CN115592957A - Fusion connecting device with laminated structure and position self-adaptive control method thereof - Google Patents
Fusion connecting device with laminated structure and position self-adaptive control method thereof Download PDFInfo
- Publication number
- CN115592957A CN115592957A CN202211136258.5A CN202211136258A CN115592957A CN 115592957 A CN115592957 A CN 115592957A CN 202211136258 A CN202211136258 A CN 202211136258A CN 115592957 A CN115592957 A CN 115592957A
- Authority
- CN
- China
- Prior art keywords
- pressing
- pressure maintaining
- heating device
- pressure
- compression roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000010438 heat treatment Methods 0.000 claims abstract description 88
- 239000000463 material Substances 0.000 claims abstract description 84
- 238000003825 pressing Methods 0.000 claims abstract description 43
- 238000006073 displacement reaction Methods 0.000 claims abstract description 42
- 238000002844 melting Methods 0.000 claims abstract description 20
- 230000008018 melting Effects 0.000 claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000007906 compression Methods 0.000 claims description 65
- 230000006835 compression Effects 0.000 claims description 64
- 230000008859 change Effects 0.000 claims description 19
- 238000009434 installation Methods 0.000 claims description 7
- 238000005304 joining Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000005056 compaction Methods 0.000 claims 8
- 230000000903 blocking effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 11
- 239000007769 metal material Substances 0.000 abstract description 3
- 239000002184 metal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000003044 adaptive effect Effects 0.000 description 4
- 239000000805 composite resin Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
- B29C65/64—Joining a non-plastics element to a plastics element, e.g. by force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/74—Joining plastics material to non-plastics material
- B29C66/742—Joining plastics material to non-plastics material to metals or their alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/92—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/924—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/9241—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/92—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/924—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/9261—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/934—Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
- B29C66/93451—Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明涉及异种材料连接领域,尤其涉及一种叠层结构熔融连接装置及其位置自适应控制方法。The invention relates to the field of connection of dissimilar materials, in particular to a laminated structure fusion connection device and a position self-adaptive control method thereof.
背景技术Background technique
纤维增强树脂基复合材料与轻质金属合金(以下分别简称“复材”与“金属”)形成的叠层结构具有轻质、高强、抗冲击等优势,已在广泛应用于航空航天、高铁和汽车等领域的高端装备中。此类叠层结构的性能受异种材料连接质量的直接影响,常见的连接技术包括螺栓连接和铆接等。然而,此类机械连接方式多以制孔为前提,且使用紧固件会引入额外重量,限制了此类结构的进一步轻量化和性能提升。熔融连接是近年来针对热塑性树脂基复材提出的一种连接技术,其具有连接表面完整、质量轻和效率高等优势,有望成为复材与金属叠层结构连接的优选。The laminated structure formed by fiber-reinforced resin-based composite materials and lightweight metal alloys (hereinafter referred to as "composites" and "metals") has the advantages of light weight, high strength, and impact resistance, and has been widely used in aerospace, high-speed rail and High-end equipment in the field of automobiles. The performance of such laminated structures is directly affected by the quality of the connection of dissimilar materials. Common connection techniques include bolted connections and riveting. However, this type of mechanical connection is mostly based on the premise of making holes, and the use of fasteners will introduce additional weight, which limits the further lightweight and performance improvement of this type of structure. Fusion bonding is a connection technology proposed for thermoplastic resin-based composites in recent years. It has the advantages of complete connection surface, light weight and high efficiency, and is expected to become the first choice for the connection of composite materials and metal laminated structures.
复材与金属的熔融连接是利用高温呈熔融态的复材树脂基体,在一定压力的作用下填充浸润粗糙金属表面,待其冷却凝固后形成连接的一种技术。其中,复材树脂基体的融化程度直接影响熔融连接的性能,这对连接温度的控制提出了极高要求。熔融连接时可使用激光、摩擦等方式直接加热金属表面,利用金属热传导使复材与金属界面处的树脂基体融化;也可使用高频交变磁场等方式将能量馈入待连接材料,使界面处的树脂基体融化。但无论何种加热方式,界面处的连接温度均受激光头、感应线圈等加热装置与材料表面间距离的影响。同时,熔融连接技术在实际应用中不可避免的需要对大型或曲面结构进行连接,这要求加热装置能够精确沿着结构外轮廓进行等距运动。综合上述问题,在激光连接过程中需要对加热装置位置进行在位测量,并根据待连接材料的几何特征进行实时调节。The melting connection of composite materials and metals is a technology that uses the composite resin matrix in a molten state at high temperature to fill and infiltrate the rough metal surface under a certain pressure, and form a connection after it is cooled and solidified. Among them, the melting degree of the composite resin matrix directly affects the performance of the fusion connection, which puts forward extremely high requirements for the control of the connection temperature. During the fusion connection, the metal surface can be directly heated by laser, friction, etc., and the resin matrix at the interface between the composite material and the metal can be melted by using metal heat conduction; energy can also be fed into the material to be connected by means of high-frequency alternating magnetic field, so that the interface where the resin matrix melts. However, regardless of the heating method, the connection temperature at the interface is affected by the distance between the laser head, induction coil and other heating devices and the surface of the material. At the same time, in practical applications, the fusion joining technology inevitably needs to connect large or curved structures, which requires the heating device to be able to accurately move equidistantly along the outer contour of the structure. In view of the above problems, it is necessary to measure the position of the heating device in situ during the laser joining process, and adjust it in real time according to the geometric characteristics of the materials to be joined.
中国专利CN 106113484A公开了一种热塑性复合材料与金属的连接方法,该方法通过感应线圈在材料上表面附近沿连接方向的运动,实现了复材与金属的连续连接;中国专利CN 113681159A公开了一种金属和热塑性复合材料激光压焊装置及其方法和应用,该方法通过设置激光器与球形压头同轴,实现了材料连接过程中压力的施加。但由于这些方法没有考虑连接过程中加热装置与材料表面间距离的变化,在连接大型或曲面结构时,受制造误差和结构曲率的影响,线圈的耦合距离和激光的光斑尺寸等会发生变化,无法保证连接的均匀性和可靠性。因此,上述方法与装置更适用于小型平面叠层结构,需发明一种叠层结构熔融连接加热装置位置控制方法。Chinese patent CN 106113484A discloses a method for connecting thermoplastic composite materials and metals. This method realizes the continuous connection of composite materials and metals through the movement of an induction coil near the upper surface of the material along the connecting direction; Chinese patent CN 113681159A discloses a A metal and thermoplastic composite material laser pressure welding device and its method and application, the method realizes the application of pressure during the material connection process by setting the laser and the spherical indenter coaxially. However, since these methods do not consider the change in the distance between the heating device and the material surface during the connection process, when connecting large or curved structures, the coupling distance of the coil and the spot size of the laser will change due to the influence of manufacturing errors and curvature of the structure. The uniformity and reliability of the connection cannot be guaranteed. Therefore, the above method and device are more suitable for small planar laminated structures, and it is necessary to invent a method for controlling the position of the heating device for fusion bonding of laminated structures.
发明内容Contents of the invention
本发明主要解决的技术难题是大型或曲面复材与金属叠层结构熔融连接时,加热装置与材料表面间距离随连接过程发生变化,致使熔融连接均匀性和可靠性不佳的问题,发明了一种叠层结构熔融连接装置及其位置自适应控制方法。The technical problem mainly solved by the invention is that when the large or curved composite material is melted and joined with the metal laminated structure, the distance between the heating device and the material surface changes with the joining process, resulting in poor uniformity and reliability of the fusion joint. A laminated structure fusion connection device and a position adaptive control method thereof.
本发明的技术方案如下:一种叠层结构熔融连接装置,包括预压紧施压装置7、加热装置11和保压施压装置1;预压紧施压装置7和保压施压装置1均为驱动部件,固定在矩形壁板9两侧;预压紧滑座6和保压滑座2均为倒L形,包括短边和长边,二者的两短边朝向相反;预压紧滑座6短边与预压紧施压装置7铰接,保压滑座2短边与保压施压装置1铰接;预压紧滑座6和保压滑座2位于预压紧施压装置7和保压施压装置1之间,二者分别在预压紧施压装置7和保压施压装置1驱动下沿长边方向运动;预压紧滑座6长边固连预压紧压辊12;保压滑座2长边固连保压压辊10;预压紧滑座6和保压滑座2的长边相对侧上分别设有测距挡片8;位移传感器3固定于矩形壁板9上,位于测距挡片8上方;滑台基座4为驱动部件,固定在矩形壁板9上,位于预压紧滑座6和保压滑座2的长边之间;加热装置11通过滑台滑块5连接于滑台基座4上,加热装置11和滑台滑块5沿滑台基座4运动;预压紧压辊12、保压压辊10和加热装置11的端部面向待连接材料13。The technical scheme of the present invention is as follows: a laminated structure melting connection device, including a
所述固定在矩形壁板9上的位移传感器3,测量固定在预压紧滑座6和保压滑座2上测距挡片8的位置变化,通过转化关系实时获取连接过程中预压紧压辊(12)和保压压辊(10)沿材料厚度方向的位置;根据连接过程情况与结构几何曲率特征计算得到加热装置11与待连接材料13的距离,与初始设置值比对进行实时调整,从而实现材料预压紧、连续熔融连接和最终保压全阶段的加热装置位置控制;叠层结构熔融连接的加热装置位置自适应控制方法的具体步骤如下:The
步骤1:对叠层结构熔融连接装置设置控制参数并初始化;Step 1: Set control parameters and initialize the laminated structure fusion connection device;
设置加热装置11分别与预压紧压辊12和保压压辊10的零点距离Δs1、Δs2,设置加热装置11与待连接材料13表面的控制距离hset,设置待连接材料13不同部分的曲率半径Ri,曲率半径数量i与待连接材料13特征有关,设置叠层结构熔融连接装置在熔接待连接材料13不同部位时发生回转运动用时Δt,读入位移传感器3测量的测距挡片8的位置变化,将位置变化转化为预压紧压辊12和保压压辊10相对自身零点的位移s1、s2;Set the zero-point distances Δs 1 and Δs 2 between the
根据预压紧压辊12和保压压辊10到滑台基座4长边中心线的安装距离d1、d2和预压紧压辊12的半径r1和保压压辊10的半径r2,当待连接材料13曲率半径为R时,预压紧压辊12同待连接材料13接触位置与加热装置11轴线下方待连接材料13的高度差为Δh1,保压压辊10同待连接材料13接触位置与加热装置11轴线下方待连接材料13的高度差为Δh2;Δh1包括预压紧压辊12与待连接材料13表面的距离h1以及预压紧压辊12半径r1导致的距离变化h1';Δh2包括保压压辊10与待连接材料13表面的距离h2以及保压压辊10半径r2导致的距离变化h2';According to the installation distance d 1 , d 2 of the
当待连接材料13为“上凸”叠层结构时,Δh1和Δh2分别为:When the
当待连接材料13为“下凹”叠层结构时,Δh1和Δh2分别为:When the
通过控制预压紧施压装置7、滑台滑块5和保压施压装置1,使预压紧压辊12、加热装置11和保压压辊10均返回自身零点位置;By controlling the pre-compression pressing
步骤2:阶段I为熔融连接起始阶段,预压紧压辊12首先压至待连接材料13表面,其与加热装置11的零点偏差为Δs1,相对于自身零点的位移s1由位移传感器3测量得到,加热装置11与待连接材料13表面距离预设定为hset,其相对自身零点位置发生的位移x利用下式进行计算:Step 2: Stage I is the initial stage of fusion connection. The
x=s1+Δs1-Δh1-hset x=s 1 +Δs 1 -Δh 1 -h set
步骤3:阶段II为连续熔融连接阶段,预压紧压辊12与保压压辊10均压至待连接材料13表面,分别根据预压紧压辊12与保压压辊10相对自身零点位置发生的位移s1和s2,以及他们与加热装置11的零点偏差Δs1和Δs2,计算加热装置11相对自身零点位置发生的位移x1、x2:Step 3: Phase II is the continuous melting connection stage. The
当x1和x2差值的绝对值小于等于某设定值x0时,此时待连接材料13的曲率未发生变化,加热装置11相对自身零点位置发生的位移为x1和x2的平均值:When the absolute value of the difference between x1 and x2 is less than or equal to a certain set value x0 , the curvature of the
x=(x1+x2)/2(|x1-x2|≤x0)x=(x 1 +x 2 )/2(|x 1 -x 2 |≤x 0 )
当x1和x2差值的绝对值大于某设定值x0时,此时待连接材料13的曲率开始发生变化;当位于加热装置11轴线上的回转中心O运动至待连接材料13的曲率变化位置后,熔融连接装置发生回转运动;通过计算不同时刻预压紧压辊12沿自身轴线的运动速度v1,对比t时刻v1t与t'时刻v1t'的大小,判断熔融连接装置是否发生回转运动;v1t和v1t'的差值小于等于临界值0.8v0时,熔融连接装置未发生回转运动,加热装置11相对自身零点位置发生的位移为x2;v1t和v1t'的差值大于临界值0.8v0时,熔融连接装置发生回转运动,加热装置11相对自身零点位置发生的位移为x1;When the absolute value of the difference between x1 and x2 is greater than a certain set value x0 , the curvature of the
其中,v0是与待连接材料13相邻两部分曲率半径R1、R2、预压紧压辊12距离加热装置11的安装距离d1和熔融连接装置回转用时Δt有关的熔融连接装置回转判据,使用下式进行计算:Among them, v 0 is the rotation of the fusion connection device related to the curvature radii R 1 and R 2 of the two adjacent parts of the
v0=|Δh1(R=R1)-Δh1(R=R2)|/Δtv 0 =|Δh 1 (R=R 1 )-Δh 1 (R=R 2 )|/Δt
步骤4:阶段III为熔融连接结束阶段,加热装置11随预压紧压辊12同时返回相应的零点位置,保压压辊10在保压一定时间后返回零点位置。Step 4: Phase III is the end of fusion connection. The
本发明的有益效果:以具有“预压紧施压-待连接材料加热-随动保压”功能的叠层结构熔融连接装置为基础,通过在矩形壁板9上布置位移传感器,测量固定在预压紧滑座(6)和保压滑座(2)上测距挡片(8)的位置变化,通过转化关系实时获取连接过程中预压紧压辊(12)和保压压辊(10)沿材料厚度方向的位置,再根据连接过程情况与结构几何曲率特征计算得到加热装置11与工件表面的距离,与初始设置值比对进行实时调整,从而实现材料预压紧、连续熔融连接和最终保压全阶段的加热装置位置控制。该方法可用于大型或曲面叠层结构的熔融连接,能够满足航空航天、高铁和汽车等领域对复材与金属材料连接的需求。Beneficial effects of the present invention: Based on the laminated structure fusion connection device with the function of "pre-compression and pressure-to-be-connected material heating-following pressure holding", by arranging displacement sensors on the rectangular wall plate 9, the measurement is fixed on the The position changes of the distance-measuring block (8) on the pre-compression slide (6) and the pressure-holding slide (2) are obtained in real time through the conversion relationship between the pre-compression roller (12) and the pressure-holding roller ( 10) The position along the material thickness direction, and then calculate the distance between the
附图说明Description of drawings
图1为叠层结构熔融连接装置示意图。图中:1-保压施压装置,2-保压滑座,3-位移传感器,4-滑台基座,5-滑台滑块,6-预压紧滑座,7-预压紧施压装置,8-测距挡片,9-矩形壁板,10-保压压辊,11加热装置,12-预压紧压辊,13-待连接材料。Fig. 1 is a schematic diagram of a laminated structure fusion bonding device. In the figure: 1-Pressure holding pressure device, 2-Pressure holding slide seat, 3-Displacement sensor, 4-Sliding table base, 5-Sliding table slider, 6-Pre-tightening slide seat, 7-Pre-tightening Pressure device, 8-distance measuring block, 9-rectangular wall plate, 10-holding pressure roller, 11 heating device, 12-pre-compressing pressure roller, 13-materials to be connected.
图2为叠层结构熔融连接装置位置自适应控制方法示意图。Fig. 2 is a schematic diagram of a position adaptive control method for a fusion bonding device with a laminated structure.
图3为“上凸”叠层结构熔融连接时压辊、加热装置与待连接材料表面相对位置示意图,(a)为整体示意图,(b)为压辊处细节图;图中d1为预压紧压辊12距离加热装置11的距离,d2为保压压辊10距离加热装置11的距离,h1为预压紧压辊12中心与待连接材料13表面沿加热装置11轴线方向的距离,h2为保压压辊10中心与待连接材料13表面沿加热装置11轴线方向的距离,h'为压辊半径导致的距离变化,R为待连接材料曲率半径,r为压辊半径。Figure 3 is a schematic diagram of the relative positions of the pressure roller, the heating device and the surface of the material to be connected when the "upward convex" laminated structure is melted and connected, (a) is the overall schematic diagram, (b) is the detailed view of the pressure roller; in the figure d 1 is the pre-set The distance between the
图4为“下凹”叠层结构熔融连接时压辊、加热装置与待连接材料表面相对位置示意图,(a)为整体示意图,(b)为压辊处细节图。Figure 4 is a schematic diagram of the relative positions of the pressure roller, the heating device and the surface of the material to be connected when the "concave" laminated structure is melt-bonded, (a) is the overall schematic diagram, and (b) is a detailed view of the pressure roller.
图5为熔融连接不同阶段压辊、加热装置与待连接材料表面相对位置变化示意图,图中O为熔融连接装置回转中心,hset为预先设定的加热装置11相对待连接材料13表面的距离,s1为测量获得的预压紧压辊12相对于其零点的位移,s2为测量获得的保压压辊10相对于其零点的位移,x为计算获得的加热装置11相对其零点的位移。Figure 5 is a schematic diagram of the relative position changes between the pressure roller, the heating device and the surface of the material to be connected at different stages of the fusion connection. In the figure, O is the center of rotation of the fusion connection device, and hset is the preset distance between the
图6为叠层结构熔融连接装置回转前后压辊相对位置变化情况示意图,(a)为回转前,(b)为回转中,(c)为回转后;图中回转前是加热装置11轴线未运动至待连接材料13曲率变化位置,回转中是加热装置11轴线运动至待连接材料13曲率变化位置,而保压压辊10未运动至待连接材料13曲率变化位置,回转后是保压压辊10运动至待连接材料13曲率变化位置,v1t与v1t'的分别是t时刻与t'时预压紧压辊沿自身轴线方向的运动速度。Figure 6 is a schematic diagram of the relative position changes of the pressure rollers before and after the rotation of the laminated structure fusion connection device, (a) before rotation, (b) during rotation, and (c) after rotation; before the rotation in the figure, the axis of the
具体实施方式detailed description
以下结合技术方案和附图详细说明本发明的具体实施方式。The specific implementation manners of the present invention will be described in detail below in conjunction with the technical solutions and accompanying drawings.
图1为一种具有“预压紧施压-待连接材料加热-随动保压”功能的叠层结构熔融连接装置示意图,“预压紧施压”功能由预压紧滑座6、预压紧施压装置7和预压紧压辊12实现,“待连接材料加热”功能由滑台基座4、滑台滑块5和加热装置11实现,“随动保压”功能由保压施压装置1、保压滑座2和保压压辊10实现;位移传感器3测量分别固定在预压紧滑座6和保压滑座2上的测距挡片8的位置变化,并通过变换将测量值转换为相对自身零点的位移;上述模块获装置均固定在矩形壁板9上。Figure 1 is a schematic diagram of a laminated structure fusion connection device with the function of "pre-compression pressure-to-be-connected material heating-following pressure maintenance". The
图2为叠层结构熔融连接装置位置自适应控制方法示意图,具体分为四个步骤,步骤1为对叠层结构熔融连接装置设置控制参数并初始化,步骤2对应熔融连接起始阶段,步骤3对应连续熔融连接阶段,步骤4对应熔融连接结束阶段,步骤2-4根据压辊状态进行划分。方法的具体步骤如下:Figure 2 is a schematic diagram of the position adaptive control method of the laminated structure fusion connection device, which is divided into four steps.
步骤1:根据所用具有“预压紧施压-待连接材料加热-随动保压”功能的叠层结构熔融连接装置,本实施例设置加热装置11分别与预压紧压辊12和保压压辊10的零点距离Δs1=Δs2=0。根据选用的加热装置种类,设置加热装置11与待连接材料13表面的控制距离hset=10mm~200mm,如感应线圈需取较小的值以取得好的加热效果,激光头则需取较大的值以获得大尺寸光斑,本实施例采用70mm的控制距离。读入位移传感器3测量的测距挡片8的位置变化,将其转化为预压紧压辊12和保压压辊10相对自身零点的位移s1、s2。Step 1: According to the laminated structure fusion connection device with the function of "pre-compression and pressure-to-be-connected material heating-following pressure holding", this embodiment sets the
根据所用预压紧压辊12的半径r1和保压压辊10的半径r2分别设置10mm~50mm和待连接材料曲率半径R>100mm的差异,预压紧压辊12距加热装置11轴线的安装距离d1=10mm~50mm,以取得较好的预压紧和界面传热效果,保压压辊10距加热装置11轴线的安装距离d2=20mm~100mm,以匹配不同种类的叠层结构,保证熔融树脂始终在压力作用下凝固,并根据需求选取保压压辊的数量。本实施例所用待连接材料如图6所示,为两个“上凸”曲面组成,其中曲面Γ1曲率半径R1=1000mm、曲面Γ2的曲率半径R2=100mm,预压紧压辊12的半径r1和保压压辊10的半径r2为10mm,安装距离d1=20mm、d2=30mm,使用1个保压压辊10。则预压紧压辊12和保压压辊10与待连接材料13接触位置与加热装置11轴线下方待连接材料13的高度差Δh1和Δh2可分区域计算,曲面Γ1区域Δh1=0.196mm、Δh2=0.441mm,曲面Γ2区域Δh1=1.667mm、Δh2=3.379mm,数值为正表示加热装置11轴线下方待连接材料13的表面要高于压辊与待连接材料13表面接触位置。According to the
确定上述参数后,通过控制预压紧施压装置7、滑台滑块5和保压施压装置1,使预压紧压辊12、加热装置11和保压压辊10均返回自身零点位置。After the above parameters are determined, the
步骤2:当预压紧压辊12压紧,而保压压辊10未压紧时,判断其为阶段I熔融连接起始阶段,对曲面Γ1区域进行连接。加热装置11应相对零点发生的位移x根据预压紧压辊12的位移s1计算得到,即x=s1+Δs1-Δh1-hset=s1-70.196mm,并驱动滑台滑块5相对其零点运动x距离。Step 2: When the
步骤3:当预压紧压辊12和保压压辊10均处于压紧状态时,判断其为阶段II连续熔融连接阶段,对曲面Γ1区域进行连接。分别根据预压紧压辊12与保压压辊10相对自身零点位置发生的位移s1和s2,计算加热装置11应相对其零点发生的位移,x1=s1+Δs1-Δh1-hset=s1-70.196mm、x2=s2+Δs2-Δh2-hset=s1-70.441mm。若二者差的绝对值小于某一设定值x0,即|x1-x2|≤x0,熔融连接装置仍对曲面Γ1区域进行连接,本实施例中根据所用传感器精度设置x0=0.4mm,则加热装置11需相对自身零点位置发生的位移x=(x1+x2)/2=(s1+s2)/2+70.318mm。Step 3: When both the
当x1和x2差值的绝对值大于设定值x0=0.4mm时,即|x1-x2|>x0,熔融连接装置从曲面Γ1区域向曲面Γ2区域进行过渡,并在原有运动基础上发生回转。需根据预压紧压辊12的速度变化判断,熔融连接装置何时沿在加热装置11轴线上的回转中心O发生回转,以对加热装置位置进行准确控制。在本实施例中,所用传感器的反应时间为10ms,则预压紧压辊12的速度可由相邻两时刻的位移差与反应时间的商计算获得,即v1t=Δs/10ms,同时设置回转装置回转用时为1s,则回转速度判据v0=|Δh1(R=R1)-Δh1(R=R2)|/Δt=|0.196mm-1.667mm|/1s=1.471mm/s。当t时刻与t'时刻的速度差小于等于0.8v0,即小于等于1.177mm/s时,加热装置11需相对自身零点位置发生的位移为x2=s1-70.441mm;当t时刻与t'时刻的速度差大于0.8v0,即大于1.177mm/s时,加热装置11需相对自身零点位置发生的位移为x1=s1-70.196mm。When the absolute value of the difference between x 1 and x 2 is greater than the set value x 0 =0.4mm, that is, |x 1 -x 2 |>x 0 , the fusion connection device transitions from the curved surface Γ 1 area to the curved surface Γ 2 area, And turn around on the basis of the original movement. It is necessary to judge according to the speed change of the
步骤4:当预压紧压辊12未压紧,判断其为阶段III熔融连接结束阶段,加热装置11随预压紧压辊12同时返回相应的零点位置,保压压辊10在保压一定时间后返回零点位置。Step 4: When the
本发明的一种叠层结构熔融连接装置及其位置自适应控制方法,通过在叠层结构熔融连接过程中,根据与预压紧压辊和保压压辊位置变化、连接过程以及待连接结构几何特征等,对加热装置与工件表面的距离进行自适应控制,能够避免加热装置位置变化导致的熔融连接温度不均等问题。该方法为大型或曲面叠层结构的熔融连接提供了一种有效方法,能够满足航空航天、高铁和汽车等领域对复材与金属材料连接的需求。A laminated structure melting connection device and its position self-adaptive control method of the present invention, through the fusion connection process of the laminated structure, according to the position changes of the pre-compressing pressure roller and the holding pressure roller, the connection process and the structure to be connected Geometric features, etc., the adaptive control of the distance between the heating device and the surface of the workpiece can avoid problems such as uneven melting temperature caused by changes in the position of the heating device. This method provides an effective method for the fusion connection of large or curved laminated structures, and can meet the needs of composite materials and metal materials in the fields of aerospace, high-speed rail and automobiles.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211136258.5A CN115592957B (en) | 2022-09-19 | 2022-09-19 | A laminated structure fusion connection device and position adaptive control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211136258.5A CN115592957B (en) | 2022-09-19 | 2022-09-19 | A laminated structure fusion connection device and position adaptive control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115592957A true CN115592957A (en) | 2023-01-13 |
CN115592957B CN115592957B (en) | 2024-10-01 |
Family
ID=84842887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211136258.5A Active CN115592957B (en) | 2022-09-19 | 2022-09-19 | A laminated structure fusion connection device and position adaptive control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115592957B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103286947A (en) * | 2012-04-10 | 2013-09-11 | 新兴机械株式会社 | Ultrasonic joint device |
KR20150038449A (en) * | 2012-07-30 | 2015-04-08 | 시바우라 메카트로닉스 가부시끼가이샤 | Substrate bonding apparatus and substrate bonding method |
WO2016117239A1 (en) * | 2015-01-21 | 2016-07-28 | 株式会社Ihi | Double belt press |
-
2022
- 2022-09-19 CN CN202211136258.5A patent/CN115592957B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103286947A (en) * | 2012-04-10 | 2013-09-11 | 新兴机械株式会社 | Ultrasonic joint device |
KR20150038449A (en) * | 2012-07-30 | 2015-04-08 | 시바우라 메카트로닉스 가부시끼가이샤 | Substrate bonding apparatus and substrate bonding method |
WO2016117239A1 (en) * | 2015-01-21 | 2016-07-28 | 株式会社Ihi | Double belt press |
CN106715096A (en) * | 2015-01-21 | 2017-05-24 | 株式会社Ihi | double belt press |
Non-Patent Citations (1)
Title |
---|
刘敬元等: "CFRTP /Al 非接触超声辅助激光连接工艺研究", 纤维复合材料, vol. 2, no. 3, 30 June 2021 (2021-06-30), pages 3 - 8 * |
Also Published As
Publication number | Publication date |
---|---|
CN115592957B (en) | 2024-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106381489A (en) | Device and method for preparing laser cladding and extrusion coating | |
CN101544060A (en) | Pressure self-adapting ultrasonic fine welding method and device | |
CN111672990B (en) | Device and method for composite forming of heterogeneous laminates heated by electric current and friction assisted heating | |
CN110722791A (en) | Device for improving compaction performance between fused deposition additive manufacturing layers and structural design | |
CN108788444A (en) | A kind of series-parallel robot agitating friction soldering equipment | |
CN109693402B (en) | Rivetless punching vibration connection method of carbon fiber composite material and aluminum alloy material and its mold | |
CN112139688A (en) | A metal-plastic laser welding rolling system with welding | |
CN110789155A (en) | Automatic forming equipment and laying process method for carbon fibers of offshore wind power blade | |
CN111907069B (en) | Robot-assisted continuous resistance welding equipment and welding method for thermoplastic materials | |
CN115592957A (en) | Fusion connecting device with laminated structure and position self-adaptive control method thereof | |
CN109622960B (en) | Composite forming device and method for plate | |
CN114872326A (en) | Hot-press welding equipment and method for lap joint structure of thermoplastic composite material and light alloy | |
CN111745981A (en) | A dual-robot-assisted resistance welding equipment for thermoplastic composites | |
CN113714362A (en) | Multi-pass rolling type plate flexible flanging forming method | |
CN111515274A (en) | A kind of flexible bending method and processing device of metal sheet | |
CN114131934A (en) | An efficient and low-cost adaptive forming process for large-scale panel-long truss members | |
CN212219341U (en) | A dual-robot-assisted resistance welding equipment for thermoplastic composites | |
US7676298B2 (en) | Method and apparatus for surface shaping of polymer composite components | |
CN109483920B (en) | Method and device for stamping connection of carbon fiber composite material and aluminum alloy plate | |
KR102030431B1 (en) | Friction solid state welding/joining and cladding device supplying filler by roller | |
CN110000287A (en) | A kind of no rivet glues the optimization molding system and method for riveting connection | |
CN110065237A (en) | The hot assistant metal of laser/thermoplastic friction hot pressing connects device and method | |
CN212422216U (en) | Robot-Assisted Continuous Resistance Welding Equipment for Thermoplastics | |
CN116690996A (en) | Laser rolling welding device suitable for complex curved surface plastic | |
CN115625898A (en) | Laser heating thermoplastic prepreg tape bonding device and bonding method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |