[go: up one dir, main page]

CN115602711A - A kind of diode device applied to HEMT, preparation method and HEMT - Google Patents

A kind of diode device applied to HEMT, preparation method and HEMT Download PDF

Info

Publication number
CN115602711A
CN115602711A CN202211312094.7A CN202211312094A CN115602711A CN 115602711 A CN115602711 A CN 115602711A CN 202211312094 A CN202211312094 A CN 202211312094A CN 115602711 A CN115602711 A CN 115602711A
Authority
CN
China
Prior art keywords
layer
barrier
channel
layers
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211312094.7A
Other languages
Chinese (zh)
Inventor
刘涛
黄汇钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sirius Semiconductor Chengdu Co ltd
Original Assignee
Sirius Semiconductor Chengdu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirius Semiconductor Chengdu Co ltd filed Critical Sirius Semiconductor Chengdu Co ltd
Priority to CN202211312094.7A priority Critical patent/CN115602711A/en
Publication of CN115602711A publication Critical patent/CN115602711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/811Combinations of field-effect devices and one or more diodes, capacitors or resistors

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The application belongs to the technical field of semiconductors and provides a diode device applied to an HEMT, a preparation method and the HEMT, wherein the diode device comprises: the device comprises a semiconductor substrate, a first channel layer, a first barrier layer, a plurality of second channel layers, a plurality of second barrier layers, a cap layer, an anode electrode layer, a cathode electrode layer and an insulating medium layer; the plurality of second channel layers and the plurality of second barrier layers are alternately arranged on the first barrier layer in a stacking mode, so that a step structure is formed on the first side of the first barrier layer, the anode electrode layer covering the step structure and the cap layer is arranged on the first side of the first barrier layer, the cathode electrode layer is arranged on the second side of the first barrier layer, and the insulating medium layer is arranged between the anode electrode layer and the cathode electrode layer, so that a capacitor between an anode and a cathode has a higher uniform electric field, the electric field can be improved from the transverse direction and the longitudinal direction to improve the breakdown voltage of the parasitic diode, and the problem that the HEMT device is unstable in a high-sensitivity application scene due to the lack of the body diode is solved.

Description

一种应用于HEMT的二极管器件、制备方法及HEMTA kind of diode device applied to HEMT, preparation method and HEMT

技术领域technical field

本申请属于半导体技术领域,尤其涉及一种应用于HEMT的二极管器件、制备方法及HEMT。The application belongs to the technical field of semiconductors, and in particular relates to a diode device applied to HEMT, a preparation method and HEMT.

背景技术Background technique

作为第三代半导体材料的代表,氮化镓(GaN)具有许多优良的特性,例如,具有高临界击穿电场、高电子迁移率、高二维电子气浓度和良好的高温工作能力等有点。As a representative of the third-generation semiconductor material, gallium nitride (GaN) has many excellent characteristics, such as high critical breakdown electric field, high electron mobility, high two-dimensional electron gas concentration, and good high temperature working ability.

然而,与硅基金属氧化物半导体场效应晶体管(Si-MOSFET)相比,氮化镓基高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)器件不存在体二极管,在高电感的应用场景下所产生的反向电流会使得器件栅极电压升高,导致器件损坏。However, compared with silicon-based metal-oxide-semiconductor field-effect transistors (Si-MOSFETs), gallium nitride-based high electron mobility transistors (High Electron Mobility Transistor, HEMT) devices do not have body diodes, and in high-inductance application scenarios The resulting reverse current will increase the gate voltage of the device, resulting in damage to the device.

发明内容Contents of the invention

为了解决上述技术问题,本申请实施例提供了一种应用于HEMT的二极管器件、制备方法及HEMT,旨在解决现有技术中HEMT在高电感的应用场景下所产生的反向电流会使得器件栅极电压升高,导致器件损坏的问题。In order to solve the above technical problems, the embodiment of the present application provides a diode device, a preparation method and a HEMT applied to HEMT, aiming to solve the problem that the reverse current generated by HEMT in the application scenario of high inductance in the prior art will make the device The gate voltage rises, causing the problem of device damage.

本申请实施例第一方面提供了一种应用于HEMT的二极管器件,所述二极管器件包括:The first aspect of the embodiment of the present application provides a diode device applied to HEMT, and the diode device includes:

半导体衬底;semiconductor substrate;

第一沟道层,设于所述半导体衬底上;a first channel layer disposed on the semiconductor substrate;

第一势垒层,设于所述第一沟道层上;a first barrier layer disposed on the first channel layer;

多个第二沟道层和多个第二势垒层,其中,多个所述第二沟道层和多个所述第二势垒层交替层叠设置设于所述第一势垒层上,底部的所述第二沟道层设于所述第一势垒层上,且多个所述第二沟道层和多个所述第二势垒层的宽度依次减小,以在多个所述第二沟道层和多个所述第二势垒层的第一侧形成阶梯结构;A plurality of second channel layers and a plurality of second barrier layers, wherein the plurality of second channel layers and the plurality of second barrier layers are alternately stacked and arranged on the first barrier layer , the second channel layer at the bottom is disposed on the first barrier layer, and the widths of the plurality of second channel layers and the plurality of second barrier layers are sequentially reduced, so that The first sides of each of the second channel layers and the plurality of second barrier layers form a ladder structure;

盖帽层,设于顶部的所述第二势垒层上;a capping layer disposed on top of the second barrier layer;

阳极电极层,设于所述阶梯结构和所述盖帽层上;an anode electrode layer disposed on the stepped structure and the capping layer;

阴极电极层,设于所述第一沟道层上,且设于多个所述第二沟道层和多个所述第二势垒层的第二侧;a cathode electrode layer disposed on the first channel layer and disposed on the second side of the plurality of second channel layers and the plurality of second barrier layers;

绝缘介质层,设于顶部的所述第二势垒层上,且位于所述阳极电极层与所述阴极电极层之间以及所述盖帽层与所述阴极电极层之间;其中,所述阳极电极层和所述阴极电极层分别与所述HEMT的源极和漏极连接。an insulating medium layer, disposed on the second barrier layer at the top, and located between the anode electrode layer and the cathode electrode layer and between the capping layer and the cathode electrode layer; wherein, the The anode electrode layer and the cathode electrode layer are respectively connected to the source and drain of the HEMT.

在一个实施例中,多个所述第二沟道层和多个所述第二势垒层的第二侧与所述第一势垒层的第二侧齐平。In one embodiment, the second sides of the plurality of second channel layers and the plurality of second barrier layers are flush with the second sides of the first barrier layers.

在一个实施例中,所述阴极电极层还设于所述第一势垒层的第二侧,且深入至所述第一沟道层内。In one embodiment, the cathode electrode layer is also disposed on the second side of the first barrier layer and penetrates deep into the first channel layer.

在一个实施例中,所述第二势垒层的宽度与所述第二势垒层背面的所述第二沟道层的宽度之间的差值等于所述第二势垒层与所述第二势垒层正面的所述第二沟道层的宽度之间的差值。In one embodiment, the difference between the width of the second potential barrier layer and the width of the second channel layer on the back side of the second potential barrier layer is equal to the difference between the second potential barrier layer and the The difference between the widths of the second channel layer on the front side of the second barrier layer.

在一个实施例中,所述绝缘介质层的上表面与所述阳极电极层的上表面齐平。In one embodiment, the upper surface of the insulating dielectric layer is flush with the upper surface of the anode electrode layer.

在一个实施例中,所述第二沟道层的厚度与所述第二势垒层的厚度相同。In one embodiment, the second channel layer has the same thickness as the second barrier layer.

在一个实施例中,所述绝缘介质层为高介电材料。In one embodiment, the insulating dielectric layer is a high dielectric material.

本申请实施例第二方面还提供了一种应用于HEMT的二极管器件的制备方法,包括:The second aspect of the embodiment of the present application also provides a method for preparing a diode device applied to a HEMT, including:

在半导体衬底上依次形成第一沟道层和第一势垒层;sequentially forming a first channel layer and a first barrier layer on a semiconductor substrate;

在所述第一势垒层上形成交替层叠设置的多个第二沟道层和多个第二势垒层;其中,底部的所述第二沟道层设于所述第一势垒层上,且多个所述第二沟道层和多个所述第二势垒层的宽度依次减小,以在多个所述第二沟道层和多个所述第二势垒层的第一侧形成阶梯结构;A plurality of second channel layers and a plurality of second barrier layers alternately stacked on the first barrier layer; wherein, the second channel layer at the bottom is arranged on the first barrier layer , and the widths of the plurality of the second channel layers and the plurality of the second barrier layers are sequentially reduced, so that the widths of the plurality of the second channel layers and the plurality of the second barrier layers The first side forms a stepped structure;

在顶部的所述第二势垒层上形成盖帽层;forming a capping layer on top of said second barrier layer;

在所述阶梯结构和所述盖帽层上形成阳极电极层;forming an anode electrode layer on the stepped structure and the capping layer;

在所述第一沟道层上形成阴极电极层;其中,所述阴极电极层设于多个所述第二沟道层和多个所述第二势垒层的第二侧;A cathode electrode layer is formed on the first channel layer; wherein, the cathode electrode layer is disposed on the second side of the plurality of second channel layers and the plurality of second barrier layers;

在顶部的所述第二势垒层上形成绝缘介质层,所述绝缘介质层位于所述阳极电极层与所述阴极电极层之间以及所述盖帽层与所述阴极电极层之间。An insulating dielectric layer is formed on the top second barrier layer, and the insulating dielectric layer is located between the anode electrode layer and the cathode electrode layer and between the capping layer and the cathode electrode layer.

本申请实施例第三方面还提供了一种HEMT,所述HEMT内集成如上述任一项实施例所述的二极管器件;或者包括如上述所述的制备方法制备的二极管器件。The third aspect of the embodiments of the present application also provides a HEMT, wherein the HEMT integrates the diode device according to any one of the above embodiments; or includes the diode device prepared by the above-mentioned preparation method.

在一个实施例中,所述应用于HEMT的二极管器件设于所述HEMT的栅极、漏极或者源极下方,且所述阳极电极层与所述HEMT的源极连接,所述阴极电极层与所述HEMT的漏极连接。In one embodiment, the diode device applied to HEMT is arranged under the gate, drain or source of the HEMT, and the anode electrode layer is connected to the source of the HEMT, and the cathode electrode layer connected to the drain of the HEMT.

本申请实施例与现有技术相比存在的有益效果是:通过将多个第二沟道层和多个第二势垒层交替层叠设置设于第一势垒层上,以在其第一侧形成阶梯结构,并在第一侧设置覆盖于阶梯结构和盖帽层的阳极电极层,在其第二侧设置阴极电极层,在阳极电极层和阴极电极层之间设置绝缘介质层,使得阳极和阴极之间的电容具备更高的均匀电场,同时可以从横向和纵向改善电场提升寄生二极管的击穿电压,解决HEMT器件由于缺少体二极管导致在高感性应用场景不稳定的问题。Compared with the prior art, the embodiment of the present application has the beneficial effect that: by alternately stacking a plurality of second channel layers and a plurality of second barrier layers on the first barrier layer, The side forms a ladder structure, and an anode electrode layer covering the ladder structure and the cap layer is set on the first side, a cathode electrode layer is set on the second side, and an insulating medium layer is set between the anode electrode layer and the cathode electrode layer, so that the anode The capacitance between the cathode and the cathode has a higher uniform electric field, and at the same time, the electric field can be improved from the horizontal and vertical directions to increase the breakdown voltage of the parasitic diode, which solves the problem of instability in high-inductance application scenarios caused by the lack of body diodes in HEMT devices.

附图说明Description of drawings

图1是本申请一个实施例提供的氮化镓基二极管器件的垂直切面结构示意图;FIG. 1 is a schematic diagram of a vertical section structure of a gallium nitride-based diode device provided by an embodiment of the present application;

图2是本申请一个实施例提供的氮化镓基二极管器件的制备方法的流程示意图;Fig. 2 is a schematic flow chart of a method for preparing a gallium nitride-based diode device provided by an embodiment of the present application;

图3是本申请一个实施例提供的在半导体衬底100上依次形成第一沟道层210和第一势垒层220的结构示意图;FIG. 3 is a schematic structural diagram of sequentially forming a first channel layer 210 and a first barrier layer 220 on a semiconductor substrate 100 according to an embodiment of the present application;

图4是本申请一个实施例提供的形成第二沟道层310的结构示意图;FIG. 4 is a schematic structural diagram of forming a second channel layer 310 provided by an embodiment of the present application;

图5是本申请一个实施例提供的形成第二掩膜层202的结构示意图;FIG. 5 is a schematic structural diagram for forming a second mask layer 202 provided by an embodiment of the present application;

图6是本申请一个实施例提供的形成第二势垒层320后的结构示意图;FIG. 6 is a schematic structural diagram after forming a second barrier layer 320 provided by an embodiment of the present application;

图7是本申请一个实施例提供的形成多层第二沟道层310和第二势垒层320后的结构示意图;FIG. 7 is a schematic structural diagram after forming a multilayer second channel layer 310 and a second barrier layer 320 provided by an embodiment of the present application;

图8是本申请一个实施例提供的形成盖帽层600的结构示意图;FIG. 8 is a schematic structural diagram of forming a capping layer 600 provided by an embodiment of the present application;

图9是本申请一个实施例提供的形成阳极电极层520的结构示意图。FIG. 9 is a schematic structural diagram for forming an anode electrode layer 520 provided by an embodiment of the present application.

具体实施方式detailed description

为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being “fixed” or “disposed on” another element, it may be directly on the other element or be indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It is to be understood that the terms "length", "width", "top", "bottom", "front", "rear", "left", "right", "vertical", "horizontal", "top" , "bottom", "inner", "outer" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是一个或一个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present application, "plurality" means one or more than one, unless otherwise specifically defined.

在本申请说明书中描述的参考“一个实施例”、“一些实施例”或“实施例”意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”、“在一个具体实施例中”、“在一个具体应用中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。此外,在一个或多个实施例中,可以以任何合适的方式组合特定的特征、结构或特性。Reference to "one embodiment," "some embodiments," or "an embodiment" in the specification of this application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the application. . Thus, the phrases "in one embodiment," "in some embodiments," "in other embodiments," "in other embodiments," "in some In a particular embodiment", "in a particular application", etc. do not necessarily all refer to the same embodiment, but mean "one or more but not all embodiments" unless specifically emphasized otherwise. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.

作为第三代半导体材料的代表,氮化镓(GaN)具有许多优良的特性,高临界击穿电场、高电子迁移率、高二维电子气浓度和良好的高温工作能力等。基于氮化镓的第三代半导体器件,如高电子迁移率晶体管(HEMT)、异质结构场效应晶体管(HFET)等已经得到了应用,尤其在射频、微波等需要大功率和高频率的领域具有明显优势。As a representative of the third-generation semiconductor materials, gallium nitride (GaN) has many excellent characteristics, such as high critical breakdown electric field, high electron mobility, high two-dimensional electron gas concentration, and good high temperature working ability. Gallium nitride-based third-generation semiconductor devices, such as high electron mobility transistors (HEMTs) and heterostructure field effect transistors (HFETs), have been applied, especially in fields requiring high power and high frequency such as radio frequency and microwave has obvious advantages.

与MOSFET相比,GaN HEMT没有体二极管,在高电感的应用下,反向电流使得器件栅极电压升高,导致器件损坏。Compared with MOSFETs, GaN HEMTs have no body diode. In high inductance applications, the reverse current will increase the gate voltage of the device and cause device damage.

为了解决上述技术问题,本申请实施例提供了一种应用于HEMT的二极管器件,该二极管器件可以集成于HEMT内,例如,指叉状HEMT器件内,其漏极、源极或者栅极下方均预留有大量的空间,采用同样的氮化镓工艺,可以在器件漏极、源极或者栅极下方的空间集成本实施例中的二极管器件,防止在高电感下对器件栅极的误开,器件损坏。In order to solve the above technical problems, the embodiment of the present application provides a diode device applied to HEMT, the diode device can be integrated in the HEMT, for example, in the interdigitated HEMT device, the drain, source or gate are all A large amount of space is reserved, and the diode device in this embodiment can be integrated in the space under the drain, source or gate of the device by using the same gallium nitride process, so as to prevent the wrong opening of the gate of the device under high inductance , the device is damaged.

在一个实施例中,结合图1所示,本实施例中的二极管器件包括:半导体衬底100、第一沟道层210、第一势垒层220、多个第二沟道层310、多个第二势垒层320、盖帽层600、阳极电极层520、阴极电极层510、绝缘介质层400。In one embodiment, as shown in FIG. 1 , the diode device in this embodiment includes: a semiconductor substrate 100, a first channel layer 210, a first barrier layer 220, a plurality of second channel layers 310, a plurality of a second barrier layer 320 , a capping layer 600 , an anode electrode layer 520 , a cathode electrode layer 510 , and an insulating dielectric layer 400 .

在本实施例中,第一沟道层210设于半导体衬底100上,第一势垒层220设于第一沟道层220上;多个第二沟道层310和多个第二势垒层320交替层叠设置设于第一势垒层220上,底部的第二沟道层310设于第一势垒层220上,且多个第二沟道层310和多个第二势垒层320依次减小,以在多个第二沟道层310和多个第二势垒层320的第一侧形成阶梯结构。In this embodiment, the first channel layer 210 is disposed on the semiconductor substrate 100, the first barrier layer 220 is disposed on the first channel layer 220; the plurality of second channel layers 310 and the plurality of second potential barrier layers The barrier layers 320 are alternately stacked on the first barrier layer 220, the second channel layer 310 at the bottom is provided on the first barrier layer 220, and the plurality of second channel layers 310 and the plurality of second barrier layers The layers 320 are sequentially reduced to form a stepped structure on the first sides of the plurality of second channel layers 310 and the plurality of second barrier layers 320 .

盖帽层600设于顶部的第二势垒层320上;阳极电极层520覆盖于阶梯结构和盖帽层600上;阴极电极层510设于第一沟道层210上,且设于多个第二沟道层310和多个第二势垒层320的第二侧;绝缘介质层400设于顶部的第二势垒层320上,且位于阳极电极层520与阴极电极层510之间以及盖帽层600与阴极电极层510之间;其中,阳极电极层520和阴极电极层510分别与HEMT的源极和漏极连接。The capping layer 600 is disposed on the top second barrier layer 320; the anode electrode layer 520 covers the ladder structure and the capping layer 600; the cathode electrode layer 510 is disposed on the first channel layer 210, and is disposed on a plurality of second channel layers. The second side of the channel layer 310 and a plurality of second barrier layers 320; the insulating dielectric layer 400 is disposed on the top second barrier layer 320, and is located between the anode electrode layer 520 and the cathode electrode layer 510 and the capping layer 600 and the cathode electrode layer 510; wherein, the anode electrode layer 520 and the cathode electrode layer 510 are respectively connected to the source and drain of the HEMT.

在本实施例中,由于二极管器件内设有多个沟道层和多个势垒层,沟道层和势垒层交替层叠设置,因此二极管器件内具有多个二维电子气通道,在正向偏置下,由盖帽层(盖帽层可以为P型氮化镓)所耗尽的下方多个二维电子气通道重新打开,形成多通道二维电子气,减小器件的导通电阻;在反向偏置下,阳极电极层处的多处场板形成阶梯结构,分别减小下方阳极电极层处处的电场尖峰,同时由于盖帽层对下方二维电子气的耗尽作用,达到改善器件的表面电场的作用。In this embodiment, since a plurality of channel layers and a plurality of barrier layers are provided in the diode device, and the channel layers and the barrier layers are alternately stacked, there are a plurality of two-dimensional electron gas channels in the diode device. Under bias, multiple two-dimensional electron gas channels below that are depleted by the cap layer (the cap layer can be P-type gallium nitride) are reopened to form a multi-channel two-dimensional electron gas, reducing the on-resistance of the device; Under reverse bias, multiple field plates at the anode electrode layer form a stepped structure, respectively reducing the electric field peaks at the lower anode electrode layer, and at the same time, due to the depletion effect of the capping layer on the lower two-dimensional electron gas, the device can be improved The effect of the surface electric field.

在一个实施例中,阳极电极层520与阴极电极层510之间的绝缘介质层400为高介电材料,由于阳极电极层520-绝缘介质层400-阴极电极层510之间形成的电容具有更高的均匀电场,又能调节绝缘介质层400下方的电场,从而在器件内部横向和纵向两个方向改善器件内部的电场,极大的提高了器件的耐压。In one embodiment, the insulating medium layer 400 between the anode electrode layer 520 and the cathode electrode layer 510 is a high dielectric material, since the capacitance formed between the anode electrode layer 520-the insulating medium layer 400-the cathode electrode layer 510 has a higher The high uniform electric field can also adjust the electric field under the insulating dielectric layer 400, thereby improving the electric field inside the device in both the horizontal and vertical directions inside the device, and greatly improving the withstand voltage of the device.

在一个实施例中,绝缘介质层400可以为氧化镧或者氧化硅。In one embodiment, the insulating dielectric layer 400 may be lanthanum oxide or silicon oxide.

在一个实施例中,第一沟道层210和第二沟道层310可以为N型氮化镓层。In one embodiment, the first channel layer 210 and the second channel layer 310 may be N-type GaN layers.

在一个实施例中,第一势垒层220和第二势垒层320可以为AlGaN层。In one embodiment, the first barrier layer 220 and the second barrier layer 320 may be AlGaN layers.

在一个实施例中,结合图1所示,阴极电极层510位于第一势垒层220、第二沟道层310、第二势垒层320的第二侧,且阴极电极层510的第一侧边缘与第一势垒层220、第二沟道层310、第二势垒层320的第二侧边缘齐平,第一势垒层220、第二沟道层310、第二势垒层320的第一侧边缘与阴极电极层510之间的距离逐渐减小。In one embodiment, as shown in FIG. 1 , the cathode electrode layer 510 is located on the second side of the first barrier layer 220 , the second channel layer 310 , and the second barrier layer 320 , and the first side of the cathode electrode layer 510 The side edges are flush with the second side edges of the first barrier layer 220, the second channel layer 310, and the second barrier layer 320, and the first barrier layer 220, the second channel layer 310, and the second barrier layer The distance between the first side edge of 320 and the cathode electrode layer 510 gradually decreases.

在一个实施例中,多个第二沟道层310和多个第二势垒层320交替层叠设置,其左侧边缘位置与阴极电极层510之间的距离从底部向顶部逐层开始减小,此时多个第二沟道层310和多个第二势垒层320形成阶梯结构,由于阳极电极层510覆盖于该阶梯结构上,因此阳极电极层510可以由多层电极场板组成,在反向偏置下,阳极电极层510的多层电极场板分别减小下方阳极处的电场尖峰,从而调节其方向的电场。In one embodiment, a plurality of second channel layers 310 and a plurality of second barrier layers 320 are stacked alternately, and the distance between the left edge position and the cathode electrode layer 510 decreases layer by layer from the bottom to the top. , at this time a plurality of second channel layers 310 and a plurality of second barrier layers 320 form a ladder structure, since the anode electrode layer 510 covers the ladder structure, the anode electrode layer 510 may be composed of multilayer electrode field plates, Under reverse bias, the multilayer electrode field plates of the anode electrode layer 510 respectively reduce the electric field spikes at the lower anode, thereby adjusting the electric field in its direction.

在一个实施例中,阴极电极层510为矩形结构。In one embodiment, the cathode electrode layer 510 has a rectangular structure.

在一个实施例中,与第一沟道层210的第一侧边缘齐平,第一势垒层220的第二侧边缘与第一沟道层210的第二侧边缘齐平。In one embodiment, being flush with the first side edge of the first channel layer 210 , the second side edge of the first barrier layer 220 is flush with the second side edge of the first channel layer 210 .

在一个实施例中,多个第二沟道层310和多个第二势垒层320的第二侧与第一势垒层220的第二侧齐平。In one embodiment, the second sides of the plurality of second channel layers 310 and the plurality of second barrier layers 320 are flush with the second side of the first barrier layer 220 .

在一个实施例中,阴极电极层510还设于第一势垒层220的第二侧,且深入至第一沟道层210内。In one embodiment, the cathode electrode layer 510 is also disposed on the second side of the first barrier layer 220 and penetrates deep into the first channel layer 210 .

在本实施例中,阴极电极层510深入至第一沟道层210内的深度小于第一势垒层220的厚度。In this embodiment, the depth of the cathode electrode layer 510 deep into the first channel layer 210 is smaller than the thickness of the first barrier layer 220 .

在一个实施例中,第一势垒层220、第二沟道层310、第二势垒层320的第一侧边缘与阴极电极层510之间的距离呈等差数列排布。In one embodiment, the distances between the first barrier layer 220 , the second channel layer 310 , the first side edge of the second barrier layer 320 and the cathode electrode layer 510 are arranged in an arithmetic progression.

在一个实施例中,第二势垒层320的宽度与第二势垒层320背面的第二沟道层310的宽度之间的差值等于第二势垒层320与第二势垒层320正面的第二沟道层310的宽度之间的差值。In one embodiment, the difference between the width of the second barrier layer 320 and the width of the second channel layer 310 on the back side of the second barrier layer 320 is equal to the difference between the second barrier layer 320 and the second barrier layer 320 The difference between the widths of the second channel layer 310 on the front side.

在一个实施例中,绝缘介质层400的上表面与阳极电极层520的上表面齐平。In one embodiment, the upper surface of the insulating dielectric layer 400 is flush with the upper surface of the anode electrode layer 520 .

在一个实施例中,第二沟道层310的厚度与第二势垒层320的厚度相同。In one embodiment, the second channel layer 310 has the same thickness as the second barrier layer 320 .

在一个实施例中,第二沟道层310的个数可以为2个,第二势垒层320的个数可以为2个,第一势垒层220、第一沟道层310、第二势垒层320、第一沟道层310、第二势垒层320依次层叠设置于第一沟道层210上,且第一势垒层220、第一沟道层310、第二势垒层320、第一沟道层310、第二势垒层320的宽度逐层减小,如图1所示。In one embodiment, the number of the second channel layer 310 can be 2, the number of the second barrier layer 320 can be 2, the first barrier layer 220, the first channel layer 310, the second The barrier layer 320, the first channel layer 310, and the second barrier layer 320 are sequentially stacked on the first channel layer 210, and the first barrier layer 220, the first channel layer 310, and the second barrier layer 320 , the widths of the first channel layer 310 and the second barrier layer 320 decrease layer by layer, as shown in FIG. 1 .

本申请实施例还提供了一种应用于HEMT的二极管器件的制备方法,参见图2所示,本实施例中的制备方法包括步骤S10至步骤S60。The embodiment of the present application also provides a method for manufacturing a diode device applied to a HEMT, as shown in FIG. 2 , the method in this embodiment includes steps S10 to S60.

在步骤S10中,结合图3所示,在半导体衬底100上依次形成第一沟道层210和第一势垒层220。In step S10 , as shown in FIG. 3 , a first channel layer 210 and a first barrier layer 220 are sequentially formed on the semiconductor substrate 100 .

在本实施例中,第一沟道层210和第一势垒层220的宽度相同,可以通过在半导体衬底100上沉积沟道材料的方式在其表面形成第一沟道层210,然后再次沉积势垒层材料的方式在第一沟道层210表面形成第一势垒层220。In this embodiment, the first channel layer 210 and the first barrier layer 220 have the same width, and the first channel layer 210 can be formed on the surface of the semiconductor substrate 100 by depositing a channel material, and then again The manner of depositing the material of the barrier layer forms the first barrier layer 220 on the surface of the first channel layer 210 .

在一个实施例中,第一沟道层210的厚度大于第一势垒层220的厚度。In one embodiment, the thickness of the first channel layer 210 is greater than the thickness of the first barrier layer 220 .

在一个实施例中,第一沟道层210的厚度为第一势垒层220的厚度的三倍。In one embodiment, the thickness of the first channel layer 210 is three times the thickness of the first barrier layer 220 .

在一个实施例中,第一沟道层210可以为N型氮化镓层。In one embodiment, the first channel layer 210 may be an N-type gallium nitride layer.

在一个实施例中,第一势垒层220可以为AlGaN层。In one embodiment, the first barrier layer 220 may be an AlGaN layer.

在步骤S20中,结合图3至图7所示,在第一势垒层220上形成交替层叠设置的多个第二沟道层310和多个第二势垒层320。In step S20 , as shown in FIG. 3 to FIG. 7 , a plurality of second channel layers 310 and a plurality of second barrier layers 320 alternately stacked on the first barrier layer 220 are formed.

在本实施例中,底部的第二沟道层310设于第一势垒层220上,且多个第二沟道层310和多个第二势垒层320的宽度依次减小,以在多个第二沟道层310和多个第二势垒层320的第一侧形成阶梯结构。In this embodiment, the second channel layer 310 at the bottom is disposed on the first barrier layer 220, and the widths of the plurality of second channel layers 310 and the plurality of second barrier layers 320 are sequentially reduced, so that First sides of the plurality of second channel layers 310 and the plurality of second barrier layers 320 form a stepped structure.

在一个实施例中,步骤S20中,在第一势垒层220上形成交替层叠设置的多个第二沟道层310和多个第二势垒层320具体可以包括步骤S21至步骤S24。In one embodiment, in step S20 , forming a plurality of second channel layers 310 and a plurality of second barrier layers 320 alternately stacked on the first barrier layer 220 may specifically include steps S21 to S24 .

在步骤S21中,结合图3所示,在第一势垒层220上形成第一掩膜层201,该第一掩膜层201位于第一势垒层220表面的中央区域,第一掩膜层201的左侧边缘与第一势垒层220的左侧边缘之间的距离等于第一掩膜层201的右侧边缘与第一势垒层220的右侧边缘之间的距离。In step S21, as shown in FIG. 3, a first mask layer 201 is formed on the first barrier layer 220. The first mask layer 201 is located in the central area of the surface of the first barrier layer 220. The first mask The distance between the left edge of layer 201 and the left edge of first barrier layer 220 is equal to the distance between the right edge of first mask layer 201 and the right edge of first barrier layer 220 .

在一个实施例中,可以通过沉积氮化硅材料在第一势垒层220表面形成第一掩膜层201,并利用光罩或者光刻胶刻蚀氮化硅材料使得第一掩膜层201位于第一势垒层220表面的中央区域。In one embodiment, the first mask layer 201 can be formed on the surface of the first barrier layer 220 by depositing silicon nitride material, and the silicon nitride material can be etched using a photomask or photoresist to make the first mask layer 201 Located in the central area of the surface of the first barrier layer 220 .

在步骤S22中,结合图4所示,沉积沟道层材料在第一势垒层220表面形成第二沟道层310,并采用化学机械抛光的方式处理第二沟道层310,使得第二沟道层310的厚度与第一掩膜层201的厚度相等。In step S22, as shown in FIG. 4 , the channel layer material is deposited to form the second channel layer 310 on the surface of the first barrier layer 220, and the second channel layer 310 is treated by chemical mechanical polishing, so that the second The thickness of the channel layer 310 is equal to the thickness of the first mask layer 201 .

由于第一掩膜层201位于第一势垒层220表面的中央区域,此时第一掩膜层201两侧均设有第二沟道层310,且第一掩膜层201两侧的第二沟道层310的宽度相等。Since the first mask layer 201 is located in the central region of the surface of the first barrier layer 220, the second channel layer 310 is provided on both sides of the first mask layer 201 at this time, and the second channel layer 310 on both sides of the first mask layer 201 The widths of the two channel layers 310 are equal.

在一个实施例中,可以通过沉积氮化镓材料的方式在第一势垒层220表面形成氮化镓层作为第二沟道层310。In one embodiment, a gallium nitride layer may be formed on the surface of the first barrier layer 220 as the second channel layer 310 by depositing gallium nitride material.

在步骤S23中,结合图5所示,在第一掩膜层201和第二沟道层310的表面形成第二掩膜层202,该第二掩膜层202位于第一掩膜层201上,且第二掩膜层202的宽度大于第一掩膜层201的宽度,第二掩膜层202的左侧边缘与第一掩膜层201的左侧边缘之间的距离等于第二掩膜层202的右侧边缘与第一掩膜层201的右侧边缘之间的距离。In step S23, as shown in FIG. 5, a second mask layer 202 is formed on the surfaces of the first mask layer 201 and the second channel layer 310, and the second mask layer 202 is located on the first mask layer 201. , and the width of the second mask layer 202 is greater than the width of the first mask layer 201, the distance between the left edge of the second mask layer 202 and the left edge of the first mask layer 201 is equal to the second mask The distance between the right edge of layer 202 and the right edge of first mask layer 201 .

第二掩膜层202的左侧边缘与第一势垒层220的左侧边缘之间的距离等于第二掩膜层202的右侧边缘与第一势垒层220的右侧边缘之间的距离。The distance between the left edge of the second mask layer 202 and the left edge of the first barrier layer 220 is equal to the distance between the right edge of the second mask layer 202 and the right edge of the first barrier layer 220. distance.

在一个实施例中,可以通过沉积氮化硅材料在第一掩膜层201表面形成第二掩膜层202,并利用光罩或者光刻胶刻蚀氮化硅材料使得第二掩膜层202的宽度大于第一掩膜层201的宽度,第二掩膜层202的左侧边缘与第一掩膜层201的左侧边缘之间的距离等于第二掩膜层202的右侧边缘与第一掩膜层201的右侧边缘之间的距离。In one embodiment, the second mask layer 202 can be formed on the surface of the first mask layer 201 by depositing silicon nitride material, and the silicon nitride material is etched using a photomask or photoresist so that the second mask layer 202 The width is greater than the width of the first mask layer 201, and the distance between the left edge of the second mask layer 202 and the left edge of the first mask layer 201 is equal to the distance between the right edge of the second mask layer 202 and the first mask layer 202. A distance between the right edges of the mask layer 201 .

在步骤S24中,结合图6所示,沉积沟道层材料在第二沟道层310表面形成第二势垒层320,并采用化学机械抛光的方式处理第二势垒层320,使得第二势垒层320的厚度与第二掩膜层202的厚度相等。In step S24, as shown in FIG. 6, channel layer material is deposited to form a second barrier layer 320 on the surface of the second channel layer 310, and the second barrier layer 320 is treated by chemical mechanical polishing, so that the second The thickness of the barrier layer 320 is equal to the thickness of the second mask layer 202 .

第二掩膜层202位于第一掩膜层201上,第二掩膜层202两侧均设有第二势垒层320,且第二掩膜层202两侧的第二势垒层320的宽度相等。The second mask layer 202 is located on the first mask layer 201, the second barrier layer 320 is provided on both sides of the second mask layer 202, and the second barrier layer 320 on both sides of the second mask layer 202 equal in width.

在一个实施例中,可以通过沉积氮镓铝材料的方式在第二沟道层310表面形成氮镓铝层作为第二势垒层320。In one embodiment, an aluminum gallium nitride layer may be formed on the surface of the second channel layer 310 by depositing aluminum gallium nitride material as the second barrier layer 320 .

结合图7所示,重复上述步骤S21至步骤S24,在第二掩膜层202上形成第三掩膜层203然后形成顶部的第二沟道层310,然后在第三掩膜层204上形成第四掩膜层205,形成顶部的第二势垒层320。As shown in FIG. 7 , repeat the above step S21 to step S24, form the third mask layer 203 on the second mask layer 202 and then form the second channel layer 310 on the top, and then form the second channel layer 310 on the third mask layer 204. The fourth mask layer 205 forms the second barrier layer 320 on top.

在具体应用中,第二沟道层310和第二势垒层320的层数由步骤S21至步骤S24的重复次数确定,且后续每一层掩膜层的宽度均大于上一层的掩膜层的宽度,使得层叠交替设置的第二沟道层310和第二势垒层320呈阶梯结构。In a specific application, the number of layers of the second channel layer 310 and the second barrier layer 320 is determined by the number of repetitions from step S21 to step S24, and the width of each subsequent mask layer is greater than that of the previous layer. The width of the layers is such that the alternately stacked second channel layers 310 and second barrier layers 320 form a ladder structure.

在一个实施例中,第二沟道层310的个数可以为2个,第二势垒层320的个数可以为2个,第一势垒层220、第一沟道层310、第二势垒层320、第一沟道层310、第二势垒层320依次层叠设置于第一沟道层210上,且第一势垒层220、第一沟道层310、第二势垒层320、第一沟道层310、第二势垒层320的宽度逐层减小,如图1所示。In one embodiment, the number of the second channel layer 310 can be 2, the number of the second barrier layer 320 can be 2, the first barrier layer 220, the first channel layer 310, the second The barrier layer 320, the first channel layer 310, and the second barrier layer 320 are sequentially stacked on the first channel layer 210, and the first barrier layer 220, the first channel layer 310, and the second barrier layer 320 , the widths of the first channel layer 310 and the second barrier layer 320 decrease layer by layer, as shown in FIG. 1 .

在一个实施例中,第二沟道层310可以为N型氮化镓层。In one embodiment, the second channel layer 310 may be an N-type gallium nitride layer.

在一个实施例中,第二势垒层320可以为AlGaN层。In one embodiment, the second barrier layer 320 may be an AlGaN layer.

在步骤S30中,结合图8所示,在顶部的第二势垒层320上形成盖帽层600。In step S30 , as shown in FIG. 8 , a capping layer 600 is formed on the top second barrier layer 320 .

在本实施例中,去除步骤S20中的多层掩膜层,然后以第一掩膜层201的中央区域为切割线对步骤S20中形成的势垒层和沟道层进行切割形成如图8所述的阶梯结构的势垒层和沟道层。In this embodiment, the multi-layer mask layer in step S20 is removed, and then the barrier layer and channel layer formed in step S20 are cut and formed as shown in FIG. The barrier layer and the channel layer of the ladder structure.

通过在顶部的第二势垒层320上沉积P型氮化镓材料形成P型氮化镓层,并对P型氮化镓层进行刻蚀去除P型氮化镓层第二侧部分区域的P型氮化镓材料,以形成盖帽层600,盖帽层600第一侧的边缘与顶部的第二势垒层320的第一侧的边缘对齐。A P-type GaN layer is formed by depositing a P-type GaN material on the top second barrier layer 320, and the P-type GaN layer is etched to remove part of the second side of the P-type GaN layer. P-type GaN material to form a capping layer 600 , the edge of the first side of the capping layer 600 is aligned with the edge of the first side of the second barrier layer 320 on top.

在步骤S40中,如图9所示,在阶梯结构和盖帽层600上形成阳极电极层520。In step S40 , as shown in FIG. 9 , an anode electrode layer 520 is formed on the ladder structure and the capping layer 600 .

在本实施例中,阳极电极层520覆盖于阶梯结构和盖帽层600上,由于阳极电极层520的背面与阶梯结构匹配,阳极电极层520的背面同样呈阶梯结构,阳极电极层520可以等同于多层电极场板,每层电极场板对应第二沟道层310或者第二势垒层320。In this embodiment, the anode electrode layer 520 covers the stepped structure and the capping layer 600. Since the back of the anode electrode layer 520 matches the stepped structure, the back of the anode electrode layer 520 also has a stepped structure, and the anode electrode layer 520 can be equivalent to Multi-layer electrode field plates, each layer of electrode field plates corresponds to the second channel layer 310 or the second barrier layer 320 .

在一个实施例中,阳极电极层520的第一侧边缘与第一势垒层220的第一侧边缘齐平,阳极电极层520的第二侧边缘与盖帽层600的第二侧边缘齐平,第一侧和第二侧相对。In one embodiment, the first side edge of the anode electrode layer 520 is flush with the first side edge of the first barrier layer 220, and the second side edge of the anode electrode layer 520 is flush with the second side edge of the capping layer 600. , the first side and the second side are opposite.

在步骤S50中,在第一沟道层210上形成阴极电极层510。In step S50 , a cathode electrode layer 510 is formed on the first channel layer 210 .

在本实施例中,阴极电极层510设于多个第二沟道层310和多个第二势垒层320的第二侧,阴极电极层510的第一侧边缘与阳极电极层520之间距离大于阴极电极层510的宽度。In this embodiment, the cathode electrode layer 510 is disposed on the second side of the plurality of second channel layers 310 and the plurality of second barrier layers 320, between the edge of the first side of the cathode electrode layer 510 and the anode electrode layer 520 The distance is greater than the width of the cathode electrode layer 510 .

在一个实施例中,阴极电极层510还设于第一势垒层220的第二侧,且深入至第一沟道层210内。In one embodiment, the cathode electrode layer 510 is also disposed on the second side of the first barrier layer 220 and penetrates deep into the first channel layer 210 .

在本实施例中,阴极电极层510深入至第一沟道层210内的深度小于第一势垒层220的厚度。In this embodiment, the depth of the cathode electrode layer 510 deep into the first channel layer 210 is smaller than the thickness of the first barrier layer 220 .

在一个实施例中,第一势垒层220、第二沟道层310、第二势垒层320的第一侧边缘与阴极电极层510之间的距离呈等差数列排布。In one embodiment, the distances between the first barrier layer 220 , the second channel layer 310 , the first side edge of the second barrier layer 320 and the cathode electrode layer 510 are arranged in an arithmetic progression.

在一个实施例中,第二势垒层320的宽度与第二势垒层320背面的第二沟道层310的宽度之间的差值等于第二势垒层320与第二势垒层320正面的第二沟道层310的宽度之间的差值。In one embodiment, the difference between the width of the second barrier layer 320 and the width of the second channel layer 310 on the back side of the second barrier layer 320 is equal to the difference between the second barrier layer 320 and the second barrier layer 320 The difference between the widths of the second channel layer 310 on the front side.

在步骤S60中,结合图1所示,在顶部的第二势垒层320上形成绝缘介质层400,绝缘介质层400位于阳极电极层520与阴极电极层510之间以及盖帽层600与阴极电极层510之间。In step S60, as shown in FIG. 1, an insulating dielectric layer 400 is formed on the top second barrier layer 320, and the insulating dielectric layer 400 is located between the anode electrode layer 520 and the cathode electrode layer 510 and between the cap layer 600 and the cathode electrode layer. between layers 510 .

在一个实施例中,绝缘介质层400的上表面与阳极电极层520的上表面齐平。In one embodiment, the upper surface of the insulating dielectric layer 400 is flush with the upper surface of the anode electrode layer 520 .

在一个实施例中,多个第二沟道层310和多个第二势垒层320交替层叠设置,其左侧边缘位置与阴极电极层510之间的距离从底部向顶部逐层开始减小,此时多个第二沟道层310和多个第二势垒层320形成阶梯结构,由于阳极电极层510覆盖于该阶梯结构上,因此阳极电极层510可以由多层电极场板组成,在反向偏置下,阳极电极层510的多层电极场板分别减小下方阳极处的电场尖峰,从而调节其方向的电场。In one embodiment, a plurality of second channel layers 310 and a plurality of second barrier layers 320 are alternately stacked, and the distance between the left edge position and the cathode electrode layer 510 decreases layer by layer from the bottom to the top. , at this time a plurality of second channel layers 310 and a plurality of second barrier layers 320 form a stepped structure, and since the anode electrode layer 510 covers the stepped structure, the anode electrode layer 510 may be composed of a multilayer electrode field plate, Under reverse bias, the multilayer electrode field plates of the anode electrode layer 510 respectively reduce the electric field spikes at the lower anode, thereby adjusting the electric field in its direction.

在本实施例中,由于二极管器件内设有多个沟道层和多个势垒层,沟道层和势垒层交替层叠设置,因此二极管器件内具有多个二维电子气通道,在正向偏置下,由盖帽层(盖帽层可以为P型氮化镓)所耗尽的下方多个二维电子气通道重新打开,形成多通道二维电子气,减小器件的导通电阻;在反向偏置下,阳极电极层处的多处场板形成阶梯结构,分别减小下方阳极电极层处处的电场尖峰,同时由于盖帽层对下方二维电子气的耗尽作用,达到改善器件的表面电场的作用。In this embodiment, since a plurality of channel layers and a plurality of barrier layers are arranged in the diode device, and the channel layers and the barrier layers are alternately stacked, there are a plurality of two-dimensional electron gas channels in the diode device. Under bias, multiple two-dimensional electron gas channels below that are depleted by the cap layer (the cap layer can be P-type gallium nitride) are reopened to form multi-channel two-dimensional electron gas, reducing the on-resistance of the device; Under reverse bias, multiple field plates at the anode electrode layer form a stepped structure, respectively reducing the electric field peaks at the lower anode electrode layer, and at the same time due to the depletion effect of the capping layer on the lower two-dimensional electron gas, the device can be improved The effect of the surface electric field.

在一个实施例中,阳极电极层520与阴极电极层510之间的绝缘介质层400为高介电材料,由于阳极电极层520-绝缘介质层400-阴极电极层510之间形成的电容具有更高的均匀电场,又能调节绝缘介质层400下方的电场,从而在器件内部横向和纵向两个方向改善器件内部的电场,极大的提高了器件的耐压。In one embodiment, the insulating medium layer 400 between the anode electrode layer 520 and the cathode electrode layer 510 is a high dielectric material, since the capacitance formed between the anode electrode layer 520-the insulating medium layer 400-the cathode electrode layer 510 has a higher The high uniform electric field can also adjust the electric field under the insulating dielectric layer 400, thereby improving the electric field inside the device in both the horizontal and vertical directions inside the device, and greatly improving the withstand voltage of the device.

在一个实施例中,绝缘介质层400可以为氧化镧或者氧化硅。In one embodiment, the insulating dielectric layer 400 may be lanthanum oxide or silicon oxide.

本申请实施例还提供了一种氮化镓HEMT,所述氮化镓HEMT内集成如上述任一项实施例所述的氮化镓基二极管器件。The embodiment of the present application also provides a gallium nitride HEMT, wherein the gallium nitride-based diode device as described in any one of the foregoing embodiments is integrated in the gallium nitride HEMT.

本申请实施例还提供了一种氮化镓HEMT,所述氮化镓HEMT内集成如上述实施例所述的制备方法制备的氮化镓基二极管器件。The embodiment of the present application also provides a gallium nitride HEMT, wherein the gallium nitride-based diode device prepared by the preparation method described in the above embodiment is integrated in the gallium nitride HEMT.

在具体应用中,上述实施例中的氮化镓基二极管器件与氮化镓HEMT共用沟道层、势垒层以及半导体衬底。In a specific application, the gallium nitride-based diode device in the above embodiment shares the channel layer, the barrier layer and the semiconductor substrate with the gallium nitride HEMT.

在一个实施例中,氮化镓基二极管器件设于氮化镓HEMT的栅极、漏极或者源极下方,且阳极电极层与氮化镓HEMT的源极连接,阴极电极层与氮化镓HEMT的漏极连接。In one embodiment, the gallium nitride-based diode device is disposed under the gate, drain or source of the gallium nitride HEMT, and the anode electrode layer is connected to the source of the gallium nitride HEMT, and the cathode electrode layer is connected to the gallium nitride HEMT. HEMT drain connection.

本申请实施例与现有技术相比存在的有益效果是:通过将多个第二沟道层和多个第二势垒层交替层叠设置设于第一势垒层上,以在其第一侧形成阶梯结构,并在第一侧设置覆盖于阶梯结构和盖帽层的阳极电极层,在其第二侧设置阴极电极层,在阳极电极层和阴极电极层之间设置绝缘介质层,使得阳极和阴极之间的电容具备更高的均匀电场,同时可以从横向和纵向改善电场提升寄生二极管的击穿电压,解决HEMT器件由于缺少体二极管导致在高感性应用场景不稳定的问题。Compared with the prior art, the embodiment of the present application has the beneficial effect that: by alternately stacking a plurality of second channel layers and a plurality of second barrier layers on the first barrier layer, The side forms a ladder structure, and an anode electrode layer covering the ladder structure and the cap layer is set on the first side, a cathode electrode layer is set on the second side, and an insulating medium layer is set between the anode electrode layer and the cathode electrode layer, so that the anode The capacitance between the cathode and the cathode has a higher uniform electric field, and at the same time, the electric field can be improved from the horizontal and vertical directions to increase the breakdown voltage of the parasitic diode, which solves the problem of instability in high-inductance application scenarios caused by the lack of body diodes in HEMT devices.

所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各掺杂区区的划分进行举例说明,实际应用中,可以根据需要而将上述功能区分配由不同的掺杂区完成,即将所述装置的内部结构划分成不同的掺杂区,以完成以上描述的全部或者部分功能。Those skilled in the art can clearly understand that for the convenience and brevity of description, only the division of the above-mentioned doped regions is used as an example. In practical applications, the above-mentioned functional regions can be assigned to different doped regions according to needs. Completion means that the internal structure of the device is divided into different doped regions, so as to complete all or part of the functions described above.

实施例中的各掺杂区可以集成在一个功能区中,也可以是各个掺杂区单独物理存在,也可以两个或两个以上掺杂区集成在一个功能区中,上述集成的功能区既可以采用同种掺杂离子实现,也可以采用多种掺杂离子共同实现。另外,各掺杂区的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述器件的制备方法中的中掺杂区的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Each doped region in the embodiment can be integrated in one functional region, or each doped region can exist separately physically, or two or more doped regions can be integrated in one functional region. The above-mentioned integrated functional region It can be realized by using the same kind of dopant ions, and can also be realized by using multiple dopant ions together. In addition, the specific names of the doped regions are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present application. For the specific working process of the medium-doped region in the above-mentioned device manufacturing method, reference may be made to the corresponding process in the foregoing method embodiments, and details will not be repeated here.

以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-described embodiments are only used to illustrate the technical solutions of the present application, rather than to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still implement the foregoing embodiments Modifications to the technical solutions described in the examples, or equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the application, and should be included in the Within the protection scope of this application.

Claims (10)

1.一种应用于HEMT的二极管器件,其特征在于,所述二极管器件包括:1. A diode device applied to HEMT, characterized in that, said diode device comprises: 半导体衬底;semiconductor substrate; 第一沟道层,设于所述半导体衬底上;a first channel layer disposed on the semiconductor substrate; 第一势垒层,设于所述第一沟道层上;a first barrier layer disposed on the first channel layer; 多个第二沟道层和多个第二势垒层,其中,多个所述第二沟道层和多个所述第二势垒层交替层叠设置设于所述第一势垒层上,底部的所述第二沟道层设于所述第一势垒层上,且多个所述第二沟道层和多个所述第二势垒层的宽度依次减小,以在多个所述第二沟道层和多个所述第二势垒层的第一侧形成阶梯结构;A plurality of second channel layers and a plurality of second barrier layers, wherein the plurality of second channel layers and the plurality of second barrier layers are alternately stacked and arranged on the first barrier layer , the second channel layer at the bottom is disposed on the first barrier layer, and the widths of the plurality of second channel layers and the plurality of second barrier layers are sequentially reduced, so that The first sides of each of the second channel layers and the plurality of second barrier layers form a ladder structure; 盖帽层,设于顶部的所述第二势垒层上;a capping layer disposed on top of the second barrier layer; 阳极电极层,设于所述阶梯结构和所述盖帽层上;an anode electrode layer disposed on the stepped structure and the capping layer; 阴极电极层,设于所述第一沟道层上,且设于多个所述第二沟道层和多个所述第二势垒层的第二侧;a cathode electrode layer disposed on the first channel layer and disposed on the second side of the plurality of second channel layers and the plurality of second barrier layers; 绝缘介质层,设于顶部的所述第二势垒层上,且位于所述阳极电极层与所述阴极电极层之间以及所述盖帽层与所述阴极电极层之间;其中,所述阳极电极层和所述阴极电极层分别与所述HEMT的源极和漏极连接。an insulating medium layer, disposed on the second barrier layer at the top, and located between the anode electrode layer and the cathode electrode layer and between the capping layer and the cathode electrode layer; wherein, the The anode electrode layer and the cathode electrode layer are respectively connected to the source and drain of the HEMT. 2.如权利要求1所述的二极管器件,其特征在于,多个所述第二沟道层和多个所述第二势垒层的第二侧与所述第一势垒层的第二侧齐平。2. The diode device according to claim 1, wherein the second sides of the plurality of second channel layers and the plurality of second barrier layers are connected to the second sides of the first barrier layers. side flush. 3.如权利要求2所述的二极管器件,其特征在于,所述阴极电极层还设于所述第一势垒层的第二侧,且深入至所述第一沟道层内。3. The diode device according to claim 2, wherein the cathode electrode layer is also disposed on the second side of the first barrier layer and penetrates deep into the first channel layer. 4.如权利要求2所述的二极管器件,其特征在于,所述第二势垒层的宽度与所述第二势垒层背面的所述第二沟道层的宽度之间的差值等于所述第二势垒层与所述第二势垒层正面的所述第二沟道层的宽度之间的差值。4. The diode device according to claim 2, wherein the difference between the width of the second barrier layer and the width of the second channel layer on the back side of the second barrier layer is equal to The difference between the width of the second barrier layer and the width of the second channel layer on the front side of the second barrier layer. 5.如权利要求1-4任一项所述的二极管器件,其特征在于,所述绝缘介质层的上表面与所述阳极电极层的上表面齐平。5. The diode device according to any one of claims 1-4, wherein the upper surface of the insulating medium layer is flush with the upper surface of the anode electrode layer. 6.如权利要求1-4任一项所述的二极管器件,其特征在于,所述第二沟道层的厚度与所述第二势垒层的厚度相同。6. The diode device according to any one of claims 1-4, wherein the thickness of the second channel layer is the same as the thickness of the second barrier layer. 7.如权利要求1-4任一项所述的二极管器件,其特征在于,所述绝缘介质层为高介电材料。7. The diode device according to any one of claims 1-4, wherein the insulating dielectric layer is a high dielectric material. 8.一种应用于HEMT的二极管器件的制备方法,其特征在于,包括:8. A method for preparing a diode device applied to a HEMT, comprising: 在半导体衬底上依次形成第一沟道层和第一势垒层;sequentially forming a first channel layer and a first barrier layer on a semiconductor substrate; 在所述第一势垒层上形成交替层叠设置的多个第二沟道层和多个第二势垒层;其中,底部的所述第二沟道层设于所述第一势垒层上,且多个所述第二沟道层和多个所述第二势垒层的宽度依次减小,以在多个所述第二沟道层和多个所述第二势垒层的第一侧形成阶梯结构;A plurality of second channel layers and a plurality of second barrier layers alternately stacked on the first barrier layer; wherein, the second channel layer at the bottom is arranged on the first barrier layer , and the widths of the plurality of the second channel layers and the plurality of the second barrier layers are sequentially reduced, so that the widths of the plurality of the second channel layers and the plurality of the second barrier layers The first side forms a stepped structure; 在顶部的所述第二势垒层上形成盖帽层;forming a capping layer on top of said second barrier layer; 在所述阶梯结构和所述盖帽层上形成阳极电极层;forming an anode electrode layer on the stepped structure and the capping layer; 在所述第一沟道层上形成阴极电极层;其中,所述阴极电极层设于多个所述第二沟道层和多个所述第二势垒层的第二侧;A cathode electrode layer is formed on the first channel layer; wherein, the cathode electrode layer is disposed on the second side of the plurality of second channel layers and the plurality of second barrier layers; 在顶部的所述第二势垒层上形成绝缘介质层,所述绝缘介质层位于所述阳极电极层与所述阴极电极层之间以及所述盖帽层与所述阴极电极层之间。An insulating dielectric layer is formed on the top second barrier layer, and the insulating dielectric layer is located between the anode electrode layer and the cathode electrode layer and between the capping layer and the cathode electrode layer. 9.一种HEMT,其特征在于,所述HEMT内集成如权利要求1-7任一项所述的二极管器件;或者包括如权利要求8所述的制备方法制备的二极管器件。9. A HEMT, characterized in that, the diode device according to any one of claims 1-7 is integrated in the HEMT; or the diode device prepared by the preparation method according to claim 8 is included. 10.如权利要求9所述的HEMT,其特征在于,所述应用于HEMT的二极管器件设于所述HEMT的栅极、漏极或者源极下方,且所述阳极电极层与所述HEMT的源极连接,所述阴极电极层与所述HEMT的漏极连接。10. The HEMT according to claim 9, wherein the diode device applied to the HEMT is arranged under the gate, the drain or the source of the HEMT, and the anode electrode layer and the HEMT The source is connected, and the cathode electrode layer is connected to the drain of the HEMT.
CN202211312094.7A 2022-10-25 2022-10-25 A kind of diode device applied to HEMT, preparation method and HEMT Pending CN115602711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211312094.7A CN115602711A (en) 2022-10-25 2022-10-25 A kind of diode device applied to HEMT, preparation method and HEMT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211312094.7A CN115602711A (en) 2022-10-25 2022-10-25 A kind of diode device applied to HEMT, preparation method and HEMT

Publications (1)

Publication Number Publication Date
CN115602711A true CN115602711A (en) 2023-01-13

Family

ID=84849078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211312094.7A Pending CN115602711A (en) 2022-10-25 2022-10-25 A kind of diode device applied to HEMT, preparation method and HEMT

Country Status (1)

Country Link
CN (1) CN115602711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317002A (en) * 2023-11-30 2023-12-29 润新微电子(大连)有限公司 Epitaxial structure of semiconductor device, preparation method of epitaxial structure and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317002A (en) * 2023-11-30 2023-12-29 润新微电子(大连)有限公司 Epitaxial structure of semiconductor device, preparation method of epitaxial structure and semiconductor device
CN117317002B (en) * 2023-11-30 2024-03-12 润新微电子(大连)有限公司 Epitaxial structure of semiconductor device and preparation method thereof and semiconductor device

Similar Documents

Publication Publication Date Title
US20230420526A1 (en) Wide bandgap transistors with gate-source field plates
US9887268B2 (en) Capacitively-coupled field-plate structures for semiconductor devices
US8829608B2 (en) Semiconductor device
CN107359196B (en) Semiconductor device with a plurality of semiconductor chips
CN104064470B (en) Semiconductor device and its manufacture method
WO2012063529A1 (en) Semiconductor device and manufacturing method therefor
EP1751804A2 (en) Wide bandgap transistors with multiple field plates
CN107546270B (en) Semiconductor device and method for manufacturing the same
CN111710723B (en) Lateral double-diffused transistor and method of making the same
CN114188403A (en) semiconductor device
CN115602711A (en) A kind of diode device applied to HEMT, preparation method and HEMT
WO2023088013A1 (en) Silicon carbide semiconductor device and manufacturing method therefor
CN115084232A (en) Heterojunction lateral double diffusion field effect transistor, fabrication method, chip and circuit
EP4391067A1 (en) Gallium nitride hemt transistor
CN111370493A (en) RFLDMOS device and manufacturing method thereof
CN117894832A (en) Compound heterojunction p-type transistor and preparation method thereof
CN106783993B (en) Gallium nitride heterojunction field-effect tube with compound medium layer structure in substrate
CN116598339A (en) A kind of power semiconductor device and its preparation method
US11227927B2 (en) Semiconductor device
CN112164725B (en) A high-threshold power semiconductor device and its manufacturing method
CN115602710A (en) Gallium nitride-based diode device, preparation method and gallium nitride HEMT
TWI838929B (en) Semiconductor device and method of fabricating the same
CN112909077B (en) Double-heterojunction polarization-enhanced quasi-longitudinal GaN HEMT device
CN116314254A (en) A gallium nitride vertical trench MOSFET device, preparation method and chip
CN116314313A (en) Co-source co-grid HEMT power device, preparation method thereof and chip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination