CN115595585A - A kind of preparation method of special metallographic polishing agent for easily oxidized metal - Google Patents
A kind of preparation method of special metallographic polishing agent for easily oxidized metal Download PDFInfo
- Publication number
- CN115595585A CN115595585A CN202211404909.4A CN202211404909A CN115595585A CN 115595585 A CN115595585 A CN 115595585A CN 202211404909 A CN202211404909 A CN 202211404909A CN 115595585 A CN115595585 A CN 115595585A
- Authority
- CN
- China
- Prior art keywords
- polishing agent
- abrasive particles
- cerium oxide
- alcohol
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 30
- 239000002184 metal Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 58
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 57
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 52
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 34
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 239000002270 dispersing agent Substances 0.000 claims abstract description 13
- 239000002244 precipitate Substances 0.000 claims abstract description 12
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- 125000003158 alcohol group Chemical group 0.000 claims abstract description 7
- 238000005520 cutting process Methods 0.000 claims abstract description 7
- 239000012266 salt solution Substances 0.000 claims abstract description 7
- 238000000498 ball milling Methods 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 6
- 150000000703 Cerium Chemical class 0.000 claims abstract description 5
- 150000002603 lanthanum Chemical class 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 230000032683 aging Effects 0.000 claims abstract 3
- 238000000227 grinding Methods 0.000 claims abstract 2
- 239000012716 precipitator Substances 0.000 claims abstract 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 11
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical group NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 9
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 3
- 239000001099 ammonium carbonate Substances 0.000 claims description 3
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 3
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 3
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- 230000001376 precipitating effect Effects 0.000 claims description 2
- 229920002545 silicone oil Polymers 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims 1
- 150000002739 metals Chemical class 0.000 abstract description 13
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000007517 polishing process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract 1
- 230000035882 stress Effects 0.000 abstract 1
- 239000002344 surface layer Substances 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 13
- 239000006061 abrasive grain Substances 0.000 description 10
- 238000001887 electron backscatter diffraction Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 229910000881 Cu alloy Inorganic materials 0.000 description 7
- 235000011187 glycerol Nutrition 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 4
- 229920003081 Povidone K 30 Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000013049 sediment Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 101150096185 PAAS gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- -1 magnesium alloy Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F3/00—Brightening metals by chemical means
- C23F3/02—Light metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F3/00—Brightening metals by chemical means
- C23F3/04—Heavy metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/32—Polishing; Etching
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种抛光剂及其制备方法,特别涉及一种易氧化金属专用金相抛光剂的制备方法,属抛光剂技术领域。The invention relates to a polishing agent and a preparation method thereof, in particular to a preparation method of a special metallographic polishing agent for easily oxidized metals, which belongs to the technical field of polishing agents.
背景技术Background technique
随着科技和工业的快速发展,镁合金目前在航空航天、纺织、仪表等领域的应用越来越多,与其他金属材料相比,镁合金具有密度低、抗辐射、比强度和比刚度高,以及减振性好等优点,在电子、汽车及航空航天等领域具有广阔的应用前景。镁合金在加工过程中会形成织构,晶粒会出现择优取向。With the rapid development of science and technology and industry, magnesium alloys are currently being used more and more in aerospace, textile, instrumentation and other fields. Compared with other metal materials, magnesium alloys have low density, radiation resistance, high specific strength and specific stiffness. , and good vibration damping, it has broad application prospects in the fields of electronics, automobiles and aerospace. Magnesium alloys will form a texture during processing, and the grains will have a preferred orientation.
电子背散射衍射(Electron Backscatter Diffraction,EBSD)技术是装配在扫描电镜中测定晶体结构取向及相关信息的研究分析方法。它对研究材料的微观结构及其性能控制具有极其重要的作用,被称为材料显微结构研究的“新式武器”。但EBSD分析对样品表面质量要求比较高,要求样品表面无残余应力层、无氧化膜、无污染、导电性良好、尺寸合适。EBSD样品的制备是EBSD检测的基础和难点。化学-机械抛光法是一种高效、安全、经济、适用范围广的制备EBSD样品的方法。然而,国内目前没有镁合金、铜合金等易氧化金属专用的化学-机械抛光剂的生产和销售。目前主要采用电解抛光进行镁合金、铜合金EBSD样品的制备,电解抛光存在工艺复杂,适用范围窄,电解液具有毒性和危险性,安全性低等缺点。Electron Backscatter Diffraction (EBSD) technology is a research and analysis method installed in a scanning electron microscope to determine the crystal structure orientation and related information. It plays an extremely important role in the study of the microstructure of materials and their performance control, and is known as a "new weapon" for the study of material microstructure. However, EBSD analysis has relatively high requirements on the surface quality of the sample, requiring no residual stress layer, no oxide film, no pollution, good electrical conductivity and suitable size on the sample surface. The preparation of EBSD samples is the basis and difficulty of EBSD detection. Chemical-mechanical polishing is an efficient, safe, economical and widely applicable method for preparing EBSD samples. However, there is currently no production and sales of chemical-mechanical polishing agents for easily oxidized metals such as magnesium alloys and copper alloys in China. At present, electrolytic polishing is mainly used to prepare magnesium alloy and copper alloy EBSD samples. Electrolytic polishing has disadvantages such as complicated process, narrow application range, toxic and dangerous electrolyte, and low safety.
国内针对EBSD分析样品制备的金相抛光剂品类很少,并且存在不适用于镁合金、铜合金等易氧化金属抛光的问题,在抛光镁合金、铜合金时出现严重氧化。一般金相抛光剂无法去除镁合金、铜合金样品表层的应力层和氧化膜,存在抛光效率低的问题。There are few types of metallographic polishing agents prepared for EBSD analysis samples in China, and there are problems that they are not suitable for polishing easily oxidized metals such as magnesium alloys and copper alloys. Severe oxidation occurs when polishing magnesium alloys and copper alloys. General metallographic polishing agents cannot remove the stress layer and oxide film on the surface of magnesium alloy and copper alloy samples, and there is a problem of low polishing efficiency.
发明内容Contents of the invention
本发明的目的是,针对EBSD分析样品制备的金相抛光剂存在的问题,特别是无法解决镁合金、铜合金等易氧化金属的抛光问题,提出一种易氧化金属专用金相抛光剂的制备方法。The purpose of the present invention is, aim at the problem that the metallographic polishing agent that EBSD analysis sample prepares exists, especially can't solve the polishing problem of easily oxidized metals such as magnesium alloy, copper alloy, proposes the preparation of a kind of special metallographic polishing agent for easily oxidizable metal method.
本发明实现的技术方案如下,一种易氧化金属专用金相抛光剂的制备方法,所述金相抛光剂包括纳米级氧化铈或氧化镧磨粒、分散剂、PH调节剂、醇基或者油基/醇基混合液体;其中,分散剂为1.5%,PH调节剂为0.7%-0.8%,磨粒为5%-20%,余量为醇基或者油基醇基混合液体。The technical scheme realized by the present invention is as follows, a preparation method of a special metallographic polishing agent for easily oxidized metals. Alcohol-based/alcohol-based mixed liquid; among them, the dispersant is 1.5%, the pH regulator is 0.7%-0.8%, the abrasive grain is 5%-20%, and the balance is alcohol-based or oil-based alcohol-based mixed liquid.
所述制备方法如下:The preparation method is as follows:
将Ce4+盐或La3+盐与聚乙烯吡咯烷酮(PVP K30)溶液或者盐酸溶液混合,配成铈盐或者镧盐溶液,再加入沉淀剂,在50℃—100℃静置陈化直至生成沉淀物,用去离子水或者乙醇清洗沉淀物,然后真空干燥,得到氧化铈前驱体或者氧化镧前驱体,氧化铈前驱体或者氧化镧前驱体经过焙烧生成具有一定结晶度的氧化铈或氧化镧磨粒,经球磨机球磨成纳米级氧化铈颗粒;加入分散剂、PH调节剂、醇基或者油基/醇基混合液体,在高速切削分散机中混合,并进行均匀分散,获得易氧化金属专用金相抛光剂。Mix Ce 4+ salt or La 3+ salt with polyvinylpyrrolidone (PVP K30) solution or hydrochloric acid solution to make cerium salt or lanthanum salt solution, then add precipitant, and stand and age at 50°C-100°C until it forms The precipitate is washed with deionized water or ethanol, and then vacuum-dried to obtain a cerium oxide precursor or a lanthanum oxide precursor. Abrasive particles are ball milled into nano-sized cerium oxide particles; add dispersant, PH regulator, alcohol-based or oil-based/alcohol-based mixed liquid, mix in a high-speed cutting disperser, and disperse evenly to obtain easily oxidizable metals Metallographic polish.
所述方法采用行星式球磨仪对磨粒进行1-3小时、3-5小时和5-10小时的球磨;分别获得粒径为0.06μm、0.05μm和0.02μm的抛光剂磨粒;不同粒径的纳米氧化铈颗粒可单独作为抛光剂磨粒,也可将不同粒径氧化铈颗粒混合作为抛光剂磨粒;将0.02μm和0.05μm/0.06μm粒径的氧化铈按照2:1—5:1混合,作为混合磨粒。The method uses a planetary ball mill to mill the abrasive grains for 1-3 hours, 3-5 hours and 5-10 hours; respectively obtain polishing agent abrasive grains with particle diameters of 0.06 μm, 0.05 μm and 0.02 μm; Nano-sized cerium oxide particles can be used alone as polishing agent abrasive particles, or mixed with different particle sizes of cerium oxide particles as polishing agent abrasive particles; :1 mix, as mixed abrasive grains.
所述油基为甘油或者硅油,醇基为乙醇或者甲醇;所述油基/醇基混合液体,油与醇的配比为1:2-1:3。The oil base is glycerin or silicone oil, and the alcohol base is ethanol or methanol; for the oil base/alcohol base mixed liquid, the ratio of oil to alcohol is 1:2-1:3.
所述分散剂为聚乙烯吡咯烷酮(PVP K30)、聚丙烯酸钠(PAAS)或硅酸镁铝。The dispersant is polyvinylpyrrolidone (PVP K30), sodium polyacrylate (PAAS) or magnesium aluminum silicate.
所述PH调节剂为乙醇胺、氢氧化钠或甲醇钠。The pH regulator is ethanolamine, sodium hydroxide or sodium methylate.
所述一定结晶度的氧化铈颗粒或氧化镧颗粒的焙烧温度为800℃-950℃。The calcination temperature of the cerium oxide particles or lanthanum oxide particles with a certain crystallinity is 800°C-950°C.
本发明的有益效果如下,本发明抛光剂与目前市场上的化学-机械抛光剂相比,本发明采用油基或者油基/醇基混合液体,替代水作为分散体系,能够防止易氧化金属在抛光过程中氧化;此外本发明在弱碱性环境下,本发明抛光剂磨粒可以有效去除易氧化金属样品表层的应力层、氧化膜;本发明采用氧化铈,氧化镧纳米级颗粒作为抛光剂磨粒,具有抛光效率高、样品表面粗糙度低、平整度高等优点。The beneficial effect of the present invention is as follows, the polishing agent of the present invention compares with the chemical-mechanical polishing agent on the market at present, the present invention adopts oil base or oil base/alcohol base mixed liquid, replaces water as dispersion system, can prevent easily oxidized metal Oxidation in the polishing process; in addition, in the weak alkaline environment of the present invention, the polishing agent abrasive grains of the present invention can effectively remove the stress layer and oxide film on the surface of easily oxidized metal samples; the present invention uses cerium oxide and lanthanum oxide nano-scale particles as polishing agents Abrasive grains have the advantages of high polishing efficiency, low sample surface roughness, and high flatness.
与目前通常采用的制备镁合金、铜合金等易氧化金属EBSD样品的电解抛光方法相比,采用易氧化金属专用金相抛光剂制备EBSD样品具有工艺简单、适用范围广、无毒无害、安全性能好等优点。Compared with the commonly used electrolytic polishing method for preparing EBSD samples of easily oxidized metals such as magnesium alloys and copper alloys, the preparation of EBSD samples by using special metallographic polishing agents for easily oxidized metals has the advantages of simple process, wide application range, non-toxic, harmless and safe. Good performance and other advantages.
附图说明Description of drawings
图1为本发明金相抛光剂制备流程框图;Fig. 1 is a block diagram of the preparation process of metallographic polishing agent of the present invention;
图2为采用本发明实施例抛光剂抛光后的镁合金;Fig. 2 is the magnesium alloy after adopting the polishing agent of the embodiment of the present invention to polish;
图3为采用常用化学-机械抛光剂抛光后的镁合金;Fig. 3 is the magnesium alloy after adopting common chemical-mechanical polishing agent polishing;
图4为采用本发明实施例抛光剂抛光后的纯铜;Fig. 4 adopts the pure copper after polishing agent polishing of the embodiment of the present invention;
图5为采用常用化学-机械抛光剂抛光后的纯铜。Figure 5 shows pure copper polished with common chemical-mechanical polishing agents.
具体实施方式detailed description
本发明的具体实施方式如图1本发明金相抛光剂制备流程框图所示。The specific embodiment of the present invention is shown in Fig. 1 as a flow chart of the preparation process of the metallographic polishing agent of the present invention.
实施例1Example 1
1.纳米氧化铈磨粒制备:1. Preparation of nano cerium oxide abrasive grains:
(1)配制原料:将Ce4+盐与聚乙烯吡咯烷酮(PVP K30)溶液混合,配成铈盐溶液;(1) Preparation of raw materials: Mix Ce 4+ salt with polyvinylpyrrolidone (PVP K30) solution to prepare a cerium salt solution;
(2)生成沉淀物:再加入沉淀剂碳酸钠,在80℃静置陈化直至生成沉淀物;(2) Precipitation: Add the precipitating agent sodium carbonate, and let it stand and age at 80°C until the precipitation is formed;
(3)清洗:用去离子水或者乙醇清洗沉淀物;(3) Cleaning: Clean the sediment with deionized water or ethanol;
(4)干燥:沉淀物置于真空干燥箱中于200℃干燥2h,得到氧化铈前驱体;(4) Drying: the precipitate was dried in a vacuum oven at 200°C for 2 hours to obtain a cerium oxide precursor;
(5)焙烧:氧化铈前驱体置于马弗炉内升温至900℃,保温2h, 经过焙烧生成具有一定结晶度的氧化铈颗粒;(5) Roasting: The cerium oxide precursor is placed in a muffle furnace and heated to 900°C, kept for 2 hours, and then calcined to generate cerium oxide particles with a certain degree of crystallinity;
(6)球磨:将氧化铈颗粒置于玛瑙球磨罐中,用行星式球磨机球磨5h,得到粒径为0.05μm的氧化铈颗粒,球磨10h,得到粒径为0.02μm的氧化铈颗粒。(6) Ball milling: put the cerium oxide particles in an agate ball mill jar, mill them with a planetary ball mill for 5 hours to obtain cerium oxide particles with a particle size of 0.05 μm, and ball mill them for 10 hours to obtain cerium oxide particles with a particle size of 0.02 μm.
2.抛光液制备:2. Polishing liquid preparation:
将0.02μm与0.05μm的氧化铈颗粒按照5:1混合;将总质量1.5%的分散剂聚乙烯吡咯烷酮、总质量0.8%的PH调节剂乙醇胺、总质量10%的氧化铈颗粒,与其余的甘油/乙醇混合液体(甘油与乙醇的配比为1:2),在高速切削分散机中高切分散,混合均匀,获得易氧化金属专用金相抛光剂。Mix cerium oxide particles of 0.02 μm and 0.05 μm at a ratio of 5:1; mix 1.5% of the total mass of the dispersant polyvinylpyrrolidone, 0.8% of the total mass of the pH regulator ethanolamine, and 10% of the total mass of cerium oxide particles, and the rest Glycerin/ethanol mixed liquid (the ratio of glycerin and ethanol is 1:2), high-cut dispersion in a high-speed cutting disperser, mixed evenly, to obtain a special metallographic polishing agent for easily oxidized metals.
实施例2Example 2
1、纳米氧化铈磨粒制备:1. Preparation of nano cerium oxide abrasive grains:
(1)配制原料:将Ce4+盐与盐酸溶液混合,配成铈盐溶液;(1) Prepare raw materials: mix Ce 4+ salt with hydrochloric acid solution to prepare cerium salt solution;
(2)生成沉淀物:再加入沉淀剂碳酸氢铵,在70℃静置陈化直至生成沉淀物;(2) Precipitation: add the precipitant ammonium bicarbonate, and let it stand and age at 70°C until the precipitate is formed;
(3)清洗:用去离子水或者乙醇清洗沉淀物;(3) Cleaning: Clean the sediment with deionized water or ethanol;
(4)干燥:沉淀物置于真空干燥箱中于80℃干燥10h,得到氧化铈前驱体;(4) Drying: the precipitate was dried in a vacuum oven at 80°C for 10 hours to obtain a cerium oxide precursor;
(5)焙烧:氧化铈前驱体置于马弗炉内升温至850℃,保温3h, 经过焙烧生成具有一定结晶度的氧化铈颗粒;(5) Roasting: the cerium oxide precursor is placed in a muffle furnace and heated to 850°C, kept for 3 hours, and then calcined to generate cerium oxide particles with a certain degree of crystallinity;
(6)球磨:将氧化铈颗粒置于玛瑙球磨罐中,用行星式球磨机球磨5h,得到粒径为0.05μm的氧化铈颗粒。(6) Ball milling: the cerium oxide particles were placed in an agate ball mill jar, and ball milled with a planetary ball mill for 5 hours to obtain cerium oxide particles with a particle size of 0.05 μm.
2、抛光液制备:2. Preparation of polishing solution:
将总质量1.0%的分散剂聚乙烯吡咯烷酮、总质量0.9%的PH调节剂乙醇胺、总质量15%的氧化铈颗粒,与其余的甘油/乙醇混合液体(甘油与乙醇的配比为1:3),在高速切削分散机中高切分散,混合均匀,获得易氧化金属专用金相抛光剂。The dispersant polyvinylpyrrolidone with a total mass of 1.0%, the pH regulator ethanolamine with a total mass of 0.9%, and the cerium oxide particles with a total mass of 15% are mixed with the remaining glycerin/ethanol mixed liquid (the ratio of glycerin and ethanol is 1:3 ), high-cut dispersion in a high-speed cutting disperser, and uniform mixing to obtain metallographic polishing agents for easily oxidized metals.
实施例3Example 3
1、纳米氧化镧磨粒制备:1. Preparation of nano-lanthanum oxide abrasive grains:
(1)配制原料:将La3+盐与聚乙烯吡咯烷酮(PVP K30)溶液溶液混合,配成镧盐溶液;(1) Raw material preparation: mix La 3+ salt with polyvinylpyrrolidone (PVP K30) solution to make lanthanum salt solution;
(2)生成沉淀物:再加入沉淀剂碳酸氢铵,在90℃静置陈化直至生成沉淀物;(2) Formation of precipitates: Add the precipitant ammonium bicarbonate, and let it stand and age at 90°C until the precipitates are formed;
(3)清洗:用去离子水或者乙醇清洗沉淀物;(3) Cleaning: Clean the sediment with deionized water or ethanol;
(4)干燥:沉淀物置于真空干燥箱中于120℃干燥6h,得到氧化镧前驱体;(4) Drying: the precipitate was dried in a vacuum oven at 120°C for 6 hours to obtain a precursor of lanthanum oxide;
(5)焙烧:氧化镧前驱体置于马弗炉内升温至920℃,保温2h, 经过焙烧生成具有一定结晶度的氧化镧颗粒;(5) Roasting: The lanthanum oxide precursor is placed in a muffle furnace and heated to 920°C, kept for 2 hours, and then roasted to form lanthanum oxide particles with a certain degree of crystallinity;
(6)球磨:将氧化镧颗粒置于玛瑙球磨罐中,用行星式球磨机球磨3h,得到粒径为0.06μm的氧化镧颗粒,球磨7h,得到粒径为0.02μm的氧化镧颗粒。(6) Ball milling: Put the lanthanum oxide particles in an agate ball mill jar, mill them with a planetary ball mill for 3 hours to obtain lanthanum oxide particles with a particle size of 0.06 μm, and mill them for 7 hours to obtain lanthanum oxide particles with a particle size of 0.02 μm.
2、抛光液制备:2. Preparation of polishing solution:
将0.02μm与0.06μm的氧化镧颗粒按照3:1混合;将总质量1.0%的分散剂聚乙烯吡咯烷酮、总质量1.0%的PH调节剂乙醇胺、总质量10%的氧化镧颗粒,与其余的甘油/甲醇混合液体(甘油与甲醇的配比为1:3),在高速切削分散机中高切分散,混合均匀,获得易氧化金属专用金相抛光剂。Mix lanthanum oxide particles of 0.02 μm and 0.06 μm at a ratio of 3:1; mix 1.0% of the total mass of the dispersant polyvinylpyrrolidone, 1.0% of the total mass of the pH regulator ethanolamine, and 10% of the total mass of lanthanum oxide particles, and the rest Glycerin/methanol mixed liquid (the ratio of glycerol to methanol is 1:3), high-cut dispersion in a high-speed cutting disperser, mixed evenly, to obtain a special metallographic polishing agent for easily oxidized metals.
实施例4Example 4
1、纳米氧化镧磨粒制备:1. Preparation of nano-lanthanum oxide abrasive grains:
(1)配制原料:将La3+盐与盐酸溶液溶液混合,配成镧盐溶液;(1) Prepare raw materials: mix La 3+ salt with hydrochloric acid solution to make lanthanum salt solution;
(2)生成沉淀物:再加入沉淀剂草酸,在80℃静置陈化直至生成沉淀物;(2) Precipitation: Add the precipitant oxalic acid, and let it stand and age at 80°C until the precipitate is formed;
(3)清洗:用去离子水或者乙醇清洗沉淀物;(3) Cleaning: Clean the sediment with deionized water or ethanol;
(4)干燥:沉淀物置于真空干燥箱中于90℃干燥10h,得到氧化镧前驱体;(4) Drying: the precipitate was dried in a vacuum oven at 90°C for 10 hours to obtain a precursor of lanthanum oxide;
(5)焙烧:氧化镧前驱体置于马弗炉内升温至900℃,保温5h, 经过焙烧生成具有一定结晶度的氧化镧颗粒;(5) Roasting: Put the lanthanum oxide precursor in a muffle furnace and heat it up to 900°C, keep it warm for 5 hours, and generate lanthanum oxide particles with a certain degree of crystallinity after roasting;
(6)球磨:将氧化镧颗粒置于玛瑙球磨罐中,用行星式球磨机球磨5h,得到粒径为0.05μm的氧化镧颗粒。(6) Ball milling: the lanthanum oxide particles were placed in an agate ball mill jar and milled for 5 hours with a planetary ball mill to obtain lanthanum oxide particles with a particle size of 0.05 μm.
2、抛光液制备:2. Preparation of polishing solution:
将总质量1.0%的分散剂聚丙烯酸钠、总质量1.0%的PH调节剂甲醇钠、总质量5%的氧化镧颗粒,与其余的乙醇液体,在高速切削分散机中高切分散,混合均匀,获得易氧化金属专用金相抛光剂。The total mass of 1.0% of the dispersant sodium polyacrylate, the total mass of 1.0% of the pH regulator sodium methoxide, the total mass of 5% of the lanthanum oxide particles, and the rest of the ethanol liquid are high-shear dispersed in a high-speed cutting disperser and mixed evenly. Get metallographic polishes for easily oxidized metals.
实施例5(试验例)Embodiment 5 (test example)
分别采用上述抛光剂和常用化学-机械抛光剂,用VibroMet® 2振动抛光机对镁合金进行化学-机械抛光,并对抛光后的材料进行SEM检测,结果见图2和图3。Using the above-mentioned polishing agents and common chemical-mechanical polishing agents, the magnesium alloy was chemical-mechanical polished with a VibroMet® 2 vibration polishing machine, and the polished material was tested by SEM. The results are shown in Figure 2 and Figure 3.
从检测结果可以看出,与常用化学-机械抛光剂相比,采用本发明的抛光剂抛光后材料表面无划痕、氧化层,抛光质量明显优于目前常用的一般化学-机械抛光剂。As can be seen from the test results, compared with the commonly used chemical-mechanical polishing agent, the material surface has no scratches and oxide layers after being polished by the polishing agent of the present invention, and the polishing quality is obviously better than the general chemical-mechanical polishing agent commonly used at present.
实施例6(试验例)Embodiment 6 (test example)
分别采用上述抛光剂和常用化学-机械抛光剂,用VibroMet® 2振动抛光机对纯铜进行化学-机械抛光,并对抛光后的材料进行SEM检测,结果见图4和图5。The above-mentioned polishing agents and common chemical-mechanical polishing agents were used to perform chemical-mechanical polishing on pure copper with a VibroMet® 2 vibration polishing machine, and the polished materials were tested by SEM. The results are shown in Figure 4 and Figure 5.
从检测结果可以看出,与常用化学-机械抛光剂相比,采用本发明的抛光剂抛光后材料表面无划痕、氧化层,抛光质量明显优于目前常用的一般化学-机械抛光剂。As can be seen from the test results, compared with the commonly used chemical-mechanical polishing agent, the material surface has no scratches and oxide layers after being polished by the polishing agent of the present invention, and the polishing quality is obviously better than the general chemical-mechanical polishing agent commonly used at present.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211404909.4A CN115595585A (en) | 2022-11-10 | 2022-11-10 | A kind of preparation method of special metallographic polishing agent for easily oxidized metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211404909.4A CN115595585A (en) | 2022-11-10 | 2022-11-10 | A kind of preparation method of special metallographic polishing agent for easily oxidized metal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115595585A true CN115595585A (en) | 2023-01-13 |
Family
ID=84852915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211404909.4A Pending CN115595585A (en) | 2022-11-10 | 2022-11-10 | A kind of preparation method of special metallographic polishing agent for easily oxidized metal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115595585A (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020016060A1 (en) * | 1996-02-07 | 2002-02-07 | Jun Matsuzawa | Cerium oxide abrasive for polishing insulating films formed on substrate and methods for using the same |
US20030228763A1 (en) * | 2002-06-07 | 2003-12-11 | Cabot Microelectronics Corporation | CMP method utilizing amphiphilic nonionic surfactants |
JP2004043639A (en) * | 2002-07-11 | 2004-02-12 | Hitachi Chem Co Ltd | Chemical mechanical polishing agent |
US20050003744A1 (en) * | 2001-11-16 | 2005-01-06 | Ferro Corporation | Synthesis of chemically reactive ceria composite nanoparticles and CMP applications thereof |
CN1704339A (en) * | 2004-06-03 | 2005-12-07 | 中南大学 | Process for preparing high purity active nano ceria |
WO2007060869A1 (en) * | 2005-11-24 | 2007-05-31 | Jsr Corporation | Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method |
TW200731382A (en) * | 2005-04-28 | 2007-08-16 | Advanced Tech Materials | Method of passivating chemical mechanical polishing compositions for copper film planarization processes |
US20070295611A1 (en) * | 2001-12-21 | 2007-12-27 | Liu Feng Q | Method and composition for polishing a substrate |
JP2008118104A (en) * | 2006-10-11 | 2008-05-22 | Hitachi Chem Co Ltd | Polishing fluid for metal and manufacturing method thereof, and method of polishing film to be polished using polishing fluid for metal |
WO2016106765A1 (en) * | 2014-12-29 | 2016-07-07 | 尹先升 | Method for preparing cerium oxide crystals and cmp polishing application thereof |
CN105800660A (en) * | 2014-12-29 | 2016-07-27 | 安集微电子科技(上海)有限公司 | Preparation method of cerium oxide and CMP polishing solution containing cerium oxide abrasive |
WO2017114312A1 (en) * | 2015-12-31 | 2017-07-06 | 安集微电子科技(上海)有限公司 | Method for preparing cerium oxide and application thereof in chemical-mechanical polishing (cmp) |
KR20190063989A (en) * | 2017-11-30 | 2019-06-10 | 솔브레인 주식회사 | Method of preparing cerium oxide particles, cerium oxide particles and composition of slurry for polishing compring the same |
WO2021135803A1 (en) * | 2019-12-30 | 2021-07-08 | 安集微电子科技(上海)股份有限公司 | Method for synthesizing basic cerium carbonate |
CN113249035A (en) * | 2020-02-10 | 2021-08-13 | 中国科学院长春光学精密机械与物理研究所 | Chemical mechanical polishing liquid and application thereof |
CN114636608A (en) * | 2022-03-08 | 2022-06-17 | 江西省科学院应用物理研究所 | A kind of nanoparticle reinforced magnesium matrix composite material metallographic etchant and using method thereof |
-
2022
- 2022-11-10 CN CN202211404909.4A patent/CN115595585A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020016060A1 (en) * | 1996-02-07 | 2002-02-07 | Jun Matsuzawa | Cerium oxide abrasive for polishing insulating films formed on substrate and methods for using the same |
US20050003744A1 (en) * | 2001-11-16 | 2005-01-06 | Ferro Corporation | Synthesis of chemically reactive ceria composite nanoparticles and CMP applications thereof |
US20070295611A1 (en) * | 2001-12-21 | 2007-12-27 | Liu Feng Q | Method and composition for polishing a substrate |
US20030228763A1 (en) * | 2002-06-07 | 2003-12-11 | Cabot Microelectronics Corporation | CMP method utilizing amphiphilic nonionic surfactants |
JP2004043639A (en) * | 2002-07-11 | 2004-02-12 | Hitachi Chem Co Ltd | Chemical mechanical polishing agent |
CN1704339A (en) * | 2004-06-03 | 2005-12-07 | 中南大学 | Process for preparing high purity active nano ceria |
TW200731382A (en) * | 2005-04-28 | 2007-08-16 | Advanced Tech Materials | Method of passivating chemical mechanical polishing compositions for copper film planarization processes |
WO2007060869A1 (en) * | 2005-11-24 | 2007-05-31 | Jsr Corporation | Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method |
JP2008118104A (en) * | 2006-10-11 | 2008-05-22 | Hitachi Chem Co Ltd | Polishing fluid for metal and manufacturing method thereof, and method of polishing film to be polished using polishing fluid for metal |
WO2016106765A1 (en) * | 2014-12-29 | 2016-07-07 | 尹先升 | Method for preparing cerium oxide crystals and cmp polishing application thereof |
CN105800660A (en) * | 2014-12-29 | 2016-07-27 | 安集微电子科技(上海)有限公司 | Preparation method of cerium oxide and CMP polishing solution containing cerium oxide abrasive |
WO2017114312A1 (en) * | 2015-12-31 | 2017-07-06 | 安集微电子科技(上海)有限公司 | Method for preparing cerium oxide and application thereof in chemical-mechanical polishing (cmp) |
KR20190063989A (en) * | 2017-11-30 | 2019-06-10 | 솔브레인 주식회사 | Method of preparing cerium oxide particles, cerium oxide particles and composition of slurry for polishing compring the same |
WO2021135803A1 (en) * | 2019-12-30 | 2021-07-08 | 安集微电子科技(上海)股份有限公司 | Method for synthesizing basic cerium carbonate |
CN113249035A (en) * | 2020-02-10 | 2021-08-13 | 中国科学院长春光学精密机械与物理研究所 | Chemical mechanical polishing liquid and application thereof |
CN114636608A (en) * | 2022-03-08 | 2022-06-17 | 江西省科学院应用物理研究所 | A kind of nanoparticle reinforced magnesium matrix composite material metallographic etchant and using method thereof |
Non-Patent Citations (2)
Title |
---|
许怀;程秀兰;: "二氧化铈研磨液在化学机械平坦化中的应用", 半导体技术, no. 08, 3 August 2007 (2007-08-03) * |
黄华栋;卞达;杨大林;闵鹏飞;赵永武;: "抛光介质对镁合金化学机械抛光的影响", 制造技术与机床, no. 06, 1 June 2016 (2016-06-01), pages 123 - 124 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution | |
JP5218736B2 (en) | Method for producing polishing composition | |
CN106119835A (en) | A kind of equiax crystal high-entropy alloy coating and preparation method thereof | |
CN108941547B (en) | Preparation method of copper-doped graphene reinforced aluminum-based composite material | |
Xu et al. | Preparation of CeO2 abrasives by reducing atmosphere-assisted molten salt method for enhancing their chemical mechanical polishing performance on SiO2 substrates | |
CN105603414B (en) | A kind of abrasive wear pretreatment method for preparing dense passivation film on stainless steel surface | |
CN106995932A (en) | The preparation method of aluminum alloy surface selfreparing differential arc oxidation composite ceramics film layer | |
EP3674125A1 (en) | Synthesis of nano particles | |
CN115595585A (en) | A kind of preparation method of special metallographic polishing agent for easily oxidized metal | |
CN111929337A (en) | EBSD sample preparation method of Al-Zn-Mg-Cu alloy and EBSD sample | |
CN102191118B (en) | Oil-based suspension base liquid of nano-diamond powder and its preparation process | |
CN106498484A (en) | A kind of electrolytic polishing method of complex brass | |
Xu et al. | Effect of surfactants with different ionizing properties on dispersion stability and PCMP properties of CeO2 nanoparticle polishing slurry | |
CN103555206B (en) | Rare earth polishing powder and preparation method thereof | |
CN118777342A (en) | A high-resolution EBSD sample preparation method for CoCrFeNi high-entropy alloys | |
CN114836805B (en) | Aluminum alloy surface treatment method | |
JP5574527B2 (en) | Method for producing cerium oxide fine particles | |
CN115584507B (en) | Antirust metal cleaning agent and preparation method and use method thereof | |
CN115652234B (en) | Method for improving stability of aluminum alloy through rolling composite regulation and control | |
CN108822738A (en) | A kind of coloured glaze chemical polishing solution | |
JP7229779B2 (en) | METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE | |
CN108624771A (en) | A method of preparing nano-oxide particles enhancing metallic composite | |
CN115041678A (en) | High-activity spherical aluminum alloy with micro-nano structure and preparation method and application thereof | |
JP7232053B2 (en) | Method for manufacturing glossy plating film | |
Shi et al. | Investigation on the corrosion behavior and mechanical properties of Nd-Fe-B magnets diffused by electrophoretic deposited TbF3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |