CN115528259A - A bismuth ion-modified praseodymium ferrite-based solid oxide fuel cell anode material and preparation method thereof - Google Patents
A bismuth ion-modified praseodymium ferrite-based solid oxide fuel cell anode material and preparation method thereof Download PDFInfo
- Publication number
- CN115528259A CN115528259A CN202110702586.6A CN202110702586A CN115528259A CN 115528259 A CN115528259 A CN 115528259A CN 202110702586 A CN202110702586 A CN 202110702586A CN 115528259 A CN115528259 A CN 115528259A
- Authority
- CN
- China
- Prior art keywords
- anode material
- fuel cell
- solid oxide
- oxide fuel
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010405 anode material Substances 0.000 title claims abstract description 44
- 239000000446 fuel Substances 0.000 title claims abstract description 33
- 239000007787 solid Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229910052797 bismuth Inorganic materials 0.000 title 1
- -1 bismuth ion-modified praseodymium Chemical class 0.000 title 1
- 229910000859 α-Fe Inorganic materials 0.000 title 1
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 238000000498 ball milling Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910002214 La0.9Sr0.1Ga0.8Mg0.2O3−δ Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000010406 cathode material Substances 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims 3
- 238000006555 catalytic reaction Methods 0.000 claims 1
- 239000007772 electrode material Substances 0.000 claims 1
- 239000002737 fuel gas Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 239000003345 natural gas Substances 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 abstract description 4
- 229910001451 bismuth ion Inorganic materials 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 abstract 1
- 239000002244 precipitate Substances 0.000 abstract 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- 230000009467 reduction Effects 0.000 description 5
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000006256 anode slurry Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006257 cathode slurry Substances 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 2
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910002119 nickel–yttria stabilized zirconia Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0054—Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
本发明涉及一种固体氧化物燃料电池的阳极材料及其制备方法与应用,属于固体氧化物燃料电池阳极材料技术领域。本发明的目的是针对固体氧化物燃料电池阳极材料在还原气氛氛围中时容易分解,从而影响电池性能的问题。该阳极材料为钙钛矿结构氧化物,化学式为Pr2O3‑BiFe@Pr1‑x Bi x FeO3,其中0<x<1。本发明的阳极材料通过铋离子掺杂可提高在还原性气氛中的稳定性,并且析出均匀分布的纳米颗粒,具有良好的导电性能、较低的极化电阻和良好催化活性等。本发明的阳极材料制备的SOFCs在碳氢燃料气氛下表现出较好的稳定性能以及较高的功率输出密度,可作为一种新型的SOFCs阳极材料使用。
The invention relates to an anode material of a solid oxide fuel cell, a preparation method and application thereof, and belongs to the technical field of anode materials of a solid oxide fuel cell. The purpose of the present invention is to solve the problem that the solid oxide fuel cell anode material is easy to decompose in reducing atmosphere, thus affecting the performance of the cell. The anode material is a perovskite structure oxide with a chemical formula of Pr 2 O 3 ‑BiFe@Pr 1‑ x Bi x FeO 3 , where 0< x <1. The anode material of the present invention can improve the stability in reducing atmosphere through bismuth ion doping, and precipitate uniformly distributed nanoparticles, and has good electrical conductivity, low polarization resistance, good catalytic activity and the like. The SOFCs prepared by the anode material of the invention exhibit better stability performance and higher power output density under the hydrocarbon fuel atmosphere, and can be used as a novel SOFCs anode material.
Description
技术领域technical field
本发明涉及阳极材料领域,具体涉及一种新型固体氧化物燃料电池(SOFCs)的阳极材料及其制备方法与应用。The invention relates to the field of anode materials, in particular to a novel anode material for solid oxide fuel cells (SOFCs) and its preparation method and application.
背景技术Background technique
化石燃料为各种技术提供了动力,极大地促进了人类的发展。然而,化石燃料的过度使用,如石油和煤炭,已经引发了许多问题,如空气污染,温室效应和动物灭绝。此外,通过燃烧直接使用化石燃料的效率还有待提高,因为燃烧燃料的效率受到两种介质之间的温度差的限制,这被称为卡诺循环。固体氧化物燃料电池(SOFCs),又称陶瓷燃料电池,是一种极具吸引力的高温电化学能量转换装置,它以电化学反应的方式将燃料中的化学能转化为电能,超越卡诺循环的限制,同时具有高转换效率、低污染和无噪音等优点。目前固体氧化物燃料电池的传统的阳极材料为Ni基金属陶瓷复合阳极在高温和还原性气氛下具有非常高的稳定性,与YSZ 等电解质的热膨胀匹配性也较好,保证了阳极在高温和长期运行过程中的稳定性,但当采用甲烷或者碳含量较高的碳氢燃料时,极易在 Ni-YSZ阳极的三相界面处发生积碳反应,占据燃料氧化反应的活性位,导致电池性能下降,甚至破坏电池结构。此外,在SOFCs运行过程中,阳极会因偶尔的燃料泄漏等接触到空气中的氧,但由于Ni/NiO在氧化/还原过程中的体积变化较大,很容易导致Ni基金属陶瓷阳极发生破裂。因此开发新型的阳极材料成为了SOFCs研究的热点之一。Fossil fuels have powered a variety of technologies and greatly advanced human development. However, the excessive use of fossil fuels, such as oil and coal, has caused many problems, such as air pollution, greenhouse effect and animal extinction. Furthermore, the efficiency of direct use of fossil fuels through combustion has yet to be improved, as the efficiency of burning fuel is limited by the temperature difference between the two media, which is known as the Carnot cycle. Solid oxide fuel cells (SOFCs), also known as ceramic fuel cells, are an attractive high-temperature electrochemical energy conversion device that converts chemical energy in fuels into electrical energy by means of electrochemical reactions, surpassing the Carnot Cycle limitation, while having the advantages of high conversion efficiency, low pollution and no noise. At present, the traditional anode material of solid oxide fuel cells is Ni-based cermet composite anode, which has very high stability under high temperature and reducing atmosphere, and has good thermal expansion matching with electrolytes such as YSZ, which ensures that the anode can withstand high temperature and low temperature. Stability during long-term operation, but when methane or hydrocarbon fuel with high carbon content is used, carbon deposition reaction easily occurs at the three-phase interface of Ni-YSZ anode, occupying the active site of fuel oxidation reaction, causing battery The performance is degraded, and even the battery structure is destroyed. In addition, during the operation of SOFCs, the anode will be exposed to oxygen in the air due to occasional fuel leakage, but due to the large volume change of Ni/NiO during the oxidation/reduction process, it is easy to cause the Ni-based cermet anode to crack. . Therefore, the development of new anode materials has become one of the hotspots of SOFCs research.
发明内容Contents of the invention
本发明解决的是目前的SOFCs阳极材料在还原气氛中不稳定,提供了一种固体氧化物燃料电池的阳极材料及其制备方法。该方法所制备出的钙钛矿支撑体结构的复合阳极材料,工艺过程相对简单,成本较低、易于产业化,同时该材料在碳氢燃料气氛下具有较高功率的输出密度。The invention solves the problem that the current SOFCs anode material is unstable in a reducing atmosphere, and provides an anode material of a solid oxide fuel cell and a preparation method thereof. The composite anode material with a perovskite support body structure prepared by the method has relatively simple process, low cost and easy industrialization, and meanwhile, the material has a higher power output density under a hydrocarbon fuel atmosphere.
本发明的目的是通过下述技术方案实现。The object of the present invention is to be realized through the following technical solutions.
一种固体氧化物燃料电池的阳极材料,所述阳极材料为单钙钛矿结构氧化物,化学式为Pr2O3-BiFe@Pr1-xBixFeO3,其中0 < x < 1。An anode material for a solid oxide fuel cell, the anode material is a single perovskite structure oxide with a chemical formula of Pr 2 O 3 -BiFe@Pr 1-x Bi x FeO 3 , where 0 < x < 1.
以上所述的固体氧化物燃料电池阳极材料的制备方法,包括以下步骤:The preparation method of the solid oxide fuel cell anode material described above comprises the following steps:
1) 按特定化学计量比,称取含有Pr、Bi、Fe元素的粉末,加入适量无水乙醇进行搅拌处理,获得固液混合物;1) According to a specific stoichiometric ratio, weigh the powder containing Pr, Bi, and Fe elements, add an appropriate amount of absolute ethanol for stirring, and obtain a solid-liquid mixture;
2) 对步骤1)所得的固液混合物置于球磨机中进行球磨,直至充分混合均匀;2) Place the solid-liquid mixture obtained in step 1) in a ball mill for ball milling until fully mixed;
3) 将步骤2)所得物质在干燥箱烘干,所得粉末在800~1000°C烧结,获得单钙钛矿结构的Pr1-xBixFeO3粉末;3) drying the material obtained in step 2) in a drying oven, and sintering the obtained powder at 800-1000° C. to obtain a Pr 1-x Bi x FeO 3 powder with a single perovskite structure;
4) 将步骤3)所得物质在还原气氛下煅烧获得具有钙钛矿支撑体结构的Pr2O3-BiFe@Pr1-xBixFeO3的复合阳极材料。4) Calcining the material obtained in step 3) under a reducing atmosphere to obtain a composite anode material of Pr 2 O 3 -BiFe@Pr 1-x Bi x FeO 3 with a perovskite support structure.
作为本发明的一个优选方案,步骤1)中,所述含Pr、Bi、Fe元素的粉末均为氧化物。As a preferred solution of the present invention, in step 1), the powders containing Pr, Bi and Fe elements are all oxides.
作为本发明的一个优选方案,步骤2)中,球磨的速度为350转每秒,球磨时间为24h。As a preferred solution of the present invention, in step 2), the speed of ball milling is 350 revolutions per second, and the ball milling time is 24h.
作为本发明的一个优选方案,步骤3)中,烧结时间为10h。As a preferred solution of the present invention, in step 3), the sintering time is 10 h.
作为本发明的一个优选方案,步骤4)中,还原时间为5h。As a preferred solution of the present invention, in step 4), the reduction time is 5h.
以上所述的阳极材料作为SOFC的阳极层在制备固体氧化物燃料电池中的应用。The anode material described above is used as the anode layer of SOFC in the preparation of solid oxide fuel cells.
作为本发明的一个优选方案,该应用包括以下步骤:As a preferred version of the present invention, the application includes the following steps:
1)将阳极粉末Pr1-xBixFeO3 (PBF)加入松油醇-乙基纤维素混合研磨,制成均匀混合的阳极浆料,将阴极粉末NdBaCo2O5+δ(NBC)加入松油醇-乙基纤维素混合研磨,制成均匀混合的阴极浆料;1) Add anode powder Pr 1-x Bi x FeO 3 (PBF) to terpineol-ethyl cellulose and mix and grind to make a uniformly mixed anode slurry, and add cathode powder NdBaCo 2 O 5+δ (NBC) Terpineol-ethyl cellulose is mixed and ground to make a uniformly mixed cathode slurry;
2)将步骤1)得到的阳极浆料涂覆于电解质层两侧,在空气气氛下烧结获得单钙钛矿Pr1-xBixFeO3的多孔电极层的SOFC半电池;2) Coating the anode slurry obtained in step 1) on both sides of the electrolyte layer, and sintering in an air atmosphere to obtain a SOFC half-cell with a porous electrode layer of single perovskite Pr 1-x Bi x FeO 3 ;
3)将步骤1)得到的阳极浆料涂覆于电解质层一侧,阴极浆料涂覆于电解质另外一侧,在空气气氛下烧结获得单钙钛矿Pr1-xBixFeO3的多孔电极层的SOFC单电池。3) Coat the anode slurry obtained in step 1) on one side of the electrolyte layer, and coat the cathode slurry on the other side of the electrolyte, and sinter in an air atmosphere to obtain a porous single perovskite Pr 1-x Bi x FeO 3 The SOFC single cell of the electrode layer.
本发明制备的单钙钛矿结构的PBF材料属于一种新的阳极材料,具有成分较简单、均匀,合成工艺较简单等特点。可在氢气气氛中进行高温还原,从而析出大量且分布均匀的纳米颗粒,同时产生较多的氧空位。这些纳米颗粒可以显著提升PBF阳极材料的导电性能,并提供大量的活性位点,对PBF阳极处的反应气体产生快速催化的作用。同时铋离子的掺杂可极大的提高材料在还原性气氛中的稳定性。在碳氢燃料气氛中,单钙钛矿阳极中析出的纳米颗粒具有良好的催化活性,表现出良好的电化学性能。同时本发明的PBF材料制备的多孔阳极,可以在碳氢燃料气氛中稳定的工作。The PBF material with a single perovskite structure prepared by the invention belongs to a new anode material, and has the characteristics of relatively simple and uniform composition, relatively simple synthesis process and the like. High-temperature reduction can be carried out in a hydrogen atmosphere, so that a large number of uniformly distributed nanoparticles are precipitated, and more oxygen vacancies are generated at the same time. These nanoparticles can significantly improve the electrical conductivity of PBF anode materials, and provide a large number of active sites, which can quickly catalyze the reaction gas at the PBF anode. At the same time, the doping of bismuth ions can greatly improve the stability of the material in reducing atmosphere. In the hydrocarbon fuel atmosphere, the nanoparticles precipitated in the single perovskite anode exhibit good catalytic activity and exhibit good electrochemical performance. At the same time, the porous anode prepared by the PBF material of the present invention can work stably in the hydrocarbon fuel atmosphere.
附图说明Description of drawings
图1为PBF0.1和PBF0.2阳极材料的XRD图。Figure 1 is the XRD pattern of PBF0.1 and PBF0.2 anode materials.
图2为PBF0.2阳极材料还原后的XRD图。Figure 2 is the XRD pattern of PBF0.2 anode material after reduction.
图3为PBF0.2阳极材料还原后的透射电子显微镜图。Figure 3 is a transmission electron microscope image of PBF0.2 anode material after reduction.
图4为PBF0.2|LSGM|NBC的固体氧化物燃料电池以氢气作为燃料时,在不同温度下测得的功率密度图。Fig. 4 is a graph of the power density measured at different temperatures when the solid oxide fuel cell of PBF0.2|LSGM|NBC uses hydrogen as fuel.
图5为PBF0.2|LSGM|NBC的固体氧化物燃料电池以乙醇作为燃料时,在不同温度下测得的功率密度图。Fig. 5 is a graph of the power density measured at different temperatures when the solid oxide fuel cell of PBF0.2|LSGM|NBC uses ethanol as fuel.
具体实施方式detailed description
以下结合附图与实例对本发明作具体的说明,但本发明的保护范围不局限于以下实施例。The present invention will be specifically described below in conjunction with the accompanying drawings and examples, but the protection scope of the present invention is not limited to the following examples.
实施例1Example 1
一种新型的固体氧化物燃料电池阳极材料,具体分子式为Pr2O3-BiFe@Pr0.9Bi0.1FeO3(PBF0.1)。A novel solid oxide fuel cell anode material, the specific molecular formula is Pr 2 O 3 -BiFe@Pr 0.9 Bi 0.1 FeO 3 (PBF0.1).
取6.1286g氧化镨,0.9319g三氧化二铋,3.1937g三氧化二铁,置于球磨机中加入适量乙醇,以350转每秒的速度球磨24h,将球磨后的粉体放入80°C的干燥箱里干燥。最后在空气氛围下1000°C焙烧10h得到具有钙钛矿相结构的Pr0.9Bi0.1FeO3阳极材料。将制备的阳极材料在10%H2/Ar气氛中900°C还原5h后,获得具有钙钛矿支撑体结构的Pr2O3-BiFe@Pr0.9Bi0.1FeO3的复合阳极材料。Get 6.1286g of praseodymium oxide, 0.9319g of bismuth trioxide, and 3.1937g of ferric oxide, put them in a ball mill and add an appropriate amount of ethanol, ball mill for 24 hours at a speed of 350 rpm, and put the milled powder into an 80°C Dry in the oven. Finally, the Pr 0.9 Bi 0.1 FeO 3 anode material with perovskite phase structure was obtained by calcining at 1000°C for 10 h in air atmosphere. After the prepared anode material was reduced in 10%H 2 /Ar atmosphere at 900°C for 5h, the composite anode material of Pr 2 O 3 -BiFe@Pr 0.9 Bi 0.1 FeO 3 with perovskite support structure was obtained.
实施例2Example 2
一种新型的固体氧化物燃料电池阳极材料,具体分子式为Pr2O3-BiFe@Pr0.8Bi0.2FeO3 (PBF0.2)。A novel solid oxide fuel cell anode material, the specific molecular formula is Pr 2 O 3 -BiFe@Pr 0.8 Bi 0.2 FeO 3 (PBF0.2).
取5.4476g氧化镨,1.8638g三氧化二铋,3.1937g三氧化二铁,置于球磨机中加入适量乙醇,以350转每秒的速度球磨24h,将球磨后的粉体放入80°C的干燥箱里干燥。最后在空气氛围下1000°C焙烧10h得到具有钙钛矿相结构的Pr0.8Bi0.2FeO3阳极材料。将制备的阳极材料在10%H2/Ar气氛中900°C还原5h后,获得具有钙钛矿支撑体结构的Pr2O3-BiFe@Pr0.8Bi0.2FeO3的复合阳极材料。Get 5.4476g of praseodymium oxide, 1.8638g of bismuth trioxide, and 3.1937g of ferric oxide, put them in a ball mill and add an appropriate amount of ethanol, ball mill for 24 hours at a speed of 350 rpm, and put the milled powder into an 80°C Dry in the oven. Finally, the Pr 0.8 Bi 0.2 FeO 3 anode material with perovskite phase structure was obtained by calcining at 1000°C for 10 h in air atmosphere. The composite anode material of Pr 2 O 3 -BiFe@Pr 0.8 Bi 0.2 FeO 3 with perovskite support structure was obtained after the prepared anode material was reduced in 10% H 2 /Ar atmosphere at 900°C for 5 h.
XRD分析表明所制备的氧化物对应钙钛矿的标准峰(如图1所示)。对实施例2所得的阳极材料进行XRD分析(如图2所示)。将制备的阳极材料在10%H2/Ar气氛中900°C还原5h后,掺杂Bi离子的阳极材料仍能保持着原有的相结构。通过透射电镜电镜观察还原后的材料表面形貌(如图3所示)。XRD analysis showed that the as-prepared oxides corresponded to the standard peaks of perovskite (as shown in Figure 1). The anode material obtained in Example 2 was analyzed by XRD (as shown in FIG. 2 ). After the prepared anode material was reduced in 10%H 2 /Ar atmosphere at 900°C for 5h, the anode material doped with Bi ions could still maintain the original phase structure. The surface morphology of the reduced material was observed by a transmission electron microscope (as shown in FIG. 3 ).
以合成的材料为阳极材料,以NdBaCo2O5+δ为阴极材料,La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)作为电解质,将阳极粉末和阴极粉末分别与松油醇乙基纤维素混合,在研钵中研磨2h,分别制成均匀混合的浆料;通过丝网印刷的方式将浆料分别刷在电解质两侧组装成单电池,继而在空气氛围下950°C烧结处理5h,最终完成PBF|LSGM|NBC的固体氧化物燃料单电池的制备。对单电池的阳极层(以PBF0.2为例),先在H2气氛中进行850°C还原处理2h,随后在不同气氛中进行电化学性能测试(如图4、5所示)。The synthesized material was used as anode material, NdBaCo 2 O 5+δ was used as cathode material, La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM) was used as electrolyte, and the anode powder and cathode powder were mixed with terpineol ethyl Cellulose is mixed and ground in a mortar for 2 hours to make a uniformly mixed slurry; the slurry is brushed on both sides of the electrolyte by screen printing to assemble a single cell, and then sintered at 950°C in an air atmosphere 5h, the preparation of the solid oxide fuel cell of PBF|LSGM|NBC is finally completed. For the anode layer of the single cell (taking PBF0.2 as an example), first perform a reduction treatment at 850°C for 2 hours in an H 2 atmosphere, and then perform electrochemical performance tests in different atmospheres (as shown in Figures 4 and 5).
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific description above further elaborates the purpose, technical solution and beneficial effect of the invention. It should be understood that the above description is only a specific embodiment of the present invention and is not used to limit the protection of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110702586.6A CN115528259B (en) | 2021-06-24 | 2021-06-24 | Bismuth ion modified praseodymium ferrite base solid oxide fuel cell anode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110702586.6A CN115528259B (en) | 2021-06-24 | 2021-06-24 | Bismuth ion modified praseodymium ferrite base solid oxide fuel cell anode material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115528259A true CN115528259A (en) | 2022-12-27 |
CN115528259B CN115528259B (en) | 2024-04-26 |
Family
ID=84694593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110702586.6A Active CN115528259B (en) | 2021-06-24 | 2021-06-24 | Bismuth ion modified praseodymium ferrite base solid oxide fuel cell anode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115528259B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117832562A (en) * | 2024-03-06 | 2024-04-05 | 成都岷山绿氢能源有限公司 | Strontium doped intermediate temperature SOFC cathode material and preparation method and application thereof |
CN119009042A (en) * | 2024-08-15 | 2024-11-22 | 长春理工大学中山研究院 | Anode support type solid oxide fuel cell and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110581283A (en) * | 2019-09-19 | 2019-12-17 | 中国科学技术大学 | A bismuth-doped solid oxide battery fuel electrode material and its preparation method and application |
US20200075979A1 (en) * | 2016-12-08 | 2020-03-05 | Ceres Intellectual Property Company Limited | An anode for a solid oxide fuel cell |
CN111477881A (en) * | 2020-03-19 | 2020-07-31 | 华南理工大学 | A kind of NiFe alloy nano-particles coated Pr0.8Sr1.2(FeNi)O4-δ material and preparation method thereof |
CN111883789A (en) * | 2020-06-28 | 2020-11-03 | 华南理工大学 | Electrode material of solid oxide fuel cell and preparation method and application thereof |
CN112186201A (en) * | 2020-10-22 | 2021-01-05 | 浙江氢邦科技有限公司 | Metal oxide cathode material, composite cathode material and battery |
-
2021
- 2021-06-24 CN CN202110702586.6A patent/CN115528259B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200075979A1 (en) * | 2016-12-08 | 2020-03-05 | Ceres Intellectual Property Company Limited | An anode for a solid oxide fuel cell |
CN110581283A (en) * | 2019-09-19 | 2019-12-17 | 中国科学技术大学 | A bismuth-doped solid oxide battery fuel electrode material and its preparation method and application |
CN111477881A (en) * | 2020-03-19 | 2020-07-31 | 华南理工大学 | A kind of NiFe alloy nano-particles coated Pr0.8Sr1.2(FeNi)O4-δ material and preparation method thereof |
CN111883789A (en) * | 2020-06-28 | 2020-11-03 | 华南理工大学 | Electrode material of solid oxide fuel cell and preparation method and application thereof |
CN112186201A (en) * | 2020-10-22 | 2021-01-05 | 浙江氢邦科技有限公司 | Metal oxide cathode material, composite cathode material and battery |
Non-Patent Citations (1)
Title |
---|
NAN WANG 等: "Structure, Performance, and Application of BiFeO3 Nanomaterials", 《NANO-MICRO LETTERS》, 28 March 2020 (2020-03-28), pages 1 - 23 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117832562A (en) * | 2024-03-06 | 2024-04-05 | 成都岷山绿氢能源有限公司 | Strontium doped intermediate temperature SOFC cathode material and preparation method and application thereof |
CN117832562B (en) * | 2024-03-06 | 2024-05-14 | 成都岷山绿氢能源有限公司 | Strontium doped intermediate temperature SOFC cathode material and preparation method and application thereof |
CN119009042A (en) * | 2024-08-15 | 2024-11-22 | 长春理工大学中山研究院 | Anode support type solid oxide fuel cell and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115528259B (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2493029C (en) | Perovskite-based fuel cell electrode and membrane | |
Yang et al. | Performance evaluation of La0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3− δ as both anode and cathode material in solid oxide fuel cells | |
CN103811772B (en) | Composite containing perovskite structure oxide and its production and use | |
Fan et al. | Infiltration of La0· 6Sr0· 4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell | |
Lin et al. | Silver-modified Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ as cathodes for a proton conducting solid-oxide fuel cell | |
Chen et al. | Sm0. 2 (Ce1− xTix) 0.8 O1. 9 modified Ni–yttria-stabilized zirconia anode for direct methane fuel cell | |
CN104078687A (en) | Anode material containing alkali metal or alkaline-earth metal element of solid oxide fuel cell and preparation method and application thereof | |
Xing et al. | Preparation and characterization of La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation | |
Zhang et al. | Nanostructured GDC-impregnated La0. 7Ca0. 3CrO3− δ symmetrical electrodes for solid oxide fuel cells operating on hydrogen and city gas | |
CN111477881A (en) | A kind of NiFe alloy nano-particles coated Pr0.8Sr1.2(FeNi)O4-δ material and preparation method thereof | |
CN104103838A (en) | Anode protection layer for solid oxide fuel cell, and preparation method and application of anode protection layer | |
Du et al. | Electrical conductivity and cell performance of La0. 3Sr0. 7Ti1− xCrxO3− δ perovskite oxides used as anode and interconnect material for SOFCs | |
Hou et al. | Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer | |
Pan et al. | Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells | |
Cai et al. | Ni-doped A-site-deficient La0. 7Sr0. 3Cr0. 5Mn0. 5O3-δ perovskite as anode of direct carbon solid oxide fuel cells | |
Ge et al. | Boosting the performance of conventional air electrodes for solid oxide cells by in-situ loading of nano praseodymium oxide | |
Zeng et al. | Enhancing the oxygen reduction reaction activity and durability of a solid oxide fuel cell cathode by surface modification of a hybrid coating | |
Huang et al. | Investigation of La2NiO4+ δ-based cathodes for SDC–carbonate composite electrolyte intermediate temperature fuel cells | |
Kong et al. | Surface tuned La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ based anode for direct methane solid oxide fuel cells by infiltration method | |
CN115528259B (en) | Bismuth ion modified praseodymium ferrite base solid oxide fuel cell anode material and preparation method thereof | |
Shen et al. | Mo-doped Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ as a high-performance symmetric electrode for solid oxide fuel cells | |
Wang et al. | Enhanced stability of a direct-methane and carbon dioxide protonic ceramic fuel cell with a PrCrO3 based reforming layer | |
Lu et al. | A cobalt-free Pr6O11–BaCe0. 2Fe0. 8O3-δ composite cathode for protonic ceramic fuel cells with promising oxygen reduction activity and hydration ability | |
Hao et al. | Co-tape casting fabrication, field assistant sintering and evaluation of a coke resistant La0. 2Sr0. 7TiO3–Ni/YSZ functional gradient anode supported solid oxide fuel cell | |
Lin et al. | Improved La0. 8Sr0. 2MnO3-δ oxygen electrode activity by introducing high oxygen ion conductor oxide for solid oxide steam electrolysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |