CN115589764A - A kind of magnetic random storage unit and its preparation method and use method - Google Patents
A kind of magnetic random storage unit and its preparation method and use method Download PDFInfo
- Publication number
- CN115589764A CN115589764A CN202110759599.7A CN202110759599A CN115589764A CN 115589764 A CN115589764 A CN 115589764A CN 202110759599 A CN202110759599 A CN 202110759599A CN 115589764 A CN115589764 A CN 115589764A
- Authority
- CN
- China
- Prior art keywords
- topological
- antiferromagnetic
- weyl
- metal layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims description 25
- 238000003860 storage Methods 0.000 title description 11
- 238000002360 preparation method Methods 0.000 title description 9
- 239000010410 layer Substances 0.000 claims abstract description 212
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 182
- 239000002184 metal Substances 0.000 claims abstract description 77
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 230000005641 tunneling Effects 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000011241 protective layer Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 230000007306 turnover Effects 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 40
- 230000005415 magnetization Effects 0.000 claims description 32
- 239000002885 antiferromagnetic material Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 9
- 238000009413 insulation Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000003302 ferromagnetic material Substances 0.000 description 5
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000005303 antiferromagnetism Effects 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005307 ferromagnetism Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 230000005329 antiferromagnetic resonance Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000005350 ferromagnetic resonance Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
技术领域technical field
本公开涉及信息技术及微电子领域,更具体地,涉及一种磁随机存储单元及其制备方法、使用方法。The disclosure relates to the fields of information technology and microelectronics, and more specifically, to a magnetic random access memory unit, a preparation method, and a use method thereof.
背景技术Background technique
随着高性能的计算机和移动设备出现,大量信息生成且需要被存储,推动了存储技术和存储器的研究和应用。利用电子的电子自旋性质进行信息的处理和存储的磁随机存储器,受到全世界广泛关注和研究。当前,商业上大力发展的自旋转移矩-磁随机存储器和还处于实验室研究的自旋轨道矩-磁随机存储器都是基于存储单元中磁自由层磁化的翻转,导致隧穿电阻的改变,从而实现信息的存储功能。传统的磁随机存数单元主要基于对铁磁材料中磁矩的精确控制,但由于杂散场、较小的各向异性场等本征缺陷的存在,使得基于铁磁材料的磁随机存储单元面临诸多挑战。尤其是,随着大数据、物联网、人工智能等信息技术的迅猛发展,迫切需要开发出具有高存储密度、低功耗、可扩展以及高写入/读取速度的磁随机存储器。With the emergence of high-performance computers and mobile devices, a large amount of information is generated and needs to be stored, which promotes the research and application of storage technology and memory. The magnetic random access memory, which uses the electron spin property of electrons to process and store information, has attracted extensive attention and research all over the world. At present, the commercially developed spin-transfer torque-magnetic random access memory and the spin-orbit moment-magnetic random access memory that is still in laboratory research are all based on the reversal of the magnetization of the magnetic free layer in the storage unit, resulting in a change in the tunneling resistance. So as to realize the storage function of information. Traditional MRAM units are mainly based on the precise control of the magnetic moments in ferromagnetic materials, but due to the existence of intrinsic defects such as stray fields and small anisotropy fields, MRAM units based on ferromagnetic materials are facing Many challenges. In particular, with the rapid development of information technologies such as big data, the Internet of Things, and artificial intelligence, there is an urgent need to develop magnetic random access memory with high storage density, low power consumption, scalability, and high write/read speed.
在过去几年中,反铁磁材料由于其独特性质引起了自旋电子学界的极大关注。首先,反铁磁中亚晶格自旋的反平行排列产生零偶极场,使其对外磁场的扰动不敏感且存在多级稳定性,可用于高密度、多态存储和神经拟态计算等;其次,反铁磁的自旋动力学特征比铁磁要高几个数量级。由于亚晶格自旋之间的强交换耦合,其一致自旋进动频率(反铁磁共振)在太赫兹范围内,而各向异性场较弱的铁磁体共振频率在千兆赫兹范围内,因此反铁磁在太赫兹领域具有极大的应用潜力。反铁磁相比于铁磁具有的一些特殊且不可替代的优势,使得基于反铁磁随机存储单元为基础研究和器件技术开辟了广阔的前景。但是,目前已有的研究表明,由于基于常规的线性反铁磁材料所制备的磁随机存储单元,读出信号非常弱,从而大大限制了反铁磁材料在磁随机存储单元中的应用。如何实现在基于反铁磁材料制备的磁随机存储单元获得大的信号输出,是信息存储和处理领域迫切需要解决的问题。In the past few years, antiferromagnetic materials have attracted great attention from the spintronics community due to their unique properties. First of all, the antiparallel arrangement of sublattice spins in antiferromagnetism produces a zero dipole field, making it insensitive to external magnetic field disturbances and having multi-level stability, which can be used for high-density, multi-state storage and neuromorphic computing; Second, the spin dynamics of antiferromagnetism are several orders of magnitude higher than those of ferromagnetism. Its coherent spin precession frequency (antiferromagnetic resonance) is in the terahertz range due to the strong exchange coupling between the sublattice spins, while the ferromagnetic resonance frequency with weaker anisotropy field is in the gigahertz range , so antiferromagnetism has great application potential in the terahertz field. Compared with ferromagnetism, antiferromagnetism has some special and irreplaceable advantages, which makes antiferromagnetic random memory cells open up broad prospects for basic research and device technology. However, current research shows that the readout signal is very weak due to the magnetic random access memory cells prepared based on conventional linear antiferromagnetic materials, which greatly limits the application of antiferromagnetic materials in magnetic random access memory cells. How to achieve a large signal output in the magnetic random access memory cell based on antiferromagnetic materials is an urgent problem to be solved in the field of information storage and processing.
公开内容public content
有鉴于此,本公开提出了一种基于拓扑反铁磁Weyl半金属的磁随机存储单元,以至少部分解决以上所提出的技术问题。In view of this, the present disclosure proposes a magnetic random access memory unit based on a topological antiferromagnetic Weyl semimetal to at least partly solve the above-mentioned technical problems.
本公开的一个方面提供了一种磁随机存储单元,其特征在于,包括:衬底;缓冲层,形成于衬底上;第一拓扑反铁磁Weyl半金属层,形成于缓冲层上,用于通过施加电流,从而驱动第一拓扑反铁磁Weyl半金属层中拓扑反铁磁态产生180°翻转;隧穿绝缘层,形成于第一拓扑反铁磁Weyl半金属层上;第二拓扑反铁磁Weyl半金属层,形成于隧穿绝缘层上;保护层,形成于第二拓扑反铁磁Weyl半金属层上。One aspect of the present disclosure provides a magnetic random access memory unit, which is characterized in that it includes: a substrate; a buffer layer formed on the substrate; a first topological antiferromagnetic Weyl semimetal layer formed on the buffer layer, By applying current, the topological antiferromagnetic state in the first topological antiferromagnetic Weyl semi-metal layer is driven to produce a 180° flip; the tunneling insulating layer is formed on the first topological antiferromagnetic Weyl semi-metal layer; the second topological The antiferromagnetic Weyl semimetal layer is formed on the tunnel insulating layer; the protection layer is formed on the second topological antiferromagnetic Weyl semimetal layer.
可选地,第一拓扑反铁磁Weyl半金属层和第二拓扑反铁磁Weyl半金属层由为非线性反铁磁材料制成,包括Mn3Sn、Mn3Ge、Mn3Ni、Mn3Cu、Mnn3Zn、Mn3Ga、Mn3Pd、Mn3In、Mn3Ir、Mnn3Pt中的一种或几种组合。Optionally, the first topological antiferromagnetic Weyl semimetal layer and the second topological antiferromagnetic Weyl semimetal layer are made of non-linear antiferromagnetic materials, including Mn 3 Sn, Mn 3 Ge, Mn 3 Ni, Mn One or more combinations of 3 Cu, M nn3 Zn, Mn 3 Ga, Mn 3 Pd, Mn 3 In, Mn 3 Ir, M nn3 Pt.
可选地,当第二拓扑反铁磁Weyl半金属层的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层的表面方向时,第一拓扑反铁磁Weyl半金属层的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层的表面方向。Optionally, when the easy magnetization direction of the second topological antiferromagnetic Weyl semimetal layer is perpendicular to the surface direction of the second topological antiferromagnetic Weyl semimetal layer, the easy magnetization of the first topological antiferromagnetic Weyl semimetal layer The direction is perpendicular to the surface direction of the second topological antiferromagnetic Weyl semimetal layer.
可选地,当第二拓扑反铁磁Weyl半金属层的易磁化方向为平行于第二拓扑反铁磁Weyl半金属层的表面方向时,第一拓扑反铁磁Weyl半金属层的易磁化方向为平行于第二拓扑反铁磁Weyl半金属层的表面方向。Optionally, when the easy magnetization direction of the second topological antiferromagnetic Weyl semimetal layer is parallel to the surface direction of the second topological antiferromagnetic Weyl semimetal layer, the easy magnetization of the first topological antiferromagnetic Weyl semimetal layer The direction is parallel to the surface direction of the second topological antiferromagnetic Weyl semimetal layer.
可选地,隧穿绝缘层的厚度为0.5~3nm。Optionally, the thickness of the tunneling insulating layer is 0.5-3 nm.
本公开另一方面提供了一种磁随机存储单元的制备方法,其特征在于,包括:在衬底上生长缓冲层;在缓冲层上生长第一拓扑反铁磁Weyl半金属层;在第一拓扑反铁磁Weyl半金属层上生长隧穿绝缘层;在隧穿绝缘层上生长第二拓扑反铁磁Weyl半金属;在第二拓扑反铁磁Weyl半金属层上生长保护层。Another aspect of the present disclosure provides a method for preparing a magnetic random access memory unit, which is characterized by comprising: growing a buffer layer on a substrate; growing a first topological antiferromagnetic Weyl semimetal layer on the buffer layer; A tunnel insulating layer is grown on the topological antiferromagnetic Weyl semimetal layer; a second topological antiferromagnetic Weyl semimetal is grown on the tunnel insulating layer; a protective layer is grown on the second topological antiferromagnetic Weyl semimetal layer.
可选地,当第一拓扑反铁磁Weyl半金属层和第二拓扑反铁磁Weyl半金属层退火时,利用外加磁场,控制第一拓扑反铁磁Weyl半金属层与第二拓扑反铁磁Weyl半金属层的易磁化方向。Optionally, when the first topological antiferromagnetic Weyl semimetal layer and the second topological antiferromagnetic Weyl semimetal layer are annealed, an external magnetic field is used to control the first topological antiferromagnetic Weyl semimetal layer and the second topological antiferromagnetic Weyl semimetal layer. The easy magnetization direction of the magnetic Weyl semimetal layer.
可选地,控制第一拓扑反铁磁Weyl半金属层与第二拓扑反铁磁Weyl半金属层的易磁化方向,包括:当第二拓扑反铁磁Weyl半金属层的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层的表面方向时,第一拓扑反铁磁Weyl半金属层的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层的表面方向;当第二拓扑反铁磁Weyl半金属层的易磁化方向为平行于第二拓扑反铁磁Weyl半金属层的表面方向时,第一拓扑反铁磁Weyl半金属层的易磁化方向为平行于第二拓扑反铁磁Weyl半金属层的表面方向。Optionally, controlling the easy magnetization direction of the first topological antiferromagnetic Weyl half-metal layer and the second topological antiferromagnetic Weyl half-metal layer includes: when the easy magnetization direction of the second topological antiferromagnetic Weyl half-metal layer is vertical During the surface direction of the second topological antiferromagnetic Weyl half-metal layer, the easy magnetization direction of the first topological antiferromagnetic Weyl half-metal layer is perpendicular to the surface direction of the second topological antiferromagnetic Weyl half-metal layer; when the second When the easy magnetization direction of the topological antiferromagnetic Weyl half-metal layer is parallel to the surface direction of the second topological antiferromagnetic Weyl half-metal layer, the easy magnetization direction of the first topological antiferromagnetic Weyl half-metal layer is parallel to the second topological Surface orientation of an antiferromagnetic Weyl semimetal layer.
本公开另一方面还提供了一种磁随机存储单元使用方法,磁随机存储单元如权利要求1~5所示,其特征在于,包括:利用外加磁场初始化,使得第一拓扑反铁磁Weyl半金属层和第二拓扑反铁磁Weyl半金属层的磁矩方向相同;通过施加脉冲电压于第一拓扑反铁磁Weyl半金属层,使得第一拓扑反铁磁Weyl半金属层中拓扑反铁磁态产生180°翻转。Another aspect of the present disclosure also provides a method for using a magnetic random access memory unit. The magnetic random access memory unit is as shown in claims 1 to 5, characterized in that it includes: initializing with an external magnetic field, so that the first topological antiferromagnetic Weyl semi The magnetic moment directions of the metal layer and the second topological antiferromagnetic Weyl semimetal layer are the same; by applying a pulse voltage to the first topological antiferromagnetic Weyl semimetal layer, the topological antiferromagnetic layer in the first topological antiferromagnetic Weyl semimetal layer The magnetic state produces a 180° flip.
可选地,使用方法还包括:通过渎取第一拓扑反铁磁Weyl半金属层和保护层之间的电压,将磁随机存储单元的隧穿电阻变化作为输出信息。Optionally, the using method further includes: taking the change of the tunneling resistance of the magnetic random memory cell as output information by taking the voltage between the first topological antiferromagnetic Weyl semi-metal layer and the protective layer.
从上述技术方案可以看出,本公开磁随机存储单元、制备方法和使用方法至少具有以下有益效果:It can be seen from the above technical solutions that the magnetic random access memory unit, preparation method and use method of the present disclosure have at least the following beneficial effects:
(1)本公开不再使用常规基于铁磁材料制备的磁随机存储单元,而是提出一种以拓扑反铁磁Weyl半金属为自旋轨道矩器件的信息载体材料,通过第一拓扑反铁磁Weyl半金属层中电流诱导的本征自旋轨道力矩效应,控制第一拓扑反铁磁Weyl半金属层中拓扑反铁磁态产生180°翻转,从而实现基于拓扑反铁磁Weyl半金属材料制备的磁随机存储单元。(1) This disclosure no longer uses conventional magnetic random access memory cells based on ferromagnetic materials, but proposes an information carrier material that uses topological antiferromagnetic Weyl semimetals as spin-orbit moment devices, through the first topological antiferromagnetic The current-induced intrinsic spin-orbit torque effect in the magnetic Weyl semimetal layer controls the 180° flip of the topological antiferromagnetic state in the first topological antiferromagnetic Weyl semimetal layer, thereby realizing the material based on topological antiferromagnetic Weyl semimetal Prepared magnetic random access memory unit.
(2)基于拓扑反铁磁Weyl半金属材料的信息器件具有无外加磁场依赖、稳定性高、速度快、低功耗、使用寿命长等优点,可应用于非易失高能效存储、存算一体、类脑计算等领域。(2) Information devices based on topological antiferromagnetic Weyl semimetal materials have the advantages of no external magnetic field dependence, high stability, fast speed, low power consumption, and long service life, and can be applied to non-volatile high-energy-efficiency storage, storage and computing Integration, brain-like computing and other fields.
附图说明Description of drawings
图1示意性示出了根据本公开实施例的一种磁随机存储单元的示意图;FIG. 1 schematically shows a schematic diagram of a magnetic random access memory unit according to an embodiment of the present disclosure;
图2示意性示出了根据本公开实施例的一种磁随机存储单元的制备方法流程图;Fig. 2 schematically shows a flow chart of a method for manufacturing a magnetic random access memory unit according to an embodiment of the present disclosure;
图3示意性示出了根据本公开实施例的一种磁随机存储单元的使用方法流程图;FIG. 3 schematically shows a flowchart of a method for using a magnetic random access memory unit according to an embodiment of the present disclosure;
图4A示意性示出了根据本公开实施例的一种V-V型磁随机存储单元处于初始态的信息写入/读写示意图;FIG. 4A schematically shows a schematic diagram of information writing/reading of a V-V type magnetic random access memory unit in an initial state according to an embodiment of the present disclosure;
图4B示意性示出了根据本公开实施例的一种V-V型磁随机存储单元在施加脉冲电压(产生脉冲电流)下的信息写入/读写示意图;Fig. 4B schematically shows a schematic diagram of information writing/reading of a V-V type magnetic random access memory unit under the application of pulse voltage (generating pulse current) according to an embodiment of the present disclosure;
图5A示意性示出了根据本公开实施例的一种P-P型磁随机存储单元初始态的信息写入/读写示意图;FIG. 5A schematically shows a schematic diagram of information writing/reading in the initial state of a P-P type magnetic random access memory unit according to an embodiment of the present disclosure;
图5B示意性示出了根据本公开实施例的一种P-P型磁随机存储单元在施加脉冲电压(产生脉冲电流)下的信息写入/读写示意图。FIG. 5B schematically shows a schematic diagram of information writing/reading of a P-P type magnetic random access memory unit under application of pulse voltage (generating pulse current) according to an embodiment of the present disclosure.
附图标记说明:Explanation of reference signs:
100-衬底;100-substrate;
200-缓冲层;200-buffer layer;
300-第一拓扑反铁磁Weyl半金属层;300-the first topological antiferromagnetic Weyl semimetal layer;
400-隧穿绝缘层;400-tunneling insulation layer;
500-第二拓扑反铁磁Weyl半金属层;500 - the second topological antiferromagnetic Weyl semimetal layer;
600-保护层。600 - protective layer.
具体实施方式detailed description
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。In order to make the purpose, technical solutions and advantages of the present disclosure clearer, the present disclosure will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本公开某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本公开的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本公开满足适用的法律要求。Certain embodiments of the present disclosure will be described more fully hereinafter with reference to the accompanying drawings, in which some but not all embodiments are shown. Indeed, various embodiments of the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth here; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
图1示意性示出了根据本公开实施例的一种磁随机存储单元。FIG. 1 schematically shows a magnetic random access memory unit according to an embodiment of the present disclosure.
如图1所示,磁随机存储单元包括:衬底100、缓冲层200、第一拓扑反铁磁Weyl半金属层300、隧穿绝缘层400、第二拓扑反铁磁Weyl半金属层500和保护层600。As shown in FIG. 1 , the magnetic random access memory unit includes: a
其中,缓冲层200,形成于衬底100上;第一拓扑反铁磁Weyl半金属层300,形成于缓冲层200上,用于通过施加电流,从而驱动第一拓扑反铁磁Weyl半金属层300中拓扑反铁磁态产生180°翻转;隧穿绝缘层400,形成于第一拓扑反铁磁Weyl半金属层300上;第二拓扑反铁磁Weyl半金属层500,形成于隧穿绝缘层400上;保护层600,形成于第二拓扑反铁磁Weyl半金属层500上。Wherein, the
衬底100可以为硅片、玻璃片或MgO基片。The
缓冲层200和保护层600可以为金属材料制成。The
第一拓扑反铁磁Weyl半金属300和第二拓扑反铁磁Weyl半金属500相当于传统磁随机存储单元的自由层和钉扎层,均由拓扑反铁磁Weyl半金属材料制成。其中,拓扑反铁磁Weyl半金属材料主要为Mn3Sn、Mn3Ge、Mn3Ni、Mn3Cu、Mn3Zn、Mn3Ga、Mn3Pd、Mn3In、Mn3Ir、Mn3Pt等非线性反铁磁材料。The first topological
第一拓扑反铁磁Weyl半金属300和第二拓扑反铁磁Weyl半金属500相对设置,且易磁化方向一致。例如,当第二拓扑反铁磁Weyl半金属层的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层的表面方向时,第一拓扑反铁磁Weyl半金属层的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层的表面方向。当第二拓扑反铁磁Weyl半金属层的易磁化方向为平行于第二拓扑反铁磁Weyl半金属层的表面方向时,第一拓扑反铁磁Weyl半金属层的易磁化方向为平行于第二拓扑反铁磁Weyl半金属层的表面方向。The first topological antiferromagnetic Weyl half-
在无外加磁场的情况下,在第一拓扑反铁磁Weyl半金属层300中施加脉冲电流,通过第一拓扑反铁磁Weyl半金属层300中电流诱导的本征自旋轨道力矩效应,可以控制第一拓扑反铁磁Weyl半金属层300中拓扑反铁磁态产生180°定向翻转。In the absence of an external magnetic field, a pulse current is applied in the first topological antiferromagnetic
上述为本公开实施例的一种磁随机存储单元,通过第一拓扑反铁磁Weyl半金属层300中电流诱导的本征自旋轨道力矩效应,使得第一拓扑反铁磁Weyl半金属层中拓扑反铁磁态产生180°翻转,使得隧穿电阻改变。本公开的磁随机存数单元不依赖于外加磁场,就可实现传统的基于铁磁材料制备的磁随机存储单元实现的功能。The above is a magnetic random memory unit according to an embodiment of the present disclosure. Through the intrinsic spin-orbit torque effect induced by the current in the first topological antiferromagnetic
图2示意性示出了根据本公开实施例的一种磁随机存储单元制备方法。如图2所示,制备方法如下所示,主要包括步骤S210~S250。FIG. 2 schematically shows a method for manufacturing a magnetic random access memory unit according to an embodiment of the present disclosure. As shown in FIG. 2, the preparation method is as follows, mainly including steps S210-S250.
步骤S210:在衬底100上生长缓冲层200。Step S210 : growing a
衬底100可以为硅片、玻璃片或MgO基片。缓冲层200可以为金属材料制成。缓冲层200优先采用磁控溅射的方式制备。缓冲层200可以让后续生长的薄膜更加光滑平整。The
步骤S220,在缓冲层200上生长第一拓扑反铁磁Weyl半金属层300。Step S220 , growing a first topological antiferromagnetic
第一拓扑反铁磁Weyl半金属层300相当于传统磁随机存储单元的自由层。第一拓扑反铁磁Weyl半金属层300可使用Mn3Sn、Mn3Ge、Mn3Ni、Mn3Cu、Mn3Zn、Mn3Ga、Mn3Pd、Mn3In、Mn3Ir、Mn3Pt等非线性反铁磁材料。采用磁控溅射的方式制备第一拓扑反铁磁Weyl半金属层300。通过在退火处理的过程中,利用外加磁场控制第一拓扑反铁磁Weyl半金属层300的易磁化方向,使该层易磁化方向与第二拓扑反铁磁Weyl半金属层500相同。制备成功后,在无外加磁场的情况下,对第一拓扑反铁磁Weyl半金属层300中施加脉冲电流,通过拓扑反铁磁Weyl半金属中电流诱导的本征自旋轨道力矩效应,可以控制第一拓扑反铁磁Weyl半金属层300中拓扑反铁磁态产生180°定向翻转。The first topological antiferromagnetic
步骤S230,在第一拓扑反铁磁Weyl半金属层300上生长隧穿绝缘层400。Step S230 , growing a
隧穿绝缘层400材料可以为MgO或AlOx等,制备方法优先采用磁控溅射。本公开实施例中,隧穿绝缘层400优选厚度控制在0.5~3nm。The material of the tunneling insulating
步骤S240:在隧穿绝缘层400上生长第二拓扑反铁磁Weyl半金属层500。Step S240 : growing a second topological antiferromagnetic
第二拓扑反铁磁Weyl半金属层500相当于传统磁随机存储单元钉扎层。第二拓扑反铁磁Weyl半金属可使用Mn3Sn、Mn3Ge、Mn3Ni、Mn3Cu、Mn3Zn、Mn3Ga、Mn3Pd、Mn3In、Mn3Ir、Mn3Pt等非线性反铁磁材料。采用磁控溅射的方式制备第二拓扑反铁磁Weyl半金属层500。通过在退火处理的过程中,利用外加磁场控制第二拓扑反铁磁Weyl半金属层500的易磁化方向,使其易磁化方向为垂直或平行于第二拓扑反铁磁Weyl半金属层500的表面方向,且与第一拓扑反铁磁Weyl半金属层300易磁化方向相同,并获得不同的磁各向异性。The second topological antiferromagnetic
步骤S250:在第二拓扑反铁磁Weyl半金属层500上生长保护层600。Step S250 : growing a
保护层600可以为金属材料制成,采用磁控溅射的方式制备。The
以上为本实施例基于拓扑反铁磁Weyl半金属材料制备磁随机存储单元的一种典型制备方法。并在此多层膜结构上,根据实际需要,通过蚀刻等方式,在此基本的多层膜结构上,制作出多个圆柱形或其他形状的结构单元。本公开实施例将上述方法制备形成的圆柱形磁随机存储单元串联,以绝缘材料填充在各单元之间,形成随机存储器。The above is a typical preparation method of the MRAM unit based on the topological antiferromagnetic Weyl semimetal material in this embodiment. And on this multi-layer film structure, according to actual needs, through etching and other methods, a plurality of cylindrical or other shaped structural units are produced on this basic multi-layer film structure. In the embodiment of the present disclosure, the cylindrical magnetic random access memory units prepared by the above method are connected in series, and insulating material is filled between each unit to form a random access memory.
进一步地,上述制备方法所制备的多层膜结构还可以用来制备磁电阻器。基于拓扑反铁磁Weyl半金属材料制备出多层膜结构上,根据实际需要,通过蚀刻等方式,在此基本的多层膜结构上,制作出多个圆柱形或其他形状的结构。磁电阻器可以是巨磁电阻器件,也可以是各向异性隧道磁电阻器件。磁电阻器件可以用来做传感器、隔离器等设备。Further, the multilayer film structure prepared by the above preparation method can also be used to prepare magnetoresistors. Based on the topological antiferromagnetic Weyl semi-metallic material to prepare a multi-layer film structure, according to actual needs, through etching and other methods, on this basic multi-layer film structure, make a plurality of cylindrical or other shaped structures. The magnetoresistor can be a giant magnetoresistance device or an anisotropic tunnel magnetoresistance device. Magnetoresistive devices can be used as sensors, isolators and other devices.
图3示意性示出了本公开一种磁随机存储单元的使用方法,应用于如上的磁随机存储单元。如图所示,使用方法包括步骤S310~S320。FIG. 3 schematically shows a method for using a magnetic random access memory unit of the present disclosure, which is applied to the above magnetic random access memory unit. As shown in the figure, the usage method includes steps S310-S320.
步骤S310,利用外加磁场初始化,使得第一拓扑反铁磁Weyl半金属层300和第二拓扑反铁磁Weyl半金属层500的磁矩方向相同。Step S310 , initializing with an external magnetic field, so that the magnetic moment directions of the first topological antiferromagnetic Weyl half-
步骤S320,通过施加脉冲电压于第一拓扑反铁磁Weyl半金属层300,使得第一拓扑反铁磁Weyl半金属层300中拓扑反铁磁态产生180°翻转。In step S320 , by applying a pulse voltage to the first topological antiferromagnetic
实施例1Example 1
图4A为本公开V-V型磁随机存储单元处于初始态的信息写入/读取示意图。对于V-V型磁随机存储单元,第一拓扑反铁磁Weyl半金属层300和第二拓扑反铁磁Weyl半金属层500的易磁化方向为垂直于第二拓扑反铁磁Weyl半金属层表面FIG. 4A is a schematic diagram of information writing/reading of the V-V type magnetic random access memory cell in the initial state of the present disclosure. For the V-V type magnetic random memory unit, the easy magnetization direction of the first topological antiferromagnetic
通过步骤S310,利用外加磁场初始化,使得第一拓扑反铁磁Weyl半金属层300和第二拓扑反铁磁Weyl半金属层500的磁矩方向相同,即两层磁矩方向磁矩为平行排列,皆垂直于第二拓扑反铁磁Weyl半金属层500层表面,Through step S310, an external magnetic field is used to initialize, so that the magnetic moment directions of the first topological antiferromagnetic
通过在第一拓扑反铁磁Weyl半金属层300和保护层600之间施加小的恒流源I,检测磁隧穿电阻,发现此时隧穿电阻处于低态。By applying a small constant current source I between the first topological antiferromagnetic
通过步骤S320,通过施加正脉冲电压U(产生正脉冲电流)于第一拓扑反铁磁Weyl半金属层300,使得第一拓扑反铁磁Weyl半金属层300中拓扑反铁磁态产生180°翻转,得到如图4B所示的V-V型磁随机存储单元在施加脉冲电压(产生脉冲电流)之后的信息写入/读取示意图,此时,通过读取第一拓扑反铁磁Weyl半金属层和保护层之间的电压V,可以检测到隧穿电阻发生的跳变,磁随机存储单元可以写入“1”的信号。Through step S320, by applying a positive pulse voltage U (generating a positive pulse current) to the first topological antiferromagnetic
通过在拓扑反铁磁Weyl半金属层300中输入负脉冲电压U(产生负脉冲电流)后,拓扑反铁磁Weyl半金属层300中的拓扑反铁磁态恢复,导致隧穿电阻发生跳变。通过读取V值的变化,检测隧穿电阻的变化,磁随机存储单元写入“0”的信号。After inputting a negative pulse voltage U (to generate a negative pulse current) in the topological antiferromagnetic
实施例2Example 2
图5A提供了一种P-P型磁随机存储单元处于初始态的信息写入/读取示意图。本实施例的磁随机存储单元与实施例1相比,区别在于在磁随机存储单元在制备时第一拓扑反铁磁Weyl半金属层300和第二拓扑反铁磁Weyl半金属层500利用外加磁场初始化的磁矩平行于第二拓扑反铁磁Weyl半金属层500的层表面。FIG. 5A provides a schematic diagram of information writing/reading of a P-P type magnetic random access memory cell in an initial state. Compared with Example 1, the magnetic random access memory unit of this embodiment differs in that the first topological antiferromagnetic
通过步骤S310,利用外加磁场初始化,使得第一拓扑反铁磁Weyl半金属层300和第二拓扑反铁磁Weyl半金属层500的磁矩方向相同,即两层磁矩方向磁矩为平行排列,皆垂直于第二拓扑反铁磁Weyl半金属层500层表面Through step S310, an external magnetic field is used to initialize, so that the magnetic moment directions of the first topological antiferromagnetic
通过在第一拓扑反铁磁Weyl半金属层300和保护层600之间施加小的恒流源I,检测隧穿电阻,发现此时隧穿电阻处于低态。By applying a small constant current source I between the first topological antiferromagnetic
通过步骤S320,通过施加正脉冲电压U(产生正脉冲电流)于第一拓扑反铁磁Weyl半金属层300,使得第一拓扑反铁磁Weyl半金属层300中拓扑反铁磁态产生180°翻转,得到如图5B所示的V-V型磁随机存储单元在施加脉冲电压(产生脉冲电流)之后的信息写入/读取示意图,此时,通过读取第一拓扑反铁磁Weyl半金属层和保护层之间的电压V,可以检测到隧穿电阻发生的跳变,磁随机存储单元可以写入“1”的信号。Through step S320, by applying a positive pulse voltage U (generating a positive pulse current) to the first topological antiferromagnetic
通过在拓扑反铁磁Weyl半金属层300中输入负脉冲电压U(产生负脉冲电流)后,拓扑反铁磁Weyl半金属层300中的拓扑反铁磁态恢复,导致隧穿电阻发生跳变。通过读取V值的变化,检测隧穿电阻的变化,磁随机存储单元写入“0”的信号。After inputting a negative pulse voltage U (to generate a negative pulse current) in the topological antiferromagnetic
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。So far, the embodiments of the present disclosure have been described in detail with reference to the accompanying drawings. It should be noted that, in the accompanying drawings or in the text of the specification, implementations that are not shown or described are forms known to those of ordinary skill in the art, and are not described in detail. In addition, the above definitions of each element and method are not limited to the various specific structures, shapes or methods mentioned in the embodiments, and those skilled in the art can easily modify or replace them.
依据以上描述,本领域技术人员应当对本公开实施例中基于拓扑反铁磁Weyl半金属制成的磁随机存储单元,及其制备方法及使用方法有了清楚的认识。Based on the above description, those skilled in the art should have a clear understanding of the magnetic random access memory unit made based on the topological antiferromagnetic Weyl semimetal in the embodiments of the present disclosure, its preparation method and usage method.
综上,本公开不再使用常规基于铁磁材料制备的磁随机存储单元,提出以拓扑反铁磁Weyl半金属为自旋轨道矩器件的信息载体材料,通过拓扑反铁磁Weyl半金属层中电流诱导的本征自旋轨道力矩效应,控制拓扑反铁磁Weyl半金属层中拓扑反铁磁态产生180°翻转,从而实现基于拓扑反铁磁Weyl半金属材料的磁随机存储单元。To sum up, this disclosure no longer uses conventional magnetic random access memory cells based on ferromagnetic materials, and proposes to use topological antiferromagnetic Weyl semimetals as information carrier materials for spin-orbit moment devices, through the topological antiferromagnetic Weyl semimetal layer The current-induced intrinsic spin-orbit torque effect controls the topological antiferromagnetic state in the topological antiferromagnetic Weyl semimetal layer to produce a 180° flip, thereby realizing the magnetic random memory unit based on the topological antiferromagnetic Weyl semimetal material.
基于拓扑反铁磁Weyl半金属材料的信息器件具有无外加磁场依赖、稳定性高、速度快、低功耗、使用寿命长等优点,可应用于非易失高能效存储、存算一体、类脑计算等领域。Information devices based on topological antiferromagnetic Weyl semimetal materials have the advantages of no external magnetic field dependence, high stability, fast speed, low power consumption, and long service life. Brain computing and other fields.
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。And the shape and size of each component in the figure do not reflect the actual size and proportion, but only illustrate the content of the embodiment of the present disclosure. Furthermore, in the claims, any reference signs placed between parentheses shall not be construed as limiting the claim.
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到“约”的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。Unless known to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that can vary depending upon the desired properties obtained from the teachings of the present disclosure. Specifically, all numbers used in the specification and claims to represent the content of components, reaction conditions, etc., should be understood to be modified by the term "about" in all cases. In general, the expressed meaning is meant to include a variation of ±10% in some embodiments, a variation of ±5% in some embodiments, a variation of ±1% in some embodiments, a variation of ±1% in some embodiments, and a variation of ±1% in some embodiments ±0.5% variation in the example.
再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。Furthermore, the word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。Words such as "first", "second", "third" and the like used in the description and claims to modify the corresponding elements do not in themselves mean that the elements have any ordinal numbers, nor The use of these ordinal numbers to represent the sequence of an element with respect to another element, or the order of manufacturing methods, is only used to clearly distinguish one element with a certain designation from another element with the same designation.
以上的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。The above specific embodiments have further described the purpose, technical solutions and beneficial effects of the present disclosure in detail. It should be understood that the above are only specific embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present disclosure shall be included within the scope of protection of the present disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110759599.7A CN115589764A (en) | 2021-07-05 | 2021-07-05 | A kind of magnetic random storage unit and its preparation method and use method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110759599.7A CN115589764A (en) | 2021-07-05 | 2021-07-05 | A kind of magnetic random storage unit and its preparation method and use method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115589764A true CN115589764A (en) | 2023-01-10 |
Family
ID=84772246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110759599.7A Pending CN115589764A (en) | 2021-07-05 | 2021-07-05 | A kind of magnetic random storage unit and its preparation method and use method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115589764A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116056551A (en) * | 2023-03-31 | 2023-05-02 | 北京航空航天大学 | A kind of antiferromagnetic tunnel junction and its preparation method |
-
2021
- 2021-07-05 CN CN202110759599.7A patent/CN115589764A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116056551A (en) * | 2023-03-31 | 2023-05-02 | 北京航空航天大学 | A kind of antiferromagnetic tunnel junction and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108376736B (en) | Magnetic device and method for setting up a magnetic device | |
Bhatti et al. | Spintronics based random access memory: a review | |
CN101896976B (en) | High speed low power magnetic devices based on current induced spin-momentum transfer | |
JP5909223B2 (en) | High-speed low-power magnetic device based on current-induced spin-momentum transfer | |
US8422285B2 (en) | Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories | |
JP5961785B2 (en) | Method and system for providing a hybrid magnetic tunnel junction element with improved switching | |
US7307876B2 (en) | High speed low power annular magnetic devices based on current induced spin-momentum transfer | |
US8374048B2 (en) | Method and system for providing magnetic tunneling junction elements having a biaxial anisotropy | |
CN112002722A (en) | Spin electronic device, SOT-MRAM memory cell, memory array, and integrated memory circuit | |
CN1708810A (en) | Magnetoresistive random access memory | |
CN103794715B (en) | A kind of based on voltage-controlled magnetic memory | |
CN112652706B (en) | A spin-orbit moment memory cell without external magnetic field | |
US20200357983A1 (en) | Magnetic tunnel junction reference layer, magnetic tunnel junctions and magnetic random access memory | |
CN105633111A (en) | Electrical field assisted writing magnetic tunnel junction unit and writing method thereof | |
CN109243512B (en) | A method for controlling the magnetic domain structure of antiferromagnetic layer and pinned layer to realize multi-state data storage in magnetic tunnel junction | |
CN109427963B (en) | Magnetic junction, magnetic memory and method of providing a magnetic junction | |
CN101276879A (en) | A Double Free Layer Vertical Ferromagnetic Tunnel Junction Structure | |
Yao et al. | Tunneling magnetoresistance materials and devices for neuromorphic computing | |
Zhang et al. | Electric-field control of nonvolatile resistance state of perpendicular magnetic tunnel junction via magnetoelectric coupling | |
CN111384235A (en) | A magnetic tunnel junction and NSOT-MRAM device based on the magnetic tunnel junction | |
CN115589764A (en) | A kind of magnetic random storage unit and its preparation method and use method | |
CN109243511B (en) | A method for controlling free layer domain structure to realize ten-state data storage in magnetic tunnel junction | |
CN102931342A (en) | Hall spinning scale material and component | |
CN108461101B (en) | Memory cell and memory | |
CN115996628A (en) | Spin-orbit torque magnetic random access memory and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |