[go: up one dir, main page]

CN1155847C - 完全绝缘材料的自支撑式光缆组合件及其制造方法 - Google Patents

完全绝缘材料的自支撑式光缆组合件及其制造方法 Download PDF

Info

Publication number
CN1155847C
CN1155847C CNB991266390A CN99126639A CN1155847C CN 1155847 C CN1155847 C CN 1155847C CN B991266390 A CNB991266390 A CN B991266390A CN 99126639 A CN99126639 A CN 99126639A CN 1155847 C CN1155847 C CN 1155847C
Authority
CN
China
Prior art keywords
fiber optic
cable
optical cable
self
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991266390A
Other languages
English (en)
Other versions
CN1256428A (zh
Inventor
朴劲泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1256428A publication Critical patent/CN1256428A/zh
Application granted granted Critical
Publication of CN1155847C publication Critical patent/CN1155847C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/48Overhead installation
    • G02B6/483Installation of aerial type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4422Heterogeneous cables of the overhead type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4417High voltage aspects, e.g. in cladding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

一条安装在超高压电力传输桥塔上的完全绝缘材料的自支撑式光缆,包括:一个由金属材料制成的第一铠装杆,所述第一铠装杆与所述完全绝缘材料的自支撑式光缆的一个终端连接;一个用来绝缘所述第一铠装杆的绝缘件;以及一个由绝缘材料制成的第二铠装杆,所述第二铠装杆以预定的长度,从用所述绝缘件绝缘的完全绝缘材料的自支撑式光缆的一部分的一个终端开始,包绕所述完全绝缘材料的自支撑式光缆。本发明还涉及一种制造安装在超高压电力传输桥塔上的完全绝缘材料的自支撑式光缆的方法。

Description

完全绝缘材料的自支撑式 光缆组合件及其制造方法
技术领域
本发明涉及一种光缆,并且更具体地,本发明涉及一种完全绝缘材料的自支撑式光缆(以后称之为“ADSS光缆”)的设计,该光缆是一种与超高压电力线安装在一起的完全绝缘材料的光缆。
背景技术
一条高架线沿着利用架空杆和建筑物的结构等形成的空中线路安装。在这种高架线中,由于高架线的重量集中在建筑物上的安装部位,实践中采用了一种通过多个支撑线支撑高架线的方法。这种情况下,基于高架线的重量而产生的大部分拉压载荷由多个缆绳承受。与此同时,在合成纤维的高架地线(OHGW)的情况下,以一种由其自身承受该拉压载荷的方式构造电缆体。作为用多个支撑缆绳支撑的这种电缆,现有技术中已经公开了一种通过已经安装在支撑缆绳上的挂钩悬挂的光缆和有一个与之整体形成在一起的支撑结构的一种自支撑光缆。
图1是一个ADSS光缆安装在桥塔上的状态示意图。
一条高架地线120安装在超高压电力传输桥塔110的最顶部,一条电力线130安装在该高架地线120的下面,以及一条ADSS光缆140安装在电力线130的下面。该ADSS光缆140通过一个铠装杆150捆绑在该超高压电力传输桥塔110上。
图2显示的是一个电场,该电场取决于该ADSS光缆所安装的位置。P1点的电场用由电力线产生的+Q电荷和由于桥塔(-Q)、大地(-Q2)以及原点(+Q)产生的镜像电荷产生的电场的总和表示。在该ADSS光缆的终端配备的该桥塔、大地和金属(铠装杆)使得该ADSS光缆的终端处的电场在水平方向内转变方向。用相对于电力线的某一线段的积分和来表示该ADSS光缆的安装位置处的电场的大小和方向。
此后,将参照图3详细说明取决于ADSS光缆的安装位置的该电场的大小和方向。
[公式1]
E ‾ P 1 = ∫ O Span d E ‾ P 1 1 cos θ = ∫ O Span P 1 d 1 cos θ 4 π E 0 R 2 = P 1 4 π ∈ 0 ∫ θ 1 θ 2 h tan 2 θdθ cos θ h 2 tan 2 θ
P 1 4 π ∈ 0 ∫ θ 1 θ 2 cos θdθ h = P 1 4 π ∈ 0 [ sin θ ] θ 1 θ 2
其中r是桥塔和位置P1之间的距离,l是位置P1和电力线的远端之间的距离,h是电力线和ADSS光缆之间的高度,ρ1是直线电荷密度,
R2=h2+l2=h2(1+sec2θ)=h2tan2θ
l=hsecθ    dl=htan2θdθ
θ 1 = ( 180 - α tan h r ) θ 2 = α tan ( h span - r ) ,
并且跨度span是两个桥塔之间的电力线的全长。
图4显示的是由电力线输出的电场Ep在桥塔、大地和ADSS光缆的铠装杆的作用下,其方向和大小沿该ADSS光缆的表面轴线的变化。
通过水平方向的一部分铠装杆的电场跟踪形成该ADSS光缆的包皮层的放电路径。
图5是状态示意图,其中当该ADSS光缆的表面上存在包含离子的盐水或水蒸气时,通过在它们之间起电而形成一个电场。
用EA与EPA的矢量和表示区域A的电场EA-sum的大小和方向,其中EA是由单个水滴的形状(曲率半径)、离子浓度、铠装杆的末端的曲率以及分开的距离决定的,而EPA是由该铠装杆与电力线上的单个水滴之间的空间形成的。
            EA-SUM= EA+ EPA
如果该EA-sum的电场超出空气的介电击穿强度,该ADSS光缆的包皮层由于金属元件的自由电子的介入而受到破坏。
用EB与EPB的矢量和表示区域B的电场EB-sum的大小和方向,其中EB是由单个水滴的形状(曲率半径)、离子浓度以及单个水滴之间的分割距离决定的,并且EPB是在该电力线上的单个水滴之间的空间形成的。
                   EB-SUM= EB+ EPB
如果该EB-sum的电场超出空气的介电击穿强度,尽管不会出现在铠装杆的情况下的自由电子的介入,但是,该ADSS光缆的包皮层由于静电现象而受到破坏。
从而,安装在超高压电力传输桥塔上的ADSS光缆的空端处的电场,在桥塔、大地和该ADSS光缆的空端的作用下在水平方向内转变方向。由于盐分和环境污染而存在的包含离子的雨滴、露珠等水滴在铠装杆的末端引起带电,这样,这些水滴之间的电场强度引起空气的介电击穿。结果,带来一个问题是该ADSS光缆的包皮层受到所述铠装杆的自由电子的破坏。
发明内容
因此,本发明致力于解决相关技术中存在的问题,并且本发明的一个目的在于提供一种完全绝缘材料的自支撑式光缆以及制造这种光缆的方法,其中铠装杆的远端用一个绝缘件形成绝缘,从而由于盐分和环境污染形成的包含离子的雨滴、露珠等水滴用来在铠装杆的远端引起带电,当这些水滴之间的电场强度引起空气的介电击穿时,通过在桥塔、大地和ADSS光缆的终端(包括铠装杆)的作用下,ADSS光缆的终端处的电场在水平方向内转变方向这一事实,防止该ADSS光缆的包皮层受到铠装杆的自由电子的破坏。
为了实现上述目的,根据本发明,提供了一条安装在超高压电力传输桥塔上的完全绝缘材料的自支撑式光缆组合件,其特征在于所述光缆组合件包括:
光缆;
一个由金属材料制成的第一铠装杆,所述第一铠装杆与所述完全绝缘材料的自支撑式光缆的一个终端连接;
一个用来绝缘所述第一铠装杆的绝缘件;以及
一个由绝缘材料制成的第二铠装杆,所述第二铠装杆以预定的长度,从用所述绝缘件绝缘的完全绝缘材料的自支撑式光缆的一部分的一个终端开始,包绕所述完全绝缘材料的自支撑式光缆。
本发明还提供了一种制造安装在超高压电力传输桥塔上的完全绝缘材料的自支撑式光缆组合件的方法,包括以下步骤:
将所述光缆的一个终端与由金属材料制成的第一铠装杆彼此相连接,从而将所述光缆与超高压电力传输桥塔相连接;
用一个绝缘件将与所述光缆的所述终端相连接的所述第一铠装杆绝缘;以及
通过在所述光缆周围缠绕由绝缘材料制成的第二铠装杆,包绕一个预定长度的所述光缆,所述包绕从一部分所述光缆开始,该部分光缆在所述第一铠装杆与所述光缆的所述终端耦合的状态下被绝缘。
附图说明
通过参照所附附图对最佳实施例的详细说明,将更清楚地说明本发明的上述目的和优点:
图1是一条ADSS光缆安装在桥塔上的状态示意图;
图2是由桥塔、大地和原点产生的镜像电荷的位置,其所述原点取决于该ADSS光缆的安装位置;
图3是说明取决于该ADSS光缆的安装位置的电场的大小的示意图;
图4显示的是在桥塔、大地和ADSS光缆的铠装杆的作用下,由电力线输出的电场的方向和大小沿该ADSS光缆的表面轴线的变化的状态示意图;
图5是状态示意图,说明当该ADSS光缆的表面上存在包含离子的盐水或水蒸气时,通过在它们之间带电而形成的电场。
图6是根据本发明的一个实施例的ADSS光缆的结构的示意图;
图7是根据本发明的ADSS光缆与电力线一同安装在桥塔上的状态示意图。
具体实施方式
现在来更详细地说明一些本发明最佳实施例。在附图中,即使是在不同的附图中采用同一标记表示相同或相似的元件。在本发明的以下说明中,当能使本发明的主要内容更清楚时,将省略已知功能和结构的详细说明。
图6说明根据本发明的ADSS光缆的一个实施例。一个ADSS光缆组合包括一条ADSS光缆610,一个第一铠装杆620,一个绝缘件630和一个第二铠装杆640。
上述ADSS光缆610是一种与超高压电力线安装在一起的完全绝缘材料的光缆。该ADSS光缆610用作为一个自支撑光缆。上述第一铠装杆620由金属材料制成并且作为将超高压电力传输桥塔和该ADSS光缆610彼此连接的装置,从而将该ADSS光缆610安装在该超高压电力传输桥塔上。所说绝缘件630将与所说的ADSS光缆610的终端相连接的第一铠装杆620绝缘,并且该绝缘件由聚合物、橡胶或类似的高阻抗材料制成。该第二铠装杆640由绝缘材料制成。通过缠绕,该第二铠装杆640以预定的长度从用绝缘件630绝缘的该ADSS光缆的末端部分开始包绕该ADSS光缆610。
此后,根据上述结构更详细地说明本发明。
为了将该ADSS光缆610与该超高压电力传输桥塔相连接,该ADSS光缆610的终端与用金属制成的第一铠装杆620彼此相连接。用绝缘件630将与该ADSS光缆610的终端相连接的第一铠装杆620绝缘。该绝缘件630用聚合物、橡胶或类似的高阻抗材料制成。进而,通过缠绕,该第二铠装杆640以预定的长度从用绝缘件630绝缘的该ADSS光缆的末端部分开始包绕该ADSS光缆610,其中由金属材料制成的该第一铠装杆620与该ADSS光缆610的终端相耦合。
由于用所说的绝缘件630将第一铠装杆620绝缘,防止由于该第一铠装杆620的存在,导致自由电子进入到ADSS光缆610中。基于此,由于ADSS光缆610的终端的电场在桥塔、大地和该ADSS光缆610的终端(包括第一铠装杆620)的作用下在水平方向内发生转变方向的情况,由于盐分和环境污染通过包含离子在内的雨滴、露珠等在该第一铠装杆620的远端引起带电的水滴,这些水滴之间的电场强度不会引起空气之间的电介质的击穿。结果,从该电力线输出的电场Ep防止该ADSS光缆610的包皮层由于在第一铠装杆620的水平方向的部分静电场而继续形成放电路径。
此外,由于包绕该ADSS光缆610的事实,通过缠绕该第二铠转杆640,借助于在第一铠装杆620与该ADSS光缆610的终端耦合的状态中从绝缘的ADSS光缆610的末端部分开始的预定长度,由带电的单个水滴之间的绝缘就可能防止该ADSS光缆610受到破坏。
图7说明的是通过缠绕包绕ADSS光缆的包皮层的所说第二铠装杆与电力线之间的关系。
第二铠装杆730是由绝缘的材料制成并且通过缠绕来包绕ADSS光缆720的包皮层,该第二铠装杆730的P位置的电场的大小和方向,不受电力线710的全长的影响,但是受电力线710从A点到B点的长度的影响。这样,电场的大小减少并且电场的方向保持垂直。
如从上面提到的公式1中已经可以看出,由绝缘材料制成的第二铠装杆730在位置P的电场的大小和方向根据电力线710的全长而发生变化。因而,如果加长该电力线710的全长,影响ADSS光缆720的电场增大。
因而,电力线710通过用绝缘材料制成的第二铠装杆730的间距p,通过一个电场强度在该ADSS光缆720上产生作用,该电场强度受到电力线710的线段AB的限制。
进而,通过缠绕,所说第二铠装杆730包绕ADSS光缆的一部分(该光缆连接在桥塔上,并且这一部分在水平方向上的电场强度很大)这一事实,单个水滴之间的距离增加,并且在一定的区域内,水平方向的电场转化成垂直方向。
如上所述,通过本发明提供了一些优点:由于用金属材料制成的并且与ADSS光缆的终端相连接的第一铠装杆用一个绝缘件加以绝缘,防止该ADSS光缆的包皮层由于自由电子的进入而受到破坏,从而保证了长期的可靠性;进而,因为通过缠绕,用绝缘材料制成的第二铠装杆从绝缘的ADSS光缆的末端部分开始以预定的长度包绕ADSS光缆,防止ADSS光缆的包皮层由于在带电的单个水滴之间存在的空气的介电击穿而受到破坏,从而保证长期的可靠性。
尽管业已参照目前认为最实用和优选的实施例公开了本发明,可以理解本发明不仅仅限于所公开的实施例,并且,与之相对应,在所附的权利要求书的精神和范围内希望能覆盖各种改进方案。

Claims (2)

1.一条安装在超高压电力传输桥塔上的完全绝缘材料的自支撑式光缆组合件,其特征在于所述光缆组合件包括:
光缆;
一个由金属材料制成的第一铠装杆,所述第一铠装杆与所述完全绝缘材料的自支撑式光缆的一个终端连接;
一个用来绝缘所述第一铠装杆的绝缘件;以及
一个由绝缘材料制成的第二铠装杆,所述第二铠装杆以预定的长度,从用所述绝缘件绝缘的完全绝缘材料的自支撑式光缆的一部分的一个终端开始,包绕所述完全绝缘材料的自支撑式光缆。
2.一种制造安装在超高压电力传输桥塔上的完全绝缘材料的自支撑式光缆组合件的方法,包括以下步骤:
将所述光缆的一个终端与由金属材料制成的第一铠装杆彼此相连接,从而将所述光缆与超高压电力传输桥塔相连接;
用一个绝缘件将与所述光缆的所述终端相连接的所述第一铠装杆绝缘;以及
通过在所述光缆周围缠绕由绝缘材料制成的第二铠装杆,包绕一个预定长度的所述光缆,所述包绕从一部分所述光缆开始,该部分光缆在所述第一铠装杆与所述光缆的所述终端耦合的状态下被绝缘。
CNB991266390A 1998-11-23 1999-11-20 完全绝缘材料的自支撑式光缆组合件及其制造方法 Expired - Fee Related CN1155847C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980050228A KR100319298B1 (ko) 1998-11-23 1998-11-23 Adss케이블및그제작방법
KR50228/1998 1998-11-23

Publications (2)

Publication Number Publication Date
CN1256428A CN1256428A (zh) 2000-06-14
CN1155847C true CN1155847C (zh) 2004-06-30

Family

ID=19559328

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991266390A Expired - Fee Related CN1155847C (zh) 1998-11-23 1999-11-20 完全绝缘材料的自支撑式光缆组合件及其制造方法

Country Status (3)

Country Link
US (1) US6643437B1 (zh)
KR (1) KR100319298B1 (zh)
CN (1) CN1155847C (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471862B2 (en) * 2002-12-19 2008-12-30 Corning Cable Systems, Llc Dry fiber optic cables and assemblies
US20070292136A1 (en) 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7627250B2 (en) 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
US20090274426A1 (en) * 2008-04-30 2009-11-05 Lail Jason C Fiber optic cable and method of manufacturing the same
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
CN102369678B (zh) 2009-02-03 2015-08-19 康宁光缆系统有限责任公司 基于光纤的分布式天线系统、组件和用于校准基于光纤的分布式天线系统、组件的相关方法
AU2010210766A1 (en) 2009-02-03 2011-09-15 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
EP2606707A1 (en) 2010-08-16 2013-06-26 Corning Cable Systems LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
EP2678972B1 (en) 2011-02-21 2018-09-05 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
EP2702780A4 (en) 2011-04-29 2014-11-12 Corning Cable Sys Llc SYSTEMS, METHODS AND DEVICES FOR INCREASING HIGH-FREQUENCY (HF) PERFORMANCE IN DISTRIBUTED ANTENNA SYSTEMS
CN103548290B (zh) 2011-04-29 2016-08-31 康宁光缆系统有限责任公司 判定分布式天线系统中的通信传播延迟及相关组件、系统与方法
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
WO2014085115A1 (en) 2012-11-29 2014-06-05 Corning Cable Systems Llc HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
EP3008515A1 (en) 2013-06-12 2016-04-20 Corning Optical Communications Wireless, Ltd Voltage controlled optical directional coupler
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098109A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2388930A1 (fr) 1977-04-27 1978-11-24 Lignes Telegraph Telephon Procede de fabrication en ligne d'elements de cablage a fibres optiques
US4832442A (en) * 1987-07-17 1989-05-23 United Ropeworks (U.S.A.) Inc. Method and apparatus for aerial installation of fiber optic cables
US5043037A (en) * 1989-11-22 1991-08-27 Sumitomo Electric Fiber Optics Corporation Method for making high strain aerial fiber optic cable
NL9001007A (nl) * 1990-04-26 1991-11-18 Nkf Kabel Bv Mantelconstructie, in het bijzonder voor optische kabels, voor toepassing in hoogspanningsomgevingen.
US5230034A (en) * 1991-09-20 1993-07-20 Bottoms Jack Jr All dielectric self-supporting fiber optic cable
US5325457A (en) * 1991-09-20 1994-06-28 Bottoms Jack Jr Field protected self-supporting fiber optic cable
GB9210063D0 (en) 1992-05-09 1992-06-24 Bicc Plc Overhead optical transmission system
GB9308361D0 (en) 1993-04-22 1993-06-09 Bicc Plc Optical cable
GB9325799D0 (en) 1993-12-17 1994-02-23 Bicc Plc Semiconductive linear element
GB9421724D0 (en) 1994-10-28 1994-12-14 Bicc Plc Combined electrical power and optical transmission system
US5758005A (en) * 1995-10-19 1998-05-26 The Furukawa Electric Co., Ltd. Anchor device for an optical cable
US6127625A (en) * 1997-04-18 2000-10-03 Professional Communications, S.A. Transmission conduit and method of installation of same

Also Published As

Publication number Publication date
KR100319298B1 (ko) 2002-04-22
CN1256428A (zh) 2000-06-14
US6643437B1 (en) 2003-11-04
KR20000033384A (ko) 2000-06-15

Similar Documents

Publication Publication Date Title
CN1155847C (zh) 完全绝缘材料的自支撑式光缆组合件及其制造方法
US4832442A (en) Method and apparatus for aerial installation of fiber optic cables
DE69937112T2 (de) Hybrides elektrisch-optisches kabel für freileitungsinstallationszwecke
US7683262B2 (en) Power transmission conductor for an overhead line
US4820012A (en) Electric wire
KR20240081280A (ko) 내구성이 향상된 해상풍력용 해저케이블
KR20210081956A (ko) 해저 케이블
CN109102955A (zh) 一种平行加固型架空绝缘电缆
CN208126940U (zh) 一种具有防雷功能的复合柱式绝缘子
US1639820A (en) Method of and apparatus for protecting aerial cables
CN220526641U (zh) 一种农用直埋电缆
CN1102749C (zh) 锚定自承式光缆的装置和方法
CN106356130B (zh) 一种设有光缆管的软电缆
KR102419396B1 (ko) 광전복합케이블의 중간접속부
CN222299848U (zh) 具有绝缘功能的光缆接续系统
KR20000033385A (ko) Adss 케이블 트랙킹 방지용 아마로드
CN212809822U (zh) 具有聚氯乙烯护套的电工级铝合金导体铠装电缆
CN217824162U (zh) 一种绝缘电缆制备的适用于双引流串的绝缘引流线
US3626082A (en) Corrugated pipe busline
CN1415037A (zh) 合成树脂电缆、其制造方法和缆端处理方法
KR100516906B1 (ko) 라인포스트 애자상의 송배전선의 가설방법
CN217822124U (zh) 一种绝缘电缆制备的适用于单引流串的绝缘引流线
CN215265682U (zh) 易剥离复合铜芯铝绞线
CN220247780U (zh) 输电塔
RU211539U1 (ru) Изолятор с повышенной надежностью

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee