CN115577929A - 基于多场景分析的乡村综合能源系统随机优化调度方法 - Google Patents
基于多场景分析的乡村综合能源系统随机优化调度方法 Download PDFInfo
- Publication number
- CN115577929A CN115577929A CN202211208739.2A CN202211208739A CN115577929A CN 115577929 A CN115577929 A CN 115577929A CN 202211208739 A CN202211208739 A CN 202211208739A CN 115577929 A CN115577929 A CN 115577929A
- Authority
- CN
- China
- Prior art keywords
- power
- formula
- unit
- energy
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005457 optimization Methods 0.000 title claims abstract description 25
- 238000004458 analytical method Methods 0.000 title claims abstract description 12
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 238000005338 heat storage Methods 0.000 claims description 43
- 239000002028 Biomass Substances 0.000 claims description 25
- 238000003860 storage Methods 0.000 claims description 19
- 238000004146 energy storage Methods 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 15
- 230000005611 electricity Effects 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000009194 climbing Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 5
- 238000002309 gasification Methods 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 239000002918 waste heat Substances 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims 4
- 230000000452 restraining effect Effects 0.000 claims 1
- 238000010977 unit operation Methods 0.000 claims 1
- 238000003491 array Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06313—Resource planning in a project environment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/067—Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Algebra (AREA)
- Biodiversity & Conservation Biology (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了基于多场景分析的乡村综合能源系统随机优化调度方法,包括以下步骤:1)首先考虑风光荷预测误差分布,对乡村综能园区的设施进行稳态建模。2)获取园区的机组数据和日前风光荷预测数据,设计目标函数、机组约束和与电网交互的网络约束,建立乡村综能园区运行的随机优化调度模型;3)求解考虑预测误差和场景法的随机优化调度模型得到系统最优调度计划,按照计划调节园区内各设备的出力,并向上级电网购电。本发明充分挖掘了乡村综合能源的运行潜力和投入系统运行的灵活性,通过多能协作提升了乡村能源利用效率,促进了可再生能源消纳,提高了运营商的收益。
Description
技术领域
本发明涉及一种利用场景优化方法实现乡村综合能源园区优化运行的应用领域的技术,具体是一种基于多场景分析的乡村综合能源系统随机优化调度方法。
背景技术
未来绿色低碳农村能源,如风电、太阳能、生物质能、地热能等清洁能源比重如能逐步提升,将加快形成绿色多元的农村能源体系。以往研究中,对包含生物质热电联供和地源热泵等乡村设施在内的乡村园区多场景优化运行研究较少,对实际提高乡村综合能源园区运营商收益起到的作用微小,致使能源运营商积极性不高。
发明内容
本发明的目的是为了克服现有技术的不足,提供基于多场景分析的乡村综合能源系统随机优化调度方法,建立了考虑风光荷预测误差下的园区多场景随机优化调度模型,并与无场景优化的最劣运行方案加以比较验证,表明该方法可以使乡村综合能源园区的电量调度更为合理,运营商的日收益有较大提升,能够充分调动运营商积极性,加快乡村综合能源系统建设。。
实现上述目的的一种技术方案是:基于多场景分析的乡村综合能源系统随机优化调度方法,包括如下步骤:
步骤1,考虑风光荷预测误差分布,并对乡村综能园区的设施进行稳态建模,包括:风电机组、光伏阵列、生物质热电联供、地源热泵、储电装置和储热装置;
步骤2,获取园区的机组数据和日前风光荷预测数据,包括:参与园区优化调度的运行机组数据、风速预测数据、光照强度预测数据、电力负荷预测数据,设计目标函数、机组约束和与电网交互的网络约束,建立乡村综能园区运行的随机优化调度模型;
步骤3,求解考虑预测误差和场景法的随机优化调度模型得到系统最优调度计划,按照计划调节园区内各设备的出力,并向上级电网购电。
获得风速的相关数据后,风电机组的出力PWi为:
式中:Pwr为风机的额定出力;vin、vout vr分别为切入风速、切出风速、额定风速;
假设光照强度和电负荷的预测误差同样为服从均值为0,标准差分别为σp、σE的正态分布,由于受日照强度、环境温度、投资成本等参数的影响,光伏阵列的输出功率是非线性的:
式中:Pt PV为光伏阵列的理论输出功率;kPV为光伏阵列老化、损耗等造成的功率损耗因数;N为光伏阵列的总电池数;Pbattery单块电池额定功率; Dt为光照强度;DSTC为标准测试条件下的光照强度;Tt PVt时刻电池表面温度;TSTC为电池标准测试温度;
由于上述模型实际操作较为困难,因此将其简化为:
Pt PV=kPVSPVDt (36)
式中:SPV为光伏阵列的总面积;
生物质热电联供系统的电能转化表达式为:
Pt BCHP=ηMTηGASMB,tHB (37)
式中:ηMT为微型燃气轮机的发电效率;ηGAS为气化炉的气化效率;MB,t为t时刻投入的生物质总质量;HB为单位质量生物质产生的热能;
式中:ηWHB为余热锅炉的回收效率;
生物质热电联供的运维成本主要与微型燃气轮机所发电量有关,其成本如下所示:
式中:cBCHP为微型燃气轮机的边际成本;
地源热泵的能量转换方程为:
地源热泵的运行成本为:
式中:cGHP为地源热泵的边际运行成本;
储电设备的运行模型为:
式中:SOCt为t时刻的储能电池容量;αch和αdis分别为充放电效率; Pt ES,ch和Pt ES,dis分别为t时刻储能的充放电功率;SOCmax为电池总容量;
储电设备的成本一般较高,因此需要考虑其运行成本:
储热装置采用水蓄热装置进行能源储存,储热装置的特性可以表示为储热容量、储热功率和放电功率间的关系:
对于水蓄热装置,不考虑其运行成本。
进一步的,所述步骤2中,建立的随机优化调度模型以园区运营商日收益最大为目标函数,其日收益为零售市场收益减去总成本和偏差惩罚:
式中:E为乡村综合能源园区的日收益,CRM为零售市场收益;CEM为日前市场成本;CDG为机组运行成本;CES为储能运行成本;CP为偏差惩罚;N为优化的场景个数;
每一项的计算过程如下:
进一步的,系统需要考虑各种机组和电网的约束,机组约束有风电机组、光伏阵列、生物质热电联供、地源热泵约束:
风电机组功率约束:
光伏阵列功率约束:
地源热泵功率约束和爬坡约束:
生物质热电联供功率约束和爬坡约束:
储能约束有储电装置约束和储热装置约束:
储电装置约束:
0≤SOCt≤SOCmax (56)
储热装置约束:
网络约束包括:
进一步的,在所述步骤3中,将所有机组运行参数、风光荷预测数据带入随机优化调度模型中,用求解软件直接求解,得到日收益最大下的最优调度计划,进行设备出力的调节和向上级网络的购电。
本发明的有益效果在于:
本发明提出的一种基于多场景分析的乡村综合能源系统随机优化调度方法,首先对于难以准确描述的风光出力和电负荷考虑了其预测误差,假定其预测误差服从正态分布;随后建立了风电、光伏机组以及生物质热电联供、地源热泵等乡村特色设施的稳态模型;最后构建了以乡村综合能源运营商日收益最大为目标函数的随机优化调度模型,采用多场景优化来降低不确定性带来的影响,通过优化目标函数得出最佳运行结果,为乡村综合能源运营提供指导方案。
本发明考虑了预测误差和场景法的优化调度方法,通过分时电价以及最大日收益的要求下引导电量消费的分布,使得园区的可再生能源能够得到充分消纳,且提高了运行收益。
附图说明
图1为本发明的方法流程图;
图2为本发明涉及的园区能量流动图;
图3为本发明以风电为例考虑预测误差生成的场景;
图4为本发明以风电为例采用算法削减后保留的典型场景;
图5为本发明采用多场景优化后乡村园区设备的电能调度情况;
图6为本发明采用多场景优化后乡村园区的电力市场购电情况。
具体实施方式
为了能更好地对本发明的技术方案进行理解,下面通过具体地实施例进行详细地说明:
实施例所采用的乡村综合能源系统能量流动图如图2所示。本系统包含1台村级风力发电机组、1台村级光伏发电系统、若干台地源热泵装置和若干台小型生物质热电联供装置、数台储电装置和一台储热装置,以上海市某乡村园区为研究对象。请参阅图1,本发明提供的一种基于多场景分析的乡村综合能源系统优化运行调度方法,包括以下步骤:
步骤1,考虑风光荷预测误差分布,并对乡村综能园区的设施进行稳态建模,包括:风电机组、光伏阵列、生物质热电联供、地源热泵、储电装置和储热装置。
步骤2,获取园区的机组数据和日前风光荷预测数据,包括:参与园区优化调度的运行机组数据、风速预测数据、光照强度预测数据、电力负荷预测数据,设计目标函数、机组约束和与电网交互的网络约束,建立乡村综能园区运行的随机优化调度模型;
步骤3,求解考虑预测误差和场景法的随机优化调度模型得到系统最优调度计划,按照计划调节园区内各设备的出力,并向上级电网购电。
获得风速的相关数据后,风电机组的出力PWi为:
式中:Pwr为风机的额定出力;vin、vout vr分别为切入风速、切出风速、额定风速;
假设光照强度和电负荷的预测误差同样为服从均值为0,标准差分别为σp、σE的正态分布,由于受日照强度、环境温度、投资成本等参数的影响,光伏阵列的输出功率是非线性的:
式中:Pt PV为光伏阵列的理论输出功率;kPV为光伏阵列老化、损耗等造成的功率损耗因数;N为光伏阵列的总电池数;Pbattery单块电池额定功率; Dt为光照强度;DSTC为标准测试条件下的光照强度;Tt PVt时刻电池表面温度;TSTC为电池标准测试温度;
由于上述模型实际操作较为困难,因此将其简化为:
Pt PV=kPVSPVDt (68)
式中:SPV为光伏阵列的总面积;
生物质热电联供系统的电能转化表达式为:
Pt BCHP=ηMTηGASMB,tHB (69)
式中:ηMT为微型燃气轮机的发电效率;ηGAS为气化炉的气化效率;MB,t为t时刻投入的生物质总质量;HB为单位质量生物质产生的热能;
式中:ηWHB为余热锅炉的回收效率;
生物质热电联供的运维成本主要与微型燃气轮机所发电量有关,其成本如下所示:
式中:cBCHP为微型燃气轮机的边际成本;
地源热泵的能量转换方程为:
地源热泵的运行成本为:
式中:cGHP为地源热泵的边际运行成本;
储电设备的运行模型为:
式中:SOCt为t时刻的储能电池容量;αch和αdis分别为充放电效率; Pt ES,ch和Pt ES,dis分别为t时刻储能的充放电功率;SOCmax为电池总容量;
储电设备的成本一般较高,因此需要考虑其运行成本:
储热装置采用水蓄热装置进行能源储存,储热装置的特性可以表示为储热容量、储热功率和放电功率间的关系:
对于水蓄热装置,不考虑其运行成本。
所述步骤2中,建立的随机优化调度模型以园区运营商日收益最大为目标函数,其日收益为零售市场收益减去总成本和偏差惩罚:
式中:E为乡村综合能源园区的日收益,CRM为零售市场收益;CEM为日前市场成本;CDG为机组运行成本;CES为储能运行成本;CP为偏差惩罚;N为优化的场景个数;
每一项的计算过程如下:
系统需要考虑各种机组和电网的约束,机组约束有风电机组、光伏阵列、生物质热电联供、地源热泵约束:
风电机组功率约束:
光伏阵列功率约束:
地源热泵功率约束和爬坡约束:
生物质热电联供功率约束和爬坡约束:
储能约束有储电装置约束和储热装置约束:
储电装置约束:
0≤SOCt≤SOCmax (88)
储热装置约束:
网络约束包括:
在所述步骤3中,将所有机组运行参数、风光荷预测数据带入随机优化调度模型中,用求解软件直接求解,得到日收益最大下的最优调度计划,进行设备出力的调节和向上级网络的购电。在本实施例中,先用蒙特卡洛法生成1000个产景,再利用k-means算法将其削减为10个典型场景,随后将所有机组运行参数、风光荷数据带入随机优化调度模型中,用求解软件直接求解,得到日收益最大下的最优调度计划,进行设备出力的调节和向上级网络的购电,如图3、4、5、6。
为了更清晰地表明本发明的有效性,设置对照场景进行对比:
1、只考虑预测误差不考虑场景优化的最劣运行情况。
2、本方法考虑预测误差和场景优化的优化运行结果。
对本实施案例进行求解,系统日运行收益结果如表1所示。
表1两种调度策略下的乡村综能运营商日收益
本案例优化后系统各设备的出力情况如图5所示,电力市场的购电情况如图6所示。从图中可以看出,风电和光伏得到了充分的消纳,储电和储热装置则会在电价较低的时候进行储存,电价较高时进行释放,以谋求最大收益,生物质热电联供机组也根据目标函数在一天内得到了合理利用,减少了在实时市场的购电费用,该方案相比于只考虑了预测误差未进行场景优化的最劣情况相比日收益可以增加441.4元,提高了4.3%,表明了本优化运行方案的有效性。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。
Claims (5)
1.基于多场景分析的乡村综合能源系统随机优化调度方法,其特征在于,包括如下步骤:
步骤1,考虑风光荷预测误差分布,并对乡村综能园区的设施进行稳态建模,包括:风电机组、光伏阵列、生物质热电联供、地源热泵、储电装置和储热装置;
步骤2,获取园区的机组数据和日前风光荷预测数据,包括:参与园区优化调度的运行机组数据、风速预测数据、光照强度预测数据、电力负荷预测数据,设计目标函数、机组约束和与电网交互的网络约束,建立乡村综能园区运行的随机优化调度模型;
步骤3,求解考虑预测误差和场景法的随机优化调度模型得到系统最优调度计划,按照计划调节园区内各设备的出力,并向上级电网购电。
2.根据权利要求1所述的基于多场景分析的乡村综合能源系统随机优化调度方法,其特征在于,所述步骤1中,假设风电的预测误差服从均值为0,标准差为σv的正态分布,如果用表示风速的预测值,则实际风速v的概率密度函数为:
获得风速的相关数据后,风电机组的出力PWi为:
式中:Pwr为风机的额定出力;vin、vout vr分别为切入风速、切出风速、额定风速;
假设光照强度和电负荷的预测误差同样为服从均值为0,标准差分别为σp、σE的正态分布,由于受日照强度、环境温度、投资成本等参数的影响,光伏阵列的输出功率是非线性的:
式中:Pt PV为光伏阵列的理论输出功率;kPV为光伏阵列老化、损耗等造成的功率损耗因数;N为光伏阵列的总电池数;Pbattery单块电池额定功率;Dt为光照强度;DSTC为标准测试条件下的光照强度;Tt PVt时刻电池表面温度;TSTC为电池标准测试温度;
由于上述模型实际操作较为困难,因此将其简化为:
Pt PV=kPVSPVDt (4)
式中:SPV为光伏阵列的总面积;
生物质热电联供系统的电能转化表达式为:
Pt BCHP=ηMTηGASMB,tHB (5)
式中:ηMT为微型燃气轮机的发电效率;ηGAS为气化炉的气化效率;MB,t为t时刻投入的生物质总质量;HB为单位质量生物质产生的热能;
式中:ηWHB为余热锅炉的回收效率;
生物质热电联供的运维成本主要与微型燃气轮机所发电量有关,其成本如下所示:
式中:cBCHP为微型燃气轮机的边际成本;
地源热泵的能量转换方程为:
地源热泵的运行成本为:
式中:cGHP为地源热泵的边际运行成本;
储电设备的运行模型为:
式中:SOCt为t时刻的储能电池容量;αch和αdis分别为充放电效率;Pt ES,ch和Pt ES,dis分别为t时刻储能的充放电功率;SOCmax为电池总容量;
储电设备的成本一般较高,因此需要考虑其运行成本:
储热装置采用水蓄热装置进行能源储存,储热装置的特性可以表示为储热容量、储热功率和放电功率间的关系:
对于水蓄热装置,不考虑其运行成本。
4.根据权利要求1所述的基于多场景分析的乡村综合能源系统随机优化调度方法,其特征在于,系统需要考虑各种机组和电网的约束,机组约束有风电机组、光伏阵列、生物质热电联供、地源热泵约束:
风电机组功率约束:
光伏阵列功率约束:
地源热泵功率约束和爬坡约束:
生物质热电联供功率约束和爬坡约束:
储能约束有储电装置约束和储热装置约束:
储电装置约束:
0≤SOCt≤SOCmax (24)
储热装置约束:
网络约束包括:
5.根据权利要求1所述的基于多场景分析的乡村综合能源系统随机优化调度方法,其特征在于,在所述步骤3中,将所有机组运行参数、风光荷预测数据带入随机优化调度模型中,用求解软件直接求解,得到日收益最大下的最优调度计划,进行设备出力的调节和向上级网络的购电。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211208739.2A CN115577929A (zh) | 2022-09-30 | 2022-09-30 | 基于多场景分析的乡村综合能源系统随机优化调度方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211208739.2A CN115577929A (zh) | 2022-09-30 | 2022-09-30 | 基于多场景分析的乡村综合能源系统随机优化调度方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115577929A true CN115577929A (zh) | 2023-01-06 |
Family
ID=84583288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211208739.2A Pending CN115577929A (zh) | 2022-09-30 | 2022-09-30 | 基于多场景分析的乡村综合能源系统随机优化调度方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115577929A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116231763A (zh) * | 2023-05-08 | 2023-06-06 | 广州三晶电气股份有限公司 | 具备自学习能力的家庭能源管理系统优化调度方法及装置 |
CN116581825A (zh) * | 2023-05-06 | 2023-08-11 | 西华大学 | 基于新能源消纳的建筑综合能源系统日前调度优化方法 |
CN119401566A (zh) * | 2024-10-28 | 2025-02-07 | 天津大学 | 一种风险规避的园区综合能源系统多时间尺度调度方法及装置 |
-
2022
- 2022-09-30 CN CN202211208739.2A patent/CN115577929A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116581825A (zh) * | 2023-05-06 | 2023-08-11 | 西华大学 | 基于新能源消纳的建筑综合能源系统日前调度优化方法 |
CN116231763A (zh) * | 2023-05-08 | 2023-06-06 | 广州三晶电气股份有限公司 | 具备自学习能力的家庭能源管理系统优化调度方法及装置 |
CN116231763B (zh) * | 2023-05-08 | 2023-08-04 | 广州三晶电气股份有限公司 | 具备自学习能力的家庭能源管理系统优化调度方法及装置 |
CN119401566A (zh) * | 2024-10-28 | 2025-02-07 | 天津大学 | 一种风险规避的园区综合能源系统多时间尺度调度方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109327042B (zh) | 一种微电网多能源联合优化调度方法 | |
CN111950807B (zh) | 计及不确定性与需求响应的综合能源系统优化运行方法 | |
CN110826815B (zh) | 一种考虑综合需求响应的区域综合能源系统运行优化方法 | |
CN115577929A (zh) | 基于多场景分析的乡村综合能源系统随机优化调度方法 | |
CN112270433B (zh) | 考虑可再生能源不确定性和用户满意度的微电网优化方法 | |
CN113742944B (zh) | 一种考虑电制氢系统的虚拟电厂建模方法 | |
Su et al. | Enhancing wind-solar hybrid hydrogen production through multi-state electrolyzer management and complementary energy optimization | |
CN110350512A (zh) | 一种智能园区新能源发电站调度优化方法及系统 | |
CN112800619A (zh) | 多源异质全可再生能源热电气储耦合系统建模与规划方法 | |
CN110635514B (zh) | 一种并网型微网优化配置方法 | |
CN115204705A (zh) | 考虑电转气存储的区域综合能源系统运行优化方法及应用 | |
CN113988392A (zh) | 一种考虑可靠性需求响应的微网优化规划方法 | |
CN117040000A (zh) | 一种耦合碳捕集和电制氢的综合能源系统热电优化方法 | |
CN116341703A (zh) | 一种园区综合能源系统运行优化方法、系统、介质及设备 | |
CN118504880A (zh) | 基于ccs-p2g的绿证-碳交易联合交互机制的综合能源系统低碳经济调度方法 | |
CN117081143A (zh) | 促进分布式光伏就地消纳的园区综合能源系统协调优化运行方法 | |
CN110957722B (zh) | 一种含电转气设备的微型能源网日前优化调度方法 | |
CN110490479A (zh) | 一种选择风电场储能的方法 | |
CN112952915B (zh) | 一种综合能源系统中平抑电网峰谷的优化调度方法 | |
CN115882460A (zh) | 一种考虑需求侧管理的两阶段新能源微电网优化调度方法 | |
Li et al. | Study on the Optimization of Capacity Configuration Strategy for Wind-photovoltaic-hydrogen Energy Storage Stations | |
CN117175686A (zh) | 基于生产模拟的离网风光储氢系统容量配置方法及系统 | |
CN112541778B (zh) | 一种基于微电网参与两阶段市场出清系统优化运行方法 | |
CN116706985A (zh) | 大规模新能源离网制氢系统的优化配置方法及装置 | |
CN115907485A (zh) | 一种综合能源系统及其优化调度方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |