[go: up one dir, main page]

CN115586541A - Processing method and device of laser point cloud data, storage medium and equipment - Google Patents

Processing method and device of laser point cloud data, storage medium and equipment Download PDF

Info

Publication number
CN115586541A
CN115586541A CN202211313715.3A CN202211313715A CN115586541A CN 115586541 A CN115586541 A CN 115586541A CN 202211313715 A CN202211313715 A CN 202211313715A CN 115586541 A CN115586541 A CN 115586541A
Authority
CN
China
Prior art keywords
point cloud
cloud data
laser point
laser
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211313715.3A
Other languages
Chinese (zh)
Inventor
施云飞
蒋成
周鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yi'ao Technology Co ltd
Original Assignee
Shanghai Yi'ao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Yi'ao Technology Co ltd filed Critical Shanghai Yi'ao Technology Co ltd
Priority to CN202211313715.3A priority Critical patent/CN115586541A/en
Publication of CN115586541A publication Critical patent/CN115586541A/en
Priority to AU2023258364A priority patent/AU2023258364B8/en
Priority to PCT/CN2023/080245 priority patent/WO2024087454A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/41Bandwidth or redundancy reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The application discloses a processing method, a processing device, a storage medium and equipment of laser point cloud data, and belongs to the technical field of image processing. The method comprises the following steps: acquiring the line number m of the laser radar and the periodic measurement point number n in the horizontal direction; acquiring k frames of laser point cloud data measured by a laser radar; generating k images with the line number of m and the line number of n +2 according to the m, n and k frames of laser point cloud data, wherein n lines of pixel points in each image store depth information of one frame of laser point cloud data, one line of pixel points in the remaining two lines of pixel points store azimuth angle information of one frame of laser point cloud data, and the other line of pixel points store pitch angle information of one frame of laser point cloud data; and compressing the k images to obtain a compressed file. According to the method and the device, the depth value, the azimuth angle and the pitch angle of the laser point cloud data are stored in a single-channel image, and redundant data brought by the fact that the azimuth angle and the pitch angle are stored into one channel image independently are avoided.

Description

激光点云数据的处理方法、装置、存储介质及设备Laser point cloud data processing method, device, storage medium and equipment

技术领域technical field

本申请涉及图像处理技术领域,特别涉及一种激光点云数据的处理方法、装置、存储介质及设备。The present application relates to the technical field of image processing, in particular to a method, device, storage medium and equipment for processing laser point cloud data.

背景技术Background technique

随着激光雷达的发展,激光雷达的线数不断提高,激光雷达扫描得到的数据量也成指数级增加。With the development of lidar, the number of lines of lidar continues to increase, and the amount of data scanned by lidar has also increased exponentially.

当前基于图像的激光点云数据处理方法可以将一帧激光点云数据压缩为图像。对于一帧图像中的每个像素点,需要存储激光点云数据的深度值、方位角角度和俯仰角角度等多个数据,通常使用一张多通道图像或者多张单通道图像来存储这些信息,多通道图像中的每一个通道或者多张单通道图像的像素值储存对应行列位置的激光点云数据的量化后数据,如图1所示。最后对图像进行压缩达到压缩的目的。The current image-based laser point cloud data processing method can compress a frame of laser point cloud data into an image. For each pixel in a frame of image, multiple data such as depth value, azimuth angle and elevation angle of laser point cloud data need to be stored, usually using a multi-channel image or multiple single-channel images to store this information , each channel in the multi-channel image or the pixel value of multiple single-channel images stores the quantized data of the laser point cloud data corresponding to the row and column positions, as shown in Figure 1. Finally, the image is compressed to achieve the purpose of compression.

然而,上述激光点云数据的处理方法中,需要将方位角角度和俯仰角角度等信息单独存储为一个通道的图像,这就带来了额外的存储开销,使得激光点云数据在压缩时存在冗余数据。However, in the above-mentioned processing method of laser point cloud data, information such as azimuth angle and pitch angle angle needs to be stored separately as an image of one channel, which brings additional storage overhead, making laser point cloud data exist when compressed. redundant data.

发明内容Contents of the invention

本申请提供了一种激光点云数据的处理方法、装置、存储介质及设备,用于解决将方位角角度和俯仰角角度等信息单独存储为一个通道的图像时,使得激光点云数据在压缩时存在冗余数据的问题。所述技术方案如下:The present application provides a processing method, device, storage medium and equipment for laser point cloud data, which are used to solve the problem of storing laser point cloud data in a compressed There is a problem of redundant data. Described technical scheme is as follows:

一方面,提供了一种激光点云数据的处理方法,所述方法包括:On the one hand, a kind of processing method of laser point cloud data is provided, and described method comprises:

获取激光雷达的线数m和水平方向的周期测量点数n,m≥2,n≥2;Obtain the number of laser radar lines m and the number of periodic measurement points n in the horizontal direction, m≥2, n≥2;

获取所述激光雷达测得的k帧激光点云数据,k≥1;Obtain k frames of laser point cloud data measured by the lidar, k≥1;

根据m、n和所述k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,所述方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算所述激光雷达在测量对应行的激光点云数据时的水平激光发射角度,所述水平激光发射角度表示所述激光点云数据的方位角角度;另一列像素点存储的是一帧激光点云数据的俯仰角信息,所述俯仰角信息是所述激光雷达测量一帧激光点云数据时的竖直激光发射角度,所述竖直激光发射角度表示所述激光点云数据的俯仰角角度;Generate k images with m rows and n+2 columns based on m, n and the k frames of laser point cloud data, and the n columns of pixels in each image store the depth of a frame of laser point cloud data Information, one column of pixels in the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, the azimuth information is the horizontal offset angle of one column of laser point cloud data, each horizontal offset angle Used to calculate the horizontal laser emission angle of the laser radar when measuring the corresponding row of laser point cloud data, the horizontal laser emission angle represents the azimuth angle of the laser point cloud data; the other column of pixels stores a frame The pitch angle information of the laser point cloud data, the pitch angle information is the vertical laser emission angle when the lidar measures a frame of laser point cloud data, and the vertical laser emission angle represents the pitch of the laser point cloud data angle angle;

对所述k张图像进行压缩,得到压缩文件。Compress the k images to obtain a compressed file.

在一种可能的实现方式中,当所述方位角信息是第p列激光点云数据的水平偏移角度时,第i行第j列的激光点云数据的方位角角度hi,j=hi,p+(360/n)×(j-p);In a possible implementation, when the azimuth information is the horizontal offset angle of the p-th column of laser point cloud data, the azimuth angle h i,j of the i-th row and j-th column of the laser point cloud data = h i,p +(360/n)×(jp);

当所述俯仰角信息是第q列激光点云数据的竖直激光发射角度时,第i行第j列的激光点云数据的俯仰角角度vi,j=vi,qWhen the pitch angle information is the vertical laser emission angle of the qth column of laser point cloud data, the pitch angle v i, j = v i, q of the laser point cloud data of the i row and j column;

其中,1≤i≤m,1≤j≤n,1≤p≤n,1≤q≤n。Among them, 1≤i≤m, 1≤j≤n, 1≤p≤n, 1≤q≤n.

在一种可能的实现方式中,当每个像素点存储的是16位数据时,所述对所述k张图像进行压缩,得到压缩文件,包括:In a possible implementation, when each pixel stores 16-bit data, the k images are compressed to obtain a compressed file, including:

将所述k张图像中的每个16位数据拆分成高8位数据和低8位数据;Split each 16-bit data in the k images into high 8-bit data and low 8-bit data;

将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像;Combine all high 8-bit data into k high 8-bit images, combine all low 8-bit data into k low 8-bit images;

对所述k张高8位图像和所述k张低8位图像进行压缩,得到所述压缩文件。Compressing the k high 8-bit images and the k low 8-bit images to obtain the compressed file.

在一种可能的实现方式中,所述方法还包括:In a possible implementation, the method further includes:

对所述激光点云数据中的深度值进行归一化处理,得到归一化数据;Normalizing the depth value in the laser point cloud data to obtain normalized data;

对所述归一化数据进行量化处理,得到所述深度信息。Perform quantization processing on the normalized data to obtain the depth information.

在一种可能的实现方式中,所述激光雷达的线数m是16或32或64或128;In a possible implementation manner, the line number m of the lidar is 16 or 32 or 64 or 128;

所述水平方向的周期测量点数n是在所述激光雷达的控制系统中设置的数值。The number n of periodic measurement points in the horizontal direction is a value set in the control system of the laser radar.

一方面,提供了一种激光点云数据的处理装置,所述装置包括:In one aspect, a processing device for laser point cloud data is provided, the device comprising:

获取模块,用于获取激光雷达的线数m和水平方向的周期测量点数n,m≥2,n≥2;The acquisition module is used to acquire the number of laser radar lines m and the number of periodic measurement points n in the horizontal direction, m≥2, n≥2;

所述获取模块,还用于获取所述激光雷达测得的k帧激光点云数据,k≥1;The acquiring module is also used to acquire k frames of laser point cloud data measured by the lidar, where k≥1;

生成模块,用于根据m、n和所述k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,所述方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算所述激光雷达在测量对应行的激光点云数据时的水平激光发射角度,所述水平激光发射角度表示所述激光点云数据的方位角角度;另一列像素点存储的是一帧激光点云数据的俯仰角信息,所述俯仰角信息是所述激光雷达测量一帧激光点云数据时的竖直激光发射角度,所述竖直激光发射角度表示所述激光点云数据的俯仰角角度;A generation module, for generating k images with m rows and n+2 columns according to m, n and the k frames of laser point cloud data, and n columns of pixels in each image store a frame of laser For the depth information of point cloud data, one column of pixels in the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, and the azimuth information is the horizontal offset angle of one column of laser point cloud data. A horizontal offset angle is used to calculate the horizontal laser emission angle of the laser radar when measuring the laser point cloud data of the corresponding row, and the horizontal laser emission angle represents the azimuth angle of the laser point cloud data; another column of pixel points Stored is the pitch angle information of a frame of laser point cloud data, the pitch angle information is the vertical laser emission angle when the laser radar measures a frame of laser point cloud data, and the vertical laser emission angle represents the laser emission angle Pitch angle of point cloud data;

压缩模块,用于对所述图像进行压缩,得到压缩文件。The compression module is used to compress the image to obtain a compressed file.

在一种可能的实现方式中,当所述方位角信息是第p列激光点云数据的水平偏移角度时,第i行第j列的激光点云数据的方位角角度hi,j=hi,p+(360/n)×(j-p);In a possible implementation, when the azimuth information is the horizontal offset angle of the p-th column of laser point cloud data, the azimuth angle h i,j of the i-th row and j-th column of the laser point cloud data = h i,p +(360/n)×(jp);

当所述俯仰角信息是第q列激光点云数据的竖直激光发射角度时,第i行第j列的激光点云数据的俯仰角角度vi,j=vi,qWhen the pitch angle information is the vertical laser emission angle of the qth column of laser point cloud data, the pitch angle of the i-th row of the j-th column of the laser point cloud data is v i, j = v i, q ;

其中,1≤i≤m,1≤j≤n,1≤p≤n,1≤q≤n。Among them, 1≤i≤m, 1≤j≤n, 1≤p≤n, 1≤q≤n.

在一种可能的实现方式中,当每个像素点存储的是16位数据时,所述压缩模块,还用于:In a possible implementation manner, when each pixel stores 16-bit data, the compression module is also used to:

将所述k张图像中的每个16位数据拆分成高8位数据和低8位数据;Split each 16-bit data in the k images into high 8-bit data and low 8-bit data;

将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像;Combine all high 8-bit data into k high 8-bit images, combine all low 8-bit data into k low 8-bit images;

对所述k张高8位图像和所述k张低8位图像进行压缩,得到所述压缩文件。Compressing the k high 8-bit images and the k low 8-bit images to obtain the compressed file.

一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现如上所述的激光点云数据的处理方法。In one aspect, a computer-readable storage medium is provided, wherein at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the above-mentioned laser point cloud data processing method.

一方面,提供了一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现如上所述的激光点云数据的处理方法。In one aspect, a computer device is provided, the computer device includes a processor and a memory, at least one instruction is stored in the memory, the instruction is loaded and executed by the processor to realize the laser point cloud as described above How the data is processed.

本申请提供的技术方案的有益效果至少包括:The beneficial effects of the technical solution provided by the application at least include:

根据激光雷达的线数m、水平方向的周期测量点数n和k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,另一列像素点存储的是一帧激光点云数据的俯仰角信息,这样,可以将每帧激光点云数据的深度值、方位角角度和俯仰角角度存储在一张单通道图像中,避免将方位角角度和俯仰角角度单独存储为一个通道的图像时所带来的冗余数据,提高了压缩效率。According to the number of laser radar lines m, the number of periodic measurement points n in the horizontal direction, and k frames of laser point cloud data, k images with m rows and n+2 columns are generated, and n columns of pixels in each image are stored It is the depth information of a frame of laser point cloud data. One of the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, and the other column of pixels stores the pitch of a frame of laser point cloud data. In this way, the depth value, azimuth angle and elevation angle of each frame of laser point cloud data can be stored in a single-channel image, avoiding the time when the azimuth angle and elevation angle are stored separately as an image of one channel The resulting redundant data improves the compression efficiency.

对于激光雷达来说,其测量到的大部分激光点云数据都是近距离的,所以,每个像素点中存储的16位数据中低8位的数值较大,高8位的数值较小,这样,就可以将像素中存储的每个16位数据拆分成高8位数据和低8位数据,将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像,对k张高8位图像和k张低8位图像进行压缩以得到压缩文件,从而进一步减小图像的大小,提高压缩效率。For lidar, most of the laser point cloud data measured by it are close-range, so the value of the lower 8 bits of the 16-bit data stored in each pixel is larger, and the value of the upper 8 bits is smaller , so that each 16-bit data stored in a pixel can be split into high 8-bit data and low 8-bit data, all high 8-bit data can be combined into k high 8-bit images, and all low 8-bit data can be combined Form k low 8-bit images, and compress k high 8-bit images and k low 8-bit images to obtain a compressed file, thereby further reducing the image size and improving compression efficiency.

附图说明Description of drawings

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.

图1是一种激光点云数据转换为多通道图像的示意图;Figure 1 is a schematic diagram of converting laser point cloud data into a multi-channel image;

图2是一种机械旋转式激光雷达的激光发射示意图;Fig. 2 is a schematic diagram of laser emission of a mechanical rotary laser radar;

图3是一种激光点云数据投影到图像的示意图;Fig. 3 is a schematic diagram of projecting laser point cloud data to an image;

图4是一种激光点云数据的处理方法的方法流程图;Fig. 4 is a method flowchart of a processing method of laser point cloud data;

图5是一种激光点云数据映射到图像的示意图;Fig. 5 is a schematic diagram of mapping laser point cloud data to an image;

图6是一种16位数据拆分成高8位数据和低8位数据的示意图;Fig. 6 is a schematic diagram of splitting 16-bit data into high 8-bit data and low 8-bit data;

图7是一种激光点云数据的处理装置的结构框图。Fig. 7 is a structural block diagram of a laser point cloud data processing device.

具体实施方式detailed description

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the following will further describe the embodiments of the present application in detail in conjunction with the accompanying drawings.

机械旋转式激光雷达在扫描的过程中,会朝着固定的角度方向发射出激光光束,使得扫描得到的点并不是随机无序的,而在水平方向和竖直方向上按照一定的角度排列。如图2所示,激光雷达在竖直方向上发射出不同的激光光束,这些激光光束投影在图像上的不同行,代表激光光束发射出的俯仰角;激光雷达在水平方向上360度均匀旋转并发射出不同的激光光束,这些激光光束投影在图像上的不同列,代表激光光束发射出的方位角。激光雷达的发射器发射出激光光束,激光光束在接触到物体表面后会被反射回激光雷达的接收器,激光雷达根据激光光束的发射时间和接收时间的时间差差计算出物体与激光雷达的距离值,将这些信息存储在图像对应像素点中,如图3所示。根据这个特性,我们可以将机械旋转式激光雷达扫描到的一帧激光点云数据转换为一张图像,从而实现压缩激光点云数据的目的。During the scanning process, the mechanical rotating lidar emits a laser beam towards a fixed angle, so that the scanned points are not random and disordered, but are arranged at a certain angle in the horizontal and vertical directions. As shown in Figure 2, the lidar emits different laser beams in the vertical direction, and these laser beams are projected on different lines on the image, representing the pitch angle emitted by the laser beam; the lidar rotates uniformly in the horizontal direction 360 degrees And emit different laser beams, which are projected on different columns on the image, representing the azimuth angles from which the laser beams are emitted. The transmitter of the laser radar emits a laser beam, and the laser beam will be reflected back to the receiver of the laser radar after touching the surface of the object. The laser radar calculates the distance between the object and the laser radar according to the time difference between the emission time of the laser beam and the receiving time value, and store these information in the corresponding pixels of the image, as shown in Figure 3. According to this feature, we can convert a frame of laser point cloud data scanned by the mechanical rotating lidar into an image, so as to achieve the purpose of compressing the laser point cloud data.

一帧图像的每个像素点中需要存储深度值、方位角角度和俯仰角角度等数据,相关技术中将深度值映射为一张图像、将方位角角度映射为一张图像、将俯仰角角度映射为一张图像,如图1所示。然而,上述激光点云数据的处理方法中,需要将方位角角度和俯仰角角度等信息单独存储为一个通道的图像,这就带来了额外的存储开销,使得激光点云数据在压缩时存在冗余数据。Each pixel of a frame of image needs to store data such as depth value, azimuth angle and pitch angle. In related technologies, the depth value is mapped to an image, the azimuth angle is mapped to an image, and the pitch angle is mapped to It is mapped to an image, as shown in Figure 1. However, in the above-mentioned processing method of laser point cloud data, information such as azimuth angle and pitch angle angle needs to be stored separately as an image of one channel, which brings additional storage overhead, making laser point cloud data exist when compressed. redundant data.

扫描时,激光雷达在竖直方向上发射的激光光束的方向是固定不变的,激光雷达在水平方向上绕着旋转轴在固定的时间内进行360度的匀速旋转,发射的激光光束的方向可以根据扫描过程中某一个时刻的方位角角度计算得到,基于这一扫描特性,我们可以对激光雷达扫描到的方位角角度和俯仰角角度进行进一步的压缩,能够使用较小的存储空间,依然可以完成对激光点云数据的压缩解压处理,恢复激光雷达采集的激光点云数据。When scanning, the direction of the laser beam emitted by the laser radar in the vertical direction is fixed, and the laser radar rotates 360 degrees at a constant speed around the rotation axis in the horizontal direction within a fixed time, and the direction of the emitted laser beam It can be calculated according to the azimuth angle at a certain moment in the scanning process. Based on this scanning feature, we can further compress the azimuth angle and elevation angle angle scanned by the lidar, and can use a smaller storage space. It can complete the compression and decompression processing of laser point cloud data, and restore the laser point cloud data collected by lidar.

请参考图4,其示出了本申请一个实施例提供的激光点云数据的处理方法的方法流程图,该激光点云数据的处理方法可以应用于计算机设备中。该激光点云数据的处理方法,可以包括:Please refer to FIG. 4 , which shows a flow chart of a method for processing laser point cloud data provided by an embodiment of the present application. The method for processing laser point cloud data can be applied to computer equipment. The processing method of the laser point cloud data may include:

步骤401,获取激光雷达的线数m和水平方向的周期测量点数n。In step 401, the number of laser radar lines m and the number of periodic measurement points n in the horizontal direction are acquired.

本实施例中的激光雷达为机械旋转式激光雷达。The laser radar in this embodiment is a mechanical rotary laser radar.

线数m是指激光雷达在竖直方向上可以发射出m个激光光束,m≥2。其中,激光雷达的线数m可以是16或32或64或128。The number of lines m means that the laser radar can emit m laser beams in the vertical direction, m≥2. Wherein, the line number m of the lidar can be 16 or 32 or 64 or 128.

水平方向的周期测量点数n是指激光雷达在水平方向旋转360度的过程中可以发射出n个激光光束,n≥2。其中,水平方向的周期测量点数n是在激光雷达的控制系统中设置的数值,用户可以根据需求手动设置合适的数值。The number of periodic measurement points n in the horizontal direction means that the laser radar can emit n laser beams during the process of rotating 360 degrees in the horizontal direction, n≥2. Among them, the number n of periodic measurement points in the horizontal direction is a value set in the control system of the lidar, and the user can manually set an appropriate value according to the demand.

其中,m和n都是固定值,计算机设备可以对获取到的m和n进行存储,以便下次使用。Wherein, both m and n are fixed values, and the computer device can store the obtained m and n for next use.

步骤402,获取激光雷达测得的k帧激光点云数据,k≥1。Step 402, acquiring k frames of laser point cloud data measured by the lidar, where k≥1.

激光雷达可以按照一定的周期进行扫描,每次扫描结束会得到一帧激光点云数据。若k=1,在每得到一帧激光点云数据时,计算机设备都可以通过执行步骤403和404对其进行压缩;若k≥2,在缓存的激光点云数据达到k帧时,计算机设备通过执行步骤403和404对其进行压缩。The laser radar can scan according to a certain period, and a frame of laser point cloud data will be obtained at the end of each scan. If k=1, every time a frame of laser point cloud data is obtained, the computer device can compress it by performing steps 403 and 404; if k≥2, when the cached laser point cloud data reaches k frames, the computer device It is compressed by performing steps 403 and 404 .

步骤403,根据m、n和k帧激光点云数据生成行数为m、列数为n+2的k张图像,图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,该方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算激光雷达在测量对应行的激光点云数据时的水平激光发射角度,水平激光发射角度表示激光点云数据的方位角角度;另一列像素点存储的是一帧激光点云数据的俯仰角信息,俯仰角信息是激光雷达测量一帧激光点云数据时的竖直激光发射角度,竖直激光发射角度表示激光点云数据的俯仰角角度。Step 403, generate k images with m rows and n+2 columns according to m, n and k frames of laser point cloud data, and the n columns of pixels in the image store the depth information of one frame of laser point cloud data , one of the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, the azimuth information is the horizontal offset angle of one column of laser point cloud data, and each horizontal offset angle is used for Calculate the horizontal laser emission angle of the laser radar when measuring the corresponding row of laser point cloud data. The horizontal laser emission angle represents the azimuth angle of the laser point cloud data; the other column of pixels stores the pitch angle information of a frame of laser point cloud data , the pitch angle information is the vertical laser emission angle when the laser radar measures a frame of laser point cloud data, and the vertical laser emission angle represents the pitch angle of the laser point cloud data.

当获取到k帧激光点云数据时,计算机设备可以针对每帧激光点云数据生成一张图像,最终得到k张图像。其中,k张图像中的每张图像的结构都相同,下面以其中一张图像为例,对图像的像素点中存储的数据进行说明。When k frames of laser point cloud data are obtained, the computer device can generate an image for each frame of laser point cloud data, and finally k images are obtained. Wherein, each of the k images has the same structure, and the data stored in the pixels of the image will be described below by taking one of the images as an example.

一张图像的行数为m,列数为n+2,其中有n列像素点存储的是一帧激光点云数据的深度信息,一列像素点存储的一帧激光点云数据的方位角信息,一列像素点存储的是一帧激光点云数据的俯仰角信息。The number of rows of an image is m, and the number of columns is n+2. Among them, n columns of pixels store the depth information of a frame of laser point cloud data, and one column of pixels stores the azimuth information of a frame of laser point cloud data. , a column of pixels stores the pitch angle information of a frame of laser point cloud data.

第一种存储结构是,前n列像素点存储深度信息,第n+1列像素点存储方位角信息,第n+2列像素点存储俯仰角信息;或者,前n列像素点存储深度信息,第n+1列像素点存储俯仰角信息,第n+2列像素点存储方位角信息。The first storage structure is that the first n columns of pixels store depth information, the n+1th column of pixels stores azimuth information, and the n+2th column of pixels stores elevation angle information; or, the first n columns of pixels store depth information , the n+1th column of pixels stores the pitch angle information, and the n+2th column of pixels stores the azimuth angle information.

第二种存储结构是,前n列中的任意一列像素点存储方位角信息,第n+2列像素点存储俯仰角信息,剩余n列像素点存储深度信息;或者,前n列中的任意一列像素点存储俯仰角信息,第n+2列像素点存储方位角信息,剩余n列像素点存储深度信息。The second storage structure is that any pixel in the first n columns stores azimuth information, the n+2th column stores elevation angle information, and the remaining n columns store depth information; or, any of the first n columns One column of pixels stores pitch angle information, the n+2th column of pixels stores azimuth information, and the remaining n columns of pixels store depth information.

第三种存储结构是,前n列中的任意两列像素点分别存储方位角信息和俯仰角信息,剩余n列像素点存储深度信息。The third storage structure is that any two columns of pixels in the first n columns store azimuth information and elevation angle information respectively, and the remaining n columns of pixels store depth information.

(1)深度信息是对激光点云数据的深度值进行归一化处理和量化处理后得到的。具体的,对激光点云数据中的深度值进行归一化处理,得到归一化数据;对归一化数据进行量化处理,得到深度信息。其中,量化处理的目的是将归一化数据处理为16进制的数据。(1) The depth information is obtained by normalizing and quantizing the depth value of the laser point cloud data. Specifically, the depth value in the laser point cloud data is normalized to obtain normalized data; the normalized data is quantized to obtain depth information. Wherein, the purpose of the quantization processing is to process the normalized data into hexadecimal data.

在压缩时,对于一帧激光点云数据中的每个点,计算机设备先计算该点的深度值d1,将该深度值d1乘以合适的系数(归一化系数)得到距离值d2,对该距离值d2进行16位行量化处理,得到16位进制表示的距离值d3,将距离值d3存储在图像中对应行列的像素点中。During compression, for each point in a frame of laser point cloud data, the computer device first calculates the depth value d 1 of the point, and multiplies the depth value d 1 by an appropriate coefficient (normalization coefficient) to obtain the distance value d 2. Perform 16-bit row quantization processing on the distance value d 2 to obtain a distance value d 3 expressed in a 16-bit system, and store the distance value d 3 in the pixels corresponding to the rows and columns in the image.

在解压时,计算机设备先读取n列像素点中存储的距离值d3,对距离值d3进行反量化处理,得到距离值d2,将距离值d2除以合适的系数(归一化系数)得到深度值d1When decompressing, the computer device first reads the distance value d 3 stored in n columns of pixels, performs inverse quantization processing on the distance value d 3 to obtain the distance value d 2 , and divides the distance value d 2 by an appropriate coefficient (normalized coefficient) to get the depth value d 1 .

(2)方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算激光雷达在测量对应行的激光点云数据时的水平激光发射角度,水平激光发射角度表示激光点云数据的方位角角度。(2) The azimuth information is the horizontal offset angle of one column of laser point cloud data. Each horizontal offset angle is used to calculate the horizontal laser emission angle of the laser radar when measuring the corresponding row of laser point cloud data. The horizontal laser emission angle Indicates the azimuth angle of the laser point cloud data.

本实施例中,将一帧激光点云数据的行列索引记为1~m和1~n,图像的行列索引记为0~m-1和0~n+1,计算机设备可以根据这两种索引的偏差以及上文中所说的存储结构,将一帧激光点云数据的方位角信息和俯仰角信息映射到图像中队列的行列中。In this embodiment, the row and column indexes of a frame of laser point cloud data are marked as 1~m and 1~n, and the row and column indexes of the image are marked as 0~m-1 and 0~n+1, and the computer device can be based on these two The deviation of the index and the storage structure mentioned above map the azimuth information and elevation angle information of a frame of laser point cloud data into the ranks of the queue in the image.

在压缩时,计算机设备先找到激光雷达在扫描过程中任一时刻扫描到的一列点,再获取这一列中每个点的方位角角度,记为第p列激光点云数据的方位角角度,最后将每个方位角角度量化为16进制表示的水平偏移角度hi,p,得到一列水平偏移角hi,p(i=1,2...m)。When compressing, the computer equipment first finds a column of points scanned by the laser radar at any time during the scanning process, and then obtains the azimuth angle of each point in this column, which is recorded as the azimuth angle of the p-th column of laser point cloud data, Finally, each azimuth angle is quantized into a horizontal offset angle h i,p expressed in hexadecimal notation to obtain a list of horizontal offset angles h i,p (i=1, 2...m).

在解压时,当方位角信息中存储的是第p列激光点云数据的水平偏移角度时,第i行第j列的激光点云数据的方位角角度hi,j=hi,p+(360/n)×(j-p),1≤i≤m,1≤j≤n,1≤p≤n。其中,360/n表示激光雷达每次扫描的偏移角度。When decompressing, when the horizontal offset angle of the p-th column of laser point cloud data is stored in the azimuth information, the azimuth angle h i,j of the i-th row and j-th column of the laser point cloud data =h i,p +(360/n)×(jp), 1≤i≤m, 1≤j≤n, 1≤p≤n. Among them, 360/n represents the offset angle of each scan of the lidar.

假设p=1,计算机设备读取第1列激光点云数据的水平偏移角度h1,1~hm,1,对于点(i,j)(i=1,2...,m,j=1,2...,n),其方位角角度hi,j=hi,1+(360/n)×(j-1)。假设p=2,计算机设备读取第2列激光点云数据的水平偏移角度h1,2~hm,2,对于点(i,j)(i=1,2...,m,j=1,2...,n),其方位角角度hi,j=hi,2+(360/n)×(j-2)。Assuming p=1, the computer equipment reads the horizontal offset angle h 1,1 ~h m,1 of the first column of laser point cloud data, for point (i, j) (i=1, 2..., m, j=1,2...,n), and its azimuth angle h i,j =h i,1 +(360/n)×(j-1). Assuming p=2, the computer equipment reads the horizontal offset angle h 1,2 ~h m,2 of the second column of laser point cloud data, for point (i, j) (i=1, 2..., m, j=1,2...,n), and its azimuth angle h i,j =h i,2 +(360/n)×(j-2).

(3)俯仰角信息是激光雷达测量一帧激光点云数据时的竖直激光发射角度,竖直激光发射角度表示激光点云数据的俯仰角角度。(3) Pitch angle information is the vertical laser emission angle when the laser radar measures a frame of laser point cloud data, and the vertical laser emission angle represents the pitch angle of the laser point cloud data.

在压缩时,计算机设备先找到激光雷达在扫描过程中任一时刻扫描到的一列点,再获取这一列中每个点的俯仰角角度,记为第q列激光点云数据的俯仰角角度,最后将每个俯仰角角度量化为16进制表示的竖直激光发射角度vi,q,得到一列竖直激光发射角度vi,q(i=1,2...m)。When compressing, the computer equipment first finds a column of points scanned by the lidar at any time during the scanning process, and then obtains the pitch angle of each point in this column, which is recorded as the pitch angle of the qth column of laser point cloud data, Finally, each pitch angle is quantized into a vertical laser emission angle v i,q expressed in hexadecimal to obtain a list of vertical laser emission angles v i,q (i=1, 2...m).

在解压时,当俯仰角信息是第q列激光点云数据的竖直激光发射角度时,第i行第j列的激光点云数据的俯仰角角度vi,j=vi,q;其中,1≤i≤m,1≤j≤n,1≤q≤n。When decompressing, when the pitch angle information is the vertical laser emission angle of the qth column of laser point cloud data, the pitch angle angle v i,j of the laser point cloud data of the i-th row j column =v i,q ; where , 1≤i≤m, 1≤j≤n, 1≤q≤n.

假设q=1,则计算机设备读取第1列激光点云数据的竖直激光发射角度v1,1~vm,1,由于每一行点的竖直激光发射角度都相同,即对于点(i,j)(i=1,2...,m,j=1,2...,n),其俯仰角角度vi,j=vi,1。假设q=3,则计算机设备读取第3列激光点云数据的竖直激光发射角度v1,3~vm,3,由于每一行点的竖直激光发射角度都相同,即对于点(i,j)(i=1,2...,m,j=1,2...,n),其俯仰角角度vi,j=vi,3Assuming q=1, the computer equipment reads the vertical laser emission angles v 1,1 ~v m,1 of the first column of laser point cloud data. Since the vertical laser emission angles of each row of points are the same, that is, for points ( i, j) (i=1, 2..., m, j=1, 2..., n), the pitch angle v i,j =v i,1 . Assuming q=3, the computer equipment reads the vertical laser emission angles v 1,3 ~v m,3 of the third column of laser point cloud data. Since the vertical laser emission angles of each row of points are the same, that is, for points ( i, j) (i=1, 2..., m, j=1, 2..., n), the pitch angle v i,j =v i,3 .

以第一种存储结构为例,当p=1且q=1时,计算机设备可以将一帧激光点云数据中每个激光点云数据的深度信息di,j(i=1,2...,m,j=1,2...,n)存储到图像中的0~n-1列像素点中(即di,j存储在像素点(i-1,j-1)中,比如,d1,1存储在像素点(0,0)中,d1,2存储在像素点(0,1)中,d2,1存储在像素点(1,0)中等等),将水平偏移角hi,1(i=1,2...m)存储到第n+1列像素点中,将竖直激光发射角度vi,1(i=1,2...m)存储到第n+2列像素点中,如图5所示;也可以将竖直激光发射角度vi,1(i=1,2...m)存储到第n+1列像素点中,将水平偏移角hi,1(i=1,2...m)存储到第n+2列像素点中。这两列数值在顺序上都与第一列点的所在行一一对应。Taking the first storage structure as an example, when p=1 and q=1, the computer device can store the depth information d i,j (i=1, 2. .., m, j=1, 2..., n) are stored in the 0~n-1 columns of pixels in the image (that is, d i, j are stored in the pixels (i-1, j-1) , for example, d 1,1 is stored in pixel (0,0), d 1,2 is stored in pixel (0,1), d 2,1 is stored in pixel (1,0), etc.), Store the horizontal offset angle h i,1 (i=1, 2...m) in the n+1th column of pixels, and store the vertical laser emission angle v i,1 (i=1, 2... m) stored in the n+2th column of pixels, as shown in Figure 5; the vertical laser emission angle v i,1 (i=1, 2...m) can also be stored in the n+1th column of pixels In the point, the horizontal offset angle h i,1 (i=1, 2...m) is stored in the n+2th column of pixel points. The values in these two columns are in one-to-one correspondence with the rows where the points in the first column are located.

步骤404,对k张图像进行压缩,得到压缩文件。Step 404, compress the k images to obtain a compressed file.

当前激光雷达的有效探测距离约为200米左右,实际使用的有效距离点在100米以内,我们使用16进制的数据来量化表示深度值,这样可以使用厘米级别的精度来量化距离值(0~20000cm对应0~65535)。然而,对于激光雷达而言,其测量到的大部分激光点云数据都是近距离的,所以,每个像素点中存储的16位数据中低8位的数值较大,高8位的数值较小,可以将像素中存储的每个16位数据拆分成高8位数据和低8位数据,如图6所示,然后将所有高8位数据和所有低8位数据分别组合成一张8位单通道图像,使用两张8位单通道图像分别存储高低位的数据。这样,我们可以使用两张8位单通道图像来表示一张16位单通道图像,进一步减少压缩图像的大小。The current effective detection distance of lidar is about 200 meters, and the actual effective distance point used is within 100 meters. We use hexadecimal data to quantify the depth value, so that the distance value can be quantified with centimeter-level accuracy (0 ~20000cm corresponds to 0~65535). However, for lidar, most of the laser point cloud data measured by it are close-range, so the value of the lower 8 bits of the 16-bit data stored in each pixel is larger, and the value of the upper 8 bits is larger. Smaller, each 16-bit data stored in the pixel can be split into high 8-bit data and low 8-bit data, as shown in Figure 6, and then all high 8-bit data and all low 8-bit data are combined into one 8-bit single-channel image, using two 8-bit single-channel images to store high and low bit data respectively. In this way, we can use two 8-bit single-channel images to represent a 16-bit single-channel image, further reducing the size of the compressed image.

具体的,当每个像素点存储的是16位数据时,对k张图像进行压缩,得到压缩文件,可以包括:将k张图像中的每个16位数据拆分成高8位数据和低8位数据;将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像;对k张高8位图像和k张低8位图像进行压缩,得到压缩文件。Specifically, when each pixel stores 16-bit data, compressing k images to obtain a compressed file may include: splitting each 16-bit data in the k images into high 8-bit data and low 8-bit data; combine all high 8-bit data into k high 8-bit images, combine all low 8-bit data into k low 8-bit images; compress k high 8-bit images and k low 8-bit images , to get the compressed file.

在压缩时,计算机设备使用opencv的imencode()函数对k张高8位图像和k张低8位进行压缩,得到二进制数据流压缩文件,并进行文件打包和输出。When compressing, the computer equipment uses the imencode() function of opencv to compress k high 8-bit images and k low 8-bit images to obtain binary data stream compressed files, and then pack and output the files.

在解压时,当每个像素点存储的是16位数据时,对压缩文件进行解压,得到行数为m、列数为n+2的k张图像,可以包括:对压缩文件进行解压,得到k张高8位图像和k张低8位图像,高8位图像的每个像素点中存储的是16位数据中的高8位数据,低8位图像中的每个像素点中存储的是16位数据中的低8位数据;将每组高8位图像和低8位图像拼接成16位图像,得到行数为m、列数为n+2的k张图像。When decompressing, when each pixel stores 16-bit data, decompress the compressed file to obtain k images with the number of rows m and the number of columns n+2, which may include: decompressing the compressed file to obtain k high 8-bit images and k low 8-bit images, each pixel of the high 8-bit image stores the high 8-bit data of the 16-bit data, and each pixel of the low 8-bit image stores It is the lower 8-bit data in the 16-bit data; the upper 8-bit image and the lower 8-bit image of each group are spliced into a 16-bit image to obtain k images with the number of rows m and the number of columns n+2.

在对压缩文件进行解压时,计算机设备使用opencv的imencode()函数对压缩文件进行解压,得到k张高8位单通道图像和k张低8位单通道图像。然后,计算机设备将一组高8位单通道图像和低8位单通道图像中,对应同一位置的两个像素点中存储的高8位数据和低8位数据拼接成16位数据,得到行数为m、列数为n+2、像素点的内容为16位数据的一张图像,其中,m≥2,n≥2。When decompressing the compressed file, the computer device uses the imencode() function of opencv to decompress the compressed file to obtain k high 8-bit single-channel images and k low 8-bit single-channel images. Then, the computer equipment splices the high 8-bit data and low 8-bit data stored in two pixels corresponding to the same position in a set of high 8-bit single-channel images and low 8-bit single-channel images into 16-bit data to obtain row The number is m, the number of columns is n+2, and the pixel content is an image of 16-bit data, wherein, m≥2, n≥2.

计算机设备可以根据深度值、方位角角度和俯仰角角度计算激光点云数据在笛卡尔坐标系下的坐标值xyz,得到解压后的激光点云数据。The computer device can calculate the coordinate value xyz of the laser point cloud data in the Cartesian coordinate system according to the depth value, azimuth angle and pitch angle angle, and obtain the decompressed laser point cloud data.

综上所述,本申请实施例提供的激光点云数据的处理方法,根据激光雷达的线数m、水平方向的周期测量点数n和k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,另一列像素点存储的是一帧激光点云数据的俯仰角信息,这样,可以将每帧激光点云数据的深度值、方位角角度和俯仰角角度存储在一张单通道图像中,避免将方位角角度和俯仰角角度单独存储为一个通道的图像时所带来的冗余数据,提高了压缩效率。In summary, the laser point cloud data processing method provided by the embodiment of the present application generates m rows and columns according to the laser radar line number m, the periodic measurement points n in the horizontal direction, and k frames of laser point cloud data. For n+2 k images, the n columns of pixels in each image store the depth information of a frame of laser point cloud data, and one column of pixels in the remaining two columns of pixels stores the depth information of a frame of laser point cloud data Azimuth angle information, another column of pixels stores the pitch angle information of a frame of laser point cloud data, so that the depth value, azimuth angle, and pitch angle angle of each frame of laser point cloud data can be stored in a single-channel image In this method, redundant data caused by storing the azimuth angle and elevation angle separately as an image of one channel is avoided, and the compression efficiency is improved.

对于激光雷达来说,其测量到的大部分激光点云数据都是近距离的,所以,每个像素点中存储的16位数据中低8位的数值较大,高8位的数值较小,这样,就可以将像素中存储的每个16位数据拆分成高8位数据和低8位数据,将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像,对k张高8位图像和k张低8位图像进行压缩以得到压缩文件,从而进一步减小图像的大小,提高压缩效率。For lidar, most of the laser point cloud data measured by it are close-range, so the value of the lower 8 bits of the 16-bit data stored in each pixel is larger, and the value of the upper 8 bits is smaller , so that each 16-bit data stored in a pixel can be split into high 8-bit data and low 8-bit data, all high 8-bit data can be combined into k high 8-bit images, and all low 8-bit data can be combined Form k low 8-bit images, and compress k high 8-bit images and k low 8-bit images to obtain a compressed file, thereby further reducing the image size and improving compression efficiency.

请参考图7,其示出了本申请一个实施例提供的激光点云数据的处理装置的结构框图,该激光点云数据的处理装置可以应用于计算机设备中。该激光点云数据的处理装置,可以包括:Please refer to FIG. 7 , which shows a structural block diagram of an apparatus for processing laser point cloud data provided by an embodiment of the present application. The apparatus for processing laser point cloud data can be applied to computer equipment. The processing device of the laser point cloud data may include:

获取模块710,用于获取激光雷达的线数m和水平方向的周期测量点数n,m≥2,n≥2;The obtaining module 710 is used to obtain the number of laser radar lines m and the number of periodic measurement points n in the horizontal direction, m≥2, n≥2;

获取模块710,还用于获取激光雷达测得的k帧激光点云数据,k≥1;The acquisition module 710 is also used to acquire k frames of laser point cloud data measured by the lidar, k≥1;

生成模块720,用于根据m、n和k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算激光雷达在测量对应行的激光点云数据时的水平激光发射角度,水平激光发射角度表示激光点云数据的方位角角度;另一列像素点存储的是一帧激光点云数据的俯仰角信息,俯仰角信息是激光雷达测量一帧激光点云数据时的竖直激光发射角度,竖直激光发射角度表示激光点云数据的俯仰角角度;The generation module 720 is used to generate k images with m rows and n+2 columns according to m, n and k frames of laser point cloud data, and the n columns of pixels in each image store a frame of laser points Depth information of cloud data, one of the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, and the azimuth information is the horizontal offset angle of one column of laser point cloud data, each horizontal offset The shift angle is used to calculate the horizontal laser emission angle of the laser radar when measuring the corresponding row of laser point cloud data. The horizontal laser emission angle represents the azimuth angle of the laser point cloud data; the other column of pixels stores a frame of laser point cloud data The pitch angle information, the pitch angle information is the vertical laser emission angle when the laser radar measures a frame of laser point cloud data, and the vertical laser emission angle represents the pitch angle of the laser point cloud data;

压缩模块730,用于对k张图像进行压缩,得到压缩文件。The compression module 730 is configured to compress the k images to obtain a compressed file.

在一个可选的实施例中,当方位角信息是第p列激光点云数据的水平偏移角度时,第i行第j列的激光点云数据的方位角角度hi,j=hi,p+(360/n)×(j-p);In an optional embodiment, when the azimuth information is the horizontal offset angle of the p-th column of laser point cloud data, the azimuth angle h i,j of the i-th row and j-th column of the laser point cloud data = h i ,p +(360/n)×(jp);

当俯仰角信息是第q列激光点云数据的竖直激光发射角度时,第i行第j列的激光点云数据的俯仰角角度vi,j=vi,qWhen the pitch angle information is the vertical laser emission angle of the qth column of laser point cloud data, the pitch angle of the i-th row of the j-th column of the laser point cloud data is v i, j = v i, q ;

其中,1≤i≤m,1≤j≤n,1≤p≤n,1≤q≤n。Among them, 1≤i≤m, 1≤j≤n, 1≤p≤n, 1≤q≤n.

在一个可选的实施例中,当每个像素点存储的是16位数据时,压缩模块730,还用于:In an optional embodiment, when each pixel stores 16-bit data, the compression module 730 is also used to:

将k张图像中的每个16位数据拆分成高8位数据和低8位数据;Split each 16-bit data in k images into high 8-bit data and low 8-bit data;

将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像;Combine all high 8-bit data into k high 8-bit images, combine all low 8-bit data into k low 8-bit images;

对k张高8位图像和k张低8位图像进行压缩,得到压缩文件。Compress k high 8-bit images and k low 8-bit images to obtain a compressed file.

在一个可选的实施例中,生成模块720,还用于:In an optional embodiment, the generation module 720 is also used for:

对激光点云数据中的深度值进行归一化处理,得到归一化数据;Normalize the depth value in the laser point cloud data to obtain normalized data;

对归一化数据进行量化处理,得到深度信息。Quantify the normalized data to obtain depth information.

在一个可选的实施例中,激光雷达的线数m是16或32或64或128;水平方向的周期测量点数n是在激光雷达的控制系统中设置的数值。In an optional embodiment, the number m of laser radar lines is 16 or 32 or 64 or 128; the number n of periodic measurement points in the horizontal direction is a value set in the control system of the laser radar.

综上所述,本申请实施例提供的激光点云数据的处理装置,根据激光雷达的线数m、水平方向的周期测量点数n和k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,另一列像素点存储的是一帧激光点云数据的俯仰角信息,这样,可以将每帧激光点云数据的深度值、方位角角度和俯仰角角度存储在一张单通道图像中,避免将方位角角度和俯仰角角度单独存储为一个通道的图像时所带来的冗余数据,提高了压缩效率。To sum up, the laser point cloud data processing device provided by the embodiment of the present application generates m rows and columns according to the laser radar line number m, the periodic measurement points n in the horizontal direction, and k frames of laser point cloud data. For n+2 k images, the n columns of pixels in each image store the depth information of a frame of laser point cloud data, and one column of pixels in the remaining two columns of pixels stores the depth information of a frame of laser point cloud data Azimuth angle information, another column of pixels stores the pitch angle information of a frame of laser point cloud data, so that the depth value, azimuth angle, and pitch angle angle of each frame of laser point cloud data can be stored in a single-channel image In this method, the redundant data caused by storing the azimuth angle and elevation angle separately as an image of one channel is avoided, and the compression efficiency is improved.

对于激光雷达来说,其测量到的大部分激光点云数据都是近距离的,所以,每个像素点中存储的16位数据中低8位的数值较大,高8位的数值较小,这样,就可以将像素中存储的每个16位数据拆分成高8位数据和低8位数据,将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像,对k张高8位图像和k张低8位图像进行压缩以得到压缩文件,从而进一步减小图像的大小,提高压缩效率。For lidar, most of the laser point cloud data measured by it are close-range, so the value of the lower 8 bits of the 16-bit data stored in each pixel is larger, and the value of the upper 8 bits is smaller , so that each 16-bit data stored in a pixel can be split into high 8-bit data and low 8-bit data, all high 8-bit data can be combined into k high 8-bit images, and all low 8-bit data can be combined Form k low 8-bit images, and compress k high 8-bit images and k low 8-bit images to obtain a compressed file, thereby further reducing the image size and improving compression efficiency.

本申请一个实施例提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现如上所述的激光点云数据的处理方法。An embodiment of the present application provides a computer-readable storage medium, at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the above-mentioned laser point cloud data processing method .

本申请一个实施例提供了一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现如上所述的激光点云数据的处理方法。An embodiment of the present application provides a computer device, the computer device includes a processor and a memory, at least one instruction is stored in the memory, and the instruction is loaded and executed by the processor to realize the above-mentioned laser The processing method of point cloud data.

本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above embodiments can be completed by hardware, and can also be completed by instructing related hardware through a program. The program can be stored in a computer-readable storage medium. The above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

以上所述并不用以限制本申请实施例,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。The above description is not intended to limit the embodiments of the present application, and any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the embodiments of the present application shall be included within the scope of protection of the embodiments of the present application.

Claims (10)

1.一种激光点云数据的处理方法,其特征在于,所述方法包括:1. a processing method of laser point cloud data, is characterized in that, described method comprises: 获取激光雷达的线数m和水平方向的周期测量点数n,m≥2,n≥2;Obtain the number of laser radar lines m and the number of periodic measurement points n in the horizontal direction, m≥2, n≥2; 获取所述激光雷达测得的k帧激光点云数据,k≥1;Obtain k frames of laser point cloud data measured by the lidar, k≥1; 根据m、n和所述k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,所述方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算所述激光雷达在测量对应行的激光点云数据时的水平激光发射角度,所述水平激光发射角度表示所述激光点云数据的方位角角度;另一列像素点存储的是一帧激光点云数据的俯仰角信息,所述俯仰角信息是所述激光雷达测量一帧激光点云数据时的竖直激光发射角度,所述竖直激光发射角度表示所述激光点云数据的俯仰角角度;Generate k images with m rows and n+2 columns based on m, n and the k frames of laser point cloud data, and the n columns of pixels in each image store the depth of a frame of laser point cloud data Information, one column of pixels in the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, the azimuth information is the horizontal offset angle of one column of laser point cloud data, each horizontal offset angle Used to calculate the horizontal laser emission angle of the laser radar when measuring the corresponding row of laser point cloud data, the horizontal laser emission angle represents the azimuth angle of the laser point cloud data; the other column of pixels stores a frame The pitch angle information of the laser point cloud data, the pitch angle information is the vertical laser emission angle when the lidar measures a frame of laser point cloud data, and the vertical laser emission angle represents the pitch of the laser point cloud data angle angle; 对所述k张图像进行压缩,得到压缩文件。Compress the k images to obtain a compressed file. 2.根据权利要求1所述的激光点云数据的处理方法,其特征在于,2. the processing method of laser point cloud data according to claim 1, is characterized in that, 当所述方位角信息是第p列激光点云数据的水平偏移角度时,第i行第j列的激光点云数据的方位角角度hi,j=hi,p+(360/n)×(j-p);When the azimuth angle information is the horizontal offset angle of the p-th column of laser point cloud data, the azimuth angle h i, j = h i, p + (360/n )×(jp); 当所述俯仰角信息是第q列激光点云数据的竖直激光发射角度时,第i行第j列的激光点云数据的俯仰角角度vi,j=vi,qWhen the pitch angle information is the vertical laser emission angle of the qth column of laser point cloud data, the pitch angle v i, j =v i, q of the laser point cloud data of the i row and j column; 其中,1≤i≤m,1≤j≤n,1≤p≤n,1≤q≤n。Among them, 1≤i≤m, 1≤j≤n, 1≤p≤n, 1≤q≤n. 3.根据权利要求1所述的激光点云数据的处理方法,其特征在于,当每个像素点存储的是16位数据时,所述对所述k张图像进行压缩,得到压缩文件,包括:3. the processing method of laser point cloud data according to claim 1, is characterized in that, when what each pixel stores is 16-bit data, described k image is compressed, obtains compressed file, comprises : 将所述k张图像中的每个16位数据拆分成高8位数据和低8位数据;Split each 16-bit data in the k images into high 8-bit data and low 8-bit data; 将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像;Combine all high 8-bit data into k high 8-bit images, combine all low 8-bit data into k low 8-bit images; 对所述k张高8位图像和所述k张低8位图像进行压缩,得到所述压缩文件。Compressing the k high 8-bit images and the k low 8-bit images to obtain the compressed file. 4.根据权利要求1所述的激光点云数据的处理方法,其特征在于,所述方法还包括:4. the processing method of laser point cloud data according to claim 1, is characterized in that, described method also comprises: 对所述激光点云数据中的深度值进行归一化处理,得到归一化数据;Normalizing the depth value in the laser point cloud data to obtain normalized data; 对所述归一化数据进行量化处理,得到所述深度信息。Perform quantization processing on the normalized data to obtain the depth information. 5.根据权利要求1至4中任一项所述的激光点云数据的处理方法,其特征在于,5. according to the processing method of the laser point cloud data described in any one in claim 1 to 4, it is characterized in that, 所述激光雷达的线数m是16或32或64或128;The line number m of the lidar is 16 or 32 or 64 or 128; 所述水平方向的周期测量点数n是在所述激光雷达的控制系统中设置的数值。The number n of periodic measurement points in the horizontal direction is a value set in the control system of the laser radar. 6.一种激光点云数据的处理装置,其特征在于,所述装置包括:6. A processing device for laser point cloud data, characterized in that the device comprises: 获取模块,用于获取激光雷达的线数m和水平方向的周期测量点数n,m≥2,n≥2;The acquisition module is used to acquire the number of laser radar lines m and the number of periodic measurement points n in the horizontal direction, m≥2, n≥2; 所述获取模块,还用于获取所述激光雷达测得的k帧激光点云数据,k≥1;The acquiring module is also used to acquire k frames of laser point cloud data measured by the lidar, where k≥1; 生成模块,用于根据m、n和所述k帧激光点云数据生成行数为m、列数为n+2的k张图像,每张图像中的n列像素点存储的是一帧激光点云数据的深度信息,剩余两列像素点中的一列像素点存储的是一帧激光点云数据的方位角信息,所述方位角信息是其中一列激光点云数据的水平偏移角度,每个水平偏移角度用于计算所述激光雷达在测量对应行的激光点云数据时的水平激光发射角度,所述水平激光发射角度表示所述激光点云数据的方位角角度;另一列像素点存储的是一帧激光点云数据的俯仰角信息,所述俯仰角信息是所述激光雷达测量一帧激光点云数据时的竖直激光发射角度,所述竖直激光发射角度表示所述激光点云数据的俯仰角角度;A generation module, for generating k images with m rows and n+2 columns according to m, n and the k frames of laser point cloud data, and n columns of pixels in each image store a frame of laser For the depth information of point cloud data, one column of pixels in the remaining two columns of pixels stores the azimuth information of a frame of laser point cloud data, and the azimuth information is the horizontal offset angle of one column of laser point cloud data. A horizontal offset angle is used to calculate the horizontal laser emission angle of the laser radar when measuring the laser point cloud data of the corresponding row, and the horizontal laser emission angle represents the azimuth angle of the laser point cloud data; another column of pixel points Stored is the pitch angle information of a frame of laser point cloud data, the pitch angle information is the vertical laser emission angle when the laser radar measures a frame of laser point cloud data, and the vertical laser emission angle represents the laser emission angle Pitch angle of point cloud data; 压缩模块,用于对所述k张图像进行压缩,得到压缩文件。A compression module, configured to compress the k images to obtain a compressed file. 7.根据权利要求6所述的激光点云数据的处理装置,其特征在于,7. the processing device of laser point cloud data according to claim 6, is characterized in that, 当所述方位角信息是第p列激光点云数据的水平偏移角度时,第i行第j列的激光点云数据的方位角角度hi,j=hi,p+(360/n)×(j-p);When the azimuth angle information is the horizontal offset angle of the p-th column of laser point cloud data, the azimuth angle h i, j = h i, p + (360/n )×(jp); 当所述俯仰角信息是第q列激光点云数据的竖直激光发射角度时,第i行第j列的激光点云数据的俯仰角角度vi,j=vi,qWhen the pitch angle information is the vertical laser emission angle of the qth column of laser point cloud data, the pitch angle v i, j =v i, q of the laser point cloud data of the i row and j column; 其中,1≤i≤m,1≤j≤n,1≤p≤n,1≤q≤n。Among them, 1≤i≤m, 1≤j≤n, 1≤p≤n, 1≤q≤n. 8.根据权利要求6所述的激光点云数据的处理装置,其特征在于,当每个像素点存储的是16位数据时,所述压缩模块,还用于:8. The processing device of laser point cloud data according to claim 6, characterized in that, when each pixel point storage is 16-bit data, the compression module is also used for: 将所述k张图像中的每个16位数据拆分成高8位数据和低8位数据;Split each 16-bit data in the k images into high 8-bit data and low 8-bit data; 将所有高8位数据组合成k张高8位图像,将所有低8位数据组合成k张低8位图像;Combine all high 8-bit data into k high 8-bit images, combine all low 8-bit data into k low 8-bit images; 对所述k张高8位图像和所述k张低8位图像进行压缩,得到所述压缩文件。Compressing the k high 8-bit images and the k low 8-bit images to obtain the compressed file. 9.一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现如权利要求1至5中任一项所述的激光点云数据的处理方法。9. A computer-readable storage medium, characterized in that at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement any one of claims 1 to 5. The processing method of laser point cloud data. 10.一种计算机设备,其特征在于,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现如权利要求1至5中任一项所述的激光点云数据的处理方法。10. A computer device, characterized in that, the computer device comprises a processor and a memory, at least one instruction is stored in the memory, and the instruction is loaded and executed by the processor to implement claims 1 to 5 The processing method of the laser point cloud data described in any one.
CN202211313715.3A 2022-10-25 2022-10-25 Processing method and device of laser point cloud data, storage medium and equipment Pending CN115586541A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211313715.3A CN115586541A (en) 2022-10-25 2022-10-25 Processing method and device of laser point cloud data, storage medium and equipment
AU2023258364A AU2023258364B8 (en) 2022-10-25 2023-03-08 Method and apparatus for processing laser point cloud data, storage medium and device
PCT/CN2023/080245 WO2024087454A1 (en) 2022-10-25 2023-03-08 Laser point cloud data processing method and apparatus, storage medium, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211313715.3A CN115586541A (en) 2022-10-25 2022-10-25 Processing method and device of laser point cloud data, storage medium and equipment

Publications (1)

Publication Number Publication Date
CN115586541A true CN115586541A (en) 2023-01-10

Family

ID=84781088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211313715.3A Pending CN115586541A (en) 2022-10-25 2022-10-25 Processing method and device of laser point cloud data, storage medium and equipment

Country Status (3)

Country Link
CN (1) CN115586541A (en)
AU (1) AU2023258364B8 (en)
WO (1) WO2024087454A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116758174A (en) * 2023-08-16 2023-09-15 北京易控智驾科技有限公司 Compression and transmission method, device, electronic equipment and storage medium of laser point cloud data
CN117607829A (en) * 2023-12-01 2024-02-27 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Ordered reconstruction method of lidar point cloud and computer-readable storage medium
WO2024087454A1 (en) * 2022-10-25 2024-05-02 上海易澳科技有限公司 Laser point cloud data processing method and apparatus, storage medium, and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102770031B1 (en) * 2024-09-23 2025-02-20 (주)엠폴 Method for interpolating lidar sensor data and computing device performing the same
KR102770032B1 (en) * 2024-09-23 2025-02-20 (주)엠폴 Method for interpolating lidar sensor data and computing device performing the same
CN119199821B (en) * 2024-11-29 2025-03-25 中南大学 A real-time positioning and mapping method based on 4D millimeter wave radar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428372A (en) * 2019-07-08 2019-11-08 希格斯动力科技(珠海)有限公司 Depth data and 2D laser data fusion method and device, storage medium
CN111369630A (en) * 2020-02-27 2020-07-03 河海大学常州校区 A method of multi-line lidar and camera calibration
CN111929699A (en) * 2020-07-21 2020-11-13 北京建筑大学 Laser radar inertial navigation odometer considering dynamic obstacles and mapping method and system
US20200394822A1 (en) * 2019-06-11 2020-12-17 Tencent America LLC Method and apparatus for point cloud compression
US20210356600A1 (en) * 2020-05-13 2021-11-18 Luminar, Llc Lidar system with high-resolution scan pattern
CN115042797A (en) * 2022-06-13 2022-09-13 天津主线科技有限公司 Trailer pose estimation method, device and equipment, storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10796457B2 (en) * 2018-06-26 2020-10-06 Intel Corporation Image-based compression of LIDAR sensor data with point re-ordering
WO2020162542A1 (en) * 2019-02-06 2020-08-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
US11818361B2 (en) * 2019-03-14 2023-11-14 Nippon Telegraph And Telephone Corporation Data compression apparatus, data compression method, and program
AU2020202249A1 (en) * 2020-03-30 2021-10-14 Anditi Pty Ltd Feature extraction from mobile lidar and imagery data
WO2021199822A1 (en) * 2020-03-30 2021-10-07 富士フイルム株式会社 Point cloud data processing device, point cloud data processing method, and program
US12044779B2 (en) * 2020-12-08 2024-07-23 Argo AI, LLC Methods and system for analyzing dynamic lidar point cloud data
EP4020396A1 (en) * 2020-12-23 2022-06-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus of entropy encoding/decoding point cloud geometry data captured by a spinning sensors head
CN118368441A (en) * 2021-02-08 2024-07-19 荣耀终端有限公司 Two-dimensional regularized plane projection and encoding and decoding method for large-scale point cloud
CN115035206B (en) * 2022-05-09 2024-03-29 浙江华睿科技股份有限公司 Compression method, decompression method and related device of laser point cloud
CN115586541A (en) * 2022-10-25 2023-01-10 上海易澳科技有限公司 Processing method and device of laser point cloud data, storage medium and equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200394822A1 (en) * 2019-06-11 2020-12-17 Tencent America LLC Method and apparatus for point cloud compression
CN110428372A (en) * 2019-07-08 2019-11-08 希格斯动力科技(珠海)有限公司 Depth data and 2D laser data fusion method and device, storage medium
CN111369630A (en) * 2020-02-27 2020-07-03 河海大学常州校区 A method of multi-line lidar and camera calibration
US20210356600A1 (en) * 2020-05-13 2021-11-18 Luminar, Llc Lidar system with high-resolution scan pattern
CN111929699A (en) * 2020-07-21 2020-11-13 北京建筑大学 Laser radar inertial navigation odometer considering dynamic obstacles and mapping method and system
CN115042797A (en) * 2022-06-13 2022-09-13 天津主线科技有限公司 Trailer pose estimation method, device and equipment, storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087454A1 (en) * 2022-10-25 2024-05-02 上海易澳科技有限公司 Laser point cloud data processing method and apparatus, storage medium, and device
CN116758174A (en) * 2023-08-16 2023-09-15 北京易控智驾科技有限公司 Compression and transmission method, device, electronic equipment and storage medium of laser point cloud data
CN116758174B (en) * 2023-08-16 2023-11-10 北京易控智驾科技有限公司 Compression and transmission method, device and electronic equipment of lidar point cloud data
CN117607829A (en) * 2023-12-01 2024-02-27 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Ordered reconstruction method of lidar point cloud and computer-readable storage medium

Also Published As

Publication number Publication date
AU2023258364B2 (en) 2024-07-18
AU2023258364A1 (en) 2024-05-09
WO2024087454A1 (en) 2024-05-02
AU2023258364B8 (en) 2024-11-14

Similar Documents

Publication Publication Date Title
CN115586541A (en) Processing method and device of laser point cloud data, storage medium and equipment
US20210312670A1 (en) Predictive Coding for Point Cloud Compression
EP2820566B1 (en) Methods and apparatus for point cloud data management
KR20220025157A (en) Point cloud geometry compression
JP7060157B2 (en) Data compression device, data compression method, and program
CN114503440A (en) Angle mode of tree-based point cloud coding and decoding
US8812615B2 (en) Remote control of a host computer
CN111402380B (en) GPU compressed texture processing method
US20140285626A1 (en) Representation and Compression of Depth Data
CN113170140A (en) Bit-plane encoding of data arrays
CN116405574A (en) Remote medical image optimization communication method and system
WO2022257528A1 (en) Point cloud attribute prediction method and apparatus, and related device
CN111736114B (en) Method for improving data transmission speed of laser radar and laser radar
CN1632479A (en) A Lossless Compression Method of Hyperspectral Image Based on 3D Prediction
US10735766B2 (en) Point cloud auxiliary information coding
US20230105257A1 (en) Compressing lidar range images
JP2019113553A (en) Three-dimensional laser beam scanner
CN116758174A (en) Compression and transmission method, device, electronic equipment and storage medium of laser point cloud data
CN119366154A (en) Point cloud encoding and decoding method, device, equipment and storage medium
WO2020232683A1 (en) Pipeline hardware compression-based system and method
JP2011109172A (en) Video encoder and data processing method for the same
US20240404121A1 (en) Systems and methods for mesh geometry prediction based on a centroid-normal representation
US20240195947A1 (en) Patch-based depth mapping method and apparatus for high-efficiency encoding/decoding of plenoptic video
US12198273B2 (en) Systems and methods for mesh geometry prediction for high efficiency mesh coding
US12108091B2 (en) Media data processing method, apparatus and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40086750

Country of ref document: HK