CN115623857A - A Magnetoresistance Sensor with Adjustable Linear Region - Google Patents
A Magnetoresistance Sensor with Adjustable Linear Region Download PDFInfo
- Publication number
- CN115623857A CN115623857A CN202211370389.XA CN202211370389A CN115623857A CN 115623857 A CN115623857 A CN 115623857A CN 202211370389 A CN202211370389 A CN 202211370389A CN 115623857 A CN115623857 A CN 115623857A
- Authority
- CN
- China
- Prior art keywords
- layer
- ferromagnetic layer
- field
- piezoelectric substrate
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 69
- 230000005291 magnetic effect Effects 0.000 claims abstract description 67
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 16
- 230000000694 effects Effects 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 162
- 239000010408 film Substances 0.000 claims description 41
- 230000035882 stress Effects 0.000 claims description 25
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 230000005684 electric field Effects 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- 229910003321 CoFe Inorganic materials 0.000 claims description 6
- 230000009429 distress Effects 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 6
- 239000011241 protective layer Substances 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000000696 magnetic material Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910019236 CoFeB Inorganic materials 0.000 claims description 2
- 239000003302 ferromagnetic material Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000001808 coupling effect Effects 0.000 abstract description 3
- 230000005415 magnetization Effects 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 description 12
- 230000004044 response Effects 0.000 description 8
- 238000000137 annealing Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Landscapes
- Hall/Mr Elements (AREA)
Abstract
本发明属于磁传感技术领域,具体为一种线性区域可调的磁电阻传感器。本发明利用应变材料代替硅基片作为衬底基片,通过对压电基片施加电压获得应力,该应力作用于铁磁层1,由磁致伸缩效应产生面内等效场,且应力的大小可以改变等效场的大小,从而改变铁磁层1的磁化翻转态,通过应力对铁磁层的各向异性场进行调控,实现磁传感单元线性区按需调控,调控范围为几十‑几百的较大区间范围。本发明不改变原有传感器单元膜层结构仅改变基底层,具有结构简单、工艺难度低、低功耗等优点,通过引入逆磁电耦合效应,在其原有线性区范围的基础上进一步扩展线性区,为实现线性传感器的宽场范围应用提供了一有效方法和途径。
The invention belongs to the technical field of magnetic sensing, in particular to a magnetoresistance sensor with adjustable linear range. In the present invention, the strained material is used instead of the silicon substrate as the substrate, and the stress is obtained by applying a voltage to the piezoelectric substrate. The stress acts on the ferromagnetic layer 1, and the in-plane equivalent field is generated by the magnetostrictive effect, and the stress is The size can change the size of the equivalent field, thereby changing the magnetization flip state of the ferromagnetic layer 1, and adjusting the anisotropy field of the ferromagnetic layer through stress, so as to realize the on-demand adjustment of the linear area of the magnetic sensing unit, and the adjustment range is tens of ‑Larger intervals of several hundred. The invention does not change the film layer structure of the original sensor unit but only changes the base layer, and has the advantages of simple structure, low process difficulty, low power consumption, etc., and further expands the range of the original linear region by introducing the inverse magnetoelectric coupling effect The linear region provides an effective method and way to realize the wide field range application of the linear sensor.
Description
技术领域technical field
本发明属于电子材料与元器件技术领域,涉及磁传感技术,具体为一种线性区域可调的磁电阻传感器,利用逆磁电耦合效应实现电场调控磁电阻传感器的线性区域。The invention belongs to the technical field of electronic materials and components, and relates to magnetic sensing technology, in particular to a magnetoresistance sensor with an adjustable linear region, which utilizes an inverse magnetoelectric coupling effect to realize electric field regulation of the linear region of the magnetoresistance sensor.
背景技术Background technique
磁电阻传感器因其易于集成、制备成本低等优点,目前被广泛用于磁场、电流、位置、速度、角度等探测领域。在这些领域的应用中,其探测的机理都是基于对磁电阻的测试,然后转换为相应的磁场、电流、距离、速度等物理量,实现不同物理参量的探测。Magneto-resistive sensors are widely used in the detection fields of magnetic field, current, position, speed, angle, etc. due to their advantages of easy integration and low manufacturing cost. In applications in these fields, the detection mechanism is based on the test of magnetoresistance, and then converted into corresponding physical quantities such as magnetic field, current, distance, speed, etc., to realize the detection of different physical parameters.
其中,自旋阀巨磁电阻和隧道结磁电阻具有磁电阻效应大、对磁场响应灵敏、工作范围宽等优点,是目前磁电阻传感器中使用的主要核心结构。自旋阀巨磁电阻结构一般为铁磁层1/金属隔离层/铁磁层2/超薄金属层/铁磁层3/反铁磁层,隧道结磁电阻结构一般为铁磁层1/氧化物势垒层/铁磁层2/超薄金属层/铁磁层3/反铁磁层。其中,铁磁层2/超薄金属层/铁磁层3/反铁磁层结构是人工反铁磁钉扎结构,使铁磁层2的磁矩不随外磁场转动,也称为固定层,而铁磁层1的磁矩可在外场作用下发生转动,称为自由层,为传感器工作中的探测层。Among them, spin valve giant magnetoresistance and tunnel junction magnetoresistance have the advantages of large magnetoresistance effect, sensitive response to magnetic field, and wide working range, and are the main core structures used in magnetoresistive sensors at present. The spin valve giant magnetoresistance structure is generally
目前,在实用化的基于线性巨磁电阻薄膜的传感器中,需要巨/隧道磁电阻的磁电阻值对探测磁场的变化呈现线性响应。为实现该目的,磁电阻薄膜中固定层(铁磁层2)及自由层(铁磁层1)的磁矩在零场下需要互相垂直,且探测磁场沿固定层中磁矩的取向。以做磁场探测为例(对其它物理参量的探测,如电流、距离、角度等,均可转换为对磁场的探测),需要先获得该巨/隧道磁电阻薄膜随外磁场变化的线性磁电阻曲线,然后对照某一磁场下磁电阻的变化值获取相应的探测量。而为实现自由层和固定层磁矩90度,常用的方法有:相互垂直的磁场下分别沉积自由层和固定层,或在薄膜制备完成后进行外磁场下退火,从而改变自由层的磁矩方向。应用时,测试磁场沿着固定层的磁矩方向,与自由层的磁矩垂直。当测试磁场小于人工反铁磁结构的交换偏置场时,固定层中的磁矩不会受外磁场的影响,根据巨/隧道磁电阻的原理,磁电阻值的变化取决于两层磁性层自由层和固定层之间相对角度的变化,由于自由层最初磁矩取向与测试磁场呈垂直,因此外场作用下自由层的磁矩将会对测试磁场产生线性响应,此时自由层和固定层磁矩间的相对夹角也将随自由层磁矩的变化产生线性变化,最终获得线性化的磁电阻响应曲线。At present, in practical sensors based on linear giant magnetoresistance thin films, it is required that the magnetoresistance value of the giant/tunnel magnetoresistance has a linear response to the change of the detected magnetic field. To achieve this purpose, the magnetic moments of the pinned layer (ferromagnetic layer 2) and the free layer (ferromagnetic layer 1) in the magnetoresistive film need to be perpendicular to each other under zero field, and the detection magnetic field is along the orientation of the magnetic moment in the pinned layer. Taking magnetic field detection as an example (the detection of other physical parameters, such as current, distance, angle, etc., can be converted into the detection of magnetic field), it is necessary to first obtain the linear magnetoresistance of the giant/tunnel magnetoresistance film changing with the external magnetic field Curve, and then compare the change value of the magnetoresistance under a certain magnetic field to obtain the corresponding detection value. In order to achieve a 90-degree magnetic moment of the free layer and the fixed layer, the commonly used methods are: depositing the free layer and the fixed layer respectively under mutually perpendicular magnetic fields, or annealing under an external magnetic field after the film is prepared, thereby changing the magnetic moment of the free layer direction. When applied, the test magnetic field is along the direction of the magnetic moment of the pinned layer and perpendicular to the magnetic moment of the free layer. When the test magnetic field is smaller than the exchange bias field of the artificial antiferromagnetic structure, the magnetic moment in the fixed layer will not be affected by the external magnetic field. According to the principle of giant/tunnel magnetoresistance, the change of the magnetoresistance value depends on the two magnetic layers The change of the relative angle between the free layer and the fixed layer. Since the initial magnetic moment orientation of the free layer is perpendicular to the test magnetic field, the magnetic moment of the free layer will respond linearly to the test magnetic field under the action of an external field. At this time, the free layer and the fixed layer The relative angle between the magnetic moments will also change linearly with the change of the free layer magnetic moment, and finally a linearized magnetoresistance response curve is obtained.
目前,对于该类线性磁电阻传感器,其线性探测区域决定于自由层随外磁场变化的线性区域,而该区域的大小与自由层各向异性场Hk大小呈正比,当自由层各向异性场Hk越大,则该类线性磁电阻传感器的线性探测范围则越宽。At present, for this type of linear magnetoresistive sensor, its linear detection area is determined by the linear area of the free layer changing with the external magnetic field, and the size of this area is proportional to the size of the free layer anisotropy field Hk. When the free layer anisotropy field The larger Hk is, the wider the linear detection range of this type of linear magnetoresistive sensor is.
为了调整磁电阻传感器的线性区域,现有技术一般是通过改变自由层所用材料、厚度、形状、磁场退火后处理等方法实现,实现的线性区一般在百Oe内。但是当线性磁电阻传感器的线性区域在薄膜制备工艺完成后是固定的,不能更改。而如果能够在线性磁电阻多层膜制备工艺完成后,采用一定的方法使自由层各向异性场Hk发生改变,即可实现磁电阻线性响应曲线的改变,因而可在同一样品中实现不同线性传感器探测区域的调整,这将有助于提高磁电阻传感器的使用灵活度并拓展其适用范围。In order to adjust the linear region of the magnetoresistive sensor, the existing technology is generally realized by changing the material, thickness, shape, and post-treatment of the magnetic field annealing of the free layer, and the realized linear region is generally within a hundred Oe. But when the linear region of the linear magnetoresistive sensor is fixed after the film preparation process is completed, it cannot be changed. However, if the anisotropy field Hk of the free layer can be changed by a certain method after the preparation process of the linear magnetoresistance multilayer film is completed, the change of the linear response curve of the magnetoresistance can be realized, so different linearity can be realized in the same sample. The adjustment of the detection area of the sensor will help to improve the flexibility of the use of the magnetoresistive sensor and expand its scope of application.
发明内容Contents of the invention
针对上述存在问题或不足,为提高现有磁电阻传感器的使用灵活度并拓展其适用范围,本发明提供了一种线性区域可调的磁电阻传感器,制备在应变材料上,在制备完成后,通过应变材料引入应力,利用铁磁层的磁致伸缩效应改变自由层各向异性场Hk,由此实现磁电阻传感器的线性传感范围调制。In view of the above problems or deficiencies, in order to improve the flexibility of the existing magnetoresistance sensor and expand its scope of application, the present invention provides a magnetoresistance sensor with adjustable linear region, which is prepared on the strained material. After the preparation is completed, Stress is introduced through the strained material, and the magnetostrictive effect of the ferromagnetic layer is used to change the anisotropy field Hk of the free layer, thereby realizing the linear sensing range modulation of the magnetoresistive sensor.
本发明技术目的通过下述技术方案实现:The technical purpose of the present invention is achieved through the following technical solutions:
一种线性区域可调的磁电阻传感器,包括衬底、磁电阻薄膜和保护层。A magnetoresistance sensor with adjustable linear area, including a substrate, a magnetoresistance film and a protective layer.
所述衬底为压电基片,其上下两面分别设有顶电极和底电极。The substrate is a piezoelectric substrate, and its upper and lower surfaces are respectively provided with a top electrode and a bottom electrode.
所述磁电阻薄膜设置于压电基片上,磁电阻薄膜从下至上依次为铁磁层1/非磁性层/铁磁层2/超薄金属层/铁磁层3/反铁磁层。The magnetoresistance film is arranged on the piezoelectric substrate, and the magnetoresistance film is
铁磁层1为自由层,材料采用磁致伸缩系数大于10ppm的铁磁性材料(如Co、CoFe或CoFeB)。铁磁层2/超薄金属层/铁磁层3/反铁磁层构成人工反铁磁钉扎结构,铁磁层2为固定层。自由层与固定层的磁矩在零场时呈90度取向。非磁性层为金属隔离层或氧化物势垒层。The
所述保护层设置于反铁磁层上,完全覆盖反铁磁层,以保护整个结构不被氧化。The protective layer is disposed on the antiferromagnetic layer and completely covers the antiferromagnetic layer to protect the entire structure from being oxidized.
进一步的,所述压电基片的材料为PMN-PT或PZN-PT。Further, the material of the piezoelectric substrate is PMN-PT or PZN-PT.
进一步的,所述非磁性层为Cu金属隔离层,构成自旋阀磁电阻薄膜。Further, the non-magnetic layer is a Cu metal isolation layer, which constitutes a spin-valve magnetoresistance film.
进一步的,所述非磁性层为Al2O3、MgO的氧化物势垒层,构成隧道结磁电阻薄膜。Further, the non-magnetic layer is an oxide barrier layer of Al 2 O 3 and MgO, forming a tunnel junction magnetoresistance film.
进一步的,所述压电基片与磁电阻薄膜之间还设置有缓冲层,以改善压电基片的粗糙度,从而提高磁电阻薄膜性能。Further, a buffer layer is provided between the piezoelectric substrate and the magnetoresistance film to improve the roughness of the piezoelectric substrate, thereby improving the performance of the magnetoresistance film.
进一步的,上述线性区域可调的磁电阻传感器,其线性区域调制方法为:Further, the linear region modulation method of the above-mentioned magnetoresistive sensor with adjustable linear region is:
在压电基片的顶电极和底电极施加电压,当所加电压小于EC(EC为压电基片的电矫顽场),此时压电基片会产生正应力,当所加电压大于EC时压电基片产生负应力。该应力被传递到具有较大磁致伸缩系数的铁磁层1(自由层),由于磁性材料的磁致伸缩效应,铁磁层1的面内会产生一个等效场,而铁磁层2(固定层)与反铁磁层之间存在强烈的交换耦合作用,铁磁层2不会受到等效场的影响。等效场的方向取决于压电基片产生应力的正、负,以及铁磁层1的磁致伸缩系数的正、负。A voltage is applied to the top and bottom electrodes of the piezoelectric substrate. When the applied voltage is less than E C ( EC is the electric coercive field of the piezoelectric substrate), the piezoelectric substrate will generate a normal stress. When the applied voltage is greater than At E C , the piezoelectric substrate produces negative stress. The stress is transmitted to the ferromagnetic layer 1 (free layer) with a larger magnetostriction coefficient. Due to the magnetostrictive effect of the magnetic material, an equivalent field will be generated in the plane of the
如果铁磁层1选用材料的磁致伸缩系数为正,膜面x方向平行于压电基片在电场作用下产生负(正)应力的晶轴方向,y方向平行于产生正(负)应力的晶轴方向,根据逆磁电耦合机理,面内产生的等效场方向为y(x)方向,将会增大(减小)铁磁层1的各向异性场Hk,从而使磁电阻薄膜的线性区域变大(小)。If the magnetostriction coefficient of the material selected for
而如果铁磁层1选用材料的磁致伸缩系数为负,膜面x方向平行于压电基片在电场作用下产生负(正)应力的晶轴方向,y方向平行于产生正(负)应力的晶轴方向,根据逆磁电耦合机理,面内产生的等效场方向为x(y)方向,将会减小(增大)铁磁层1的各向异性场Hk,可实现调控磁电阻薄膜的线性区域变小(大)。And if the magnetostriction coefficient of the material selected for
进而在线性(铁磁层1和铁磁层2零场下磁矩垂直)磁电阻多层膜制备完成后,通过电场对压电基片的作用引入应力,从而得到一个等效场来调控铁磁层1的各向异性场Hk,以满足磁电阻传感器线性区域在同一样品中增大或减小的要求。Furthermore, after the linear (magnetic moments of
本发明通过应力对铁磁层的各向异性场进行调控,实现调控磁电阻传感器的线性区域:利用应变材料代替硅基片作为衬底基片,通过施加电压获得一定应力,该应力作用于铁磁层1,由磁致伸缩效应产生面内等效场,且应力的大小可以改变等效场的大小,从而改变铁磁层1的磁化翻转态,实现磁传感单元线性区按需调控。而在这一过程中不会产生额外的能量损耗,是一种低功耗实现调控巨磁电阻线性传感区域的方式。The present invention regulates the anisotropic field of the ferromagnetic layer through stress to realize the regulation and control of the linear region of the magnetoresistance sensor: a strained material is used to replace the silicon substrate as the substrate substrate, and a certain stress is obtained by applying a voltage, and the stress acts on the ferromagnetic layer. In the
综上所述,本发明不改变原有传感器单元膜层结构仅改变基底层,具有结构简单、工艺难度低、低功耗等优点,通过引入逆磁电耦合效应,在其原有线性区范围的基础上进一步扩展线性区,为实现线性传感器的宽场范围应用提供了一有效方法和途径。In summary, the present invention does not change the film layer structure of the original sensor unit but only changes the base layer, which has the advantages of simple structure, low process difficulty, and low power consumption. On the basis of further extending the linear region, it provides an effective method and way to realize the wide field range application of linear sensors.
附图说明Description of drawings
图1是实施例的结构示意图。Fig. 1 is a structural schematic diagram of the embodiment.
图2是实施例在施加电压后线性区域增大的磁电阻响应曲线。Fig. 2 is the magnetoresistance response curve of the example with increasing linear region after voltage is applied.
图3是实施例在施加电压后线性区域减小的磁电阻响应曲线。Fig. 3 is the magnetoresistance response curve of the embodiment with decreasing linear region after voltage application.
附图说明:1-压电基片,2-缓冲层,3-铁磁层1,4-金属隔离层,5-铁磁层2,6-超薄金属层,7-铁磁层3,8-反铁磁层,9-保护层。Description of the drawings: 1-piezoelectric substrate, 2-buffer layer, 3-
具体实施方式detailed description
下面结合附图和实施例,进一步详述本发明的技术方案。The technical solution of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
一种线性区域可调的磁电阻传感器,包括衬底、磁电阻薄膜和保护层,制备方法如下:A magnetoresistance sensor with adjustable linear region, comprising a substrate, a magnetoresistance film and a protective layer, the preparation method is as follows:
步骤1、选用具有电压可调的正、负应变的PMN-PT(011)压电材料作为基片,当施加的电压大于压电基片的电矫顽场EC(1.8kV/cm)时产生负应变,当施加的电压小于EC时产生正应变。采用真空镀膜工艺在该基片的上下表面分别沉积Au(300nm),作为对基片施加电压的顶电极和底电极。
步骤2、将步骤1所得基片采用薄膜沉积工艺在基片上依次沉积得到的自旋阀巨磁电阻薄膜,结构为PMN-PT/Ta(5nm)/CoFe(12nm)/Cu(3nm)/CoFe(3nm)/Ru(0.8nm)/CoFe(3nm)/IrMn(15nm)/Ta(5nm)。
其中底层Ta(5nm)作为缓冲层,顶层Ta(5nm)作为覆盖层,保护整个结构不被氧化。CoFe(12nm)铁磁层1的磁致伸缩系数为正,本实施例所选用的PMN-PT的[001]轴在大电压的作用下会产生负应变,在小电压的作用下会产生正应变,薄膜沉积过程中沿PMN-PT的[001]轴(即为x方向)加诱导磁场H。Among them, the bottom Ta (5nm) is used as a buffer layer, and the top Ta (5nm) is used as a covering layer to protect the entire structure from oxidation. The magnetostriction coefficient of CoFe (12nm)
步骤3、薄膜制备完成后,进行真空退火,沿着PMN-PT的[1-10]轴(y方向)施加诱导磁场,使铁磁层1的磁矩转向y方向。
在制备过程中使得自由层与固定层磁矩呈90度取向,两种常见方法如下:During the preparation process, the magnetic moments of the free layer and the fixed layer are oriented at 90 degrees. Two common methods are as follows:
(1)在薄膜制备过程中沿膜面x方向加上诱导磁场H,用于诱导人工反铁磁结构的交换偏置,再旋转基片,沉积铁磁层1的时候施加诱导磁场沿膜面y方向,用于诱导铁磁层1的磁矩取向。(1) Add an induced magnetic field H along the x direction of the film surface during the film preparation process to induce the exchange bias of the artificial antiferromagnetic structure, then rotate the substrate, and apply the induced magnetic field along the film surface when depositing the
(2)在薄膜沉积过程中沿膜面x方向加上诱导磁场H,薄膜制备完成后,将样品放入真空磁场下进行退火,退火时沿着膜面y方向施加磁场,用于诱导铁磁层1的磁矩转向y方向,而人工反铁磁结构中的铁磁层在交换偏置场的钉扎作用下保持不变,这样铁磁层1的磁矩和铁磁层2的磁矩将会相互垂直。(2) During the film deposition process, an induced magnetic field H is applied along the x direction of the film surface. After the film is prepared, the sample is placed under a vacuum magnetic field for annealing. During annealing, a magnetic field is applied along the y direction of the film surface to induce ferromagnetism. The magnetic moment of
本实施例采用第2种方法,退火完成后,以标准的四探针法测试制备所得的自旋阀巨磁电阻薄膜,测试磁场沿x方向,其磁电阻曲线如图2中初始态0kV/cm所示,线性区域决定于铁磁层1的磁场诱导的各向异性场,线性区域比较小。This embodiment adopts the second method. After the annealing is completed, the spin-valve giant magnetoresistance film prepared is tested by the standard four-probe method. The test magnetic field is along the x direction, and the magnetoresistance curve is as shown in Figure 2. As shown in cm, the linear region is determined by the anisotropy field induced by the magnetic field of the
步骤4、通过顶电极和底电极对PMN-PT基片施加-4~-10kV/cm的电压,从而产生相应大小的负应力,该应力传递到铁磁层1,因为磁性材料的磁致伸缩效应而产生了一个沿着膜面y方向的等效场,从而使铁磁层1的各向异性场增大。施加电压产生的应力大小决定了等效场的大小,从而实现调控磁电阻传感器线性区域的大小,对应的电场调控下的线性磁电阻曲线如图2所示。
步骤5、通过顶电极和底电极对PMN-PT基片施加+0.5~+1.5kV/cm的电压,从而产生相应的正应力,该应力传递到铁磁层1,因为磁性材料的磁致伸缩效应也为正,因此产生的等效场将沿着膜面x方向,从而使铁磁层1制备态时的各向异性场Hk减小,实现在调控线性区域减小,如图3所示。需注意的是当等效场增大使铁磁层1的磁矩转向x方向,在零磁场下不再与铁磁层2的磁矩垂直时,磁电阻曲线不呈现线性响应,如图3中+1.5kV对应的磁阻响应曲线。电场调控下的线性磁电阻曲线如图3所示。
通过以上实施例可见,本发明利用应变材料代替硅基片作为衬底基片,通过施加电压获得一定应力,该应力作用于铁磁层1,由磁致伸缩效应产生面内等效场,且应力的大小可以改变等效场的大小,从而改变铁磁层1的磁化翻转态,实现磁传感单元线性区按需调控,调控范围为几十-几百的较大区间范围(图2、图3),远超现有技术。It can be seen from the above embodiments that the present invention uses a strained material instead of a silicon substrate as a substrate, and obtains a certain stress by applying a voltage. The stress acts on the
本发明通过应力对铁磁层的各向异性场进行调控,切实有效的实现调控磁电阻传感器的线性区域,是一种低功耗实现调控巨磁电阻线性传感区域的技术方案。并且本发明不改变原有传感器单元膜层结构仅改变基底层,具有结构简单、工艺难度低、低功耗等优点,在其原有线性区范围的基础上进一步扩展线性区,为实现线性传感器的宽场范围应用提供了一有效方法和途径。The invention regulates the anisotropy field of the ferromagnetic layer through stress, effectively realizes the regulation and control of the linear region of the magnetoresistance sensor, and is a technical scheme for realizing regulation and regulation of the giant magnetoresistance linear sensing region with low power consumption. Moreover, the present invention does not change the film layer structure of the original sensor unit but only changes the base layer, which has the advantages of simple structure, low process difficulty, and low power consumption. The application of wide field range provides an effective method and way.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211370389.XA CN115623857A (en) | 2022-11-03 | 2022-11-03 | A Magnetoresistance Sensor with Adjustable Linear Region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211370389.XA CN115623857A (en) | 2022-11-03 | 2022-11-03 | A Magnetoresistance Sensor with Adjustable Linear Region |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115623857A true CN115623857A (en) | 2023-01-17 |
Family
ID=84877511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211370389.XA Pending CN115623857A (en) | 2022-11-03 | 2022-11-03 | A Magnetoresistance Sensor with Adjustable Linear Region |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115623857A (en) |
-
2022
- 2022-11-03 CN CN202211370389.XA patent/CN115623857A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3092505B1 (en) | Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields | |
JP6105817B2 (en) | Nanomagnetic multilayer film for temperature sensor and its manufacturing method | |
EP2696210B1 (en) | Single-chip two-axis bridge-type magnetic field sensor | |
US20130099780A1 (en) | Magnetic nano-multilayers for magnetic sensors and manufacturing method thereof | |
WO2012136134A1 (en) | Single-chip push-pull bridge-type magnetic field sensor | |
JP2008197089A (en) | Magnetic sensor element and method for manufacturing the same | |
TW201416693A (en) | Magnetic sensor for sensing an external magnetic field | |
CN105572609B (en) | A kind of more iron inhomogeneous magnetic fields sensors and range adjusting method of range-adjustable | |
CN111090063B (en) | Magnetic sensor | |
CN104752604B (en) | A kind of antiferromagnetic base hall device of electric field regulation and control and preparation method thereof | |
JPH08274386A (en) | Electromagnetic transducer element | |
CN114937736B (en) | Wide-range TMR sensor tunnel junction and sensor | |
CN111965571B (en) | Preparation method of GMR magnetic field sensor | |
Quandt et al. | Magnetic vector field sensor using magnetoelectric thin-film composites | |
CN115623857A (en) | A Magnetoresistance Sensor with Adjustable Linear Region | |
CN111044952A (en) | Magnetic sensor | |
CN106291413B (en) | Spin valve structure and application thereof as giant magnetoresistance stress sensor | |
CN110865321A (en) | Magnetic sensing material stack layer structure with magnetic closed-loop modulation effect and preparation method thereof | |
CN112993149B (en) | Storage unit | |
CN116322274A (en) | Magnetic tunnel junction sensing unit, manufacturing method and Wheatstone bridge | |
CN113866691B (en) | Tunneling magneto-resistance sensor and preparation method and using method thereof | |
CN211554288U (en) | Magnetic sensing material stack layer structure with magnetic closed-loop modulation effect | |
CN211554287U (en) | Novel integrated closed-loop magnetic field sensor | |
KR20010033533A (en) | Magnetoresistant device and a magnetic sensor comprising the same | |
CN103424131B (en) | A kind of preparation method of vertical off setting magnetic sensing unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |