynamic channel communication detection method, the dynamic channel communication detection method includes the following steps:

获取动态信道的通信数据;Obtain the communication data of the dynamic channel;

将所述通信数据输入到检测网络模型,得到输出结果,所述检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,所述检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的;Input the communication data into the detection network model to obtain an output result, the detection network model is based on the dynamic change information of the dynamic channel, and is obtained after adjusting the calculation parameters of each neuron to adapt to the change of the dynamic channel model, the detection network model is obtained after performing iterative training on a preset deep neural network model based on preset communication data training samples and sample labels of the preset communication data training samples;

根据所述输出结果,计算得到所述通信数据的检测结果。According to the output result, the detection result of the communication data is obtained by calculation.

示例性的,所述将所述通信数据输入到检测网络模型,得到输出结果之前,包括:Exemplarily, before inputting the communication data into the detection network model and obtaining an output result, it includes:

获取所述动态信道的动态变化信息;Obtain dynamic change information of the dynamic channel;

将所述动态变化信息输入到记忆网络模型;其中,所述记忆网络模型是基于预设变化信息训练样本和所述预设变化信息训练样本的样本标签,对预设的记忆神经网络模型进行迭代训练后得到的;The dynamic change information is input into the memory network model; wherein, the memory network model is based on the preset change information training sample and the sample label of the preset change information training sample, and iterates the preset memory neural network model obtained after training;

根据所述记忆网络模型和所述动态变化信息,计算得到动态控制参数;calculating dynamic control parameters according to the memory network model and the dynamic change information;

根据所述动态控制参数,调整检测网络模型的各神经元的计算参数。According to the dynamic control parameters, the calculation parameters of each neuron of the detection network model are adjusted.

示例性的,所述根据所述记忆网络模型和所述动态变化信息,计算得到动态控制参数,包括:Exemplarily, the calculation of dynamic control parameters according to the memory network model and the dynamic change information includes:

获取所述记忆网络模型的上一时刻的隐藏状态参数;Obtain the hidden state parameters of the previous moment of the memory network model;

根据所述上一时刻的隐藏状态参数和所述动态变化信息,生成所述动态信道的动态变化的特征向量;generating a dynamically changing eigenvector of the dynamic channel according to the hidden state parameter at the last moment and the dynamic change information;

根据所述特征向量,计算所述记忆网络模型当前时刻的细胞状态参数;Calculate the cell state parameters of the memory network model at the current moment according to the feature vector;

根据所述当前时刻的细胞状态参数,计算所述记忆网络模型当前时刻的隐藏状态参数;calculating the hidden state parameters of the memory network model at the current moment according to the cell state parameters at the current moment;

根据所述当前时刻的细胞状态参数和所述当前时刻的隐藏状态参数,计算得到动态控制参数。A dynamic control parameter is calculated according to the cell state parameter at the current moment and the hidden state parameter at the current moment.

示例性的,所述根据所述特征向量,计算所述记忆网络模型当前时刻的细胞状态参数,包括:Exemplarily, the calculation of the cell state parameters of the memory network model at the current moment according to the feature vector includes:

获取所述检测网络模型的隐藏层的数量;Obtain the number of hidden layers of the detection network model;

选取所述数量的预设计算参数;selecting preset calculation parameters for said quantity;

根据所述预设计算参数和所述特征向量,计算所述记忆网络模型所述数量的当前时刻的细胞状态参数,以供所述记忆网络模型计算得到所述数量的动态控制参数,并通过所述数量的动态控制参数对应控制所述检测网络模型的全部隐藏层。According to the preset calculation parameters and the eigenvectors, calculate the number of cell state parameters of the memory network model at the current moment, so that the memory network model can calculate the number of dynamic control parameters, and use the memory network model to calculate the number of dynamic control parameters. The above-mentioned number of dynamic control parameters corresponds to controlling all hidden layers of the detection network model.

示例性的,所述根据所述动态控制参数,调整检测网络模型的各神经元的计算参数,包括:Exemplarily, the adjusting calculation parameters of each neuron of the detection network model according to the dynamic control parameters includes:

获取所述动态控制参数和所述检测网络模型的隐藏层之间的映射关系;Obtain the mapping relationship between the dynamic control parameters and the hidden layer of the detection network model;

根据所述映射关系,将所述数量的动态控制参数分别输入至所述检测网络模型中对应的各隐藏层;According to the mapping relationship, input the number of dynamic control parameters into corresponding hidden layers in the detection network model;

调整所述各隐藏层的各神经元的计算参数;其中,任一隐藏层中的全部神经元的计算参数相同。Adjusting the calculation parameters of each neuron in each hidden layer; wherein, the calculation parameters of all neurons in any hidden layer are the same.

示例性的,所述将所述通信数据输入到检测网络模型,得到输出结果之前,包括:Exemplarily, before inputting the communication data into the detection network model and obtaining an output result, it includes:

对所述通信数据进行实数化处理;performing real number processing on the communication data;

从实数化处理后的通信数据中选取预设长度的数据,并将所述预设长度的数据输入到检测网络模型。Selecting data of a preset length from the communication data after realization processing, and inputting the data of a preset length into the detection network model.

示例性的,所述根据所述输出结果,计算得到所述通信数据的检测结果,包括:Exemplarily, the calculating and obtaining the detection result of the communication data according to the output result includes:

将所述输出结果转化为由相应符号的概率估计值组成的矩阵;converting said output result into a matrix consisting of probability estimates for corresponding symbols;

计算所述矩阵的最大值自变量点集;calculating the maximum argument point set of said matrix;

根据所述最大值自变量点集,确定所述通信数据的符号的检测结果。A detection result of the symbol of the communication data is determined according to the maximum value argument point set.

示例性的,为实现上述目的,本申请还提供一种动态信道通信检测装置,所述装置包括:Exemplarily, in order to achieve the above purpose, the present application also provides a dynamic channel communication detection device, the device includes:

获取模块,用于获取动态信道的通信数据;An acquisition module, configured to acquire communication data of a dynamic channel;

输入模块,用于将所述通信数据输入到检测网络模型,得到输出结果,所述检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,所述检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的;The input module is used to input the communication data into the detection network model to obtain an output result. The detection network model is based on the dynamic change information of the dynamic channel and is obtained after adjusting the calculation parameters of each neuron to adapt to the dynamic A model of channel changes, the detection network model is obtained after iteratively training a preset deep neural network model based on preset communication data training samples and sample labels of the preset communication data training samples;

计算模块根据所述输出结果,计算得到所述通信数据的检测结果。The calculation module calculates the detection result of the communication data according to the output result.

示例性的,为实现上述目的,本申请还提供一种动态信道通信检测设备,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的动态信道通信检测程序,所述动态信道通信检测程序配置为实现如上所述的动态信道通信检测方法的步骤。Exemplarily, in order to achieve the above purpose, the present application also provides a dynamic channel communication detection device, which includes: a memory, a processor, and a dynamic channel communication system stored in the memory and operable on the processor. A detection program, the dynamic channel communication detection program is configured to implement the steps of the above dynamic channel communication detection method.

示例性的,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有动态信道通信检测程序,所述动态信道通信检测程序被处理器执行时实现如上所述的动态信道通信检测方法的步骤。Exemplarily, in order to achieve the above purpose, the present application also provides a computer-readable storage medium, where a dynamic channel communication detection program is stored on the computer-readable storage medium, and the dynamic channel communication detection program is implemented when executed by a processor. The steps of the above dynamic channel communication detection method.

与现有技术中,海上运动场景下的无线宽带通信信道产生动态变化,无法用单一的统计模型对信道进行建模,从而导致传统数学统计模型的方法不适用,进而导致常规的通信接收端的检测方法性能较差的情况相比,在本申请中,通过获取动态信道的通信数据,并将该动态信道的通信数据输入到检测网络模型中,从而得到输出结果,其中,该检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,其中,该检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的,从而保证了检测网络模型能针对动态信道的动态变化信息,适应其动态变化的情况,进而保证了检测网络模型的输出结果的准确性,从而根据该输出结果,计算得到通信数据的检测结果,即调整检测网络模型的计算参数,从而使得检测网络模型能够适应动态信道的动态变化,进而使得检测网络模型能够精准对其动态信道的通信数据进行相关检测,并保证输出结果的准确性,因而保证了根据输出结果计算的通信数据的检测结果的准确性,因此提高了对动态通信信道的检测性能。Compared with the existing technology, the wireless broadband communication channel in the sea sports scene changes dynamically, and the channel cannot be modeled with a single statistical model, which makes the traditional mathematical statistical model method inapplicable, which in turn leads to the detection of the conventional communication receiving end. Compared with the poor performance of the method, in this application, the communication data of the dynamic channel is obtained, and the communication data of the dynamic channel is input into the detection network model to obtain the output result, wherein the detection network model is based on The dynamic change information of the dynamic channel is a model adapted to the change of the dynamic channel obtained after adjusting the calculation parameters of each neuron, wherein the detection network model is based on preset communication data training samples and the preset communication The sample label of the data training sample is obtained after iterative training of the preset deep neural network model, thus ensuring that the detection network model can adapt to the dynamic change information of the dynamic channel, thereby ensuring that the detection network model The accuracy of the output results, so that according to the output results, the detection results of the communication data are calculated, that is, the calculation parameters of the detection network model are adjusted, so that the detection network model can adapt to the dynamic changes of the dynamic channel, and the detection network model can be accurate. Correlative detection is performed on the communication data of the dynamic channel, and the accuracy of the output result is ensured, thereby ensuring the accuracy of the detection result of the communication data calculated according to the output result, thereby improving the detection performance of the dynamic communication channel.

附图说明Description of drawings

图1为本申请动态信道通信检测方法第一实施例的流程示意图;FIG. 1 is a schematic flow diagram of the first embodiment of the dynamic channel communication detection method of the present application;

图2为本申请动态信道通信检测方法第二实施例的流程示意图;FIG. 2 is a schematic flow diagram of the second embodiment of the dynamic channel communication detection method of the present application;

图3为记忆网络模型的网络结构图;Fig. 3 is the network structural diagram of memory network model;

图4为记忆网络模型和检测网络模型的架构示意图;Fig. 4 is a schematic diagram of the architecture of the memory network model and the detection network model;

图5为基于动态控制信息的检测网络模型的结构示意图;Fig. 5 is a schematic structural diagram of a detection network model based on dynamic control information;

图6为本申请实施例方案涉及的硬件运行环境的结构示意图。FIG. 6 is a schematic structural diagram of the hardware operating environment involved in the solution of the embodiment of the present application.

本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional features and advantages of the present application will be further described in conjunction with the embodiments and with reference to the accompanying drawings.

具体实施方式Detailed ways

应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.

本申请提供一种动态信道通信检测方法,参照图1,图1为本申请动态信道通信检测方法第一实施例的流程示意图。The present application provides a dynamic channel communication detection method. Referring to FIG. 1 , FIG. 1 is a schematic flowchart of a first embodiment of the dynamic channel communication detection method of the present application.

本申请实施例提供了动态信道通信检测方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。为了便于描述,以下省略执行主体描述动态信道通信检测方法的各个步骤,动态信道通信检测方法包括:The embodiment of the present application provides an embodiment of a dynamic channel communication detection method. It should be noted that although the logic sequence is shown in the flow chart, in some cases, the sequence shown here may be executed in a different order. or the steps described. For the convenience of description, the following omits the execution subject to describe the various steps of the dynamic channel communication detection method. The dynamic channel communication detection method includes:

步骤S110:获取动态信道的通信数据;Step S110: Obtain communication data of the dynamic channel;

针对海上运动场景下的无线宽带通信信道,该场景下通常为海上的运动中的船只的通信发射端将相关的通信数据发射至岸边的基站的通信接收端,从而完成通信过程。For the wireless broadband communication channel in the sea sports scene, in this scene, the communication transmitter of the ship in motion usually transmits the relevant communication data to the communication receiver of the base station on the shore to complete the communication process.

而从船只的通信发射端到岸边基站的通信接收端之间的通信信道为动态信道,该动态信道的主要动态变化为船只在海上的动态变化,例如,船只在海上航行时的位置不断变化,或因海上的风浪影响通信信道等情况。The communication channel between the ship's communication transmitter and the shore base station's communication receiver is a dynamic channel, and the main dynamic change of the dynamic channel is the dynamic change of the ship at sea, for example, the position of the ship is constantly changing when sailing at sea , or the communication channel is affected by the wind and waves at sea.

获取动态信道的通信数据,该通信数据即为从海上的船只的通信发射端到岸边基 站的通信接收端之间的交互数据,该通信数据在初始化通信发射机中信号符号集为

Figure 506423DEST_PATH_IMAGE001
,调制阶数为M。 Obtain the communication data of the dynamic channel, which is the interactive data from the communication transmitter of the ship at sea to the communication receiver of the shore base station. The signal symbol set of the communication data in the initialization communication transmitter is
Figure 506423DEST_PATH_IMAGE001
, and the modulation order is M.

其中,符号速率可为20M,采用QPSK(Quadrature Phase Shift Keying,正交相移键控)调制,调制阶数为M,该调制阶数与检测网络模型的输出层的数量相同,可取M=4。Among them, the symbol rate can be 20M, using QPSK (Quadrature Phase Shift Keying, quadrature phase shift keying) modulation, the modulation order is M, the modulation order is the same as the number of output layers of the detection network model, and M=4 is desirable .

其中,初始化即为对船只和基站之间的通信系统的参数进行初始化,达到启用状态。Wherein, the initialization is to initialize the parameters of the communication system between the ship and the base station to reach an enabled state.

步骤S120:将所述通信数据输入到检测网络模型,得到输出结果,所述检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,所述检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的;Step S120: Input the communication data into the detection network model to obtain an output result. The detection network model is based on the dynamic change information of the dynamic channel and is obtained after adjusting the calculation parameters of each neuron to adapt to the dynamic channel. The model of the change situation, the detection network model is obtained after iteratively training the preset deep neural network model based on the preset communication data training samples and the sample labels of the preset communication data training samples;

针对常规通信接收端符号检测方法存在的问题,以及考虑到基于神经网络的信号检测方法具有数据驱动而非模型驱动的特性,其本身具有不依赖于数据统计模型的特点,即可将常规检测方法中的数据统计模型替换成神经网络模型的方式,从而避免单一的统计模型对通信信道进行建模时存在的问题。In view of the problems existing in the symbol detection method of the conventional communication receiving end, and considering that the signal detection method based on the neural network is data-driven rather than model-driven, and it has the characteristics of not relying on the statistical model of the data, the conventional detection method can be The statistical model of the data in the network is replaced by the neural network model, so as to avoid the problems existing in modeling the communication channel with a single statistical model.

采用基于深度神经网络设计新的接收端符号检测方法,即通过深度神经网络模型对相关数据进行计算,对其输出的向量结果进一步计算,即可得到接收端符号检测的结果。A new symbol detection method at the receiving end is designed based on the deep neural network, that is, the relevant data is calculated through the deep neural network model, and the vector results output by it are further calculated to obtain the symbol detection result at the receiving end.

而在将常规的单一统计模型替换为深度神经网络模型时,需要对该深度神经网络模型中的各神经元进行调整,以使其适应动态信道的动态变化情况,因此,根据需根据动态变化信息,调整该深度神经网络模型的各神经元的计算参数。When replacing the conventional single statistical model with a deep neural network model, each neuron in the deep neural network model needs to be adjusted to adapt to the dynamic changes of the dynamic channel. , to adjust the calculation parameters of each neuron of the deep neural network model.

当前海上运动场景下信道的大范围动态变化,导致常规符号检测方法不适用、通信性能差的问题。因此,在对通信信道进行常规符号检测之前,需针对通信信道的动态变化的情况进行分析,并做出相应的应对。The large-scale dynamic changes of the channel in the current maritime motion scene lead to the problems of inapplicability of conventional symbol detection methods and poor communication performance. Therefore, before performing conventional symbol detection on the communication channel, it is necessary to analyze the dynamic change of the communication channel and make corresponding countermeasures.

因此,获取该动态信道的动态变化信息,该动态变化信息即指通信信道的动态变化的特征信息。Therefore, the dynamic change information of the dynamic channel is acquired, and the dynamic change information refers to the characteristic information of the dynamic change of the communication channel.

示例性的,该动态变化信息包括该通信信道的位置变化和在通信时的通信信号的动态变化情况。Exemplarily, the dynamic change information includes the position change of the communication channel and the dynamic change of the communication signal during communication.

其中,通信信道的位置变化包括船只到岸边基站之间的距离,以及船只自身的速度,该速度影响着距离上的变化速率。Among them, the position change of the communication channel includes the distance between the ship and the shore base station, and the speed of the ship itself, which affects the rate of change in the distance.

其中,通信信道的信号的动态变化情况为信号的强度变化情况,在计算时,避免因信号的大幅度波动而对计算结果造成影响,因此,该强度变化情况采用信号整体的平均强度。Wherein, the dynamic change of the signal of the communication channel is the change of the strength of the signal. During the calculation, the influence on the calculation result due to the large fluctuation of the signal is avoided. Therefore, the average strength of the overall signal is used for the change of the strength.

其中,神经元的计算过程本身存在各种函数和计算用的神经元的参数,而根据动态变化信息,不断调整各神经元的计算参数,即可影响其计算后的输出结果,从而使得该深度神经网络模型适应动态信道的动态变化。Among them, the calculation process of the neuron itself has various functions and parameters of the neuron used for calculation, and according to the dynamic change information, continuously adjusting the calculation parameters of each neuron can affect the output after calculation, so that the depth The neural network model adapts to the dynamic changes of the dynamic channel.

其中,通过预设通信数据训练样本和预设通信数据训练样本的样本标签对该深度神经网络模型进行迭代训练后,得到检测网络模型,其主要用于使用常规接收端符号检测方法之前,对相关数据通过神经网络模型进行计算。Among them, after the iterative training of the deep neural network model through the preset communication data training samples and the sample labels of the preset communication data training samples, a detection network model is obtained, which is mainly used to detect relevant The data is calculated by the neural network model.

上述的预设通信数据训练样本和预设通信数据训练样本的样本标签,根据实际计算通信相关数据时所需处理的内容而定,例如,多个固定位置的通信数据的样本,训练过程中采用的训练样本标签,计算梯度等过程均为常用的神经网络模型的训练方法,在此不再赘述。The above-mentioned preset communication data training samples and the sample labels of the preset communication data training samples are determined according to the content that needs to be processed when actually calculating communication-related data. The training sample labels, gradient calculation and other processes are commonly used neural network model training methods, so I won’t repeat them here.

以下的检测网络模型均为训练完成的深度神经网络模型。The following detection network models are all trained deep neural network models.

示例性的,检测网络模型的网络共有L+2层。Exemplarily, the network of the detection network model has a total of L+2 layers.

其中,输入层为实数化后的接收信号

Figure 146483DEST_PATH_IMAGE002
。该接收信号y即为基站的通信接收端通过 动态信道而接收到的信号,即通信数据。 Among them, the input layer is the received signal after real digitization
Figure 146483DEST_PATH_IMAGE002
. The received signal y is a signal received by the communication receiving end of the base station through a dynamic channel, that is, communication data.

其中,隐藏层有L层,每个隐藏层对应的神经元节点数为

Figure 39353DEST_PATH_IMAGE003
。 Among them, the hidden layer has L layers, and the number of neuron nodes corresponding to each hidden layer is
Figure 39353DEST_PATH_IMAGE003
.

深度神经网络的输出层为全连接层,计算得到其输出为

Figure 157481DEST_PATH_IMAGE004
。 The output layer of the deep neural network is a fully connected layer, and its output is calculated as
Figure 157481DEST_PATH_IMAGE004
.

上述L层的网络可根据实际需要确定具体层数。The above L-layer network can determine the specific number of layers according to actual needs.

步骤S150:根据所述输出结果,计算得到所述通信数据的检测结果。Step S150: Calculate and obtain the detection result of the communication data according to the output result.

根据上述内容可知,在检测网络模型输出相应的计算结果后,使用常规接收端符号检测方法,即可完成对通信数据的符号检测。According to the above content, after the detection network model outputs the corresponding calculation results, the symbol detection of the communication data can be completed by using the conventional symbol detection method at the receiving end.

通信数据的检测结果即为对通信数据的符号检测。The detection result of the communication data is the symbol detection of the communication data.

示例性的,所述将所述通信数据输入到检测网络模型,得到输出结果之前,包括:Exemplarily, before inputting the communication data into the detection network model and obtaining an output result, it includes:

步骤a:对所述通信数据进行实数化处理;Step a: performing real number processing on the communication data;

因检测网络模型的输入层需接收实数化后的接收信号,因此,在将通信数据输入到检测网络模型之前,需要将通信数据进行实数化处理。Because the input layer of the detection network model needs to receive the received signal after real digitization, it is necessary to process the communication data into real digits before inputting the communication data into the detection network model.

在对通信数据进行实数化处理时,使用实数化函数:When performing real number processing on communication data, use the real number function:

Figure 960352DEST_PATH_IMAGE005
Figure 960352DEST_PATH_IMAGE005

在使用该实数化函数时,将通信数据的实部和虚部分别提取出来,并将该实部和该虚部组成通信向量。When the realization function is used, the real part and the imaginary part of the communication data are respectively extracted, and the real part and the imaginary part are composed into a communication vector.

此时,实数化的通信数据表示为:

Figure 771314DEST_PATH_IMAGE006
。 At this time, the real-numbered communication data is expressed as:
Figure 771314DEST_PATH_IMAGE006
.

步骤c:从实数化处理后的通信数据中选取预设长度的数据,并将所述预设长度的数据输入到检测网络模型。Step c: selecting data of a preset length from the communication data processed by real digitization, and inputting the data of a preset length into the detection network model.

根据通信向量,即根据

Figure 151479DEST_PATH_IMAGE006
,选取相应数量个符号作为输入数据序列。 According to the communication vector, that is, according to
Figure 151479DEST_PATH_IMAGE006
, select the corresponding number of symbols as the input data sequence.

其中,该相应数量根据通信向量而定,即每次检测网络模型计算之前都将实数化 后的相邻的

Figure 338878DEST_PATH_IMAGE007
个符号作为检测网络模型的输入数据序列,其序列长度为
Figure 996256DEST_PATH_IMAGE008
,即为预设长 度。 Wherein, the corresponding number is determined according to the communication vector, that is, before each calculation of the detection network model, the adjacent
Figure 338878DEST_PATH_IMAGE007
symbols as the input data sequence of the detection network model, and its sequence length is
Figure 996256DEST_PATH_IMAGE008
, which is the preset length.

示例性的,所述根据所述输出结果,计算得到所述通信数据的检测结果,包括:Exemplarily, the calculating and obtaining the detection result of the communication data according to the output result includes:

步骤d:将所述输出结果转化为由相应符号的概率估计值组成的矩阵;Step d: converting the output result into a matrix composed of probability estimates of corresponding symbols;

深度神经网络的输出

Figure 978118DEST_PATH_IMAGE009
,其中M为通信系统符号的调制阶数,
Figure 720946DEST_PATH_IMAGE004
的具体矩 阵表达式如下: The output of the deep neural network
Figure 978118DEST_PATH_IMAGE009
, where M is the modulation order of the symbol in the communication system,
Figure 720946DEST_PATH_IMAGE004
The specific matrix expression of is as follows:

Figure 571090DEST_PATH_IMAGE010
Figure 571090DEST_PATH_IMAGE010

即其每个元素对应于当前待检测符号

Figure 82974DEST_PATH_IMAGE011
为相应符号的概率估计值。 That is, each element corresponds to the current symbol to be detected
Figure 82974DEST_PATH_IMAGE011
is the probability estimate for the corresponding symbol.

步骤e:计算所述矩阵的最大值自变量点集;Step e: calculating the maximum independent variable point set of the matrix;

步骤f:根据所述最大值自变量点集,确定所述通信数据的符号的检测结果。Step f: Determine the detection result of the symbol of the communication data according to the point set of the maximum value argument.

常规接收端符号检测方法,即可完成对通信数据的符号检测,该检测过程通过计算上述矩阵中的最大值自变量点集,此时即可使用相关通用计算公式,因此,可通过下式计算得到最大值自变量点集:The symbol detection method of the conventional receiving end can complete the symbol detection of the communication data. The detection process calculates the maximum independent variable point set in the above matrix. At this time, the relevant general calculation formula can be used. Therefore, it can be calculated by the following formula Get the maximum independent variable point set:

Figure 235738DEST_PATH_IMAGE012
Figure 235738DEST_PATH_IMAGE012

其中,

Figure 465862DEST_PATH_IMAGE013
即为检测结果的向量大小。 in,
Figure 465862DEST_PATH_IMAGE013
That is, the vector size of the detection result.

在计算得到最大值自变量点集后,确定出通信数据的符号的检测结果,即将最大值作为检测结果。After the point set of the maximum value argument is calculated, the detection result of the symbol of the communication data is determined, that is, the maximum value is taken as the detection result.

与现有技术中,海上运动场景下的无线宽带通信信道产生动态变化,无法用单一的统计模型对信道进行建模,从而导致传统数学统计模型的方法不适用,进而导致常规的通信接收端的检测方法性能较差的情况相比,在本申请中,通过获取动态信道的通信数据,并将该动态信道的通信数据输入到检测网络模型中,从而得到输出结果,其中,该检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,其中,该检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的,从而保证了检测网络模型能针对动态信道的动态变化信息,适应其动态变化的情况,进而保证了检测网络模型的输出结果的准确性,从而根据该输出结果,计算得到通信数据的检测结果,即调整检测网络模型的计算参数,从而使得检测网络模型能够适应动态信道的动态变化,进而使得检测网络模型能够精准对其动态信道的通信数据进行相关检测,并保证输出结果的准确性,因而保证了根据输出结果计算的通信数据的检测结果的准确性,因此提高了对动态通信信道的检测性能。Compared with the existing technology, the wireless broadband communication channel in the sea sports scene changes dynamically, and the channel cannot be modeled with a single statistical model, which makes the traditional mathematical statistical model method inapplicable, which in turn leads to the detection of the conventional communication receiving end. Compared with the poor performance of the method, in this application, the communication data of the dynamic channel is obtained, and the communication data of the dynamic channel is input into the detection network model to obtain the output result, wherein the detection network model is based on The dynamic change information of the dynamic channel is a model adapted to the change of the dynamic channel obtained after adjusting the calculation parameters of each neuron, wherein the detection network model is based on preset communication data training samples and the preset communication The sample label of the data training sample is obtained after iterative training of the preset deep neural network model, thus ensuring that the detection network model can adapt to the dynamic change information of the dynamic channel, thereby ensuring that the detection network model The accuracy of the output results, so that according to the output results, the detection results of the communication data are calculated, that is, the calculation parameters of the detection network model are adjusted, so that the detection network model can adapt to the dynamic changes of the dynamic channel, and the detection network model can be accurate. Correlative detection is performed on the communication data of the dynamic channel, and the accuracy of the output result is ensured, thereby ensuring the accuracy of the detection result of the communication data calculated according to the output result, thereby improving the detection performance of the dynamic communication channel.

示例性的,参照图2,图2是本申请动态信道通信检测方法第二实施例的流程示意图,基于上述本申请动态信道通信检测方法第一实施例,提出第二实施例,所述方法还包括:For example, refer to FIG. 2, which is a schematic flowchart of the second embodiment of the dynamic channel communication detection method of the present application. Based on the above-mentioned first embodiment of the dynamic channel communication detection method of the present application, a second embodiment is proposed. The method also includes include:

步骤S210:获取所述动态信道的动态变化信息;Step S210: Obtain dynamic change information of the dynamic channel;

当前海上运动场景下信道的大范围动态变化,导致常规符号检测方法不适用、通信性能差的问题。因此,在对通信信道进行常规符号检测之前,需针对通信信道的动态变化的情况进行分析,并做出相应的应对。The large-scale dynamic changes of the channel in the current maritime motion scene lead to the problems of inapplicability of conventional symbol detection methods and poor communication performance. Therefore, before performing conventional symbol detection on the communication channel, it is necessary to analyze the dynamic change of the communication channel and make corresponding countermeasures.

因此,获取该动态信道的动态变化信息,该动态变化信息即指通信信道的动态变化的特征信息。Therefore, the dynamic change information of the dynamic channel is acquired, and the dynamic change information refers to the characteristic information of the dynamic change of the communication channel.

示例性的,该动态变化信息包括该通信信道的位置变化和在通信时的通信信号的动态变化情况。Exemplarily, the dynamic change information includes the position change of the communication channel and the dynamic change of the communication signal during communication.

其中,通信信道的位置变化包括船只到岸边基站之间的距离,以及船只自身的速度,该速度影响着距离上的变化速率。Among them, the position change of the communication channel includes the distance between the ship and the shore base station, and the speed of the ship itself, which affects the rate of change in the distance.

其中,通信信道的信号的动态变化情况为信号的强度变化情况,在计算时,避免因信号的大幅度波动而对计算结果造成影响,因此,该强度变化情况采用信号整体的平均强度。Wherein, the dynamic change of the signal of the communication channel is the change of the strength of the signal. During the calculation, the influence on the calculation result due to the large fluctuation of the signal is avoided. Therefore, the average strength of the overall signal is used for the change of the strength.

步骤S220:将所述动态变化信息输入到记忆网络模型;其中,所述记忆网络模型是基于预设变化信息训练样本和所述预设变化信息训练样本的样本标签,对预设的记忆神经网络模型进行迭代训练后得到的;Step S220: Input the dynamic change information into the memory network model; wherein, the memory network model is based on the preset change information training sample and the sample label of the preset change information training sample, for the preset memory neural network The model is obtained after iterative training;

在根据动态变化信息,调整检测网络模型各神经元的计算参数时,需要先对动态变化信息进行相应处理,该处理过程考虑到动态信道的动态变化过程具有一定的相关性,从而使用记忆神经网络实现对动态环境的学习与记忆,将其动态变化过程连续记录下来,可根据动态信道的上一时刻的状态,和动态变化信息,计算当前时刻动态信道的状态。When adjusting the calculation parameters of each neuron in the detection network model according to the dynamic change information, it is necessary to process the dynamic change information first. This process takes into account that the dynamic change process of the dynamic channel has a certain correlation, so the memory neural network is used Realize the learning and memory of the dynamic environment, record its dynamic change process continuously, and calculate the state of the dynamic channel at the current moment according to the state of the dynamic channel at the previous moment and the dynamic change information.

上述计算过程中,通过记忆神经网络的记忆状态参数来记忆和学习通信信道的动态变化信息,即主要根据动态变化信息中的距离、速度和平均信号强度,记忆船只的上一时刻的位置和计算船只当前时刻的位置,从而确定动态信道的变化情况。In the above calculation process, the memory state parameters of the memory neural network are used to memorize and learn the dynamic change information of the communication channel, that is, to memorize the position and calculation of the ship at the previous moment mainly based on the distance, speed and average signal strength in the dynamic change information. The position of the ship at the current moment, so as to determine the change of the dynamic channel.

记忆网络模型即为训练完成的记忆神经网络模型,使用预设变化信息训练样本和预设变化信息训练样本的样本标签对预设的记忆神经网络模型进行迭代训练后记忆网络模型。The memory network model is the trained memory neural network model, and the preset memory neural network model is iteratively trained using the preset change information training samples and the sample labels of the preset change information training samples to memory the network model.

该预设变化信息训练样本为动态变化信息组成的,预设变化信息训练样本的样本标签根据动态变化信息计算的结果确定,该记忆网络模型的训练过程与检测网络模型的训练过程类似,且训练过程为通用技术,在此不再赘述。The preset change information training sample is composed of dynamic change information, and the sample label of the preset change information training sample is determined according to the calculation result of the dynamic change information. The training process of the memory network model is similar to the training process of the detection network model, and the training The process is a common technology, and will not be repeated here.

步骤S220:根据所述记忆网络模型和所述动态变化信息,计算得到动态控制参数;Step S220: Calculate and obtain dynamic control parameters according to the memory network model and the dynamic change information;

训练完成后的记忆网络模型用于对动态变化信息的相关计算,从而计算得到动态控制参数,其中,该动态控制参数作为调整检测网络模型中的计算参数的控制参数,使得检测网络模型适应动态信道的变化情况。The memory network model after the training is used to calculate the dynamic change information, thereby calculating the dynamic control parameters, where the dynamic control parameters are used as the control parameters to adjust the calculation parameters in the detection network model, so that the detection network model adapts to the dynamic channel changes.

即该动态控制参数为控制检测网络模型的门限控制信息,因此,该动态控制参数的长度与检测网络模型中的隐藏层的数量一致,即动态控制参数的长度为L。从而达到对检测网络模型的隐藏层的门限控制。That is, the dynamic control parameter is threshold control information for controlling the detection network model. Therefore, the length of the dynamic control parameter is consistent with the number of hidden layers in the detection network model, that is, the length of the dynamic control parameter is L. In this way, the threshold control of the hidden layer of the detection network model is achieved.

示例性的,所述根据所述记忆网络模型和所述动态变化信息,计算得到动态控制参数,包括:Exemplarily, the calculation of dynamic control parameters according to the memory network model and the dynamic change information includes:

步骤g:获取所述记忆网络模型的上一时刻的隐藏状态参数;Step g: Obtain the hidden state parameters of the memory network model at the previous moment;

在每次将动态变化信息输入到记忆网络模型后,以及网络模型会对神经网络中的记忆状态参数进行更新,从而记忆当前的动态变化信息,以及相关对动态变化信息的计算,从而计算得到动态控制参数。After each dynamic change information is input into the memory network model, the network model will update the memory state parameters in the neural network, thereby memorizing the current dynamic change information and related calculation of the dynamic change information, so as to calculate the dynamic Control parameters.

在记忆网络模型的记忆状态参数包括记忆网络模型的神经网络隐藏状态参数

Figure 995064DEST_PATH_IMAGE014
, 以及该神经网络的细胞状态参数
Figure 486088DEST_PATH_IMAGE015
,在记忆网络模型每次接到动态变化信息时,均会对上 述两个记忆状态参数进行更新。 The memory state parameters in the memory network model include the hidden state parameters of the neural network in the memory network model
Figure 995064DEST_PATH_IMAGE014
, and the cell state parameters of the neural network
Figure 486088DEST_PATH_IMAGE015
, each time the memory network model receives dynamic change information, it will update the above two memory state parameters.

其中,

Figure 75332DEST_PATH_IMAGE014
Figure 527173DEST_PATH_IMAGE015
为记忆网络模型当前时刻t的记忆状态参数,其向量长度均为
Figure 594486DEST_PATH_IMAGE016
;其 中,可根据隐藏状态参数计算出细胞状态参数,其中,隐藏状态参数的初始值可选为1。 in,
Figure 75332DEST_PATH_IMAGE014
and
Figure 527173DEST_PATH_IMAGE015
is the memory state parameter of the memory network model at the current moment t, and its vector length is
Figure 594486DEST_PATH_IMAGE016
;wherein, the cell state parameters can be calculated according to the hidden state parameters, wherein the initial value of the hidden state parameters can be selected as 1.

而通过隐藏状态参数计算细胞状态参数时,需要根据上一时刻的隐藏状态参数和当前时刻的动态变化信息,即根据上一时刻的动态变化信息输入到记忆网络模型后更新的上一时刻的隐藏状态参数,计算当前时刻的隐藏状态参数。When calculating the cell state parameters through the hidden state parameters, it is necessary to use the hidden state parameters of the previous moment and the dynamic change information of the current moment, that is, the hidden state parameters of the previous moment updated according to the dynamic change information of the previous moment input into the memory network model. State parameters, calculate the hidden state parameters at the current moment.

因此,获取记忆网络模型中的上一时刻的隐藏状态参数。Therefore, the hidden state parameters of the last moment in the memory network model are obtained.

记忆网络模型的当前时刻的隐藏状态参数记作

Figure 69244DEST_PATH_IMAGE014
,上一时刻的隐藏状态参数记作
Figure 954023DEST_PATH_IMAGE017
。The hidden state parameters of the memory network model at the current moment are denoted as
Figure 69244DEST_PATH_IMAGE014
, the hidden state parameter at the last moment is denoted as
Figure 954023DEST_PATH_IMAGE017
.

步骤h:根据所述上一时刻的隐藏状态参数和所述动态变化信息,生成所述动态信道的动态变化的特征向量;Step h: generating a dynamically changing eigenvector of the dynamic channel according to the hidden state parameters at the last moment and the dynamic change information;

神经网络模型中计算过程通常使用向量计算,因此,将上一时刻的隐藏状态参数和动态变化信息,可生成新的关于动态信道的动态变化的特征向量,该向量包括上一时刻的特征,以及当前时刻的动态变化信息。The calculation process in the neural network model usually uses vector calculation. Therefore, the hidden state parameters and dynamic change information of the previous moment can be used to generate a new feature vector about the dynamic change of the dynamic channel, which includes the characteristics of the previous moment, and Dynamic change information at the current moment.

由上述可知,动态变化信息包括距离、速度和信号的平均强度,分别将三者记作距离d、速度v和信号的平均强度r。From the above, it can be known that the dynamic change information includes distance, speed and average signal strength, which are respectively recorded as distance d, speed v and average signal strength r.

因此,生成得到的特征向量记作:

Figure 893160DEST_PATH_IMAGE018
。 Therefore, the generated eigenvectors are written as:
Figure 893160DEST_PATH_IMAGE018
.

步骤i:根据所述特征向量,计算所述记忆网络模型当前时刻的细胞状态参数;Step i: Calculate the cell state parameters of the memory network model at the current moment according to the feature vector;

记忆网络模型的输出结果,除了需要隐藏状态参数,还需要细胞状态参数,而细胞状态参数可根据特征向量计算得到。The output of the memory network model requires not only the hidden state parameters but also the cell state parameters, which can be calculated based on the eigenvectors.

该计算过程中还需要获取记忆网络模型的网络参数,该参数具体为记忆网络模型中的各神经节点参数。In the calculation process, it is also necessary to obtain the network parameters of the memory network model, which are specifically the parameters of each neural node in the memory network model.

具体计算公式如下:The specific calculation formula is as follows:

Figure 498585DEST_PATH_IMAGE019
Figure 498585DEST_PATH_IMAGE019

其中,

Figure 105147DEST_PATH_IMAGE020
为神经网络里的逐点逻辑激活函数; in,
Figure 105147DEST_PATH_IMAGE020
is the point-by-point logical activation function in the neural network;

tanh为逐点双曲正切激活函数;tanh is a point-wise hyperbolic tangent activation function;

Figure 36194DEST_PATH_IMAGE021
为遗忘门限参数;
Figure 36194DEST_PATH_IMAGE021
is the forgetting threshold parameter;

Figure 321682DEST_PATH_IMAGE022
为输入门限参数;
Figure 321682DEST_PATH_IMAGE022
is the input threshold parameter;

Figure 261956DEST_PATH_IMAGE023
为输出门限参数;
Figure 261956DEST_PATH_IMAGE023
is the output threshold parameter;

Figure 457445DEST_PATH_IMAGE024
为临时细胞状态参数;
Figure 457445DEST_PATH_IMAGE024
is the temporary cell state parameter;

Figure 293814DEST_PATH_IMAGE025
为记忆网络模型的上一时刻的细胞状态参数;
Figure 293814DEST_PATH_IMAGE025
is the cell state parameter at the last moment of the memory network model;

Figure 207543DEST_PATH_IMAGE018
为特征向量;
Figure 207543DEST_PATH_IMAGE018
is the feature vector;

Figure 685929DEST_PATH_IMAGE026
Figure 860559DEST_PATH_IMAGE027
为记忆网络模型的各神经节点参数;
Figure 685929DEST_PATH_IMAGE026
and
Figure 860559DEST_PATH_IMAGE027
are the parameters of each neural node of the memory network model;

Figure 133408DEST_PATH_IMAGE028
Figure 268854DEST_PATH_IMAGE029
Figure 285352DEST_PATH_IMAGE030
的偏差向量。
Figure 133408DEST_PATH_IMAGE028
and
Figure 268854DEST_PATH_IMAGE029
for
Figure 285352DEST_PATH_IMAGE030
deviation vector.

步骤m:根据所述当前时刻的细胞状态参数,计算所述记忆网络模型当前时刻的隐藏状态参数;Step m: Calculate the hidden state parameters of the memory network model at the current moment according to the cell state parameters at the current moment;

在计算得到当前时刻的细胞状态参数后,根据细胞状态参数计算记忆网络模型的 当前时刻的隐藏状态参数,即根据

Figure 580067DEST_PATH_IMAGE017
和动态变化信息,计算出
Figure 23818DEST_PATH_IMAGE015
,再根据
Figure 912139DEST_PATH_IMAGE015
,计算得到
Figure 466749DEST_PATH_IMAGE014
。 After calculating the cell state parameters at the current moment, calculate the hidden state parameters of the memory network model at the current moment according to the cell state parameters, that is, according to
Figure 580067DEST_PATH_IMAGE017
and dynamic change information, calculate the
Figure 23818DEST_PATH_IMAGE015
, and then according to
Figure 912139DEST_PATH_IMAGE015
, calculated to get
Figure 466749DEST_PATH_IMAGE014
.

Figure 491337DEST_PATH_IMAGE014
的计算公式如下所示:
Figure 491337DEST_PATH_IMAGE014
The calculation formula of is as follows:

Figure 105989DEST_PATH_IMAGE031
Figure 105989DEST_PATH_IMAGE031

其中,

Figure 340661DEST_PATH_IMAGE023
为输出门限参数; in,
Figure 340661DEST_PATH_IMAGE023
is the output threshold parameter;

tanh为逐点双曲正切激活函数;tanh is a point-wise hyperbolic tangent activation function;

步骤n:根据所述当前时刻的细胞状态参数和所述当前时刻的隐藏状态参数,计算得到动态控制参数。Step n: Calculate and obtain dynamic control parameters according to the cell state parameters at the current moment and the hidden state parameters at the current moment.

在计算得到当前时刻的细胞状态参数和当前时刻的隐藏状态参数后,计算得到当 前时刻的动态控制参数,动态控制参数记作

Figure 433382DEST_PATH_IMAGE032
。 After calculating the cell state parameters at the current moment and the hidden state parameters at the current moment, the dynamic control parameters at the current moment are calculated, and the dynamic control parameters are denoted as
Figure 433382DEST_PATH_IMAGE032
.

Figure 578055DEST_PATH_IMAGE032
的计算公式如下所示:
Figure 578055DEST_PATH_IMAGE032
The calculation formula of is as follows:

Figure 691505DEST_PATH_IMAGE033
Figure 691505DEST_PATH_IMAGE033

其中,

Figure 226523DEST_PATH_IMAGE034
是逐点软激活函数,它的第i个元素
Figure 247568DEST_PATH_IMAGE035
Figure 246748DEST_PATH_IMAGE036
; in,
Figure 226523DEST_PATH_IMAGE034
Is a point-wise soft activation function, its i-th element
Figure 247568DEST_PATH_IMAGE035
for
Figure 246748DEST_PATH_IMAGE036
;

Figure 468782DEST_PATH_IMAGE037
Figure 287834DEST_PATH_IMAGE038
Figure 987936DEST_PATH_IMAGE016
参数权重矩阵;
Figure 468782DEST_PATH_IMAGE037
yes
Figure 287834DEST_PATH_IMAGE038
Figure 987936DEST_PATH_IMAGE016
parameter weight matrix;

Figure 966257DEST_PATH_IMAGE039
是3
Figure 93613DEST_PATH_IMAGE040
1的偏差向量。
Figure 966257DEST_PATH_IMAGE039
is 3
Figure 93613DEST_PATH_IMAGE040
A bias vector of 1.

参照图3,图3为记忆网络模型的网络结构图。Referring to FIG. 3 , FIG. 3 is a network structure diagram of a memory network model.

该网络将动态变化信息作为输入,经过相关神经元计算,从而计算细胞状态参数和隐藏状态参数,同时会根据记忆神经网络的特性,将上一时刻的相关状态参数保留,并运用到计算当前时刻的相关状态参数中。The network takes the dynamic change information as input and calculates the cell state parameters and hidden state parameters through the calculation of relevant neurons. At the same time, according to the characteristics of the memory neural network, the relevant state parameters at the previous moment are retained and used to calculate the current moment. In the relevant state parameters of .

最终根据当前时刻的细胞状态参数和当前状态的隐藏状态参数,输出动态控制信息。Finally, the dynamic control information is output according to the cell state parameters at the current moment and the hidden state parameters of the current state.

示例性的,所述根据所述特征向量,计算所述记忆网络模型当前时刻的细胞状态参数,包括:Exemplarily, the calculation of the cell state parameters of the memory network model at the current moment according to the feature vector includes:

步骤j:获取所述检测网络模型的隐藏层的数量;Step j: Obtain the number of hidden layers of the detection network model;

步骤k:选取所述数量的预设计算参数;Step k: selecting the number of preset calculation parameters;

记忆网络模型输出的结果会输入到检测网络模型中,并调整检测网络模型的神经元的参数,因此,记忆网络模型的输出结果应与检测网络模型的隐藏层进行对应,即针对检测网络模型的隐藏层的数量,设定记忆网络模型所要计算的参数的数量。The output result of the memory network model will be input into the detection network model, and the parameters of the neurons of the detection network model will be adjusted. Therefore, the output result of the memory network model should correspond to the hidden layer of the detection network model, that is, for the detection network model. The number of hidden layers, which sets the number of parameters to be calculated by the memory network model.

因此,获取检测网络模型的隐藏层的数量。Thus, get the number of hidden layers of the detection network model.

并根据隐藏层的数量选取相应数量的预设计算参数,该预设计算参数即为记忆网络模型的神经节点参数,根据隐藏层的数量选取不同的预设计算参数。And select a corresponding number of preset calculation parameters according to the number of hidden layers, the preset calculation parameters are the neural node parameters of the memory network model, and select different preset calculation parameters according to the number of hidden layers.

示例性的,以隐藏层的数量为3为例进行阐述,即需要记忆网络模型输出三个参 数,并根据该三个参数控制检测网络模型的神经元的计算参数,因此,根据隐藏层的数量选 取预设计算参数时,选取记忆网络模型的

Figure 665539DEST_PATH_IMAGE026
Figure 169333DEST_PATH_IMAGE027
Figure 877526DEST_PATH_IMAGE041
的矩阵。 Exemplarily, the number of hidden layers is 3 as an example, that is, the memory network model needs to output three parameters, and the calculation parameters of the neurons of the detection network model are controlled according to the three parameters. Therefore, according to the number of hidden layers When selecting the preset calculation parameters, select the memory network model
Figure 665539DEST_PATH_IMAGE026
and
Figure 169333DEST_PATH_IMAGE027
for
Figure 877526DEST_PATH_IMAGE041
matrix.

当隐藏层的数量为其他任一数值时,产生的选取预设计算参数的效果与隐藏层的数量为3时相似,在此不再赘述。When the number of hidden layers is any other value, the effect of selecting the preset calculation parameters is similar to that when the number of hidden layers is 3, which will not be repeated here.

步骤l:根据所述预设计算参数和所述特征向量,计算所述记忆网络模型所述数量的当前时刻的细胞状态参数,以供所述记忆网络模型计算得到所述数量的动态控制参数,并通过所述数量的动态控制参数对应控制所述检测网络模型的全部隐藏层。Step 1: According to the preset calculation parameters and the eigenvectors, calculate the number of cell state parameters of the memory network model at the current moment, so that the memory network model can calculate the number of dynamic control parameters, And correspondingly control all hidden layers of the detection network model through the number of dynamic control parameters.

根据预设计算参数和特征向量,即根据上述已给出的计算公式,可计算出隐藏层的数量的当前时刻的细胞状态参数,并可根据该隐藏层的数量的当前时刻的细胞状态参数,计算得到隐藏层的数量的当前时刻的隐藏状态参数,从而计算得到隐藏层的数量的动态控制参数,以此使得记忆网络模型的输出结果能够对检测网络模型的全部隐藏层进行控制。According to the preset calculation parameters and eigenvectors, that is, according to the calculation formula given above, the cell state parameters at the current moment of the number of hidden layers can be calculated, and the cell state parameters at the current moment of the number of hidden layers can be calculated, Calculate the hidden state parameters at the current moment of the number of hidden layers, thereby calculating the dynamic control parameters of the number of hidden layers, so that the output result of the memory network model can control all hidden layers of the detection network model.

示例性的,以上述隐藏层的数量为3为例继续进行阐述,即最终计算得到的

Figure 300417DEST_PATH_IMAGE032
包括 三个数值,分别记作
Figure 94061DEST_PATH_IMAGE042
,即
Figure 135966DEST_PATH_IMAGE043
。 Exemplarily, the above-mentioned number of hidden layers is 3 as an example to continue the explanation, that is, the final calculated
Figure 300417DEST_PATH_IMAGE032
Contains three values, denoted as
Figure 94061DEST_PATH_IMAGE042
,Right now
Figure 135966DEST_PATH_IMAGE043
.

在隐藏层的数量为其他数值时,相应增减

Figure 241543DEST_PATH_IMAGE032
的数量即可。 When the number of hidden layers is other values, increase or decrease accordingly
Figure 241543DEST_PATH_IMAGE032
The quantity can be.

步骤S230:根据所述动态控制参数,调整检测网络模型的各神经元的计算参数。Step S230: Adjust calculation parameters of each neuron of the detection network model according to the dynamic control parameters.

在计算得到动态控制参数后,根据该动态控制参数,对检测网络模型的各神经元 的计算参数进行调整,该调整过程,根据

Figure 710701DEST_PATH_IMAGE032
中的数值与检测网络模型中的隐藏层一一对应 关系,使得
Figure 116275DEST_PATH_IMAGE032
中的任一数值仅控制一个隐藏层。 After the dynamic control parameters are calculated, according to the dynamic control parameters, the calculation parameters of each neuron of the detection network model are adjusted. The adjustment process is based on
Figure 710701DEST_PATH_IMAGE032
The values in are in one-to-one correspondence with the hidden layers in the detection network model, so that
Figure 116275DEST_PATH_IMAGE032
Any value in controls only one hidden layer.

即通过记忆网络模型根据动态变化信息,计算并输出相应的动态控制信息,将该动态控制信息输入至检测网络模型中,并控制检测网络模型中的计算参数,从而使得在将信号实数化后输入到检测网络模型中的数据最后的计算结果产生动态变化,以适应动态信道的变化情况。That is, through the memory network model, according to the dynamic change information, calculate and output the corresponding dynamic control information, input the dynamic control information into the detection network model, and control the calculation parameters in the detection network model, so that after the signal is realized, the input The final calculation result of the data in the detection network model is dynamically changed to adapt to the changing situation of the dynamic channel.

参照图4,图4为记忆网络模型和检测网络模型的架构示意图。Referring to FIG. 4, FIG. 4 is a schematic diagram of the architecture of the memory network model and the detection network model.

其中,记忆网络模型和检测网络模型可作为整体化的神经网络模型,也可作为两个独立的神经网络模型。Wherein, the memory network model and the detection network model can be used as an integrated neural network model, or as two independent neural network models.

其中,输入动态变化信息到记忆网络模型,通过记忆网络模型,输出动态控制信息。Among them, the dynamic change information is input to the memory network model, and the dynamic control information is output through the memory network model.

其中,输入实数化的通信数据y到检测网络模型,通过检测网络模型,输出相应的 结果,在对该结果进行符号检测,得到检测结果

Figure 696292DEST_PATH_IMAGE013
。 Among them, input the real-numbered communication data y to the detection network model, output the corresponding result through the detection network model, and perform symbol detection on the result to obtain the detection result
Figure 696292DEST_PATH_IMAGE013
.

示例性的,所述根据所述动态控制参数,调整检测网络模型的各神经元的计算参数,包括:Exemplarily, the adjusting calculation parameters of each neuron of the detection network model according to the dynamic control parameters includes:

步骤o:获取所述动态控制参数和所述检测网络模型的隐藏层之间的映射关系;Step o: Obtain the mapping relationship between the dynamic control parameters and the hidden layer of the detection network model;

映射关系即为

Figure 644656DEST_PATH_IMAGE032
中的数值与检测网络模型的隐藏层之间的对应关系,例如,在隐 藏层的数量为3时,
Figure 284716DEST_PATH_IMAGE043
,检测网络模型的隐藏层的数量为3,此时将根 据
Figure 52952DEST_PATH_IMAGE044
所控制检测网络模型的第一个隐藏层、
Figure 561294DEST_PATH_IMAGE045
控制检测网络模型的第二个隐藏层、
Figure 629744DEST_PATH_IMAGE046
控制检测网络模型的第三个隐藏层。 The mapping relationship is
Figure 644656DEST_PATH_IMAGE032
The correspondence between the values in and the hidden layers of the detection network model, for example, when the number of hidden layers is 3,
Figure 284716DEST_PATH_IMAGE043
, the number of hidden layers of the detection network model is 3, at this time it will be based on
Figure 52952DEST_PATH_IMAGE044
The first hidden layer of the controlled detection network model,
Figure 561294DEST_PATH_IMAGE045
Controlling the second hidden layer of the detection network model,
Figure 629744DEST_PATH_IMAGE046
Controls the third hidden layer of the detection network model.

步骤p:根据所述映射关系,将所述数量的动态控制参数分别输入至所述检测网络模型中对应的各隐藏层;Step p: according to the mapping relationship, respectively input the number of dynamic control parameters into corresponding hidden layers in the detection network model;

从而将

Figure 440705DEST_PATH_IMAGE032
的相应数据对应调整隐藏层的神经元的原本的计算参数,且在调整过程 中,
Figure 430658DEST_PATH_IMAGE032
会控制整个隐藏层中的全部神经元的计算参数统一,均为
Figure 618057DEST_PATH_IMAGE032
中的同一个值,
Figure 400068DEST_PATH_IMAGE047
。 thus will
Figure 440705DEST_PATH_IMAGE032
The corresponding data of corresponding to adjust the original calculation parameters of neurons in the hidden layer, and during the adjustment process,
Figure 430658DEST_PATH_IMAGE032
It will control the calculation parameters of all neurons in the entire hidden layer to be unified, which are
Figure 618057DEST_PATH_IMAGE032
the same value in ,
Figure 400068DEST_PATH_IMAGE047
.

步骤q:调整所述各隐藏层的各神经元的计算参数;其中,任一隐藏层中的全部神经元的计算参数相同。Step q: adjusting the calculation parameters of each neuron in each hidden layer; wherein, the calculation parameters of all neurons in any hidden layer are the same.

示例性的,以检测网络模型共有5层网络为例进行阐述,其中,分别为1层输入层、1层输出层,以及3层隐藏层。Exemplarily, the detection network model has a total of 5 layers as an example for illustration, where there are 1 input layer, 1 output layer, and 3 hidden layers respectively.

其中,根据上述可知,输入层为实数化后的接收信号

Figure 381930DEST_PATH_IMAGE002
,每次计算将相邻的
Figure 859179DEST_PATH_IMAGE007
个符 号作为输入序列,其序列长度为
Figure 850269DEST_PATH_IMAGE008
. Among them, according to the above, it can be seen that the input layer is the received signal after real digitization
Figure 381930DEST_PATH_IMAGE002
, each calculation will adjacent
Figure 859179DEST_PATH_IMAGE007
symbols as the input sequence, the sequence length is
Figure 850269DEST_PATH_IMAGE008
.

其中,隐藏层对应的神经元节点数为

Figure 362153DEST_PATH_IMAGE048
Figure 639551DEST_PATH_IMAGE049
Figure 135254DEST_PATH_IMAGE050
。 Among them, the number of neuron nodes corresponding to the hidden layer is
Figure 362153DEST_PATH_IMAGE048
,
Figure 639551DEST_PATH_IMAGE049
,
Figure 135254DEST_PATH_IMAGE050
.

参照图5,图5为基于动态控制信息的检测网络模型的结构示意图。Referring to FIG. 5 , FIG. 5 is a schematic structural diagram of a detection network model based on dynamic control information.

图5以检测网络模型具备三层隐藏层为例进行阐述,其中,最左侧为输入层,将实 数化的通信数据y输入到该检测网络模型中,通过隐藏层1、隐藏层2和隐藏层3的相关计算, 最后在最右侧的输出层输出相应结果

Figure 398876DEST_PATH_IMAGE004
。 Figure 5 takes the detection network model with three hidden layers as an example, where the leftmost is the input layer, and the real-numbered communication data y is input into the detection network model, through hidden layer 1, hidden layer 2 and hidden layer The relevant calculation of layer 3, and finally output the corresponding result in the rightmost output layer
Figure 398876DEST_PATH_IMAGE004
.

根据图5的结构,使用检测网络模型进行相关计算,其中,检测网络模型的隐藏层 会根据记忆网络模型输入的

Figure 30846DEST_PATH_IMAGE051
,相应调整隐藏层的计算参数。 According to the structure in Figure 5, the detection network model is used to perform related calculations, wherein the hidden layer of the detection network model will be input according to the memory network model
Figure 30846DEST_PATH_IMAGE051
, adjust the calculation parameters of the hidden layer accordingly.

其中,隐藏层1的输出如下:Among them, the output of hidden layer 1 is as follows:

Figure 354511DEST_PATH_IMAGE052
Figure 354511DEST_PATH_IMAGE052

其中

Figure 71931DEST_PATH_IMAGE053
Figure 263878DEST_PATH_IMAGE054
权重参数矩阵,
Figure 15933DEST_PATH_IMAGE055
Figure 776079DEST_PATH_IMAGE056
的偏差向量; in
Figure 71931DEST_PATH_IMAGE053
yes
Figure 263878DEST_PATH_IMAGE054
weight parameter matrix,
Figure 15933DEST_PATH_IMAGE055
yes
Figure 776079DEST_PATH_IMAGE056
the deviation vector;

Figure 715216DEST_PATH_IMAGE057
为深度神经网络里的逐点逻辑激活函数;
Figure 586220DEST_PATH_IMAGE044
为动态控制参数。
Figure 715216DEST_PATH_IMAGE057
is a point-by-point logical activation function in a deep neural network;
Figure 586220DEST_PATH_IMAGE044
is a dynamic control parameter.

其中,隐藏层2的输出如下:Among them, the output of hidden layer 2 is as follows:

Figure 927203DEST_PATH_IMAGE058
Figure 927203DEST_PATH_IMAGE058

其中

Figure 717304DEST_PATH_IMAGE059
Figure 409317DEST_PATH_IMAGE060
权重参数矩阵;
Figure 84012DEST_PATH_IMAGE061
Figure 279501DEST_PATH_IMAGE062
的偏差向量; in
Figure 717304DEST_PATH_IMAGE059
yes
Figure 409317DEST_PATH_IMAGE060
weight parameter matrix;
Figure 84012DEST_PATH_IMAGE061
yes
Figure 279501DEST_PATH_IMAGE062
the deviation vector;

Figure 115870DEST_PATH_IMAGE057
为深度神经网络里的逐点逻辑激活函数;
Figure 154233DEST_PATH_IMAGE045
为动态控制参数。
Figure 115870DEST_PATH_IMAGE057
is a point-by-point logical activation function in a deep neural network;
Figure 154233DEST_PATH_IMAGE045
is a dynamic control parameter.

其中,隐藏层3的输出如下:Among them, the output of hidden layer 3 is as follows:

Figure 367040DEST_PATH_IMAGE063
Figure 367040DEST_PATH_IMAGE063

其中

Figure 682615DEST_PATH_IMAGE064
Figure 955464DEST_PATH_IMAGE065
权重参数矩阵;
Figure 90910DEST_PATH_IMAGE066
Figure 232042DEST_PATH_IMAGE067
的偏差向量; in
Figure 682615DEST_PATH_IMAGE064
yes
Figure 955464DEST_PATH_IMAGE065
weight parameter matrix;
Figure 90910DEST_PATH_IMAGE066
yes
Figure 232042DEST_PATH_IMAGE067
the deviation vector;

Figure 124825DEST_PATH_IMAGE057
为深度神经网络里的逐点逻辑激活函数;
Figure 834155DEST_PATH_IMAGE046
为动态控制参数。
Figure 124825DEST_PATH_IMAGE057
is a point-by-point logical activation function in a deep neural network;
Figure 834155DEST_PATH_IMAGE046
is a dynamic control parameter.

深度神经网络的输出层为全连接层,其输出如下:The output layer of the deep neural network is a fully connected layer, and its output is as follows:

Figure 191318DEST_PATH_IMAGE068
Figure 191318DEST_PATH_IMAGE068

其中

Figure 11507DEST_PATH_IMAGE069
Figure 160728DEST_PATH_IMAGE070
权重参数矩阵; in
Figure 11507DEST_PATH_IMAGE069
yes
Figure 160728DEST_PATH_IMAGE070
weight parameter matrix;

Figure 775380DEST_PATH_IMAGE071
Figure 150998DEST_PATH_IMAGE072
的偏差向量;
Figure 775380DEST_PATH_IMAGE071
yes
Figure 150998DEST_PATH_IMAGE072
the deviation vector;

Figure 243719DEST_PATH_IMAGE034
是逐点软激活函数,它的第i个元素
Figure 388392DEST_PATH_IMAGE035
Figure 298580DEST_PATH_IMAGE036
Figure 243719DEST_PATH_IMAGE034
Is a point-wise soft activation function, its i-th element
Figure 388392DEST_PATH_IMAGE035
for
Figure 298580DEST_PATH_IMAGE036
;

Figure 895914DEST_PATH_IMAGE073
为调制阶数。
Figure 895914DEST_PATH_IMAGE073
is the modulation order.

最后,根据

Figure 792326DEST_PATH_IMAGE004
对符号进行相应检测,得到检测结果。 Finally, according to
Figure 792326DEST_PATH_IMAGE004
Corresponding detection is carried out on the symbol, and the detection result is obtained.

在本实施例中,使用记忆网络模型对动态变化信息进行相应计算,从而使得记忆网络模型学习和记忆上一时刻动态信道的动态变化信息,以及计算当前时刻的动态变化信息,从而使得计算出的参数适应动态信道的变化情况,并进一步计算得到动态控制参数,根据该动态控制参数,调整检测网络模型的各神经元的计算参数,从而使得检测网络模型能够检测动态信道的通信数据。In this embodiment, the memory network model is used to calculate the dynamic change information accordingly, so that the memory network model learns and remembers the dynamic change information of the dynamic channel at the previous moment, and calculates the dynamic change information of the current moment, so that the calculated The parameters are adapted to the changing situation of the dynamic channel, and the dynamic control parameters are further calculated. According to the dynamic control parameters, the calculation parameters of each neuron of the detection network model are adjusted, so that the detection network model can detect the communication data of the dynamic channel.

此外,本申请还提供一种动态信道通信检测装置,所述一种动态信道通信检测装置包括:In addition, the present application also provides a dynamic channel communication detection device, and the dynamic channel communication detection device includes:

获取模块,用于获取动态信道的通信数据;An acquisition module, configured to acquire communication data of a dynamic channel;

输入模块,用于将所述通信数据输入到检测网络模型,得到输出结果,所述检测网络模型是基于所述动态信道的动态变化信息,调整各神经元的计算参数后得到的适应所述动态信道的变化情况的模型,所述检测网络模型是基于预设通信数据训练样本和所述预设通信数据训练样本的样本标签,对预设的深度神经网络模型进行迭代训练后得到的;The input module is used to input the communication data into the detection network model to obtain an output result. The detection network model is based on the dynamic change information of the dynamic channel and is obtained after adjusting the calculation parameters of each neuron to adapt to the dynamic A model of channel changes, the detection network model is obtained after iteratively training a preset deep neural network model based on preset communication data training samples and sample labels of the preset communication data training samples;

计算模块,用于根据所述输出结果,计算得到所述通信数据的检测结果。A calculation module, configured to calculate the detection result of the communication data according to the output result.

示例性的,所述输入模块包括:Exemplarily, the input module includes:

获取子模块,用于获取所述动态信道的动态变化信息;An acquisition submodule, configured to acquire dynamic change information of the dynamic channel;

第一输入子模块,用于将所述动态变化信息输入到记忆网络模型;其中,所述记忆网络模型是基于预设变化信息训练样本和所述预设变化信息训练样本的样本标签,对预设的记忆神经网络模型进行迭代训练后得到的;The first input submodule is used to input the dynamic change information into the memory network model; wherein, the memory network model is based on the preset change information training sample and the sample label of the preset change information training sample, and the preset change information obtained after iterative training of the memory neural network model;

第一计算子模块,用于根据所述记忆网络模型和所述动态变化信息,计算得到动态控制参数;The first calculation submodule is used to calculate dynamic control parameters according to the memory network model and the dynamic change information;

调整子模块,用于根据所述动态控制参数,调整检测网络模型的各神经元的计算参数。The adjustment sub-module is used to adjust the calculation parameters of each neuron of the detection network model according to the dynamic control parameters.

示例性的,所述计算子模块包括:Exemplary, the calculation sub-module includes:

所述根据所述记忆网络模型和所述动态变化信息,计算得到动态控制参数,包括:The calculation of dynamic control parameters according to the memory network model and the dynamic change information includes:

第一获取单元,用于获取所述记忆网络模型的上一时刻的隐藏状态参数;A first acquisition unit, configured to acquire the hidden state parameters of the memory network model at the previous moment;

生成单元,用于根据所述上一时刻的隐藏状态参数和所述动态变化信息,生成所述动态信道的动态变化的特征向量;A generating unit, configured to generate a dynamically changing eigenvector of the dynamic channel according to the hidden state parameters at the last moment and the dynamic change information;

第一计算单元,用于根据所述特征向量,计算所述记忆网络模型当前时刻的细胞状态参数;A first calculation unit, configured to calculate the cell state parameters of the memory network model at the current moment according to the feature vector;

第二计算单元,用于根据所述当前时刻的细胞状态参数,计算所述记忆网络模型当前时刻的隐藏状态参数;The second calculation unit is used to calculate the hidden state parameters of the memory network model at the current moment according to the cell state parameters at the current moment;

第三计算单元,用于根据所述当前时刻的细胞状态参数和所述当前时刻的隐藏状态参数,计算得到动态控制参数。The third calculation unit is configured to calculate dynamic control parameters according to the current cell state parameters and the current hidden state parameters.

示例性的,所述第一计算单元包括:Exemplarily, the first computing unit includes:

获取子单元,用于获取所述检测网络模型的隐藏层的数量;An acquisition subunit, configured to acquire the number of hidden layers of the detection network model;

选取子单元,用于选取所述数量的预设计算参数;selecting subunits for selecting preset calculation parameters of the quantity;

计算子单元,用于根据所述预设计算参数和所述特征向量,计算所述记忆网络模型所述数量的当前时刻的细胞状态参数,以供所述记忆网络模型计算得到所述数量的动态控制参数,并通过所述数量的动态控制参数对应控制所述检测网络模型的全部隐藏层。The calculation subunit is used to calculate the current cell state parameters of the number in the memory network model according to the preset calculation parameters and the eigenvector, so that the memory network model can calculate the dynamics of the number Control parameters, and correspondingly control all hidden layers of the detection network model through the number of dynamic control parameters.

示例性的,所述调整子模块包括:Exemplarily, the adjustment submodule includes:

第二获取单元,用于获取所述动态控制参数和所述检测网络模型的隐藏层之间的映射关系;A second acquisition unit, configured to acquire a mapping relationship between the dynamic control parameters and the hidden layer of the detection network model;

输入单元,用于根据所述映射关系,将所述数量的动态控制参数分别输入至所述检测网络模型中对应的各隐藏层;an input unit, configured to respectively input the number of dynamic control parameters into corresponding hidden layers in the detection network model according to the mapping relationship;

调整单元,用于调整所述各隐藏层的各神经元的计算参数;其中,任一隐藏层中的全部神经元的计算参数相同。The adjustment unit is configured to adjust the calculation parameters of each neuron in each hidden layer; wherein, the calculation parameters of all neurons in any hidden layer are the same.

示例性的,所述输入模块包括:Exemplarily, the input module includes:

处理子模块,用于对所述通信数据进行实数化处理;A processing submodule, configured to process the communication data in real numbers;

第二输入子模块,用于从实数化处理后的通信数据中选取预设长度的数据,并将所述预设长度的数据输入到检测网络模型。The second input sub-module is used to select data of a preset length from the communication data processed by realization, and input the data of a preset length to the detection network model.

示例性的,所述计算模块包括:Exemplarily, the calculation module includes:

转化子模块,用于将所述输出结果转化为由相应符号的概率估计值组成的矩阵;A conversion submodule, configured to convert the output result into a matrix consisting of probability estimates of corresponding symbols;

第二计算子模块,用于计算所述矩阵的最大值自变量点集;The second calculation submodule is used to calculate the maximum value independent variable point set of the matrix;

确定子模块,用于根据所述最大值自变量点集,确定所述通信数据的符号的检测结果。The determination submodule is configured to determine the detection result of the symbol of the communication data according to the maximum value argument point set.

本申请动态信道通信检测装置具体实施方式与上述动态信道通信检测方法各实施例基本相同,在此不再赘述。The specific implementation manners of the dynamic channel communication detection device of the present application are basically the same as the above embodiments of the dynamic channel communication detection method, and will not be repeated here.

此外,本申请还提供一种动态信道通信检测设备。如图6所示,图6是本申请实施例方案涉及的硬件运行环境的结构示意图。In addition, the present application also provides a dynamic channel communication detection device. As shown in FIG. 6 , FIG. 6 is a schematic structural diagram of a hardware operating environment involved in the solution of the embodiment of the present application.

示例性的,图6即可为动态信道通信检测设备的硬件运行环境的结构示意图。Exemplarily, FIG. 6 is a schematic structural diagram of a hardware operating environment of the dynamic channel communication detection device.

如图6所示,该动态信道通信检测设备可以包括处理器601、通信接口602、存储器603和通信总线604,其中,处理器601、通信接口602和存储器603通过通信总线604完成相互间的通信,存储器603,用于存放计算机程序;处理器601,用于执行存储器603上所存放的程序时,实现动态信道通信检测方法的步骤。As shown in Figure 6, the dynamic channel communication detection device may include a processor 601, a communication interface 602, a memory 603 and a communication bus 604, wherein the processor 601, the communication interface 602 and the memory 603 complete mutual communication through the communication bus 604 , the memory 603 is used to store computer programs; the processor 601 is used to implement the steps of the dynamic channel communication detection method when executing the programs stored in the memory 603 .

上述动态信道通信检测设备提到的通信总线604可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(ExtendedIndustry Standard Architecture,EISA)总线等。该通信总线604可以分为地址总线、数据总线和控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The communication bus 604 mentioned above in the dynamic channel communication detection device may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like. The communication bus 604 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.

通信接口602用于上述动态信道通信检测设备与其他设备之间的通信。The communication interface 602 is used for communication between the dynamic channel communication detection device and other devices.

存储器603可以包括随机存取存储器(Random Access Memory,RMD),也可以包括非易失性存储器(Non- Volatile Memory,NM),例如至少一个磁盘存储器。可选的,存储器603还可以是至少一个位于远离前述处理器601的存储装置。The memory 603 may include a random access memory (Random Access Memory, RMD), and may also include a non-volatile memory (Non-Volatile Memory, NM), such as at least one disk memory. Optionally, the memory 603 may also be at least one storage device located away from the aforementioned processor 601 .

上述的处理器601可以是通用处理器,包括中央处理器(Central ProcessingUnit,CPU)、网络处理器( Network Processor,NP)等;还可以是数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路( Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field- Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor 601 may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it may also be a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.

本申请动态信道通信检测设备具体实施方式与上述动态信道通信检测方法各实施例基本相同,在此不再赘述。The specific implementation manners of the dynamic channel communication detection device of the present application are basically the same as the embodiments of the above dynamic channel communication detection method, and will not be repeated here.

此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有动态信道通信检测程序,所述动态信道通信检测程序被处理器执行时实现如上所述的动态信道通信检测方法的步骤。In addition, the embodiment of the present application also proposes a computer-readable storage medium, where a dynamic channel communication detection program is stored on the computer-readable storage medium, and when the dynamic channel communication detection program is executed by a processor, the above-mentioned dynamic The steps of the channel communication detection method.

本申请计算机可读存储介质具体实施方式与上述动态信道通信检测方法各实施例基本相同,在此不再赘述。The specific implementation manners of the computer-readable storage medium of the present application are basically the same as the above embodiments of the dynamic channel communication detection method, and will not be repeated here.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, as used herein, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or system comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or system. Without further limitations, an element defined by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system comprising that element.

上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium as described above (such as ROM/RAM , magnetic disk, optical disk), including several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present application.

以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only preferred embodiments of the present application, and are not intended to limit the patent scope of the present application. All equivalent structures or equivalent process transformations made by using the description of the application and the accompanying drawings are directly or indirectly used in other related technical fields. , are all included in the patent protection scope of the present application in the same way.

Claims (10)

1. A dynamic channel communication detection method, comprising:
acquiring communication data of a dynamic channel;
inputting the communication data into a detection network model to obtain an output result, wherein the detection network model is a model which is obtained by adjusting calculation parameters of each neuron based on dynamic change information of the dynamic channel and adapts to the change condition of the dynamic channel, and the detection network model is obtained by performing iterative training on a preset deep neural network model based on a preset communication data training sample and a sample label of the preset communication data training sample;
and calculating to obtain the detection result of the communication data according to the output result.
2. The dynamic channel communication detection method as claimed in claim 1, wherein said inputting said communication data to a detection network model to obtain an output result comprises:
acquiring dynamic change information of the dynamic channel;
inputting the dynamic change information into a memory network model; the memory network model is obtained by performing iterative training on a preset memory neural network model based on a preset change information training sample and a sample label of the preset change information training sample;
calculating to obtain dynamic control parameters according to the memory network model and the dynamic change information;
and adjusting the calculation parameters of each neuron of the detection network model according to the dynamic control parameters.
3. The dynamic channel communication detection method as claimed in claim 2, wherein said calculating a dynamic control parameter according to the memory network model and the dynamic variation information comprises:
acquiring a hidden state parameter of the memory network model at the last moment;
generating a dynamically changed feature vector of the dynamic channel according to the hidden state parameter at the previous moment and the dynamically changed information;
calculating the cell state parameters of the memory network model at the current moment according to the feature vectors;
calculating hidden state parameters of the memory network model at the current moment according to the cell state parameters at the current moment;
and calculating to obtain dynamic control parameters according to the cell state parameters at the current moment and the hidden state parameters at the current moment.
4. The dynamic channel traffic detection method of claim 3, wherein said calculating the cell state parameter of the memory network model at the current time according to the feature vector comprises:
acquiring the number of hidden layers of the detection network model;
selecting the number of preset calculation parameters;
and calculating the cell state parameters of the memory network model at the current moment of the number according to the preset calculation parameters and the feature vectors so as to obtain the dynamic control parameters of the number by calculation of the memory network model, and correspondingly controlling all hidden layers of the detection network model through the dynamic control parameters of the number.
5. The dynamic channel communication detection method of claim 4, wherein said adjusting the calculation parameters of each neuron of the detection network model according to the dynamic control parameters comprises:
acquiring a mapping relation between the dynamic control parameters and a hidden layer of the detection network model;
according to the mapping relation, the dynamic control parameters of the quantity are respectively input to the corresponding hidden layers in the detection network model;
adjusting the calculation parameters of each neuron of each hidden layer; wherein, the calculation parameters of all the neurons in any hidden layer are the same.
6. The dynamic channel communication detection method as claimed in claim 1, wherein said inputting said communication data to a detection network model to obtain an output result comprises:
performing real quantization processing on the communication data;
and selecting data with preset length from the communication data after real quantization processing, and inputting the data with the preset length into the detection network model.
7. The dynamic channel communication detection method as claimed in claim 6, wherein said calculating a detection result of said communication data according to said output result comprises:
converting the output result into a matrix consisting of probability estimation values of corresponding symbols;
calculating a maximum independent variable point set of the matrix;
and determining a detection result of the symbol of the communication data according to the maximum independent variable point set.
8. A dynamic channel communication detection apparatus, comprising:
the acquisition module is used for acquiring communication data of the dynamic channel;
the input module is used for inputting the communication data into a detection network model to obtain an output result, the detection network model is a model which is adaptive to the change condition of the dynamic channel and is obtained by adjusting the calculation parameters of each neuron based on the dynamic change information of the dynamic channel, and the detection network model is obtained by carrying out iterative training on a preset deep neural network model based on a preset communication data training sample and a sample label of the preset communication data training sample;
and the calculation module calculates to obtain the detection result of the communication data according to the output result.
9. A dynamic channel communication detection device, the device comprising: a memory, a processor, and a dynamic channel communication detection program stored on the memory and executable on the processor, the dynamic channel communication detection program configured to implement the steps of the dynamic channel communication detection method of any of claims 1 to 7.
10. A computer-readable storage medium, having a dynamic channel communication detection program stored thereon, which when executed by a processor implements the steps of the dynamic channel communication detection method of any one of claims 1 to 7.
CN202211660563.4A 2022-12-23 2022-12-23 Dynamic channel communication detection method, device, equipment and readable storage medium Active CN115642972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211660563.4A CN115642972B (en) 2022-12-23 2022-12-23 Dynamic channel communication detection method, device, equipment and readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211660563.4A CN115642972B (en) 2022-12-23 2022-12-23 Dynamic channel communication detection method, device, equipment and readable storage medium

Publications (2)

Publication Number Publication Date
CN115642972A true CN115642972A (en) 2023-01-24
CN115642972B CN115642972B (en) 2023-03-21

Family

ID=84949922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211660563.4A Active CN115642972B (en) 2022-12-23 2022-12-23 Dynamic channel communication detection method, device, equipment and readable storage medium

Country Status (1)

Country Link
CN (1) CN115642972B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337057A (en) * 2018-02-08 2018-07-27 合肥工业大学 A kind of train communication channel prediction method based on three-layer neural network
CN108540248A (en) * 2018-03-16 2018-09-14 西安电子科技大学 Maritime wireless communication dynamic multi-path channel model and method, wireless communication system
CN110045356A (en) * 2019-03-14 2019-07-23 哈尔滨工程大学 A kind of two-way length Memory Neural Networks waterborne target recognition methods in short-term
CN111461190A (en) * 2020-03-24 2020-07-28 华南理工大学 A non-equilibrium ship classification method based on deep convolutional neural network
CN111865489A (en) * 2020-06-11 2020-10-30 东南大学 Multiple-input multiple-output detection method based on graph neural network
WO2021051596A1 (en) * 2019-09-19 2021-03-25 平安科技(深圳)有限公司 Model prediction optimization method, apparatus and device, and readable storage medium
CN112887245A (en) * 2021-01-08 2021-06-01 鹏城实验室 Symbol detection method, device, equipment and storage medium of high dynamic channel
US20210241112A1 (en) * 2020-02-05 2021-08-05 Samsung Electronics Co., Ltd. Neural network update method, classification method and electronic device
CN113971430A (en) * 2021-06-21 2022-01-25 上海工程技术大学 Signal detection and model training method, device, equipment and storage medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337057A (en) * 2018-02-08 2018-07-27 合肥工业大学 A kind of train communication channel prediction method based on three-layer neural network
CN108540248A (en) * 2018-03-16 2018-09-14 西安电子科技大学 Maritime wireless communication dynamic multi-path channel model and method, wireless communication system
CN110045356A (en) * 2019-03-14 2019-07-23 哈尔滨工程大学 A kind of two-way length Memory Neural Networks waterborne target recognition methods in short-term
WO2021051596A1 (en) * 2019-09-19 2021-03-25 平安科技(深圳)有限公司 Model prediction optimization method, apparatus and device, and readable storage medium
US20210241112A1 (en) * 2020-02-05 2021-08-05 Samsung Electronics Co., Ltd. Neural network update method, classification method and electronic device
CN111461190A (en) * 2020-03-24 2020-07-28 华南理工大学 A non-equilibrium ship classification method based on deep convolutional neural network
CN111865489A (en) * 2020-06-11 2020-10-30 东南大学 Multiple-input multiple-output detection method based on graph neural network
CN112887245A (en) * 2021-01-08 2021-06-01 鹏城实验室 Symbol detection method, device, equipment and storage medium of high dynamic channel
CN113971430A (en) * 2021-06-21 2022-01-25 上海工程技术大学 Signal detection and model training method, device, equipment and storage medium

Also Published As

Publication number Publication date
CN115642972B (en) 2023-03-21

Similar Documents

Publication Publication Date Title
US11893781B2 (en) Dual deep learning architecture for machine-learning systems
CN110798417B (en) Signal modulation identification method and device based on cyclic residual error network
US11328180B2 (en) Method for updating neural network and electronic device
CN113221903B (en) Cross-domain adaptive semantic segmentation method and system
CN109150775B (en) Robust online channel state estimation method for dynamic change of self-adaptive noise environment
CN112132847A (en) Model training method, image segmentation method, apparatus, electronic device and medium
CN112990444B (en) Hybrid neural network training method, system, equipment and storage medium
CN109313721A (en) Train a machine learning model
CN111144124B (en) Training method of machine learning model, intention recognition method, and related device and equipment
CN109274625B (en) Information modulation mode determining method and device, electronic equipment and storage medium
CN110309854A (en) Method and device for identifying signal modulation mode
CN110705625A (en) Image processing method and device, electronic equipment and storage medium
CN114298113B (en) A dual-path machine learning modulation pattern recognition method for the Internet of Things
CN111510408B (en) Signal modulation method identification method, device, electronic device and storage medium
CN113726545A (en) Network traffic generation method and device for generating countermeasure network based on knowledge enhancement
CN114004250B (en) A method and system for open set recognition of deep neural network modulated signals
US20230185998A1 (en) System and method for ai-assisted system design
WO2021143126A1 (en) Modulation mode determining method and apparatus
JP2022122326A (en) Machine learning apparatus, machine learning method, and machine learning program
CN115642972B (en) Dynamic channel communication detection method, device, equipment and readable storage medium
CN111310823B (en) Target classification method, device and electronic system
CN112348161B (en) Neural network training method, neural network training device and electronic equipment
CN115759383B (en) Destination prediction method and system with branch network and electronic equipment
CN116579376B (en) Style model generation method, device and computer equipment
CN114529905B (en) Pinyin recognition method, device, storage medium and electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant