[go: up one dir, main page]

CN115558669A - Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof - Google Patents

Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof Download PDF

Info

Publication number
CN115558669A
CN115558669A CN202111525550.1A CN202111525550A CN115558669A CN 115558669 A CN115558669 A CN 115558669A CN 202111525550 A CN202111525550 A CN 202111525550A CN 115558669 A CN115558669 A CN 115558669A
Authority
CN
China
Prior art keywords
atpd
sequence
gene
rna interference
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111525550.1A
Other languages
Chinese (zh)
Inventor
孟建玉
孟琳
曹毅
汪汉成
杨昌利
李治模
何应
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Institute of Tobacco Science
Original Assignee
Guizhou Institute of Tobacco Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Institute of Tobacco Science filed Critical Guizhou Institute of Tobacco Science
Priority to CN202111525550.1A priority Critical patent/CN115558669A/en
Publication of CN115558669A publication Critical patent/CN115558669A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a myzus persicae lethal gene, an RNA interference sequence, a preparation method and application thereof, wherein the myzus persicae lethal gene isATPdATPdThe cDNA sequence of (A) is shown in SEQ ID NO. 1. The RNA interference sequence isATPddsRNA and RNA interference sequence synthesized by the gene segment is shown as SEQ ID NO. 6. The RNA interference sequence is introduced into the body of myzus persicae to inhibit the myzus persicaeATPdThe expression level of the gene causes the reduction of the survival rate of the myzus persicae, the shortening of the service life and the weakening of the reproductive capacity, and can be used for the prevention and the treatment of the myzus persicae in agricultural production. The invention is designed aiming at the specific gene of the myzus persicae and has strong specificity,The method has the advantages of high safety, high lethality rate, environmental friendliness and the like, can realize green accurate prevention and control of myzus persicae, and can effectively reduce the damage of chemical pesticides to the ecological environment.

Description

烟蚜致死基因、RNA干扰序列及其制备方法和应用Aphid lethal gene, RNA interference sequence, preparation method and application thereof

技术领域technical field

本发明涉及一种适用于烟蚜防治的致死基因及其RNA干扰序列制备方法和应用,属于烟蚜防治技术领域。The invention relates to a lethal gene suitable for preventing and controlling aphids and its RNA interference sequence preparation method and application, belonging to the technical field of preventing and controlling aphids.

背景技术Background technique

烟蚜Myzuspersicae属半翅目(Hemiptera)蚜科(Aphididae),在世界各地广泛分布,是十字花科蔬菜、烟草、辣椒、马铃薯、茄子等数百种作物的主要害虫之一,还可传播多种病毒病,给农业生产造成很大损失。目前烟蚜及其传播的病毒病主要依靠大面积使用农药来防控,给我国农业生产带来了严重的安全性问题。因此,生产上迫切需要一种安全绿色的防控新技术或策略,能够弥补化学防治弊端。The tobacco aphid Myzuspersicae belongs to Hemiptera (Hemiptera) Aphididae (Aphididae), widely distributed all over the world, is one of the main pests of hundreds of crops such as cruciferous vegetables, tobacco, pepper, potato, eggplant, etc. A virus disease caused great losses to agricultural production. At present, the control of aphids and the viral diseases they spread mainly depends on the large-scale use of pesticides, which has brought serious safety problems to agricultural production in our country. Therefore, there is an urgent need for a safe and green control technology or strategy in production, which can make up for the disadvantages of chemical control.

RNA干扰(RNAinterference,RNAi)是指由内源或外源的双链RNA引发的mRNA高效特异性降解,导致特异性阻碍靶标基因表达的现象。根据RNA干扰原理,筛选烟蚜的致死基因,通过制备RNA干扰制剂,能够安全高效地对烟蚜起到防治作用,是当前发展趋势下解决化学防治问题的良好途径,被誉为新一代害虫防治新技术。RNA interference (RNAi) refers to the efficient and specific degradation of mRNA triggered by endogenous or exogenous double-stranded RNA, resulting in the phenomenon of specifically hindering the expression of target genes. According to the principle of RNA interference, screening the lethal genes of aphids and preparing RNA interference preparations can safely and efficiently control aphids, which is a good way to solve the problem of chemical control under the current development trend, and is known as a new generation of pest control new technology.

发明内容Contents of the invention

基于上述,本发明提供一种通过RNA干扰可使烟蚜致死的基因及其RNA干扰序列、制备方法和应用。烟蚜致死基因为APTd,根据致死基因设计的RNA干扰序列可抑制烟蚜体内APTd基因的表达,从而导致烟蚜死亡,可将APTd基因RNA干扰序列应用于农业中对烟蚜的防治。该技术是针对烟蚜的特异性基因设计,不会改变烟蚜的基因组,仅对烟蚜具有杀灭效果,具有特异性强、安全性高、致死率高、环境友好等优点,可实现烟蚜的绿色精准防控,能够有效减少化学农药对生态环境的破坏。Based on the above, the present invention provides a gene capable of killing aphids through RNA interference and its RNA interference sequence, preparation method and application. The lethal gene of tobacco aphid is APTd, and the RNA interference sequence designed according to the lethal gene can inhibit the expression of the APTd gene in the tobacco aphid, thereby leading to the death of the tobacco aphid. The APTd gene RNA interference sequence can be applied to the prevention and control of the tobacco aphid in agriculture. This technology is a specific gene design for aphids, will not change the genome of aphids, only has a killing effect on aphids, and has the advantages of strong specificity, high safety, high lethality, and environmental friendliness. The green precision control of aphids can effectively reduce the damage to the ecological environment caused by chemical pesticides.

本发明的技术方案是:Technical scheme of the present invention is:

第一方面,本发明提供一种烟蚜致死基因,所述烟蚜致死基因为ATPd,所述ATPd的cDNA序列如SEQ ID NO.1所示。In the first aspect, the present invention provides a lethal gene of A. persicae, said A. persicae lethal gene is ATPd, and the cDNA sequence of said ATPd is shown in SEQ ID NO.1.

第二方面,本发明提供一种烟蚜致死基因ATPd的RNA干扰序列,所述RNA干扰序列为根据权利要求1所述的ATPd基因片段合成的dsRNA,所述RNA干扰序列如SEQ ID NO.6所示。In a second aspect, the present invention provides an RNA interference sequence of the lethal gene ATPd of aphids, the RNA interference sequence is a dsRNA synthesized according to the ATPd gene fragment according to claim 1, and the RNA interference sequence is such as SEQ ID NO.6 shown.

第三方面,本发明提供一种制备所述RNA干扰序列的制备方法,所述制备方法包括以下步骤:In a third aspect, the present invention provides a preparation method for preparing the RNA interference sequence, the preparation method comprising the following steps:

S1、ATPd基因全长cDNA的克隆,得到烟蚜ATPd基因序列;S1, the cloning of the full-length cDNA of the ATPd gene to obtain the ATPd gene sequence of Aphids aphids;

S2、选取烟蚜ATPd基因序列中RNAi的靶标区域,并设计靶标区域扩增引物ATPd-F2/ATPd-R2;S2. Select the target region of RNAi in the ATPd gene sequence of Aphid aphid, and design the target region amplification primers ATPd-F2/ATPd-R2;

S3、提取烟蚜总RNA,反转录合成cDNA,然后用引物ATPd-F2/ATPd-R2对cDNA中含有的ATPd基因进行PCR扩增,纯化产物获得目的基因;S3, extracting the total RNA of Aphis persicae, reverse-transcribing and synthesizing cDNA, then using primers ATPd-F2/ATPd-R2 to perform PCR amplification on the ATPd gene contained in the cDNA, and purifying the product to obtain the target gene;

S4、将目的基因克隆到质粒载体中,并转化到感受态细胞中,提取质粒;S4. Cloning the target gene into a plasmid vector, transforming it into competent cells, and extracting the plasmid;

S5、在靶标区域扩增引物的5’-端加上T7 promoter序列,以提取的质粒作为模板进进行PCR扩增,纯化产物获得带T7序列目的基因,然后利用MEGAscript T7Transcription Kit合成得到RNA抗干扰制剂。S5. Add T7 promoter sequence to the 5'-end of the amplification primer in the target region, use the extracted plasmid as a template for PCR amplification, purify the product to obtain the target gene with T7 sequence, and then use MEGAscript T7Transcription Kit to synthesize RNA anti-interference preparation.

可选的,所述S1步骤中,根据烟蚜转录组数据库获得ATPd基因序列设计合成引物对ATPd-F1/ATPd-R1,以烟蚜cDNA为模板,进行PCR扩增,扩增产物回收后克隆至质粒载体,然后转化至感受态细胞,测序获得ATPd基因序列。Optionally, in the S1 step, a primer pair ATPd-F1/ATPd-R1 is designed and synthesized according to the ATPd gene sequence obtained from the Aphidia tabacum transcriptome database, PCR amplification is performed using the Aphidia persicae cDNA as a template, and the amplified product is recovered and cloned to a plasmid vector, then transformed into competent cells, and sequenced to obtain the ATPd gene sequence.

可选的,所述上游引物ATPd-F1的DNA序列如SEQ ID NO.2所示,所述下游引物ATPd-R1的DNA序列如SEQ ID NO.3所示。Optionally, the DNA sequence of the upstream primer ATPd-F1 is shown in SEQ ID NO.2, and the DNA sequence of the downstream primer ATPd-R1 is shown in SEQ ID NO.3.

可选的,所述S1中所述PCR扩增的反应体系为:Premix Taq酶12.5μL、cDNA模板1μL,正反向引物各1μL、ddH2O 9.5μL;反应程序为:95℃30s;94℃30s,57℃30s,72℃1min,35个循环,72℃10min。Optionally, the reaction system for PCR amplification described in S1 is: 12.5 μL of Premix Taq enzyme, 1 μL of cDNA template, 1 μL of forward and reverse primers, 9.5 μL of ddH 2 O; the reaction program is: 95°C for 30s; 94 30s at ℃, 30s at 57℃, 1min at 72℃, 35 cycles, 10min at 72℃.

可选的,所述上游引物ATPd-F2的DNA序列如SEQ ID NO.4所示,所述下游引物ATPd-R2的DNA序列如SEQ ID NO.5所示Optionally, the DNA sequence of the upstream primer ATPd-F2 is shown in SEQ ID NO.4, and the DNA sequence of the downstream primer ATPd-R2 is shown in SEQ ID NO.5

第四方面,本发明提供一种所述RNA干扰序列在防治烟蚜中的应用。In a fourth aspect, the present invention provides an application of the RNA interference sequence in the control of Nicotiana tabaci.

与现有技术相比,本发明的优点在于:一是提供了一种通过RNA干扰可使烟蚜致死的基因,烟蚜致死基因为ATPd,ATPd基因编码V-ATP酶(Vacuolar-type protonATPase)V0结构域,V-ATP酶是一种真核细胞的阳离子转运ATP酶,对维持细胞器的酸性环境具有重要作用,在昆虫肠道碱化、营养吸收和离子调控中发挥重要功能;二是提供了烟蚜RNA干扰序列制备方法,基于致死特异基因ATPd设计dsRNA,该dsRNA可高效诱发同源mRNA特异性降解,沉默ATPd基因在烟蚜体内的表达,最终导致烟蚜繁殖力降低及烟蚜死亡,该发明为利用RNA干扰技术控制害虫提供了新途径。Compared with the prior art, the present invention has the following advantages: one, it provides a gene that can make the aphids lethal by RNA interference, the lethal gene of aphids is ATPd, and the ATPd gene encodes V-ATPase (Vacuolar-type protonATPase) V0 domain, V-ATPase is a kind of cation transporting ATPase in eukaryotic cells, which plays an important role in maintaining the acidic environment of organelles, and plays an important role in the alkalinization of insect intestines, nutrient absorption and ion regulation; the second is to provide A method for the preparation of RNA interference sequences for Aphids aphids was developed, and dsRNA was designed based on the lethal specific gene ATPd, which can efficiently induce the specific degradation of homologous mRNAs, silence the expression of the ATPd gene in A. , the invention provides a new way to use RNA interference technology to control pests.

附图说明Description of drawings

图1克隆获得的烟蚜ATPd基因序列及推导的氨基酸序列;The ATPd gene sequence and the deduced amino acid sequence of Fig. 1 cloned obtained;

图2纳米载体介导不同浓度dsRNA对烟蚜ATPd基因的沉默效果;Fig. 2 The silencing effect of nanocarriers mediating different concentrations of dsRNA on the ATPd gene of Mysia aphids;

图3纳米载体介导dsRNA干扰不同时间后烟蚜ATPd基因的沉默效果;Fig. 3 Silencing effect of nanocarrier-mediated dsRNA interference on ATPd gene of aphids at different times;

图4RNA干扰对烟蚜存活率的影响;The impact of Fig. 4 RNA interference on the survival rate of Mysia aphid;

图5RNA干扰对烟蚜死亡率的影响;The influence of Fig. 5 RNA interference on the death rate of aphids;

图6RNA干扰对烟蚜存活天数的影响;The impact of Fig. 6 RNA interference on the survival days of Aphids aphids;

图7RNA干扰对烟蚜繁殖力的影响。Fig. 7 Effect of RNA interference on the fecundity of aphids.

具体实施方式detailed description

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways different from those described here, and those skilled in the art can make similar improvements without departing from the connotation of the present invention, so the present invention is not limited by the specific implementations disclosed below.

实施例1:Example 1:

一种烟蚜致死基因ATPd,其cDNA序列如SEQ ID NO.1所示,具体如下所示:A tobacco aphid lethal gene ATPd, its cDNA sequence is shown in SEQ ID NO.1, specifically as follows:

CCTATTATCTGTGACTCTCGATGATTGTCAATTGATAAAAATTAAGGTGTGTACTATAATTTGTACTTGTAGACACAGTGTACTGTGTGCTGTATGTGTGCTCTAACGTAATTTCGTTTTCTGTAGTGTGCTAAGTATTCAAATTGCGGCGGACAGTTACGTTTTAATCTTCAGAACCCTCTCAGGTCGACGAAAGAAATCATGGTGGATACCGGTTGTTTCTTCAACATTGACGGTGGTTACTTGGAAGGATTATGTCGCGGCTTTAAGTGTGGCATACTCAGACATGCCGATTACTTGAACCTTGAGCAGTGCGAGACCTTGGACGATCTCAAATTGCATCTGCAATCCACAGACTATGGCCAGTTCTTAGCCAATGAACCCAGCCCGCTGGCAGTATCCGTTATCGATGACAAGTTGCGCGAGAAGCTTGTTATTGAATTTCAACACATGCGCAATCATGCCGTGGAACCCCTCAGTACGTTCCTCGATTACATCACGTACAGTTACATGATTGACAATATTATATTGTTGATCACCGGAACACTTCACCAGCGCCCCATATCTGAATTGATACCAAAGTGTCATCCATTGGGTAGTTTCGAACAAATGGAAGCTATACATGTTGCTGCTACTCCAGCTGAGCTCTACAATGCTGTGTTGGTCGACACACCCTTGGCTCCATTCTTTGTTGACTGCATTAGCGAACAGGATCTTGACGAAATGAATATTGAAATTATTCGTAACACTCTATATAAGGCGTACTTGGAATCTTTTTATGATTTTTGTAAAAAGCTTGGAGGTATCACGGCTGATACTATGTGTGAAATATTATCATTTGAAGCTGATAGACGAGCAATTAATATAACGATCAACTCTTTTGGAACAGAATTGACTAAAGATGATAGAGCTAAGCTGTATCCAAGATGTGGTAAACTCTATCCAGATGGTCTGGCAGCTTTAGCTAGAGCTGATGATTATGATCAGGTTAAAGCTGTAGCTGAATACTTTGCTGAATACAGTGCTCTGTTTGATGGCGCTGGTACTAATCCTGGTGAAAAAACTCTTGAAGATCGTTTCTTTGAACATGAAGTGAAGTTGAATGTCAATGCATTCATGCGCCAATTCCATTATGGCGTTTTTTACTCGTATTTGAAACTTAAAGAACAAGAATGCAGAAATGTTGTGTGGATATCTGAGTGTGTGTCGCAAAAGCATCGGGCCCGCATGGATAACTACATTCCCATTTTCAAGTAACTTATAAATCGATGGTTATTTGTGCAGGTACCGGTATATTATCAATTATCATCAATTTAACATAATAAATTATTAATACCCTTTATCATACAGTTTTGAGGTATAATTTAGATTGTTCATAGATTGCATAGTATATTAATTCATTGTTTTTATTTATCATTCCAACGGTATTAATATGTCTGGAGCATTGTTGATAGCTTTTTCAGAATATTATGCATGTTTTTGTTTTTTATTAGATTTTAAGTGTCCAAAAGGAAAAAAACCTATTATCTGTGACTCTCGATGATTGTCAATTGATAAAAATTAAGGTGTGTACTATAATTTGTACTTGTAGACACAGTGTACTGTGTGCTGTATGTGTGCTCTAACGTAATTTCGTTTTCTGTAGTGTGCTAAGTATTCAAATTGCGGCGGACAGTTACGTTTTAATCTTCAGAACCCTCTCAGGTCGACGAAAGAAATCATGGTGGATACCGGTTGTTTCTTCAACATTGACGGTGGTTACTTGGAAGGATTATGTCGCGGCTTTAAGTGTGGCATACTCAGACATGCCGATTACTTGAACCTTGAGCAGTGCGAGACCTTGGACGATCTCAAATTGCATCTGCAATCCACAGACTATGGCCAGTTCTTAGCCAATGAACCCAGCCCGCTGGCAGTATCCGTTATCGATGACAAGTTGCGCGAGAAGCTTGTTATTGAATTTCAACACATGCGCAATCATGCCGTGGAACCCCTCAGTACGTTCCTCGATTACATCACGTACAGTTACATGATTGACAATATTATATTGTTGATCACCGGAACACTTCACCAGCGCCCCATATCTGAATTGATACCAAAGTGTCATCCATTGGGTAGTTTCGAACAAATGGAAGCTATACATGTTGCTGCTACTCCAGCTGAGCTCTACAATGCTGTGTTGGTCGACACACCCTTGGCTCCATTCTTTGTTGACTGCATTAGCGAACAGGATCTTGACGAAATGAATATTGAAATTATTCGTAACACTCTATATAAGGCGTACTTGGAATCTTTTTATGATTTTTGTAAAAAGCTTGGAGGTATCACGGCTGATACTATGTGTGAAATATTATCATTTGAAGCTGATAGACGAGCAATTAATATAACGATCAACTCTTTTGGAACAGAATTGACTAAAGATGATAGAGCTAAGCTGTATCCAAGATGTGGTAAACTCTATCCAGATGGTCTGGCAGCTTTAGCTAGAGCTGATGATTATGATCAGGTTAAAGCTGTAG CTGAATACTTTGCTGAATACAGTGCTCTGTTTGATGGCGCTGGTACTAATCCTGGTGAAAAAACTCTTGAAGATCGTTTCTTTGAACATGAAGTGAAGTTGAATGTCAATGCATTCATGCGCCAATTCCATTATGGCGTTTTTTACTCGTATTTGAAACTTAAAGAACAAGAATGCAGAAATGTTGTGTGGATATCTGAGTGTGTGTCGCAAAAGCATCGGGCCCGCATGGATAACTACATTCCCATTTTCAAGTAACTTATAAATCGATGGTTATTTGTGCAGGTACCGGTATATTATCAATTATCATCAATTTAACATAATAAATTATTAATACCCTTTATCATACAGTTTTGAGGTATAATTTAGATTGTTCATAGATTGCATAGTATATTAATTCATTGTTTTTATTTATCATTCCAACGGTATTAATATGTCTGGAGCATTGTTGATAGCTTTTTCAGAATATTATGCATGTTTTTGTTTTTTATTAGATTTTAAGTGTCCAAAAGGAAAAAAA

实施例2:Example 2:

一种烟蚜RNA干扰序列,其制备方法包括以下步骤:A kind of RNA interference sequence of aphids, its preparation method comprises the following steps:

(1)ATPd基因全长cDNA的克隆,得到烟蚜ATPd基因序列。(1) Cloning of the full-length cDNA of the ATPd gene to obtain the sequence of the ATPd gene of A. persicae.

用TRIzol法提取烟蚜总RNA,合成cDNA第一条链。基于烟蚜转录组数据库获得ATPd基因序列设计ATPd基因的上下游引物ATPd-F1/ATPd-R1。The total RNA was extracted by TRIzol method, and the first strand of cDNA was synthesized. The upstream and downstream primers ATPd-F1/ATPd-R1 of the ATPd gene were designed based on the ATPd gene sequence obtained from the Aphid sativa transcriptome database.

上游引物ATPd-F1的DNA序列如SEQ ID NO.2所示,具体为:The DNA sequence of the upstream primer ATPd-F1 is shown in SEQ ID NO.2, specifically:

ATTCAAATTGCGGGCGGACAGATTCAAATTGCGGGCGGACAG

下游引物ATPd-R1的DNA序列如SEQ ID NO.3所示,具体为:The DNA sequence of the downstream primer ATPd-R1 is shown in SEQ ID NO.3, specifically:

CCGGTACCCTGCACAAATAACCCGGTACCCTGCACAAATAAC

以cDNA为模板,利用上述设计引物ATPd-F1/ATPd-R1进行PCR扩增,PCR反应体系为:Premix Taq酶12.5μL、cDNA模板1μL,正反向引物各1μL、ddH2O9.5μL。反应程序为:95℃30s;94℃30s,57℃30s,72℃1min,35个循环,72℃10min。将经PCR扩增获得的PCR产物进行琼脂糖凝胶电泳分离,纯化回收目的片段。将回收目的片段克隆至pMDTM 19-T vector后转化至感受态细胞DH5α。通过菌落PCR进行验证后进行测序。Using cDNA as a template, PCR amplification was performed using the above-mentioned designed primers ATPd-F1/ATPd-R1. The PCR reaction system was: 12.5 μL of Premix Taq enzyme, 1 μL of cDNA template, 1 μL of forward and reverse primers, and 9.5 μL of ddH 2 O. The reaction program is: 95°C for 30s; 94°C for 30s, 57°C for 30s, 72°C for 1min, 35 cycles, 72°C for 10min. The PCR product obtained by PCR amplification is separated by agarose gel electrophoresis, and the target fragment is purified and recovered. The recovered target fragment was cloned into pMDTM 19-T vector and then transformed into competent cell DH5α. Sequencing was performed after verification by colony PCR.

(2)选取烟蚜ATPd基因序列中RNAi的靶标区域,并设计靶标区域扩增引物。(2) Select the target region of RNAi in the ATPd gene sequence of Aphid aphid, and design primers for amplification of the target region.

根据上述步骤克隆获得的烟蚜ATPd基因序列,选取RNAi的靶标区域,并利用SnapDragon-dsRNA Design在线工具设计靶标区域的PCR扩增引物ATPd-F2/ATPd-R2。The obtained ATPd gene sequence was cloned according to the above steps, the target region of RNAi was selected, and the PCR amplification primers ATPd-F2/ATPd-R2 of the target region were designed using the SnapDragon-dsRNA Design online tool.

上游引物ATPd-F2的DNA序列如SEQ ID NO.4所示,具体为:The DNA sequence of the upstream primer ATPd-F2 is shown in SEQ ID NO.4, specifically:

GGAACACTTCACCAGCGCCCGGAACACTTCACCAGCGCCC

下游引物ATPd-R2的DNA序列如SEQ ID NO.5所示,具体为:The DNA sequence of the downstream primer ATPd-R2 is shown in SEQ ID NO.5, specifically:

ACCAGCGCCATCAAACAGAGCACCAGCGCCATCAACAGAGC

(3)提取烟蚜总RNA,反转录合成cDNA,然后用引物ATPd-F2/ATPd-R2对cDNA中含有的ATPd基因进行PCR扩增,纯化产物获得目的基因。(3) Extract total RNA from Aphids persicae, reverse transcribe to synthesize cDNA, then use primers ATPd-F2/ATPd-R2 to perform PCR amplification on the ATPd gene contained in the cDNA, and purify the product to obtain the target gene.

(4)将目的基因克隆到质粒载体中,并转化到感受态细胞中,提取质粒。(4) Cloning the target gene into a plasmid vector, transforming it into competent cells, and extracting the plasmid.

将ATPd基因片段克隆到pMDTM 19-T vector(Takara)中,并转化到感受态细胞DH5α中,提取质粒并通过测序验证。The ATPd gene fragment was cloned into pMDTM 19-T vector (Takara), and transformed into competent cell DH5α, and the plasmid was extracted and verified by sequencing.

(5)在靶标区域扩增引物的5’-端加上T7 promoter序列:(5) Add the T7 promoter sequence to the 5'-end of the amplification primer in the target region:

dsATPd-F:TAATACGACTCACTATAGGGGGAACACTTCACCAGCGCCCdsATPd-F: TAATACGACTCACTATAGGGGGAACACTTCACCAGCGCCC

dsATPd-R:TAATACGACTCACTATAGGGACCAGCGCCATCAAACAGAGCdsATPd-R: TAATACGACTCACTATAGGGACCAGCGCCATCAAACAGAGC

以提取的质粒作为模板进进行PCR扩增,纯化产物获得带T7序列目的基因,然后利用MEGAscript T7 Transcription Kit合成得到含有烟蚜致死基因ATPd片段的dsRNA,其序列如SEQ ID NO.6所示,具体为:The extracted plasmid was used as a template to carry out PCR amplification, and the purified product was obtained to obtain the target gene with T7 sequence, and then the dsRNA containing the ATPd fragment of the Aphids aphidifera lethal gene was synthesized by using the MEGAscript T7 Transcription Kit, and its sequence was shown in SEQ ID NO.6. Specifically:

GGAACACTTCACCAGCGCCCCATATCTGAATTGATACCAAAGTGTCATCCATTGGGTAGTTTCGAACAAATGGAAGCTATACATGTTGCTGCTACTCCAGCTGAGCTCTACAATGCTGTGTTGGTCGACACACCCTTGGCTCCATTCTTTGTTGACTGCATTAGCGAACAGGATCTTGACGAAATGAATATTGAAATTATTCGTAACACTCTATATAAGGCGTACTTGGAATCTTTTTATGATTTTTGTAAAAAGCTTGGAGGTATCACGGCTGATACTATGTGTGAAATATTATCATTTGAAGCTGATAGACGAGCAATTAATATAACGATCAACTCTTTTGGAACAGAATTGACTAAAGATGATAGAGCTAAGCTGTATCCAAGATGTGGTAAACTCTATCCAGATGGTCTGGCAGCTTTAGCTAGAGCTGATGATTATGATCAGGTTAAAGCTGTAGCTGAATACTTTGCTGAATACAGTGCTCTGTTTGATGGCGCTGGTGGAACACTTCACCAGCGCCCCATATCTGAATTGATACCAAAGTGTCATCCATTGGGTAGTTTCGAACAAATGGAAGCTATACATGTTGCTGCTACTCCAGCTGAGCTCTACAATGCTGTGTTGGTCGACACACCCTTGGCTCCATTCTTTGTTGACTGCATTAGCGAACAGGATCTTGACGAAATGAATATTGAAATTATTCGTAACACTCTATATAAGGCGTACTTGGAATCTTTTTATGATTTTTGTAAAAAGCTTGGAGGTATCACGGCTGATACTATGTGTGAAATATTATCATTTGAAGCTGATAGACGAGCAATTAATATAACGATCAACTCTTTTGGAACAGAATTGACTAAAGATGATAGAGCTAAGCTGTATCCAAGATGTGGTAAACTCTATCCAGATGGTCTGGCAGCTTTAGCTAGAGCTGATGATTATGATCAGGTTAAAGCTGTAGCTGAATACTTTGCTGAATACAGTGCTCTGTTTGATGGCGCTGGT

实施例3:Example 3:

烟蚜致死基因ATPd的RNA干扰效率及应用检测RNA interference efficiency and application detection of ATPd lethal gene ATPd

对照设计:Control design:

采用绿色荧光蛋白(GFP)基因作为对照,同样设计靶标区域的PCR扩增引物GFP-F/GFP-R。Using the green fluorescent protein (GFP) gene as a control, the PCR amplification primers GFP-F/GFP-R of the target region were also designed.

上游引物GFP-F的DNA序列如SEQ ID NO.7所示,具体为:The DNA sequence of the upstream primer GFP-F is shown in SEQ ID NO.7, specifically:

GCCAACACTTGTCACTACTTGCCAACACTTGTCACTACTT

下游引物GFP-R的DNA序列如SEQ ID NO.8所示,具体为:The DNA sequence of the downstream primer GFP-R is shown in SEQ ID NO.8, specifically:

GGAGTATTTTGTTGATAATGGTCTGGGAGTATTTTGTTGATAATGGTCTG

提取烟蚜总RNA,反转录合成cDNA,然后用该引物对cDNA进行PCR扩增,纯化产物获得对照基因,将该对照基因片段克隆到pMDTM 19-T vector(Takara)中,并转化到感受态细胞DH5α中,提取质粒,在引物GFP-F/GFP-R的5’-端加上T7 promoter序列:Extract the total RNA of Aphis persicae, reverse transcribe and synthesize cDNA, then use the primers to amplify the cDNA by PCR, purify the product to obtain the control gene, clone the control gene fragment into pMDTM 19-T vector (Takara), and transform it into a sensory In the state cell DH5α, extract the plasmid, and add the T7 promoter sequence to the 5'-end of the primer GFP-F/GFP-R:

dsGFP-F:TAATACGACTCACTATAGGGGCCAACACTTGTCACTACTTdsGFP-F: TAATACGACTCACTATAGGGGCCAACACTTGTCACTACTT

dsGFP-R:TAATACGACTCACTATAGGGGGAGTATTTTGTTGATAATGGTCTGdsGFP-R: TAATACGACTCACTATAGGGGGAGTATTTTGTTGATAATGGTCTG

以提取的质粒作为模板进行PCR扩增,纯化产物获得带T7序列目的基因,然后利用MEGAscript T7 Transcription Kit合成得到dsRNA作为对照使用。Use the extracted plasmid as a template for PCR amplification, purify the product to obtain the target gene with T7 sequence, and then use MEGAscript T7 Transcription Kit to synthesize dsRNA as a control.

试验步骤:experiment procedure:

(1)dsRNA与纳米载体(nanocarrier)以质量比1:1(纳米载体和dsRNA的最终浓度500ng/μL)混合,加入0.5%的表面活性剂(detergent),形成dsRNA/nanocarrier/detergent复合物。对照按前述同样方法制备得到dsGFP/nanocarrier/detergent复合物。(1) dsRNA and nanocarrier (nanocarrier) were mixed at a mass ratio of 1:1 (the final concentration of nanocarrier and dsRNA was 500 ng/μL), and 0.5% surfactant (detergent) was added to form a dsRNA/nanocarrier/detergent complex. The control dsGFP/nanocarrier/detergent complex was prepared by the same method as above.

(2)将0.3μL dsRNA/nanocarrier/detergent和dsGFP/nanocarrier/detergent(对照)点滴至烟蚜3龄若虫腹背面,干扰处理24、48、72h后,随机选取10头活虫,用于检测RNA干扰对ATPd基因沉默的效果。(2) Drop 0.3 μL of dsRNA/nanocarrier/detergent and dsGFP/nanocarrier/detergent (control) onto the ventral back of the 3rd instar nymph of Aphis aphids, and after 24, 48, and 72 hours of interference treatment, 10 live worms were randomly selected for RNA detection Effect of interference on ATPd gene silencing.

(3)使用NCBI Primer-BLAST设计ATPd基因qRT-PCR引物,以cDNA为模板,进行qRT-PCR扩增检测基因表达水平,PCR反应体系为:TB

Figure BDA0003410217350000061
Premix Ex Taq II 10μL、cDNA模板1μL、正反向引物各1μL、ddH2O 7μL。选用烟蚜β-actin和18s作为内参基因。采用2-ΔΔCT法测定相对转录水平,选取两个内控基因的几何平均值进行归一化处理。(3) Use NCBI Primer-BLAST to design qRT-PCR primers for the ATPd gene, use cDNA as a template, and perform qRT-PCR amplification to detect gene expression levels. The PCR reaction system is: TB
Figure BDA0003410217350000061
Premix Ex Taq II 10 μL, cDNA template 1 μL, forward and reverse primers 1 μL each, ddH 2 O 7 μL. Aphid β-actin and 18s were selected as internal reference genes. Relative transcript levels were determined by the 2 -ΔΔCT method, and the geometric mean of two internal control genes was selected for normalization.

上游引物qATPd-F的DNA序列如SEQ ID NO.9所示,具体为:The DNA sequence of the upstream primer qATPd-F is shown in SEQ ID NO.9, specifically:

GGAAGGATTATGTCGCGGCTGGAAGGATTATGTCGCGGCT

下游引物qATPd-R的DNA序列如SEQ ID NO.10所示,具体为:The DNA sequence of the downstream primer qATPd-R is shown in SEQ ID NO.10, specifically:

TAACAAGCTTCTCGCGCAACTAACAAGCTTCTCGCGCAAC

上游引物β-actin-F的DNA序列如SEQ ID NO.11所示,具体为:The DNA sequence of the upstream primer β-actin-F is shown in SEQ ID NO.11, specifically:

AGTGCGACGTTGACATCAGAAGTGCGACGTTGACATCAGA

下游引物β-actin-R的DNA序列如SEQ ID NO.12所示,具体为:The DNA sequence of the downstream primer β-actin-R is shown in SEQ ID NO.12, specifically:

GCTTGGAGCTAAGGCAGTGAGCTTGGAGCTAAGGCAGTGA

上游引物18s-F的DNA序列如SEQ ID NO.13所示,具体为:The DNA sequence of the upstream primer 18s-F is shown in SEQ ID NO.13, specifically:

TCAACACGGGAAACCTCACCATCAACACGGGAAACCTCACCA

下游引物18s-R的DNA序列如SEQ ID NO.14所示,具体为:The DNA sequence of the downstream primer 18s-R is shown in SEQ ID NO.14, specifically:

CACCACCCACCGAATCAAGAACACCACCCCACCGAATCAAGAA

(4)采用(2)中RNA干扰方法,选择烟蚜3龄若虫进行RNAi处理,每天统计其蜕皮量及存活量,连续统计7d,以GFP处理作为对照,每个处理30头烟蚜,重复3次。(4) Using the RNA interference method in (2), select the 3rd instar nymphs of A. tabaciformis for RNAi treatment, and count the amount of molt and survival every day for 7 days. GFP treatment is used as a control, and 30 aphids per treatment are repeated. 3 times.

(5)采用IBM SPSS Statistics for Windows,version 19.0通过单因素进行方差分析,采用Tukey法进行多重比较,p<0.05被认为具有统计学意义。(5) IBM SPSS Statistics for Windows, version 19.0 was used for single factor analysis of variance, and Tukey's method was used for multiple comparisons, p<0.05 was considered statistically significant.

结果分析:Result analysis:

(1)烟蚜ATPd基因的序列分析(1) Sequence analysis of the ATPd gene of Aphid persicae

克隆测序得到1519bp序列,经NCBI的Blast工具分析发现其核苷酸序列与其他同源昆虫的ATPd序列具有很高的相似性,并确定该序列为蚜虫ATPd基因。ATPd基因的开放阅读框(ORF)为1056bp,编码351个氨基酸,5'非编码区为201bp(5'-UTR),3'非编码区(3'-UTR)为262bp。有加尾信号AATAA,编码蛋白相对分子量为40.21kD,等电点(pI)为4.93,分子式为C1811H2778N464O535S19;N-端氨基酸为蛋氨酸(M,Met),推测的蛋白质半衰期为30h;含有带负电荷的氨基酸残基(Asp+Glu)53个,带正电荷的氨基酸残基(Arg+Lys)34个;稳定性系数为36.29,即该蛋白质性质稳定;总平均疏水指数(GRAVY)为-0.160,表明其为亲水性蛋白质;脂肪族氨基酸指数为90.34(图1)。The 1519bp sequence was obtained by cloning and sequencing, and its nucleotide sequence was found to be highly similar to the ATPd sequence of other homologous insects by NCBI Blast tool analysis, and the sequence was determined to be the ATPd gene of aphids. The open reading frame (ORF) of the ATPd gene is 1056bp, encoding 351 amino acids, the 5'untranslated region is 201bp (5'-UTR), and the 3'untranslated region (3'-UTR) is 262bp. There is a tailing signal AATAA, the relative molecular weight of the encoded protein is 40.21kD, the isoelectric point (pI) is 4.93, and the molecular formula is C 1811 H 2778 N 464 O 535 S 19 ; the N-terminal amino acid is methionine (M, Met). The half-life of the protein is 30h; it contains 53 negatively charged amino acid residues (Asp+Glu) and 34 positively charged amino acid residues (Arg+Lys); the stability coefficient is 36.29, which means the protein is stable; the total average The hydrophobicity index (GRAVY) was -0.160, indicating that it was a hydrophilic protein; the aliphatic amino acid index was 90.34 (Figure 1).

(2)RNA干扰对烟蚜ATPd基因的沉默效果(2) Silencing effect of RNA interference on ATPd gene

试验测定了纳米载体介导不同浓度dsRNA(20、40、80、160、320、500ng/μL)沉默烟蚜ATPd基因的效果,结果表明,dsATPd可有效降低ATPd基因的表达量,干扰48h后沉默效果分别达到27.12%、56.76%、46.33%、71.55%、62.34%和71.97%,以160ng/μL和500ng/μLdsRNA沉默效果最佳(图2)。The experiment measured the effect of nano-carriers mediating different concentrations of dsRNA (20, 40, 80, 160, 320, 500 ng/μL) to silence the ATPd gene of the aphid. The effects reached 27.12%, 56.76%, 46.33%, 71.55%, 62.34% and 71.97%, respectively, and the silencing effects of 160ng/μL and 500ng/μL dsRNA were the best (Figure 2).

纳米载体介导500ng/μL dsRNA,干扰烟蚜3龄若虫24、48、72h后,分别测定ATPd基因表达量,结果表明,与对照GFP相比,24h后沉默效果不显著,48h和72h后沉默效果分别达到71.97%和72.68%(图3)。Nanocarriers mediated 500ng/μL dsRNA to interfere with the 3rd instar nymphs of Aphids aphids for 24, 48, and 72 hours, respectively, and measured the expression of ATPd gene. The results showed that compared with the control GFP, the silencing effect was not significant after 24 hours, and the silencing was silenced after 48 and 72 hours. The effects reached 71.97% and 72.68% respectively (Fig. 3).

(3)RNA干扰对烟蚜存活率及寿命的影响(3) The effect of RNA interference on the survival rate and lifespan of Aphids persicae

试验测定了RNA干扰烟蚜ATPd基因后连续7d内烟蚜的存活率及寿命,结果表明,沉默ATPd基因可有效降低烟蚜的存活率,沉默ATPd基因后第3、4d烟蚜存活率迅速降低,第7d时存活率仅为21.11%(图4),烟蚜7d内死亡率显著升高,为对照的6.45倍(图5);RNA干扰后烟蚜存活天数(6.82d)与对照存活天数(15.17d)相比显著缩短(图6)。The experiment measured the survival rate and lifespan of Aphids persicae for 7 consecutive days after RNA interference with the ATPd gene. The results showed that silencing the ATPd gene can effectively reduce the survival rate of A. persicae, and the survival rate of A. persicae decreased rapidly on the 3rd and 4th day after silencing the ATPd gene. , the survival rate at the 7th day was only 21.11% (Fig. 4), and the death rate of Aphis persicae significantly increased within 7 days, which was 6.45 times that of the control (Fig. 5); (15.17d) was significantly shortened (Fig. 6).

(4)RNA干扰对烟蚜繁殖力的影响(4) The effect of RNA interference on the fecundity of Aphis persicae

试验测定了RNA干扰烟蚜ATPd基因后烟蚜的繁殖力,结果表明,沉默ATPd基因可有效降低烟蚜的繁殖能力,RNA干扰后7d内烟蚜成虫单产若虫总量(7.7头)与对照(36.2头)相比显著降低(图7)。The experiment measured the fecundity of A. persicae after RNA interference of ATPd gene. The results showed that silencing the ATPd gene could effectively reduce the fecundity of A. persicae. 36.2 heads) was significantly reduced (Figure 7).

SEQUENCE LISTINGSEQUENCE LISTING

序列表sequence listing

<110> 贵州省烟草科学研究院<110> Guizhou Academy of Tobacco Science

<120> 烟蚜致死基因、RNA干扰序列及其制备方法和应用<120> Aphid lethal gene, RNA interference sequence, preparation method and application thereof

<160> 4<160> 4

<210> 1<210> 1

<211> 1519<211> 1519

<212> cDNA<212> cDNA

<213> 烟蚜致死基因ATPd<213> Aphid lethal gene ATPd

<400>1<400>1

CCTATTATCT GTGACTCTCG ATGATTGTCA ATTGATAAAA ATTAAGGTGT GTACTATAAT 60CCTATTATCT GTGACTCTCG ATGATTGTCA ATTGATAAAA ATTAAGGTGT GTACTATAAT 60

TTGTACTTGT AGACACAGTG TACTGTGTGC TGTATGTGTG CTCTAACGTA ATTTCGTTTT 120TTGTACTTGT AGACACAGTG TACTGTGTGC TGTATGTGTG CTCTAACGTA ATTTCGTTTT 120

CTGTAGTGTG CTAAGTATTC AAATTGCGGC GGACAGTTAC GTTTTAATCT TCAGAACCCT 180CTGTAGTGTG CTAAGTATTC AAATTGCGGC GGACAGTTAC GTTTTAATCT TCAGAACCCT 180

CTCAGGTCGA CGAAAGAAAT CATGGTGGAT ACCGGTTGTT TCTTCAACAT TGACGGTGGT 240CTCAGGTCGA CGAAAGAAAT CATGGTGGAT ACCGGTTGTT TCTTCAACAT TGACGGTGGT 240

TACTTGGAAG GATTATGTCG CGGCTTTAAG TGTGGCATAC TCAGACATGC CGATTACTTG 300TACTTGGAAG GATTATGTCG CGGCTTTAAG TGTGGCATAC TCAGACATGC CGATTACTTG 300

AACCTTGAGC AGTGCGAGAC CTTGGACGAT CTCAAATTGC ATCTGCAATC CACAGACTAT 360AACCTTGAGC AGTGCGAGAC CTTGGACGAT CTCAAATTGC ATCTGCAATC CACAGACTAT 360

GGCCAGTTCT TAGCCAATGA ACCCAGCCCG CTGGCAGTAT CCGTTATCGA TGACAAGTTG 420GGCCAGTTCT TAGCCAATGA ACCCAGCCCG CTGGCAGTAT CCGTTATCGA TGACAAGTTG 420

CGCGAGAAGC TTGTTATTGA ATTTCAACAC ATGCGCAATC ATGCCGTGGA ACCCCTCAGT 480CGCGAGAAGC TTGTTATTGA ATTTCAACAC ATGCGCAATC ATGCCGTGGA ACCCCTCAGT 480

ACGTTCCTCG ATTACATCAC GTACAGTTAC ATGATTGACA ATATTATATT GTTGATCACC 540ACGTTCCTCG ATTACATCAC GTACAGTTAC ATGATTGACA ATATTATATT GTTGATCACC 540

GGAACACTTC ACCAGCGCCC CATATCTGAA TTGATACCAA AGTGTCATCC ATTGGGTAGT 600GGAACACTTC ACCAGCGCCC CATATCTGAA TTGATACCAA AGTGTCATCC ATTGGGTAGT 600

TTCGAACAAA TGGAAGCTAT ACATGTTGCT GCTACTCCAG CTGAGCTCTA CAATGCTGTG 660TTCGAACAAA TGGAAGCTAT ACATGTTGCT GCTACTCCAG CTGAGCTCTA CAATGCTGTG 660

TTGGTCGACA CACCCTTGGC TCCATTCTTT GTTGACTGCA TTAGCGAACA GGATCTTGAC 720TTGGTCGACA CACCCTTGGC TCCATTCTTT GTTGACTGCA TTAGCGAACA GGATCTTGAC 720

GAAATGAATA TTGAAATTAT TCGTAACACT CTATATAAGG CGTACTTGGA ATCTTTTTAT 780GAAATGAATA TTGAAATTAT TCGTAACACT CTATATAAGG CGTACTTGGA ATCTTTTTAT 780

GATTTTTGTA AAAAGCTTGG AGGTATCACG GCTGATACTA TGTGTGAAAT ATTATCATTT 840GATTTTTGTA AAAAGCTTGG AGGTATCACG GCTGATACTA TGTGTGAAAT ATTATCATTT 840

GAAGCTGATA GACGAGCAAT TAATATAACG ATCAACTCTT TTGGAACAGA ATTGACTAAA 900GAAGCTGATA GACGAGCAAT TAATATAACG ATCAACTCTT TTGGAACAGA ATTGACTAAA 900

GATGATAGAG CTAAGCTGTA TCCAAGATGT GGTAAACTCT ATCCAGATGG TCTGGCAGCT 960GATGATAGAG CTAAGCTGTA TCCAAGATGT GGTAAACTCT ATCCAGATGG TCTGGCAGCT 960

TTAGCTAGAG CTGATGATTA TGATCAGGTT AAAGCTGTAG CTGAATACTT TGCTGAATAC 1020TTAGCTAGAG CTGATGATTA TGATCAGGTT AAAGCTGTAG CTGAATACTT TGCTGAATAC 1020

AGTGCTCTGT TTGATGGCGC TGGTACTAAT CCTGGTGAAA AAACTCTTGA AGATCGTTTC 1080AGTGCTCTGT TTGATGGCGC TGGTACTAAT CCTGGTGAAA AAACTCTTGA AGATCGTTTC 1080

TTTGAACATG AAGTGAAGTT GAATGTCAAT GCATTCATGC GCCAATTCCA TTATGGCGTT 1140TTTGAACATG AAGTGAAGTT GAATGTCAAT GCATTCATGC GCCAATTCCA TTATGGCGTT 1140

TTTTACTCGT ATTTGAAACT TAAAGAACAA GAATGCAGAA ATGTTGTGTG GATATCTGAG 1200TTTTACTCGT ATTTGAAACT TAAAGAACAA GAATGCAGAA ATGTTGTGTG GATATCTGAG 1200

TGTGTGTCGC AAAAGCATCG GGCCCGCATG GATAACTACA TTCCCATTTT CAAGTAACTT 1260TGTGTGTCGC AAAAGCATCG GGCCCGCATG GATAACTACA TTCCCATTTT CAAGTAACTT 1260

ATAAATCGAT GGTTATTTGT GCAGGTACCG GTATATTATC AATTATCATC AATTTAACAT 1320ATAAATCGAT GGTTATTTGT GCAGGTACCG GTATATTATC AATTATCATC AATTTAACAT 1320

AATAAATTAT TAATACCCTT TATCATACAG TTTTGAGGTA TAATTTAGAT TGTTCATAGA 1380AATAAATTAT TAATACCCCTT TATCATACAG TTTTGAGGTA TAATTTAGAT TGTTCATAGA 1380

TTGCATAGTA TATTAATTCA TTGTTTTTAT TTATCATTCC AACGGTATTA ATATGTCTGG 1440TTGCATAGTA TATTAATTCA TTGTTTTTAT TTATCATTCC AACGGTATTA ATATGTCTGG 1440

AGCATTGTTG ATAGCTTTTT CAGAATATTA TGCATGTTTT TGTTTTTTAT TAGATTTTAA 1500AGCATTGTTG ATAGCTTTTT CAGAATATTA TGCATGTTTT TGTTTTTTAT TAGATTTTAA 1500

GTGTCCAAAA GGAAAAAAA 1519GTGTCCAAAAA GGAAAAAAA 1519

<210> 2<210> 2

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>2<400>2

ATTCAAATTG CGGGCGGACA G 21ATTCAAATTG CGGGCGGACA G 21

<210> 3<210> 3

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>3<400>3

CCGGTACCCT GCACAAATAA C 21CCGGTACCCT GCACAAATAA C 21

<210> 4<210> 4

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

GGAACACTTC ACCAGCGCCC 20GGAACACTTCACCAGCGCCC20

<210> 5<210> 5

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

ACCAGCGCCA TCAAACAGAG C 21ACCAGCGCCA TCAAACAGAG C 21

<210> 6<210> 6

<211> 504<211> 504

<212> dsRNA<212> dsRNA

<213> 烟蚜致死基因ATPd片段的dsRNA<213> dsRNA of the ATPd fragment of the lethal gene ATPd

<400>4<400>4

GGAACACTTC ACCAGCGCCC CATATCTGAA TTGATACCAA AGTGTCATCC ATTGGGTAGT 60GGAACACTTC ACCAGCGCCC CATATCTGAA TTGATACCAA AGTGTCATCC ATTGGGTAGT 60

TTCGAACAAA TGGAAGCTAT ACATGTTGCT GCTACTCCAG CTGAGCTCTA CAATGCTGTG 120TTCGAACAAA TGGAAGCTAT ACATGTTGCT GCTACTCCAG CTGAGCTCTA CAATGCTGTG 120

TTGGTCGACA CACCCTTGGC TCCATTCTTT GTTGACTGCA TTAGCGAACA GGATCTTGAC 180TTGGTCGACA CACCCTTGGC TCCATTCTTT GTTGACTGCA TTAGCGAACA GGATCTTGAC 180

GAAATGAATA TTGAAATTAT TCGTAACACT CTATATAAGG CGTACTTGGA ATCTTTTTAT 240GAAATGAATA TTGAAATTAT TCGTAACACT CTATATAAGG CGTACTTGGA ATCTTTTTAT 240

GATTTTTGTA AAAAGCTTGG AGGTATCACG GCTGATACTA TGTGTGAAAT ATTATCATTT 300GATTTTTGTA AAAAGCTTGG AGGTATCACG GCTGATACTA TGTGTGAAAT ATTATCATTT 300

GAAGCTGATA GACGAGCAAT TAATATAACG ATCAACTCTT TTGGAACAGA ATTGACTAAA 360GAAGCTGATA GACGAGCAAT TAATATAACG ATCAACTCTT TTGGAACAGA ATTGACTAAA 360

GATGATAGAG CTAAGCTGTA TCCAAGATGT GGTAAACTCT ATCCAGATGG TCTGGCAGCT 420GATGATAGAG CTAAGCTGTA TCCAAGATGT GGTAAACTCT ATCCAGATGG TCTGGCAGCT 420

TTAGCTAGAG CTGATGATTA TGATCAGGTT AAAGCTGTAG CTGAATACTT TGCTGAATAC 480TTAGCTAGAG CTGATGATTA TGATCAGGTT AAAGCTGTAG CTGAATACTT TGCTGAATAC 480

AGTGCTCTGT TTGATGGCGC TGGT 504AGTGCTCTGT TTGATGGCGC TGGT 504

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

GCCAACACTT GTCACTACTT 20GCCAACACTT GTCACTACTT 20

<210> 8<210> 8

<211> 25<211> 25

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

GGAGTATTTT GTTGATAATG GTCTG 25GGAGTATTTT GTTGATAATG GTCTG 25

<210> 9<210> 9

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

GGAAGGATTA TGTCGCGGCT 20GGAAGGATTA TGTCGCGGCT 20

<210> 10<210> 10

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

TAACAAGCTT CTCGCGCAAC 20TAACAAGCTT CTCGCGCAAC 20

<210> 11<210> 11

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

AGTGCGACGT TGACATCAGA 20AGTGCGACGT TGACATCAGA 20

<210> 12<210> 12

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

GCTTGGAGCT AAGGCAGTGA 20GCTTGGAGCT AAGGCAGTGA 20

<210> 13<210> 13

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

TCAACACGGG AAACCTCACC A 21TCAACACGGGAAACCTCACC A 21

<210> 14<210> 14

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400>4<400>4

CACCACCCAC CGAATCAAGA A 21CACCACCCAC CGAATCAAGA A 21

Claims (8)

1.一种可用于RNA干扰防治烟蚜的致死基因,其特征在于,所述致死基因为ATPd,所述ATPd的cDNA序列如SEQ ID NO.1所示。1. A lethal gene that can be used for preventing and treating aphids by RNA interference, characterized in that the lethal gene is ATPd, and the cDNA sequence of ATPd is shown in SEQ ID NO.1. 2.一种RNA干扰序列,其特征在于,所述RNA干扰序列为根据权利要求1所述的ATPd基因片段合成的dsRNA,所述RNA干扰序列如SEQ ID NO.6所示。2. An RNA interference sequence, characterized in that, the RNA interference sequence is dsRNA synthesized according to the ATPd gene fragment according to claim 1, and the RNA interference sequence is as shown in SEQ ID NO.6. 3.一种制备权利要求2所述RNA干扰序列的制备方法,其特征在于,所述制备方法包括以下步骤:3. a preparation method for preparing the RNA interference sequence described in claim 2, characterized in that, the preparation method comprises the following steps: S1、ATPd基因全长cDNA的克隆,得到烟蚜ATPd基因序列;S1, the cloning of the full-length cDNA of the ATPd gene to obtain the ATPd gene sequence of Aphids aphids; S2、选取烟蚜ATPd基因序列中RNAi的靶标区域,并设计靶标区域扩增引物ATPd-F2/ATPd-R2;S2. Select the target region of RNAi in the ATPd gene sequence of Aphid aphid, and design the target region amplification primers ATPd-F2/ATPd-R2; S3、提取烟蚜总RNA,反转录合成cDNA,然后用引物ATPd-F2/ATPd-R2对cDNA中含有的ATPd基因进行PCR扩增,纯化产物获得目的基因;S3, extracting the total RNA of Aphis persicae, reverse-transcribing and synthesizing cDNA, then using primers ATPd-F2/ATPd-R2 to perform PCR amplification on the ATPd gene contained in the cDNA, and purifying the product to obtain the target gene; S4、将目的基因克隆到质粒载体中,并转化到感受态细胞中,提取质粒;S4. Cloning the target gene into a plasmid vector, transforming it into competent cells, and extracting the plasmid; S5、在靶标区域扩增引物的5’-端加上T7 promoter序列,以提取的质粒作为模板进进行PCR扩增,纯化产物获得带T7序列目的基因,然后利用MEGAscript T7 TranscriptionKit合成得到RNA干扰序列。S5. Add T7 promoter sequence to the 5'-end of the amplification primer in the target region, use the extracted plasmid as a template for PCR amplification, purify the product to obtain the target gene with T7 sequence, and then use MEGAscript T7 TranscriptionKit to synthesize the RNA interference sequence . 4.根据权利要求3所述的制备方法,其特征在于,所述S1步骤中,根据ATPd的DNA序列合成引物对ATPd-F1/ATPd-R1,以烟蚜cDNA为模板,进行PCR扩增,扩增产物回收后克隆至质粒载体,然后转化至感受态细胞,测序获得ATPd基因序列。4. The preparation method according to claim 3, characterized in that, in the S1 step, the primers are synthesized according to the DNA sequence of ATPd to ATPd-F1/ATPd-R1, and the cDNA of Aphid aphid is used as a template for PCR amplification, The amplified product was recovered and cloned into a plasmid vector, then transformed into competent cells, and sequenced to obtain the ATPd gene sequence. 5.根据权利要求4所述的制备方法,其特征在于,所述上游引物ATPd-F1的DNA序列如SEQ ID NO.2所示,所述下游引物ATPd-R1的DNA序列如SEQID NO.3所示。5. The preparation method according to claim 4, wherein the DNA sequence of the upstream primer ATPd-F1 is as shown in SEQ ID NO.2, and the DNA sequence of the downstream primer ATPd-R1 is as shown in SEQ ID NO.3 shown. 6.根据权利要求4所述的制备方法,其特征在于,所述S1中所述PCR扩增的反应体系为:Premix Taq酶12.5μL、cDNA模板1μL,正反向引物各1μL、ddH2O 9.5μL;反应程序为:95℃30s;94℃30s,57℃30s,72℃1min,35个循环,72℃10min。6. The preparation method according to claim 4, characterized in that the reaction system for PCR amplification in S1 is: 12.5 μL of Premix Taq enzyme, 1 μL of cDNA template, 1 μL of forward and reverse primers, ddH 2 O 9.5 μL; the reaction program is: 95°C for 30s; 94°C for 30s, 57°C for 30s, 72°C for 1min, 35 cycles, 72°C for 10min. 7.根据权利要求3所述的制备方法,其特征在于,所述上游引物ATPd-F2的DNA序列如SEQ ID NO.4所示,所述下游引物ATPd-R2的DNA序列如SEQID NO.5所示。7. The preparation method according to claim 3, wherein the DNA sequence of the upstream primer ATPd-F2 is as shown in SEQ ID NO.4, and the DNA sequence of the downstream primer ATPd-R2 is as shown in SEQ ID NO.5 shown. 8.权利要求2所述RNA干扰序列在烟蚜防治中的应用。8. The application of the RNA interference sequence described in claim 2 in the control of tobacco aphid.
CN202111525550.1A 2021-12-14 2021-12-14 Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof Pending CN115558669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111525550.1A CN115558669A (en) 2021-12-14 2021-12-14 Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111525550.1A CN115558669A (en) 2021-12-14 2021-12-14 Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN115558669A true CN115558669A (en) 2023-01-03

Family

ID=84737862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111525550.1A Pending CN115558669A (en) 2021-12-14 2021-12-14 Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN115558669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116732041A (en) * 2023-05-23 2023-09-12 贵州大学 Lethal gene and RNA interference sequence for preventing and controlling myzus persicae by RNA interference and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937424A (en) * 2017-11-07 2018-04-20 上海交通大学 The method of dual-gene fusion enhancing aphid resistance of plant
US20190037854A1 (en) * 2015-12-14 2019-02-07 Regents Of The University Of California Rna interference for control of insect pests
US20200181639A1 (en) * 2017-05-01 2020-06-11 Donald Danforth Plant Science Center Rnai approach for crop pest protection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190037854A1 (en) * 2015-12-14 2019-02-07 Regents Of The University Of California Rna interference for control of insect pests
US20200181639A1 (en) * 2017-05-01 2020-06-11 Donald Danforth Plant Science Center Rnai approach for crop pest protection
CN107937424A (en) * 2017-11-07 2018-04-20 上海交通大学 The method of dual-gene fusion enhancing aphid resistance of plant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"PREDICTED: Myzus persicae V-type proton ATPase subunit d (LOC111041166), mRNA", GENBANK, 11 August 2017 (2017-08-11) *
YAN, S.等: "Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines", 《J PEST SCI》, vol. 93, 22 August 2019 (2019-08-22), pages 449 - 459 *
张维等: "棉蚜V-ATPase-A基因RNAi载体的构建及其在转基因拟南芥的基因表达", 《江苏农业科学》, vol. 41, no. 10, 25 October 2013 (2013-10-25), pages 17 - 20 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116732041A (en) * 2023-05-23 2023-09-12 贵州大学 Lethal gene and RNA interference sequence for preventing and controlling myzus persicae by RNA interference and preparation method thereof
CN116732041B (en) * 2023-05-23 2024-06-14 贵州大学 Lethal gene and RNA interference sequence for preventing and controlling myzus persicae by RNA interference and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111373044B (en) Methods for modifying the specificity of plant noncoding RNA molecules for silencing gene expression
EP2744905B1 (en) Methods and compositions for introduction of exogenous dsrna into plant cells
CA2836368C (en) Method for managing crop pest resistance
JP2003514585A5 (en)
CN104480119B (en) Plant salt stress inducible gene OsSIR1 and its encoding proteins and application
CN116732041B (en) Lethal gene and RNA interference sequence for preventing and controlling myzus persicae by RNA interference and preparation method thereof
BR102012025759A2 (en) NUCLEIC ACID MOLECULES THAT ADDRESS RPA70 AND RESISTANCE TO COLLEPTER PEST
CA3077067A1 (en) Controlling fungal pathogens using rnai-based strategy
EP1778848A2 (en) Compositions and methods using rna interference for control of nematodes
Dubrovina et al. Transgene suppression in plants by foliar application of in vitro-synthesized small interfering RNAs
CN103596575B (en) Cynipid control agent
CN105567696A (en) Method for culturing anti-soybean-mosaic-virus transgenic plants
CN101514343A (en) Paddy disease-resistant related gene OsEDR1 and application thereof in improved paddy disease resistance
Liu et al. Turnip crinkle virus‐encoded suppressor of RNA silencing interacts with Arabidopsis SGS3 to enhance virus infection
KR20160093728A (en) Rnapii-140 nucleic acid molecules that confer resistance to coleopteran pests
CN115558669A (en) Myzus persicae lethal gene, RNA interference sequence, preparation method and application thereof
CN101519659B (en) Antiviral plant expression vector constructed by using pre-miR159a and its application
EP3234157A1 (en) Parental rnai suppression of kruppel gene to control coleopteran pests
Jiao et al. The miR172/TOE3 module regulates resistance to tobacco mosaic virus in tobacco
CN101157927B (en) Rice disease resistance-related gene OsDR10 and its application in rice disease resistance
CN104630246B (en) Meloidogyne incognita acetylcholinesterasegene gene Miace1, Miace2 and Miace3, GAP-associated protein GAP and its application
CN110637092A (en) Structural Specific Recognition Protein 1 (SSRP1) Nucleic Acid Molecules for Control of Insect Pests
Petersen et al. Isolation and RNA silencing of homologues of the RNase L inhibitor in Nicotiana species
CN114591954B (en) A kind of miRNA, derivative and application thereof
CN103524611A (en) Meloidogyne incognita Chitwood esophageal gland specific gene Msp40, and coding protein and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination