CN115521348A - Sialic acid (α-(2→6))-D-aminogalactopyranose derivative or salt thereof, glycoconjugate and preparation method thereof - Google Patents
Sialic acid (α-(2→6))-D-aminogalactopyranose derivative or salt thereof, glycoconjugate and preparation method thereof Download PDFInfo
- Publication number
- CN115521348A CN115521348A CN202211248083.7A CN202211248083A CN115521348A CN 115521348 A CN115521348 A CN 115521348A CN 202211248083 A CN202211248083 A CN 202211248083A CN 115521348 A CN115521348 A CN 115521348A
- Authority
- CN
- China
- Prior art keywords
- formula
- structure shown
- sialic acid
- nitrogen
- aminogalactopyranose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/10—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/385—Haptens or antigens, bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/34—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/765—Serum albumin, e.g. HSA
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/795—Porphyrin- or corrin-ring-containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/58—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
- A61K2039/585—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6081—Albumin; Keyhole limpet haemocyanin [KLH]
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Biotechnology (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
技术领域technical field
本发明属于寡糖及其糖缀合物技术领域,具体涉及唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐、糖缀合物及其制备方法。The invention belongs to the technical field of oligosaccharides and glycoconjugates thereof, and specifically relates to sialic acid (α-(2→6))-D-aminogalactopyranose derivatives or salts thereof, glycoconjugates and preparation methods thereof.
背景技术Background technique
基于糖抗原的抗肿瘤疫苗研究成为当前肿瘤免疫治疗领域的一个有前景的研究方向。其中糖抗原STn是一个含有唾液酸的二糖结构,在人类乳腺癌、结直肠癌、卵巢癌、前列腺癌多有表达,而在正常组织中表达极少(Holmberg,L.ExpertRev.Vaccines 2004,3,655-663.),因而成为肿瘤免疫治疗的重要靶点。加拿大Biomira公司以此为基础研发了STn-KLH(钥孔虫戚血蓝蛋白)偶联物—疫苗,用于预防和治疗结直肠癌和乳腺癌转移。但是在进行III期临床试验时发现单独应用不能改善疾病进展时间和总体存活率,而仅当将其与激素合用时才可以显示一定效果,使生存期由单独应用激素的5.8个月提高到8.3个月。由于的抗肿瘤活性依赖于激素的存在,使其抗肿瘤活性受到影响(Holmberg,L.ExpertRev.Vaccines 2004,3,655-663.)。Research on anti-tumor vaccines based on carbohydrate antigens has become a promising research direction in the field of tumor immunotherapy. Among them, the sugar antigen STn is a disaccharide structure containing sialic acid, which is mostly expressed in human breast cancer, colorectal cancer, ovarian cancer, and prostate cancer, but rarely expressed in normal tissues (Holmberg, L. Expert Rev. Vaccines 2004, 3,655-663.), thus becoming an important target for tumor immunotherapy. Based on this, Canada Biomira developed the STn-KLH (keyhole limpet hemocyanin) conjugate— Vaccines for the prevention and treatment of colorectal and breast cancer metastases. However, during the phase III clinical trial, it was found that the single application It cannot improve the time of disease progression and the overall survival rate, but only when it is combined with hormones can it show a certain effect, so that the survival period can be increased from 5.8 months to 8.3 months when hormones are used alone. because The anti-tumor activity of Vaccine depends on the presence of hormones, which affects its anti-tumor activity (Holmberg, L. Expert Rev. Vaccines 2004, 3, 655-663.).
同遇到的困难类似,现今抗肿瘤糖疫苗遇到的主要问题就是疫苗不能在体内产生有效的免疫应答。same The difficulties encountered are similar. The main problem encountered by anti-tumor sugar vaccines today is that the vaccines cannot produce effective immune responses in vivo.
发明内容Contents of the invention
本发明的目的在于提供唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐、糖缀合物及其制备方法,本发明提供的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐通过不同连接子偶联蛋白得到的糖缀合物(糖抗原)能够产生更有效的免疫反应,产生更多的抗体,在抗肿瘤疫苗方面表现出了很好的活性;从而能够延长生存期,从而达到抗肿瘤的作用。The object of the present invention is to provide sialic acid (α-(2→6))-D-aminogalactopyranose derivatives or salts thereof, glycoconjugates and preparation methods thereof, sialic acid (α-( 2→6))-D-aminogalactopyranose derivatives or their salts can produce more effective immune responses and produce more antibodies through the glycoconjugates (sugar antigens) obtained by coupling proteins with different linkers. The anti-tumor vaccine has shown good activity; thus it can prolong the survival period and achieve the anti-tumor effect.
本发明提供了一种氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,所述氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物具有式1所示结构:The present invention provides a nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or a salt thereof, the nitrogen-linked sialic acid (α-(2→6)) -D-aminogalactopyranose derivatives have the structure shown in formula 1:
式1中,R1为酰胺基或-NH2;所述酰胺基为-NHC(O)CHpClq、-NHC(O)CHpFq、-NHC(O)CHpBrq、-NHC(O)H、-NHC(O)CaH2a+1、-NHC(O)CaH2aOH、-NHC(O)CbH2b-1或-NHC(O)CbH2b-3;其中,p或q独立地为0、1、2或3,且p+q=3;a为1~20中的任一整数;b为2~20中的任一整数;In
R2为带有双键、炔键、叠氮基、醛基、保护缩醛基、马来酰亚胺基、N-羟基琥珀酰亚胺基、巯基、保护巯基、硒基、保护硒基、-NH2或-ONH2的取代基。R2 is a group with double bond, alkyne bond, azido group, aldehyde group, protected acetal group, maleimide group, N-hydroxysuccinimide group, mercapto group, protected mercapto group, selenoyl group, protected selenoyl group , -NH 2 or -ONH 2 substituents.
优选的,所述R1为-NHC(O)CHpFq或-NHC(O)CaH2a+1;所述R2为烯丙基氧基。Preferably, the R 1 is -NHC(O)CH p F q or -NHC(O)C a H 2a+1 ; the R 2 is allyloxy.
优选的,所述氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物具有式1-1~式1-5所示结构中的任一结构:Preferably, the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative has any of the structures shown in formula 1-1 to formula 1-5:
优选的,所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物盐为式1所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物与碱反应生成的盐。Preferably, the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative salt is a nitrogen-linked sialic acid (α-(2→6))- The salt formed by the reaction of D-aminogalactopyranose derivatives with base.
本发明提供了上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的制备方法,The present invention provides a method for preparing nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivatives described in the above technical scheme,
所述R1为-NHC(O)CH3时,包括以下步骤:When said R 1 is -NHC(O)CH 3 , it may comprise the following steps:
将式2-1所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂和极性溶剂混合进行糖基化偶联反应,得到式4-1所示结构的偶联产物;Mix the glycosyl acceptor with the structure shown in formula 2-1, the glycosyl donor with the structure shown in
将式4-1所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-1所示结构的脱苄叉偶联产物;Mix the coupling product of the structure shown in formula 4-1, a polar solvent and an acidic catalytic reagent, and perform debenzylidene protection to obtain the debenzylidene coupling product of the structure shown in formula 5-1;
将式5-1所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;Mix the debenzylidene coupling product of the structure shown in formula 5-1, a polar solvent and a basic catalytic reagent for selective deacetylation to obtain the nitrogen-linked sialic acid (α-(2→6))- D-aminogalactopyranose derivatives;
所述R1为-NH2时,包括以下步骤:When said R 1 is -NH 2 , it may comprise the following steps:
将式2-2所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂和极性溶剂混合进行糖基化偶联反应,得到式4-2所示结构的偶联产物;Mix the glycosyl acceptor with the structure shown in formula 2-2, the glycosyl donor with the structure shown in
将式4-2所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-2所示结构的脱苄叉偶联产物;Mixing the coupling product of the structure shown in formula 4-2, a polar solvent and an acidic catalytic reagent, performing debenzylidene protection to obtain the debenzylidene coupling product of the structure shown in formula 5-2;
将式5-2所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到式6所述结构的选择性脱乙酰基偶联产物;Mixing the debenzylidene coupling product of the structure shown in formula 5-2, a polar solvent and a basic catalytic reagent, and performing selective deacetylation to obtain the selective deacetylation coupling product of the structure of
在保护气体气氛中,将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂和有机碱混合进行脱三氟乙酰基保护,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;In a protective gas atmosphere, the selective deacetylation coupling product of the structure described in
所述R1为除-NHC(O)CH3以外的酰胺基时,包括以下步骤:When said R 1 is an amide group other than -NHC(O)CH 3 , it may comprise the following steps:
将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂、有机碱和酰化试剂混合进行脱三氟乙酰基保护和酰化反应,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;所述酰化试剂为R1对应的酸酐、羧酸或羧酸酯。The selective deacetylation coupling product of the structure described in
本发明提供了一种糖缀合物,由上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,或上述技术方案所述的制备方法制备得到的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐与多肽或载体蛋白质通过不同连接子偶联得到。The present invention provides a glycoconjugate consisting of the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt described in the above technical scheme, or the above technical scheme The nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt prepared by the preparation method is coupled with a polypeptide or a carrier protein through different linkers.
本发明提供了上述技术方案所述的糖缀合物的制备方法,包括以下步骤:The present invention provides a method for preparing the glycoconjugate described in the above technical scheme, comprising the following steps:
将上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐溶解于极性溶剂中,通入氧化性气体进行氧化反应或通过延长碳链引入N-羟基琥珀酰亚胺基,得到含有醛基或含有N-羟基琥珀酰亚胺基的二糖;The nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt described in the above technical scheme is dissolved in a polar solvent, and an oxidizing gas is passed through for oxidation reaction or by Extending the carbon chain and introducing N-hydroxysuccinimide groups to obtain disaccharides containing aldehyde groups or N-hydroxysuccinimide groups;
将所述含有醛基或含有N-羟基琥珀酰亚胺基的二糖、蛋白质或多肽、还原剂和缓冲溶液混合,进行偶联反应,得到所述糖缀合物。Mix the disaccharide containing aldehyde group or N-hydroxysuccinimide group, protein or polypeptide, reducing agent and buffer solution, and carry out coupling reaction to obtain the sugar conjugate.
本发明提供了上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或上述技术方案所述的制备方法制备得到的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐在制备抗肿瘤药物中的应用。The present invention provides the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative described in the above technical scheme or the nitrogen-linked sialic acid ( Application of α-(2→6))-D-aminogalactopyranose derivatives or salts thereof in the preparation of antitumor drugs.
本发明提供了上述技术方案所述糖缀合物或上述技术方案所述的制备方法制备得到的糖缀合物在制备抗肿瘤药物中的应用。The present invention provides the application of the glycoconjugate described in the above technical scheme or the glycoconjugate prepared by the preparation method described in the above technical scheme in the preparation of antitumor drugs.
本发明提供了一种治疗肿瘤的疫苗,包括上述技术方案所述糖缀合物或上述技术方案所述的制备方法制备得到的糖缀合物和药学上可接受的载体或辅料。The present invention provides a vaccine for treating tumors, comprising the glycoconjugate described in the above technical solution or the glycoconjugate prepared by the preparation method described in the above technical solution and a pharmaceutically acceptable carrier or auxiliary material.
本发明提供了一种氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,所述氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物具有式1所示结构。本发明提供的式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,化合物的结构中用氮桥(N(OMe))连接代替了二糖抗原结构中的氧桥(O)连接,结构新颖,在抗肿瘤疫苗方面表现出了很好的活性。小鼠实验表明,本发明提供的式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐能与够载体蛋白质或多肽进行偶联得到的糖蛋白(糖肽)缀合物,以糖蛋白(糖肽)缀合物作为糖抗原的疫苗能够产生更有效的免疫反应,产生更多的特异性抗体,能够特异地识别表达STn的肿瘤细胞,从而达到对抗肿瘤的作用;进一步,相较于氧桥(O)连接的结构,采用本发明本发明提供的式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐制备的糖抗原得到的疫苗获得的识别STn的抗体滴度明显提高,第三次免疫后13天测定,本发明式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐制备的糖抗原得到的疫苗获得的识别STn的抗体滴度为4812,氧桥(O)连接的结构的半抗原制备的糖抗原得到的疫苗获得的识别STn的抗体滴度为1458;第四次免疫后13天测定,本发明式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐制备的糖抗原得到的疫苗获得的识别STn的抗体滴度为89288,氧桥(O)连接的结构的半抗原制备的糖抗原得到的疫苗获得的识别STn的抗体滴度为5716。而且,本发明提供的式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐制备的糖抗原得到的疫苗在荷瘤小鼠模型试验中能明显延长小鼠生存期,由图6的结果可以得出,本发明提供的式1所示结构氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐制备的糖抗原得到的疫苗在荷瘤小鼠模型试验中生存期为115天。适用于制备乳腺癌、结直肠癌、卵巢癌、前列腺癌等抗癌药物。另一方面,这是一个全新化合物,为抗肿瘤糖疫苗的研发提供新的骨架结构,有望推动抗肿瘤糖疫苗的发展。The present invention provides a nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or a salt thereof, the nitrogen-linked sialic acid (α-(2→6)) -D-aminogalactopyranose derivatives have the structure shown in
本发明提供了一种糖缀合物,由上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,或上述技术方案所述的制备方法制备得到的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐与多肽或蛋白质偶联得到。本发明提供的糖缀合物得到的疫苗相较于氧桥(O)连接的结构半乳糖衍生物,将本发明提供的糖缀合物作为抗肿瘤疫苗,在小鼠体内产生了很强的免疫应答,与相比,本发明糖缀合物产生抗体的滴度增加了3倍到15倍,疫苗接种后荷瘤小鼠生存期明显延长。无论是抗体滴度还是小鼠生存期都是明显升高的,有望推动抗肿瘤糖疫苗的发展。The present invention provides a glycoconjugate consisting of the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt described in the above technical scheme, or the above technical scheme The nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt prepared by the preparation method is coupled with a polypeptide or protein. Compared with the structural galactose derivatives connected by oxygen bridge (O), the vaccine obtained by the glycoconjugate provided by the present invention, as an anti-tumor vaccine, produced a strong anti-tumor vaccine in mice. immune response, and In comparison, the antibody titer produced by the glycoconjugate of the present invention is increased by 3 to 15 times, and the survival period of tumor-bearing mice after vaccination is obviously prolonged. Both the antibody titer and the survival period of the mice were significantly increased, which is expected to promote the development of anti-tumor sugar vaccines.
附图说明Description of drawings
图1为本发明实施例1提供式1-1所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图;Fig. 1 is a flow chart for the synthesis of sialic acid (α-(2→6))-D-aminogalactopyranose derivatives with the structure shown in formula 1-1 provided in Example 1 of the present invention;
图2为本发明实施例2~5提供式1-2~式1-5所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图;Fig. 2 is a flow chart for the synthesis of sialic acid (α-(2→6))-D-aminogalactopyranose derivatives with structures shown in formulas 1-2 to 1-5 in Examples 2 to 5 of the present invention;
图3为本发明实施例6制备的1-KLH第四次免疫后血清STn-KLH和1-KLH组每只小鼠血清的滴度;Fig. 3 is the titer of each mouse serum in the STn-KLH and 1-KLH groups after the fourth immunization of 1-KLH prepared in Example 6 of the present invention;
图4为本发明实施例6制备的1-KLH施用后小鼠生存曲线;Fig. 4 is the mouse survival curve after administration of 1-KLH prepared in Example 6 of the present invention;
图5为本发明实施例7制备的1-CRM197施用后小鼠肿瘤生长曲线;Figure 5 is the mouse tumor growth curve after administration of 1-CRM197 prepared in Example 7 of the present invention;
图6为本发明实施例7制备的1-CRM197施用后小鼠生存曲线;Figure 6 is the mouse survival curve after administration of 1-CRM197 prepared in Example 7 of the present invention;
图7为本发明实施例8制备的NSTn-NHS-CRM197施用后小鼠肿瘤生长曲线;Figure 7 is the mouse tumor growth curve after administration of NSTn-NHS-CRM197 prepared in Example 8 of the present invention;
图8为本发明实施例1中式7所示结构的糖基受体的合成流程图;FIG. 8 is a flow chart of the synthesis of the glycosyl acceptor with the structure shown in
图9为本发明实施例中式3所示结构的糖基供体的合成流程图;Fig. 9 is a synthesis flow diagram of a glycosyl donor with the structure shown in
图10为本发明实施例中糖蛋白缀合物的合成流程图;Figure 10 is a flow chart of the synthesis of glycoprotein conjugates in the examples of the present invention;
图11为本发明实施例中糖蛋白缀合物1-NHS-CRM197的合成流程图。Fig. 11 is a flow chart of the synthesis of the glycoprotein conjugate 1-NHS-CRM197 in the example of the present invention.
具体实施方式detailed description
本发明提供了一种氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,所述氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物具有式1所示结构:The present invention provides a nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or a salt thereof, the nitrogen-linked sialic acid (α-(2→6)) -D-aminogalactopyranose derivatives have the structure shown in formula 1:
式1中,R1为酰胺基或-NH2;所述酰胺基为-NHC(O)CHpClq、-NHC(O)CHpFq、-NHC(O)CHpBrq、-NHC(O)H、-NHC(O)CaH2a+1、-NHC(O)CaH2aOH、-NHC(O)CbH2b-1或-NHC(O)CbH2b-3;其中,p或q独立地为0、1、2或3,且p+q=3;a为1~20中的任一整数;b为2~20中的任一整数;In
R2为带有双键、炔键、叠氮基、醛基、保护缩醛基、马来酰亚胺基、N-羟基琥珀酰亚胺基、巯基、保护巯基、硒基、保护硒基、-NH2或-ONH2的取代基。R2 is a group with double bond, alkyne bond, azido group, aldehyde group, protected acetal group, maleimide group, N-hydroxysuccinimide group, mercapto group, protected mercapto group, selenoyl group, protected selenoyl group , -NH 2 or -ONH 2 substituents.
在本发明中,所述保护缩醛基为缩醛基上具有保护基团的取代基,保护巯基为巯基上具有保护基团的取代基;所述保护硒基为硒上具有保护基团的取代基。本发明对所述保护基团的种类没有特殊要求。In the present invention, the protected acetal group is a substituent with a protecting group on the acetal group, and the protected thiol is a substituent with a protecting group on the mercapto; the protected selenoyl is a substituent with a protecting group on the selenium. Substituents. The present invention has no special requirements on the type of the protecting group.
在本发明中,所述R1优选为-NHC(O)CHpFq或-NHC(O)CaH2a+1;所述R2优选为烯丙基氧基。In the present invention, the R 1 is preferably -NHC(O)CH p F q or -NHC(O)C a H 2a+1 ; the R 2 is preferably allyloxy.
在本发明的具体实施例中,所述氮连接的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物具有式1-1~式1-5所示结构中的任意一种:In a specific embodiment of the present invention, the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative has the structure shown in formula 1-1 to formula 1-5 Either:
在本发明中,所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物盐为式1所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物与碱反应生成的盐。In the present invention, the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative salt is a nitrogen-linked sialic acid (α-(2→6) )-D-aminogalactopyranose derivatives react with bases to generate salts.
本发明提供了上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的制备方法,The present invention provides a method for preparing nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivatives described in the above technical scheme,
所述R1为-NHC(O)CH3时,包括以下步骤:When said R 1 is -NHC(O)CH 3 , it may comprise the following steps:
将式2-1所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂和极性溶剂混合进行糖基化偶联反应,得到式4-1所示结构的偶联产物;Mix the glycosyl acceptor with the structure shown in formula 2-1, the glycosyl donor with the structure shown in
将式4-1所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-1所示结构的脱苄叉偶联产物;Mix the coupling product of the structure shown in formula 4-1, a polar solvent and an acidic catalytic reagent, and perform debenzylidene protection to obtain the debenzylidene coupling product of the structure shown in formula 5-1;
将式5-1所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;Mix the debenzylidene coupling product of the structure shown in formula 5-1, a polar solvent and a basic catalytic reagent for selective deacetylation to obtain the nitrogen-linked sialic acid (α-(2→6))- D-aminogalactopyranose derivatives;
所述R1为-NH2时,包括以下步骤:When said R 1 is -NH 2 , it may comprise the following steps:
将式2-2所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂和极性溶剂混合进行糖基化偶联反应,得到式4-2所示结构的偶联产物;Mix the glycosyl acceptor with the structure shown in formula 2-2, the glycosyl donor with the structure shown in
将式4-2所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-2所示结构的脱苄叉偶联产物;Mixing the coupling product of the structure shown in formula 4-2, a polar solvent and an acidic catalytic reagent, performing debenzylidene protection to obtain the debenzylidene coupling product of the structure shown in formula 5-2;
将式5-2所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到式6所述结构的选择性脱乙酰基偶联产物;Mixing the debenzylidene coupling product of the structure shown in formula 5-2, a polar solvent and a basic catalytic reagent, and performing selective deacetylation to obtain the selective deacetylation coupling product of the structure of
在保护气体气氛中,将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂和有机碱混合进行脱三氟乙酰基保护,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;In a protective gas atmosphere, the selective deacetylation coupling product of the structure described in
所述R1为除-NHC(O)CH3以外的酰胺基时,包括以下步骤:When said R 1 is an amide group other than -NHC(O)CH 3 , it may comprise the following steps:
将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂、有机碱和酰化试剂混合进行脱三氟乙酰基保护和酰化反应,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;所述酰化试剂为R1对应的酸酐、羧酸或羧酸酯。The selective deacetylation coupling product of the structure described in
在本发明中,若无特殊说明,所有制备原料/组分均为本领域技术人员熟知的市售产品。In the present invention, unless otherwise specified, all preparation raw materials/components are commercially available products well known to those skilled in the art.
在本发明中,所述R1为-NHC(O)CH3时,所述所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的制备方法包括以下步骤:In the present invention, when the R 1 is -NHC(O)CH 3 , the preparation method of the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative comprises The following steps:
将式2-1所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂和极性溶剂混合进行糖基化偶联反应,得到式4-1所示结构的偶联产物;Mix the glycosyl acceptor with the structure shown in formula 2-1, the glycosyl donor with the structure shown in
将式4-1所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-1所示结构的脱苄叉偶联产物;Mix the coupling product of the structure shown in formula 4-1, a polar solvent and an acidic catalytic reagent, and perform debenzylidene protection to obtain the debenzylidene coupling product of the structure shown in formula 5-1;
将式5-1所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。Mix the debenzylidene coupling product of the structure shown in formula 5-1, a polar solvent and a basic catalytic reagent for selective deacetylation to obtain the nitrogen-linked sialic acid (α-(2→6))- D-aminogalactopyranose derivatives.
本发明将式2-1所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂(以下称为第一偶联试剂)和极性溶剂混合进行糖基化偶联反应(以下称为糖基化偶联反应),得到式4-1所示结构的偶联产物。In the present invention, a glycosyl acceptor with a structure shown in formula 2-1, a glycosyl donor with a structure shown in
在本发明中,式2-1所示结构的糖基受体具体优选为式2-1-1所示结构的糖基受体;In the present invention, the glycosyl acceptor with the structure shown in formula 2-1 is specifically preferably the glycosyl acceptor with the structure shown in formula 2-1-1;
在本发明中,式2-1-1所示结构的糖基受体的制备方法优选包括以下步骤:In the present invention, the preparation method of the glycosyl acceptor with the structure shown in formula 2-1-1 preferably includes the following steps:
将式7所示结构化合物、樟脑磺酸和极性溶剂混合进行3,4位苄叉保护,得到式8所示结构化合物;将式8所示结构化合物、四甲基哌啶氧化物(TEMPO)、碘苯二乙酸(BAIB)和极性溶剂混合进行6位选择性氧化,得到式9所示结构化合物;在保护气体气氛中,将式9所示结构化合物、NaCNBH3和极性溶剂混合进行双键还原反应,得到式2-1-1所示结构的糖基受体。Mix the compound of structure shown in
本发明将式7所示结构化合物、樟脑磺酸和极性溶剂混合进行3,4位苄叉保护,得到式8所示结构化合物。在本发明中,式7所示结构化合物的制备方法优选包括以下步骤:将式10所示结构的化合物(氨基半乳糖盐酸盐)、乙酸酐和碳酸根型强碱性树脂溶解于甲醇和水的混合溶剂中,在冰水浴条件下进行反应,得到式11所述结构的化合物;将式11所示结构的化合物、烯丙醇和三氟化硼的乙醇溶液混合,然后加入HCl的乙醇溶液,在回流的条件下进行反应,得到式7所示结构的化合物;In the present invention, the compound with the structure shown in
在本发明的具体实施例中,式11所示结构化合物的制备方法具体优选为:将式10所示市售的氨基半乳糖盐酸盐(2.5g,11.6mmol)和5.0g碳酸根型强碱性树脂,58mL水,6mL甲醇混合,冰浴下搅拌,逐滴加入1.5mL乙酸酐。2h后,抽滤,洗涤树脂。母液浓缩后通过一根强酸性树脂柱,蒸干,得到式11所示化合物,无需纯化直接投下一步反应。将制得的式11化合物和0.32mL BF3、Et2O加入到28mL烯丙醇中,回流搅拌2h。然后加入0.5mL HCl的Et2O溶液中,继续回流1h。冷却,加入乙醚直到出现混浊,4℃下放置过夜。过滤,用乙醚洗,得到白色固体0.9g,即为式7所示结构的化合物,两步反应收率为30%。In a specific embodiment of the present invention, the preparation method of the structural compound shown in
在本发明中,所述式7所示结构化合物和樟脑磺酸的摩尔比优选为3.8:0.23。所述极性溶剂优选为邻苯二甲酸二甲酯(DMP,α,α-dimethoxypropane),本发明对所述极性溶剂的用量没有特殊要求,确保所述3,4位苄叉保护顺利进行即可。所述3,4位苄叉保护的反应温度优选为室温,反应保温时间优选为22h。所述3,4位苄叉保护反应后得到3,4位苄叉保护反应液,本发明优选对所述3,4位苄叉保护反应液进行后处理,得到式8所示结构的化合物。所述后处理优选包括:将3,4位苄叉保护反应液和饱和碳酸氢钠水溶液混合得到混合溶液;将所述混合溶液和有机溶剂混合萃取,得到萃取有机相;将合并得到的萃取有机相干燥后浓缩,得到浓缩液;将所述浓缩液进行柱层析分离,得到式8所示结构化合物。所述有机溶剂具体优选为二氯甲烷。所述干燥用试剂优选为无水硫酸钠。所述干燥优选对固液分离的有机萃取相进行浓缩,所述固液分离具体优选为过滤。所述浓缩优选为减压浓缩。所述柱层析分离使用的洗脱剂优选为石油醚和丙酮的混合溶剂,所述石油醚和丙酮的体积比优选为2:1。In the present invention, the molar ratio of the compound represented by
得到式8所示结构化合物后,本发明将式8所示结构化合物、四甲基哌啶氧化物(TEMPO)、碘苯二乙酸(BAIB)和极性溶剂混合进行6位选择性氧化,得到式9所示结构化合物。在本发明中,式8所示结构化合物、TEMPO和BAIB的摩尔比优选为0.61:0.06:0.55。所述极性溶剂优选为二氯甲烷,本发明对所述极性溶剂的用量没有特殊要求,确保所述6位选择性氧化反应顺利进行即可。所述6位选择性氧化反应的温度优选为室温,所述6位选择性氧化反应的保温时间优选为3h。在本发明中,所述6位选择性氧化反应得到6位选择性氧化反应液,本发明优选对所述6位选择性氧化反应液进行后处理,得到式9所示结构化合物。所述后处理优选包括:将6位选择性氧化反应液和饱和碳酸氢钠水溶液混合得到混合溶液;将所述混合溶液和有机溶剂混合萃取,得到萃取有机相;将合并得到的萃取有机相干燥后除溶剂,得到残留物;将所述残留物进行柱层析分离,得到式9所示结构化合物。所述有机溶剂具体优选为二氯甲烷。所述干燥用试剂优选为无水硫酸钠。所述干燥优选对固液分离的有机萃取相进行浓缩,所述固液分离具体优选为过滤。所述除溶剂优选为蒸发。所述柱层析分离使用的洗脱剂优选为石油醚和乙酸乙酯的混合溶剂,所述石油醚和乙酸乙酯的体积比优选为1:2。After obtaining the structural compound shown in
得到式9所示结构化合物后,本发明在保护气体气氛中,将式9所示结构化合物、NaCNBH3和极性溶剂混合进行双键还原反应,得到式2-1-1所示结构的糖基受体。在本发明中,式9所示结构化合物和NaCNBH3的摩尔比优选为2.14:3.19。所述极性溶剂优选为乙酸和甲醇的混合溶剂,所述乙酸和甲醇的体积比优选为1:1,本发明对所述极性溶剂的用量没有特殊要求,确保所述双键还原反应顺利进行即可。所述双键还原反应的温度优选为0℃,所述双键还原反应的保温时间优选为4h,所述保护气体优选为氩气。在本发明中,所述双键还原反应得到双键还原反应液,本发明优选对所述双键还原反应液进行后处理,得到式2-1-1所示结构糖基受体。所述后处理优选包括:将双键还原反应液和有机溶剂混合得到混合溶液;将所述混合溶液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到2-1-1所示结构糖基受体。所述有机溶剂具体优选为甲苯。所述除溶剂优选为蒸发。所述柱层析分离使用的洗脱剂优选为乙酸乙酯。After obtaining the structural compound shown in
在本发明中,式2-1所示结构的糖基受体中R2为其他结构的取代基时,制备方法与R2为丙烯基氧基的制备方法相同,在此不再一一赘述。In the present invention, when R2 in the glycosyl acceptor of the structure shown in formula 2-1 is a substituent of other structures, the preparation method is the same as the preparation method for R2 being propenyloxy, and will not be repeated here.
在本发明中,式3所示结构的糖基供体的制备方法优选包括以下步骤:In the present invention, the preparation method of the glycosyl donor with the structure shown in
将式12所示结构的化合物溶解于乙腈中,加入DIPEA和(EtO)2PCl,在Ar气氛中,于0~25℃进行反应,得到式3所示结构的糖基供体。The compound with the structure shown in
在本发明的具体实施例中,式3所示结构的糖基供体的具体制备方法优选为:氮气保护下,将式12所示结构的化合物(1.1g,2.20mmol)溶于20mL乙腈溶液中,加入0.94mLDIPEA,冰浴冷却下搅拌,加入二乙基亚磷酰氯(0.65mL,4.50mmol),5min后撤冰浴,TLC监测反应完全后,将反应体系蒸干,加入乙酸乙酯,抽滤,将滤液、蒸干,乙酸乙酯洗涤两次,柱层析分离,洗脱剂(V/V)石油醚:乙酸乙酯=1:2,得式3所示结构的糖基供体1.1g,收率89%。In a specific embodiment of the present invention, the specific preparation method of the glycosyl donor with the structure shown in
在本发明中,第一偶联试剂具体优选为MS和三氟甲磺酸三甲基硅酯(TMSOTf)。In the present invention, the first coupling reagent is specifically preferably MS and trimethylsilyl trifluoromethanesulfonate (TMSOTf).
在本发明中,式2-1所示结构的糖基受体和式3所示结构的糖基供体的摩尔比优选为0.061:0.091。式2-1所示结构的糖基受体和MS的质量比优选为20:100。所述极性溶剂优选为二氯甲烷,本发明对所述极性溶剂的用量没有特殊要求,确保所述第一糖基化偶联反应顺利进行即可。式2-1所示结构的糖基受体和TMSOTf的摩尔比优选为0.061:0.018。所述混合进行第一糖基化偶联反应包括:在保护气体气氛中,将式2-1所示结构的糖基受体、式3所示结构的糖基供体和MS溶解于极性溶剂中,搅拌混合反应1h,得到混合混合溶液;将所述混合溶液降温至0℃与TMSOTf混合。本发明优选采用TLC检测式3所示结构的糖基供体完全反应后,所述第一糖基化偶联反应完毕。在本发明中,所述第一糖基化偶联反应后得到第一糖基化偶联反应液,本发明优选对所述第一糖基化偶联反应液进行后处理,得到式4-1所示结构的偶联产物。在本发明中,所述后处理优选包括:将第一糖基化偶联反应液加入三乙胺萃灭反应,将得到的猝灭反应液升温至室温;将淬灭反应液用硅藻土抽滤后得到滤液;将所述滤液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到式4-1所示结构的偶联产物。所述除溶剂优选为蒸发。所述柱层析分离优选依次采用第一洗脱溶剂洗脱和第二洗脱溶剂洗脱;所述第一洗脱溶剂优选为石油醚和丙酮,所述石油醚和丙酮的体积比优选为1:1;所述第二洗脱溶剂优选为甲苯和甲醇,所述甲苯和甲醇的体积比优选为10:1。In the present invention, the molar ratio of the glycosyl acceptor with the structure shown in formula 2-1 to the glycosyl donor with the structure shown in
得到式4-1所示结构的偶联产物后,本发明将式4-1所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-1所示结构的脱苄叉偶联产物。在本发明中,所述酸性催化试剂优选为吡啶对甲苯磺酸盐(PPTS)。式4-1所示结构的偶联产物和酸性催化试剂的质量比优选为100:47。所述极性溶剂优选为甲醇,本发明对所述极性溶剂的用量没有特殊要求,确保所述脱苄叉保护反应顺利进行即可。所述脱苄叉保护反应的温度优选为65℃,所述脱苄叉保护反应的保温时间优选为3h。在本发明中,所述脱苄叉保护后得到脱苄叉保护反应液,本发明优选对所述脱苄叉保护反应液进行后处理,得到式5-1所示结构的脱苄叉偶联产物。在本发明中,所述后处理优选包括:将脱苄叉保护反应液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到式5-1所示结构的脱苄叉偶联产物。所述除溶剂优选为蒸发。所述柱层析分离采用的洗脱溶剂优选为乙酸乙酯和甲醇,所述乙酸乙酯和甲醇的体积比优选为15:1。After obtaining the coupling product of the structure shown in formula 4-1, the present invention mixes the coupling product of the structure shown in formula 4-1, a polar solvent and an acidic catalytic reagent, and performs debenzylidene protection to obtain the coupling product of formula 5-1. The debenzylidene coupling product with the structure shown. In the present invention, the acidic catalytic reagent is preferably pyridine p-toluenesulfonate (PPTS). The mass ratio of the coupling product of the structure shown in formula 4-1 to the acidic catalytic reagent is preferably 100:47. The polar solvent is preferably methanol, and the present invention has no special requirements on the amount of the polar solvent, as long as the debenzylidene protection reaction proceeds smoothly. The temperature of the debenzylidene protection reaction is preferably 65° C., and the holding time of the debenzylidene protection reaction is preferably 3 h. In the present invention, after the debenzylidene protection, the debenzylidene protection reaction solution is obtained. In the present invention, the debenzylidene protection reaction solution is preferably post-treated to obtain the debenzylidene coupling of the structure shown in formula 5-1. product. In the present invention, the post-treatment preferably includes: removing the solvent from the debenzylidene protection reaction solution to obtain a residue; separating the residue by column chromatography to obtain the debenzylidene coupling with the structure shown in Formula 5-1 joint product. The solvent removal is preferably evaporation. The elution solvent used in the column chromatography separation is preferably ethyl acetate and methanol, and the volume ratio of ethyl acetate and methanol is preferably 15:1.
在本发明中,式5-1所示结构的脱苄叉偶联产物具体优选为式5-1-1所示结构的脱苄叉偶联产物In the present invention, the debenzylidene coupling product of the structure shown in formula 5-1 is specifically preferably the debenzylidene coupling product of the structure shown in formula 5-1-1
得到式5-1所示结构的脱苄叉偶联产物后,本发明将式5-1所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。在本发明中,所述碱性催化试剂优选为甲醇钠和氢氧化钠水溶液,所述氢氧化钠水溶液的摩尔浓度优选为1mol/L。所述极性溶剂优选为甲醇,本发明对所述甲醇的用量没有特殊要求,确保所述选择性脱乙酰基顺利进行即可。在本发明中,所述混合进行选择性脱乙酰基反应包括以下步骤:将式5-1所示结构的脱苄叉偶联产物、极性溶剂和甲醇钠混合进行第一步反应;得到反应液;将所述反应液和氢氧化钠水溶液混合进行第二步反应,得到选择性脱乙酰基反应液;所述第一步反应优选采用TLC检测,所述第一步反应的时间优选为30min;所述第二步反应优选采用TLC检测,所述第二步反应的时间优选为4h。在本发明中,所述选择性脱乙酰基反应后得到选择性脱乙酰基反应液,本发明优选对所述选择性脱乙酰基反应液进行后处理,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。在本发明中,所述后处理优选包括:向所述选择性脱乙酰基反应液中通入二氧化碳至中性,将得到的中性反应液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。所述除溶剂优选为蒸发。所述柱层析分离优选采用反相柱层析分离。所述柱层析采用的洗脱溶剂优选为纯水和甲醇,所述纯水和甲醇的体积比优选为1:4。After obtaining the debenzylidene coupling product of the structure shown in formula 5-1, the present invention mixes the debenzylidene coupling product of the structure shown in formula 5-1, a polar solvent and a basic catalytic reagent to perform selective deacetylation The nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative is obtained. In the present invention, the basic catalytic reagent is preferably sodium methoxide and sodium hydroxide aqueous solution, and the molar concentration of the sodium hydroxide aqueous solution is preferably 1 mol/L. The polar solvent is preferably methanol, and the present invention has no special requirements on the amount of methanol, as long as the selective deacetylation is ensured to proceed smoothly. In the present invention, said mixing for selective deacetylation reaction comprises the following steps: mixing the debenzylidene coupling product of the structure shown in formula 5-1, a polar solvent and sodium methoxide for the first step reaction; obtaining the reaction liquid; the reaction solution and aqueous sodium hydroxide solution are mixed for the second step reaction to obtain a selective deacetylation reaction solution; the first step reaction is preferably detected by TLC, and the first step reaction time is preferably 30min ; The second step reaction is preferably detected by TLC, and the time of the second step reaction is preferably 4h. In the present invention, the selective deacetylation reaction liquid is obtained after the selective deacetylation reaction, and the present invention preferably performs post-treatment on the selective deacetylation reaction liquid to obtain the nitrogen-linked sialic acid (α- (2→6))-D-aminogalactopyranose derivatives. In the present invention, the post-treatment preferably includes: introducing carbon dioxide into the selective deacetylation reaction solution to neutrality, removing the solvent from the obtained neutral reaction solution to obtain a residue; Separation by column chromatography to obtain the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative. The solvent removal is preferably evaporation. The column chromatography separation preferably adopts reverse phase column chromatography separation. The elution solvent used in the column chromatography is preferably pure water and methanol, and the volume ratio of the pure water to methanol is preferably 1:4.
在本发明中,所述R1为-NH2时,所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的制备方法包括以下步骤:In the present invention, when the R 1 is -NH 2 , the preparation method of the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative comprises the following steps:
将式2-2所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂(以下称为第二偶联试剂)和极性溶剂混合进行糖基化偶联反应(以下称为第二糖基化偶联反应),得到式4-2所示结构的偶联产物;Mix the glycosyl acceptor with the structure shown in formula 2-2, the glycosyl donor with the structure shown in
将式4-2所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-2所示结构的脱苄叉偶联产物;Mixing the coupling product of the structure shown in formula 4-2, a polar solvent and an acidic catalytic reagent, performing debenzylidene protection to obtain the debenzylidene coupling product of the structure shown in formula 5-2;
将式5-2所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到式6所述结构的选择性脱乙酰基偶联产物;Mixing the debenzylidene coupling product of the structure shown in formula 5-2, a polar solvent and a basic catalytic reagent, and performing selective deacetylation to obtain the selective deacetylation coupling product of the structure of
在保护气体气氛中,将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂和有机碱混合进行脱三氟乙酰基保护,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。In a protective gas atmosphere, the selective deacetylation coupling product of the structure described in
本发明将式2-2所示结构的糖基受体、式3所示结构的糖基供体、偶联试剂和极性溶剂混合进行糖基化偶联反应,得到式4-2所示结构的偶联产物。In the present invention, the glycosyl acceptor with the structure shown in formula 2-2, the glycosyl donor with the structure shown in
在本发明中,式2-2所示结构的糖基受体具体优选为式2-2-1所示结构的糖基受体;In the present invention, the glycosyl acceptor with the structure shown in formula 2-2 is specifically preferably the glycosyl acceptor with the structure shown in formula 2-2-1;
在本发明中,式2-2-1所示结构的糖基受体的制备方法优选包括以下步骤:将式10所示结构的化合物、极性溶剂、三乙胺和三氟乙酸甲酯混合进行2位上三氟乙基反应,得到含有2位三氟乙基取代的反应产物的反应液;将含有2位三氟乙基取代的反应产物的反应液浓缩得到含有2位三氟乙基取代的反应产物的浓缩液;式10所示结构的化合物的物质的量和三乙胺的体积比优选为11.6mmol:4.1mL;式10所示结构的化合物和所述三氟乙酸甲酯的摩尔比优选为11.6:12.6;所述极性溶剂优选为甲醇,本发明对所述极性溶剂的用量没有特殊要求,确保所述2位上三氟乙基反应顺利进行即可。所述2位上三氟乙基反应的温度优选为室温,所述2位上三氟乙基反应的保温时间优选过夜,所述2位上三氟乙基反应优选在搅拌的条件下进行。所述浓缩优选为减压浓缩。In the present invention, the preparation method of the glycosyl acceptor with the structure shown in formula 2-2-1 preferably includes the following steps: mixing the compound with the structure shown in
将含有2位三氟乙基取代的反应产物的浓缩液、烯丙醇和盐酸乙醚混合进行1位上烯丙基反应,得到含有1位烯丙基取代的反应产物的反应液;将含有1位烯丙基取代的反应产物的反应液固液分离,将得到的滤液浓缩,得到含有1位烯丙基取代的反应产物的浓缩液;所述盐酸乙醚的摩尔浓度优选为3mol/L;式10所示结构的化合物的物质的量和所述盐酸乙醚的体积之比优选为11.6mol:18.1mL;式10所示结构的化合物的物质的量和所述烯丙醇的体积之比优选为11.6mol:28.9mL;所述1位上烯丙基反应优选在回流的条件下进行,所述回流的时间优选为0.5h。所述固液分离优选为过滤;所述浓缩优选为减压浓缩。Mix the concentrated solution containing the reaction product substituted by the 2-position trifluoroethyl, allyl alcohol and ether hydrochloride to carry out the reaction of the allylic group on the 1-position to obtain the reaction solution containing the reaction product substituted by the 1-position allyl group; The reaction liquid of the allyl-substituted reaction product is separated from the solid-liquid, and the obtained filtrate is concentrated to obtain a concentrated solution containing the 1-position allyl-substituted reaction product; the molar concentration of the diethyl ether hydrochloride is preferably 3mol/L;
将含有1位烯丙基取代的反应产物的浓缩液、极性溶剂和叔丁基二甲基氯硅烷(TBDMSCL)混合进行6位TBDM保护反应,得到式13所示结构的化合物;式10所示结构的化合物和所述TBDMSCL的摩尔比优选为11.6:12.6。所述极性溶剂优选为吡啶,本发明对所述极性溶剂的用量没有特殊要求,确保所述6位TBDM保护反应顺利进行即可。所述6位TBDM保护反应的温度优选为室温,所述6位TBDM保护反应的保温时间优选为16h,所述6位TBDM保护反应优选在搅拌的条件下进行。所述6位TBDM保护反应后得到6位TBDM保护反应液,本发明优选对所述6位TBDM保护反应液进行后处理,得到式13所示结构的化合物。在本发明中,所述后处理优选包括:将所述6位TBDM保护反应液浓缩得到浓缩液;将所述浓缩液和萃取剂混合进行萃取,得到萃取有机相,将所述萃取有机相干燥后浓缩,得到浓缩液;将所述浓缩液进行柱层析分离,得到式13所示结构的化合物。所述浓缩优选为减压浓缩。所述萃取剂具体优选为二氯甲烷和饱和碳酸氢钠水溶液。所述干燥用试剂优选为无水硫酸钠。所述干燥优选对固液分离的有机萃取相进行浓缩,所述固液分离具体优选为过滤。所述浓缩优选为减压浓缩。所述柱层析分离使用的洗脱剂优选为石油醚和丙酮的混合溶剂,所述石油醚和丙酮的体积比优选为4:1至2:1;Mix the concentrated solution containing the reaction product substituted by 1-position allyl group, polar solvent and tert-butyldimethylsilyl chloride (TBDMSCL) to carry out the 6-position TBDM protection reaction to obtain the compound with the structure shown in
得到式13所示结构的化合物后,本发明将式13所示结构的化合物、极性溶剂和樟脑磺酸混合,进行3,4位苄叉保护,得到式14所示结构化合物。在本发明中,所述式13所示结构化合物和樟脑磺酸的摩尔比优选为4.43:2.22。所述极性溶剂优选为乙腈和邻苯二甲酸二甲酯(DMP,α,α-dimethoxypropane),本发明对所述极性溶剂的用量没有特殊要求,确保所述3,4位苄叉保护顺利进行即可。所述3,4位苄叉保护的反应温度优选为室温,反应保温时间优选为15min。所述3,4位苄叉保护反应后得到3,4位苄叉保护反应液,本发明优选对所述3,4位苄叉保护反应液进行后处理,得到式14所示结构的化合物。所述后处理优选包括:将3,4位苄叉保护反应液和萃取剂混合萃取,得到萃取有机相;将所述萃取有机相干燥后浓缩,得到浓缩液;将所述浓缩液进行柱层析分离,得到式14所示结构的化合物。所述萃取剂具体优选为二氯甲烷和饱和食盐水。所述干燥用试剂优选为无水硫酸钠。所述干燥优选对固液分离的有机萃取相进行浓缩,所述固液分离具体优选为过滤。所述浓缩优选为减压浓缩。所述柱层析分离使用的洗脱剂优选为石油醚和丙酮的混合溶剂,所述石油醚和丙酮的体积比优选为20:1至10:1;After obtaining the compound with the structure shown in
得到式14所示结构的化合物后,本发明将式14所示结构的化合物、极性溶剂、乙酸和三水合四丁基氟化铵混合,进行选择性脱TBDMS反应,得到式15所示结构化合物。在本发明中,所述式14所示结构化合物和乙酸的摩尔比优选为0.12:1.25。所述式14所示结构化合物和三水合四丁基氟化铵的摩尔比优选为0.12:0.5。所述极性溶剂优选为四氢呋喃,本发明对所述极性溶剂的用量没有特殊要求,确保所述选择性脱TBDMS反应顺利进行即可。所述混合选择性脱TBDMS反应优选包括以下步骤:将式14所示结构的化合物、极性溶剂和乙酸混合,得到混合溶液;在保护气体气氛中,将混合溶液降温至0℃和三水合四丁基氟化铵混合进行选择性脱TBDMS反应。所述保护气体优选为氩气。所述选择性脱TBDMS反应的反应温度优选为0℃,反应保温时间优选为4h。所述选择性脱TBDMS反应后得到选择性脱TBDMS反应液,本发明优选对所述选择性脱TBDMS反应液进行后处理,得到式15所示结构的化合物。所述后处理优选包括:将选择性脱TBDMS反应液浓缩后和萃取剂混合萃取,得到萃取有机相;将所述萃取有机相干燥后浓缩,得到浓缩液;将所述浓缩液进行柱层析分离,得到式15所示结构的化合物。所述浓缩优选为将选择性脱TBDMS反应液浓缩至体积减半。所述萃取剂具体优选为二氯甲烷和饱和食盐水。所述干燥用试剂优选为无水硫酸钠。所述干燥优选对固液分离的有机萃取相进行浓缩,所述固液分离具体优选为过滤。所述浓缩优选为减压浓缩。所述柱层析分离使用的洗脱剂优选为石油醚和丙酮的混合溶剂,所述石油醚和丙酮的体积比优选为2:1至1:1;After obtaining the compound with the structure shown in
得到式15所示结构的化合物后,本发明将式15所示结构的化合物、极性溶剂、TEMPO和BAIB混合,进行6位上N-甲氧基反应,得到式16所示结构化合物。在本发明中,所述式15所示结构化合物、TEMPO和BAIB的摩尔比优选为1.92:0.19:2.11。所述极性溶剂优选为二氯甲烷,本发明对所述极性溶剂的用量没有特殊要求,确保所述6位上N-甲氧基反应顺利进行即可。所述6位上N-甲氧基的反应温度优选为40℃,6位上N-甲氧基反应的保温时间优选为6h。所述选6位上N-甲氧基反应后得到6位上N-甲氧基反应液,本发明优选对所述6位上N-甲氧基反应液进行后处理,得到式16所示结构的化合物。所述后处理优选包括:将6位上N-甲氧基加有机溶剂稀释,得到稀释反应液;将所述稀释反应液、硫代硫酸钠和碳酸氢钠的共饱和水溶液搅拌混合10min,得到混合溶液;将所述混合溶液和萃取剂混合萃取,得到萃取有机相;将所述萃取有机相干燥后除溶剂,得到残留物;将所述残留物进行柱层析分离,得到式16所示结构的化合物。所述有机溶剂优选为二氯甲烷。所述萃取剂具体优选为二氯甲烷。所述干燥用试剂优选为无水硫酸钠。所述干燥优选对固液分离的有机萃取相进行除溶剂,所述除溶剂优选为蒸发。所述柱层析分离使用的洗脱剂优选为石油醚和丙酮的混合溶剂,所述石油醚和丙酮的体积比优选为10:1至4:1;After obtaining the compound with the structure shown in
得到式16所示结构化合物后,本发明在保护气体气氛中,将式16所示结构化合物、NaCNBH3和极性溶剂混合进行双键还原反应,得到式2-2-1所示结构的糖基受体。在本发明中,式16所示结构化合物和NaCNBH3的摩尔比优选为0.73:1.09。所述极性溶剂优选为乙酸和甲醇的混合溶剂,所述乙酸和甲醇的体积比优选为1:1,本发明对所述极性溶剂的用量没有特殊要求,确保所述双键还原反应顺利进行即可。所述双键还原反应的温度优选为0℃,所述双键还原反应的保温时间优选为4h,所述保护气体优选为氩气。在本发明中,所述双键还原反应得到双键还原反应液,本发明优选对所述双键还原反应液进行后处理,得到式2-2-1所示结构糖基受体。所述后处理优选包括:将双键还原反应液和有机溶剂混合得到混合溶液;将所述混合溶液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到2-2-1所示结构糖基受体。所述有机溶剂具体优选为甲苯。所述除溶剂优选为蒸发。所述柱层析分离使用的洗脱剂优选为石油醚和乙酸乙酯,所述石油醚和乙酸乙酯的体积比优选为2:1。After obtaining the structural compound shown in
在本发明中,式2-2所示结构的糖基受体中R2为其他结构的取代基时,制备方法与R2为丙烯基氧基的制备方法相同,在此不再一一赘述。In the present invention, when R2 in the glycosyl acceptor of the structure shown in formula 2-2 is a substituent of other structures, the preparation method is the same as that in which R2 is propenyloxy, and details will not be repeated here.
在本发明中,第二偶联试剂具体优选为MS和三氟甲磺酸三甲基硅酯(TMSOTf)。In the present invention, the second coupling reagent is specifically preferably MS and trimethylsilyl trifluoromethanesulfonate (TMSOTf).
在本发明中,式2-2所示结构的糖基受体和式3所示结构的糖基供体的摩尔比优选为0.98:1.98。式2-2所示结构的糖基受体和MS的质量比优选为378:1.6。所述极性溶剂优选为二氯甲烷,本发明对所述极性溶剂的用量没有特殊要求,确保所述第二糖基化偶联反应顺利进行即可。式2-2所示结构的糖基受体和TMSOTf的摩尔比优选为0.98:0.15。所述混合进行第二糖基化偶联反应包括:在保护气体气氛中,将式2-2所示结构的糖基受体、式3所示结构的糖基供体和MS溶解于极性溶剂中,搅拌混合反应1h,得到混合混合溶液;将所述混合溶液降温至0℃与TMSOTf混合。本发明优选采用TLC检测式3所示结构的第二糖基供体完全反应后,所述第二糖基化偶联反应完毕。在本发明中,所述第二糖基化偶联反应后得到第二糖基化偶联反应液,本发明优选对所述糖基化偶联反应液进行后处理,得到式4-2所示结构的偶联产物。在本发明中,所述后处理优选包括:将第二糖基化偶联反应液加入三乙胺萃灭反应,将得到的猝灭反应液升温至室温;将淬灭反应液用硅藻土抽滤后得到滤液;将所述滤液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到式4-2所示结构的偶联产物。所述除溶剂优选为蒸发。所述柱层析分离的洗脱剂优选为石油醚和丙酮的混合溶剂,所述石油醚和丙酮的体积比优选为1:1。In the present invention, the molar ratio of the glycosyl acceptor with the structure shown in formula 2-2 to the glycosyl donor with the structure shown in
优选依次采用第一洗脱溶剂洗脱和第二洗脱溶剂洗脱;所述第一洗脱溶剂优选为石油醚和丙酮,所述石油醚和丙酮的体积比优选为1:2;所述第二洗脱溶剂优选为甲苯和甲醇,所述甲苯和甲醇的体积比优选为10:1至5:1。Preferably adopt first elution solvent elution and second elution solvent elution successively; Described first elution solvent is preferably sherwood oil and acetone, and the volume ratio of described sherwood oil and acetone is preferably 1:2; The described The second elution solvent is preferably toluene and methanol, and the volume ratio of the toluene and methanol is preferably 10:1 to 5:1.
将式4-2所示结构的偶联产物、极性溶剂和酸性催化试剂混合,进行脱苄叉保护,得到式5-2所示结构的脱苄叉偶联产物。在本发明中,所述酸性催化试剂优选为吡啶对甲苯磺酸盐(PPTS)。所述极性溶剂优选为甲醇,本发明对所述极性溶剂的用量没有特殊要求,确保所述脱苄叉保护反应顺利进行即可。所述脱苄叉保护反应的温度优选为65℃,所述脱苄叉保护反应的保温时间优选为3h。在本发明中,所述脱苄叉保护后得到脱苄叉保护反应液,本发明优选对所述脱苄叉保护反应液进行后处理,得到式5-2所示结构的脱苄叉偶联产物。在本发明中,所述后处理优选包括:将脱苄叉保护反应液除溶剂,得到残留物;将所述残留物进行柱层析分离,得到式5-2所示结构的脱苄叉偶联产物。所述除溶剂优选为蒸发。所述柱层析分离采用的洗脱溶剂优选为乙酸乙酯和甲醇,所述乙酸乙酯和甲醇的体积比优选为15:1。所述柱层析分离优选依次采用第一洗脱溶剂洗脱和第二洗脱溶剂洗脱;所述第一洗脱溶剂优选为石油醚和丙酮,所述石油醚和丙酮的体积比优选为1:2;所述第二洗脱溶剂优选为甲苯和甲醇,所述甲苯和甲醇的体积比优选为10:1至5:1。Mix the coupling product with the structure shown in Formula 4-2, a polar solvent and an acidic catalytic reagent, and perform debenzylidene protection to obtain the debenzylidene coupled product with the structure shown in Formula 5-2. In the present invention, the acidic catalytic reagent is preferably pyridine p-toluenesulfonate (PPTS). The polar solvent is preferably methanol, and the present invention has no special requirements on the amount of the polar solvent, as long as the debenzylidene protection reaction proceeds smoothly. The temperature of the debenzylidene protection reaction is preferably 65° C., and the holding time of the debenzylidene protection reaction is preferably 3 h. In the present invention, after the debenzylidene protection, the debenzylidene protection reaction solution is obtained. In the present invention, the debenzylidene protection reaction solution is preferably post-treated to obtain the debenzylidene coupling with the structure shown in formula 5-2. product. In the present invention, the post-treatment preferably includes: removing the solvent from the debenzylidene protection reaction solution to obtain a residue; separating the residue by column chromatography to obtain the debenzylidene coupling with the structure shown in formula 5-2. joint product. The solvent removal is preferably evaporation. The elution solvent used in the column chromatography separation is preferably ethyl acetate and methanol, and the volume ratio of ethyl acetate and methanol is preferably 15:1. The column chromatography separation preferably adopts the first elution solvent elution and the second elution solvent elution successively; the first elution solvent is preferably sherwood oil and acetone, and the volume ratio of the sherwood oil and acetone is preferably 1:2; the second elution solvent is preferably toluene and methanol, and the volume ratio of the toluene and methanol is preferably 10:1 to 5:1.
在本发明中,式5-2所示结构的脱苄叉偶联产物具体优选为式5-2-1所示结构的脱苄叉偶联产物:In the present invention, the debenzylidene coupling product of the structure shown in formula 5-2 is specifically preferably the debenzylidene coupling product of the structure shown in formula 5-2-1:
得到式5-2所示结构的脱苄叉偶联产物后,本发明将式5-2所示结构的脱苄叉偶联产物、极性溶剂和碱性催化试剂混合,进行选择性脱乙酰基,得到式6所述结构的选择性脱乙酰基偶联产物。在本发明中,所述碱性催化试剂优选为甲醇钠和氢氧化钠水溶液,所述甲醇钠优选以甲醇钠溶液的形式加入,所述甲醇钠溶液的质量百分含量优选为30%;所述氢氧化钠水溶液的摩尔浓度优选为2mol/L。所述极性溶剂优选为甲醇,本发明对所述甲醇的用量没有特殊要求,确保所述选择性脱乙酰基顺利进行即可。在本发明中,所述混合进行选择性脱乙酰基反应包括以下步骤:将式5-2所示结构的脱苄叉偶联产物、极性溶剂和甲醇钠混合进行第一步反应;得到反应液;式5-2所示结构的脱苄叉偶联产物的物质的量和甲醇钠溶液的体积之比优选为0.024mmol:0.02mL;将所述反应液和氢氧化钠水溶液混合进行第二步反应,得到选择性脱乙酰基反应液;所述第一步反应优选采用TLC检测,所述第一步反应的时间优选为1h;所述第二步反应优选采用TLC检测,所述第二步反应的时间优选为0.5h。在本发明中,所述选择性脱乙酰基反应后得到选择性脱乙酰基反应液,本发明优选对所述选择性脱乙酰基反应液进行后处理,得到所述式6所述结构的选择性脱乙酰基偶联产物。在本发明中,所述后处理优选包括:向所述选择性脱乙酰基反应液中通入二氧化碳至中性,将得到的中性反应液除溶剂,得到式6所述结构的选择性脱乙酰基偶联产物。所述除溶剂优选为蒸发。After obtaining the debenzylidene coupling product of the structure shown in formula 5-2, the present invention mixes the debenzylidene coupling product of the structure shown in formula 5-2, a polar solvent and a basic catalytic reagent to perform selective deacetylation group, to obtain the selective deacetylation coupling product of the structure described in
得到式6所述结构的选择性脱乙酰基偶联产物后,本发明在保护气体气氛中,将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂和有机碱混合进行脱三氟乙酰基保护,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。在本发明中,所述有机碱具体优选为三乙胺。所述极性溶剂优选为甲醇,所述保护气体优选为氩气。在本发明中,脱三氟乙酰基保护反应优选在回流的条件下进行,所述脱三氟乙酰基保护反应的保温时间优选为过夜。本发明优选你对所述脱三氟乙酰基保护反应后得到的脱三氟乙酰基保护反应液进行后处理,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。所述后处理优选包括:将所述脱三氟乙酰基保护反应液除溶剂,得到残留物;将所述残留物进行反相柱层析,得到洗脱液;将所述洗脱液进行离子交换去除有机盐,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。在本发明中,所述除溶剂优选为蒸发。所述反相柱层析采用的洗脱剂优选为纯水至甲醇,所述纯水和甲醇的体积比优选为1:4。所述离子交换优选采用离子交换树脂柱进行。After obtaining the selective deacetylation coupling product of the structure described in
在本发明中,所述R1为除-NHC(O)CH3以外的酰胺基时,所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的制备方法包括以下步骤:In the present invention, when the R 1 is an amide group other than -NHC(O)CH 3 , the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative The preparation method comprises the following steps:
将式6所述结构的选择性脱乙酰基偶联产物、极性溶剂、有机碱和酰化试剂混合进行脱三氟乙酰基保护和酰化反应,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物;所述酰化试剂为R1对应的酸酐、羧酸或羧酸酯。The selective deacetylation coupling product of the structure described in
在本发明中,所述酸酐优选包括乙酸酐、丙酸酐、正丁酸酐、异丁酸酐或正己酸酐;In the present invention, the acid anhydride preferably includes acetic anhydride, propionic anhydride, n-butyric anhydride, isobutyric anhydride or n-caproic anhydride;
所述羧酸优选包括单氟乙酸、二氟乙酸、三氟乙酸、单氯乙酸或二氯乙酸;The carboxylic acid preferably comprises monofluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, monochloroacetic acid or dichloroacetic acid;
所述羧酸酯优选包括单氟乙酸甲酯、二氟乙酸甲酯、三氟乙酸甲酯或二氯乙酸甲酯。The carboxylic acid ester preferably comprises methyl monofluoroacetate, methyl difluoroacetate, methyl trifluoroacetate or methyl dichloroacetate.
在本发明中,所述酰化试剂具体优选为氟乙酸甲酯、二氟乙酸甲酯或mL三氟乙酸甲酯。In the present invention, the acylating agent is specifically preferably methyl fluoroacetate, methyl difluoroacetate or methyl trifluoroacetate.
在本发明中,脱三氟乙酰基保护和酰化反应优选在回流的条件下进行,所述脱三氟乙酰基保护和酰化反应的保温时间优选为过夜。本发明优选你对所述脱三氟乙酰基保护和酰化反应得到的酰化反应液进行后处理,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。所述后处理优选包括:将所述酰化反应液除溶剂,得到残留物;将所述残留物进行反相柱层析,得到洗脱液;将所述洗脱液进行离子交换去除有机盐,得到所述氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物。在本发明中,所述除溶剂优选为蒸发。所述反相柱层析采用的洗脱剂优选为纯水至甲醇,所述纯水和甲醇的体积比优选为1:4.所述离子交换优选采用离子交换树脂柱进行。In the present invention, the de-trifluoroacetyl protection and acylation reactions are preferably carried out under reflux conditions, and the incubation time for the de-trifluoroacetyl protection and acylation reactions is preferably overnight. In the present invention, you preferably post-treat the acylation reaction solution obtained from the detrifluoroacetyl protection and acylation reaction to obtain the nitrogen-linked sialic acid (α-(2→6))-D-aminopyran semi Lactose derivatives. The post-treatment preferably includes: removing the solvent from the acylation reaction solution to obtain a residue; performing reverse-phase column chromatography on the residue to obtain an eluate; performing ion exchange on the eluate to remove organic salts , to obtain the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative. In the present invention, the solvent removal is preferably evaporation. The eluent used in the reverse phase column chromatography is preferably pure water to methanol, and the volume ratio of the pure water to methanol is preferably 1:4. The ion exchange is preferably performed using an ion exchange resin column.
本发明提供了一种糖缀合物,由上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐,或上述技术方案所述的制备方法制备得到的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐与多肽或载体蛋白质通过不同连接子偶联得到。The present invention provides a glycoconjugate consisting of the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt described in the above technical scheme, or the above technical scheme The nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt prepared by the preparation method is coupled with a polypeptide or a carrier protein through different linkers.
在本发明中,所述载体蛋白质优选为牛血清蛋白(BSA)、血蓝蛋白(KLH)或CRM197。In the present invention, the carrier protein is preferably bovine serum albumin (BSA), hemocyanin (KLH) or CRM197.
本发明提供了上述技术方案所述的糖缀合物的制备方法,包括以下步骤:The present invention provides a method for preparing the glycoconjugate described in the above technical scheme, comprising the following steps:
将上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐溶解于极性溶剂中,通入氧化性气体进行氧化反应或通过延长碳链引入N-羟基琥珀酰亚胺基,得到含有醛基的二糖或含有N-羟基琥珀酰亚胺基的二糖;The nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt described in the above technical scheme is dissolved in a polar solvent, and an oxidizing gas is passed through for oxidation reaction or by Extending the carbon chain and introducing N-hydroxysuccinimide groups to obtain disaccharides containing aldehyde groups or disaccharides containing N-hydroxysuccinimide groups;
将所述含有醛基或含有N-羟基琥珀酰亚胺基的二糖、蛋白质或多肽、还原剂和缓冲溶液混合,进行偶联反应,得到所述糖缀合物。Mix the disaccharide containing aldehyde group or N-hydroxysuccinimide group, protein or polypeptide, reducing agent and buffer solution, and carry out coupling reaction to obtain the sugar conjugate.
本发明将上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐溶解于极性溶剂中,通入氧化性气体进行氧化反应,得到含有醛基的二糖。在本发明中,所述极性溶剂优选为无水甲醇。所述氧化性气体优选为含有臭氧的空气。所述氧化反应的温度优选为-72℃;所述氧化反应进行30min得到的氧化反应液为蓝色溶液;停止通入氧化性气体。在额本本发明中,所述氧化反应后得到氧化反应液,本发明优选对所述氧化反应液进行后处理,得到含有醛基的二糖。所述后处理优选包括:将所述氧化反应液通入氮气除去未反应的氧化性气体后升温至室温;将所述氧化反应液除溶剂,得到含有醛基的二糖。所述除溶剂优选为真空除溶剂。In the present invention, the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative or its salt described in the above technical scheme is dissolved in a polar solvent, and an oxidizing gas is passed through to carry out the oxidation reaction , to obtain disaccharides containing aldehyde groups. In the present invention, the polar solvent is preferably anhydrous methanol. The oxidizing gas is preferably air containing ozone. The temperature of the oxidation reaction is preferably -72° C.; the oxidation reaction solution obtained after the oxidation reaction is carried out for 30 minutes is a blue solution; the feeding of the oxidizing gas is stopped. In the present invention, the oxidation reaction solution is obtained after the oxidation reaction, and in the present invention, the oxidation reaction solution is preferably post-treated to obtain disaccharides containing aldehyde groups. The post-treatment preferably includes: blowing the oxidation reaction liquid into nitrogen gas to remove unreacted oxidizing gas and then raising the temperature to room temperature; removing the solvent from the oxidation reaction liquid to obtain disaccharides containing aldehyde groups. The solvent removal is preferably vacuum solvent removal.
得到含有醛基的二糖后,本发明将所述含有醛基的二糖、蛋白质或多肽、还原剂和缓冲溶液混合,进行偶联反应,得到所述糖缀合物。After the disaccharide containing aldehyde group is obtained, the present invention mixes the disaccharide containing aldehyde group, protein or polypeptide, reducing agent and buffer solution, and performs a coupling reaction to obtain the glycoconjugate.
在本发明中,所述还原剂优选为氰基硼氢化钠。所述缓冲溶液的pH值优选为7.6.In the present invention, the reducing agent is preferably sodium cyanoborohydride. The pH value of described buffer solution is preferably 7.6.
在本发明中,所述偶联反应的温度优选为室温,所述偶联反应的保温时间优选为24h。所述偶联反应优选在避光条件下进行。In the present invention, the temperature of the coupling reaction is preferably room temperature, and the incubation time of the coupling reaction is preferably 24 hours. The coupling reaction is preferably carried out under dark conditions.
在本发明中,所述偶联反应后得到偶联反应液,本发明优选对所述偶联反应液进行后处理,得到所述糖缀合物。In the present invention, the coupling reaction liquid is obtained after the coupling reaction, and in the present invention, the coupling reaction liquid is preferably post-treated to obtain the glycoconjugate.
本发明提供了上述技术方案所述的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或上述技术方案所述的制备方法制备得到的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物或其盐在制备抗肿瘤药物中的应用。The present invention provides the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative described in the above technical scheme or the nitrogen-linked sialic acid ( Application of α-(2→6))-D-aminogalactopyranose derivatives or salts thereof in the preparation of antitumor drugs.
本发明提供了上述技术方案所述糖缀合物或上述技术方案所述的制备方法制备得到的糖缀合物在制备抗肿瘤药物中的应用。The present invention provides the application of the glycoconjugate described in the above technical scheme or the glycoconjugate prepared by the preparation method described in the above technical scheme in the preparation of antitumor drugs.
在本发明中,所述抗肿瘤药物优选包括治疗性疫苗或预防性疫苗。In the present invention, the anti-tumor drugs preferably include therapeutic vaccines or preventive vaccines.
本发明提供了一种治疗肿瘤的疫苗,包括上述技术方案所述糖缀合物或上述技术方案所述的制备方法制备得到的糖缀合物和药学上可接受的载体或辅料。The present invention provides a vaccine for treating tumors, comprising the glycoconjugate described in the above technical solution or the glycoconjugate prepared by the preparation method described in the above technical solution and a pharmaceutically acceptable carrier or auxiliary material.
为了进一步说明本发明,下面结合附图和实施例对本发明提供的技术方案进行详细地描述,但不能将它们理解为对本发明保护范围的限定。In order to further illustrate the present invention, the technical solutions provided by the present invention will be described in detail below in conjunction with the accompanying drawings and examples, but they should not be construed as limiting the protection scope of the present invention.
实施例1Example 1
按照图8所示式7所示结构的化合物的合成流程图:According to the synthetic flow chart of the compound of structure shown in Figure 8 shown in formula 7:
将式10所示市售的氨基半乳糖盐酸盐(2.5g,11.6mmol)和5.0g碳酸根型强碱性树脂,58mL水,6mL甲醇混合,冰浴下搅拌,逐滴加入1.5mL乙酸酐。2h后,抽滤,洗涤树脂。母液浓缩后通过一根强酸性树脂柱,蒸干,得到式11所示化合物,无需纯化直接投下一步反应。将制得的式11化合物和0.32mL BF3、Et2O加入到28mL烯丙醇中,回流搅拌2h。然后加入0.5mLHCl的Et2O溶液中,继续回流1h。冷却,加入乙醚直到出现混浊,4℃下放置过夜。过滤,用乙醚洗,得到白色固体0.9g,即为式7所示结构的化合物,两步反应收率为30%。Commercially available galactosamine hydrochloride (2.5g, 11.6mmol) shown in
按照图9所示式3所示结构的糖基供体的合成流程图:According to the synthesis flow diagram of the sugar group donor with the structure shown in
氮气保护下,将式12所示结构的化合物(1.1g,2.20mmol)溶于20mL乙腈溶液中,加入0.94mL DIPEA,冰浴冷却下搅拌,加入二乙基亚磷酰氯(0.65mL,4.50mmol),5min后撤冰浴,TLC监测反应完全后,将反应体系蒸干,加入乙酸乙酯,抽滤,将滤液、蒸干,乙酸乙酯带两次,柱层析分离,洗脱剂(V/V)石油醚:乙酸乙酯=1:2,得式3所示结构的糖基供体1.1g,收率89%。Under the protection of nitrogen, the compound (1.1g, 2.20mmol) of the structure shown in
按照图1所示式1-1所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图:According to the synthetic flow chart of the sialic acid (α-(2→6))-D-aminogalactopyranose derivative of the structure shown in the formula 1-1 shown in Figure 1:
将式7所示结构的化合物(图1中的化合物6,1.0g,3.8mmol)溶于DMP(α,α-dimethoxypropane,24.3mL,198.5mmol),加入樟脑磺酸(54.5mg,0.23mmol),室温搅拌22小时。将反应混合物倒入饱和碳酸氢钠水溶液,然后用二氯甲烷萃取;萃取液合并后用无水硫酸钠干燥,过滤,减压浓缩,残留物用柱层析分离(石油醚:丙酮,2:1),得白色固体为式8所述结构的化合物(图1中的化合物7)940mg,收率82%。The compound of structure shown in formula 7 (
1H NMR(300MHz,CDCl3):δ5.89-5.83(1H,m),5.54(1H,d,J=9.3Hz),5.31-5.21(2H,m),4.85(1H,d,J=3.6Hz),4.31(1H,dt,J=3.3Hz,9.3Hz),4.20-4.18(1H,m),4.15(1H,td,J=5.1Hz),4.12-3.95(4H,m),3.89-3.82(1H,m),2.18(1H,dd,J=3.3Hz,9.3Hz),2.04(3H,s),1.59(3H,s),1.35(3H,s)。 1 H NMR (300MHz, CDCl 3 ): δ5.89-5.83 (1H, m), 5.54 (1H, d, J = 9.3 Hz), 5.31-5.21 (2H, m), 4.85 (1H, d, J = 3.6Hz), 4.31(1H, dt, J=3.3Hz, 9.3Hz), 4.20-4.18(1H, m), 4.15(1H, td, J=5.1Hz), 4.12-3.95(4H, m), 3.89 -3.82(1H,m), 2.18(1H,dd,J=3.3Hz,9.3Hz), 2.04(3H,s), 1.59(3H,s), 1.35(3H,s).
将式8所述结构的化合物(183mg,0.61mmol)溶于1mL二氯甲烷,加入TEMPO(9.1mg,0.06mmol)和BAIB(215mg,0.55mmol),室温搅拌3小时。用4mL二氯甲烷稀释,加入5.2mL硫代硫酸钠和碳酸氢钠的共饱和水溶液,剧烈搅拌10分钟。用二氯甲烷萃取,硫酸钠干燥,蒸干。将残留物溶于2mL吡啶,加入MeONH2·HCl(76.1mg,0.91mmol),室温搅拌1小时,蒸干,残留物用柱层析分离(石油醚:乙酸乙酯,1:2),得白色固体为式9所示结构的化合物(图1中的化合物8),为161mg,收率81%(Z/E=1/1)。The compound of formula 8 (183 mg, 0.61 mmol) was dissolved in 1 mL of dichloromethane, TEMPO (9.1 mg, 0.06 mmol) and BAIB (215 mg, 0.55 mmol) were added, and stirred at room temperature for 3 hours. Dilute with 4 mL of dichloromethane, add 5.2 mL of a co-saturated aqueous solution of sodium thiosulfate and sodium bicarbonate, and stir vigorously for 10 minutes. Extract with dichloromethane, dry over sodium sulfate and evaporate to dryness. Dissolve the residue in 2 mL of pyridine, add MeONH 2 ·HCl (76.1 mg, 0.91 mmol), stir at room temperature for 1 hour, evaporate to dryness, and separate the residue by column chromatography (petroleum ether: ethyl acetate, 1:2), to obtain The white solid was the compound of formula 9 (
1H NMR(300MHz,CDCl3)δ7.52(d,1H,J=7.8Hz),6.87(d,1H,J=4.8Hz),5.94-5.81(m,2H),5.57(d,2H,J=9.3Hz),5.32-5.31(m,4H),5.09(dd,1H,J=2.7Hz,4.8Hz),4.84(dd,2H,J=3.3Hz,5.1Hz),4.55(dd,1H,J=2.7Hz,7.2Hz),4.45(dd,1H,J=3.0Hz,5.1Hz),4.33-4.30(m,2H),4.21-4.07(m,4H),4.00-3.89(m,7H),2.03(s,6H),1.59(s,3H),1.58(s,3H),1.33(s,6H);HRMS(ESI)Anal.Calcd for C15H25N2O6[M+H]+:329.1707,found329.1701。 1 H NMR (300MHz, CDCl 3 ) δ7.52 (d, 1H, J = 7.8Hz), 6.87 (d, 1H, J = 4.8Hz), 5.94-5.81 (m, 2H), 5.57 (d, 2H, J=9.3Hz), 5.32-5.31(m, 4H), 5.09(dd, 1H, J=2.7Hz, 4.8Hz), 4.84(dd, 2H, J=3.3Hz, 5.1Hz), 4.55(dd, 1H ,J=2.7Hz,7.2Hz),4.45(dd,1H,J=3.0Hz,5.1Hz),4.33-4.30(m,2H),4.21-4.07(m,4H),4.00-3.89(m,7H ),2.03(s,6H),1.59(s,3H),1.58(s,3H),1.33(s,6H); HRMS(ESI)Anal.Calcd for C 15 H 25 N 2 O 6 [M+H ] + :329.1707,found329.1701.
将式9所示结构的化合物(701mg,2.14mmol)溶于乙酸/甲醇(7mL/7mL)混合溶液,0℃、氩气保护下加入NaCNBH3(201.9mg,3.19mmol),搅拌,4小时后反应完全。加入少量甲苯,浓缩蒸干,残留物用柱层析分离(乙酸乙酯)得油状物为式2-1-1所示结构的糖基受体(图1中的化合物9)637mg,收率90%。The compound (701mg, 2.14mmol) of the structure shown in
1H NMR(300MHz,CDCl3)δ5.96-5.83(m,2H),5.59(d,1H,J=9.3Hz),3.28(dd,1H,J=1.5Hz,17.1Hz),5.22(dd,1H,J=1.2Hz,10.5Hz),4.82(d,1H,J=3.3Hz),4.31-4.24(m,2H),4.19(dd,1H,J=5.4Hz,12.9Hz),4.11-4.05(m,2H),3.99-3.93(dd,1H,J=6.0Hz,12.6Hz),3.54(s,3H),3.28-3.15(m,2H),2.03(s,3H),1.57(s,3H),1.34(s,3H);13CNMR(75MHz,CDCl3)δ169.97,133.51,117.84,109.67,96.75,74.72,73.75,68.26,63.09,61.37,52.09,50.50,27.95,26.55,23.46;HRMS(ESI)Anal.Calcd for C15H27N2O6[M+H]+:331.1864,found 331.1865。 1 H NMR (300MHz, CDCl 3 ) δ5.96-5.83 (m, 2H), 5.59 (d, 1H, J = 9.3Hz), 3.28 (dd, 1H, J = 1.5Hz, 17.1Hz), 5.22 (dd ,1H,J=1.2Hz,10.5Hz),4.82(d,1H,J=3.3Hz),4.31-4.24(m,2H),4.19(dd,1H,J=5.4Hz,12.9Hz),4.11- 4.05(m,2H),3.99-3.93(dd,1H,J=6.0Hz,12.6Hz),3.54(s,3H),3.28-3.15(m,2H),2.03(s,3H),1.57(s ,3H),1.34(s,3H); 13 CNMR(75MHz,CDCl 3 )δ169.97,133.51,117.84,109.67,96.75,74.72,73.75,68.26,63.09,61.37,52.09,50.50,27.95,26.565,23. (ESI) Anal. Calcd for C 15 H 27 N 2 O 6 [M+H] + : 331.1864, found 331.1865.
将式3所示结构的糖基供体(55.5mg,0.091mmol),式2-1-1所示结构的糖基受体(20.0mg,0.061mmol),MS(100mg)在氮气保护下溶于干燥的二氯甲烷(1mL)中,室温搅拌1小时。将反应体系冷却至0℃,加入TMSOTf(3.2μL,0.018mmol)。TLC显示式3所示结构的糖基供体基本反应完全后,加一滴三乙胺萃灭反应。待反应体系升至室温后,将反应体系用硅藻土抽滤。将滤液蒸干。残留物用柱层析分离(石油醚:丙酮,1:1,随后甲苯:甲醇,10:1)得油状物为式4-1-4所示结构的化合物(图1中的化合物11),31.0mg,收率63%。The glycosyl donor (55.5 mg, 0.091 mmol) of the structure shown in
1H NMR(500MHz,CDCl3)δ5.91-5.83(m,1H),5.57(d,1H,J=9.0Hz),5.38(dd,1H,J=2.5Hz,7.0Hz),5.34(dt,1H,J=1.5Hz,10.0Hz),5.27(dq,1H,J=1.5Hz,17.0Hz),5.22-5.18(m,2H),4.84-4.79(m,2H),4.40(dd,1H,J=2.5Hz,12.5Hz),4.30-4.25(m,2H),4.20-4.13(m,2H),4.12-4.01(m,3H),3.97(ddt,1H,J=1.0Hz,6.5Hz,13.0Hz),3.81(s,3H),3.61(s,3H),3.27(dd,1H,J=7.0Hz,14.5Hz),3.17(dd,1H,J=6.5Hz,15.0Hz),2.60(dd,1H,J=4.5Hz,10.0Hz),2.04(m,1H),2.14,2.12,2.04,2.04,2.03,1.89,1.57,1.36(s,8*3H);13CNMR(125MHz,CDCl3)δ170.90,170.69,170.24,170.07,170.04,170.00,167.64,133.52,117.55,109.37,96.92,94.89,74.44,73.00,69.82,69.66,68.29,67.93,65.11,63.96,62.39,53.12,52.70,50.37,49.33,35.11,29.63,28.06,26.55,23.42,23.13,21.00,20.82,20.75,20.68;HRMS(ESI)Anal.Calcd for C35H54N3O18[M+H]+:804.3397,found804.3425。 1 H NMR (500MHz, CDCl 3 ) δ5.91-5.83 (m, 1H), 5.57 (d, 1H, J = 9.0Hz), 5.38 (dd, 1H, J = 2.5Hz, 7.0Hz), 5.34 (dt ,1H,J=1.5Hz,10.0Hz),5.27(dq,1H,J=1.5Hz,17.0Hz),5.22-5.18(m,2H),4.84-4.79(m,2H),4.40(dd,1H ,J=2.5Hz,12.5Hz),4.30-4.25(m,2H),4.20-4.13(m,2H),4.12-4.01(m,3H),3.97(ddt,1H,J=1.0Hz,6.5Hz ,13.0Hz),3.81(s,3H),3.61(s,3H),3.27(dd,1H,J=7.0Hz,14.5Hz),3.17(dd,1H,J=6.5Hz,15.0Hz),2.60 (dd, 1H, J=4.5Hz, 10.0Hz), 2.04(m, 1H), 2.14, 2.12, 2.04, 2.04, 2.03, 1.89, 1.57, 1.36(s, 8*3H); 13 CNMR (125MHz, CDCl 3 )δ170.90,170.69,170.24,170.07,170.04,170.00,167.64,133.52,117.55,109.37,96.92,94.89,74.44,73.00,69.82,69.66,68.29,67.93,65.11,63.96,62.39,53.12,52.70,50.37, 49.33 , 35.11 , 29.63 , 28.06, 26.55, 23.42, 23.13, 21.00, 20.82, 20.75, 20.68 ; .
式4-1-4所示结构的化合物(图1中的化合物11)(100mg,0.124mmol)溶解在干燥的甲醇(1mL)中,将PPTS(47mg)加入到反应体系中,65℃搅拌3h,蒸干,残留物用柱层析分离(乙酸乙酯:甲醇,15:1)得白色固体为式5-1-1所示结构的化合物(图1中的化合物12),92mg,收率97%。The compound with the structure shown in formula 4-1-4 (
1H NMR(500MHz,CDCl3)δ5.95(d,1H,J=8.5Hz),5.95-5.86(m,1H),5.40-5.37(m,2H),5.35(dd,1H,J=2.5Hz,7.5Hz),5.30(dd,1H,J=1.5Hz,17Hz),5.23(dd,1H,J=1.0Hz,15.5Hz),4.87-4.80(m,2H),4.38(dd,1H,J=1.5Hz,12.5Hz),4.35-4.30(m,1H),4.23(dd,1H,J=5.0Hz,13.0Hz),4.14-4.02(m,5H),4.00(dd,1H,J=6.0Hz,13.0Hz),3.90(t,1H,J=6.0Hz),3.80(s,3H),3.80-3.77(m,1H),3.59(s,3H),3.21(dd,1H,J=7.5Hz,14.0Hz),3.12(dd,1H,J=5.5Hz,14.5Hz),3.09(d,1H,J=3.5Hz),2.59(dd,1H,J=4.5Hz,12.5Hz),2.21(t,1H,J=12.5Hz),2.14,2.14,2.07,2.04,2.04,1.88(s,6*3H);13C NMR(100MHz,CDCl3)δ172.39,170.94,170.79,170.30,170.26,170.21,167.94,133.54,117.75,96.51,94.76,72.94,71.21,69.73,69.48,68.51,68.16,67.90,67.80,63.92,62.52,52.89,52.83,50.68,49.39,34.95,23.32,23.15,21.08,20.84,20.81,20.77;HRMS(ESI)Anal.Calcd forC32H50N3O18[M+H]+:764.3084,found 764.3088。 1 H NMR (500MHz, CDCl 3 ) δ5.95 (d, 1H, J = 8.5Hz), 5.95-5.86 (m, 1H), 5.40-5.37 (m, 2H), 5.35 (dd, 1H, J = 2.5 Hz,7.5Hz),5.30(dd,1H,J=1.5Hz,17Hz),5.23(dd,1H,J=1.0Hz,15.5Hz),4.87-4.80(m,2H),4.38(dd,1H, J=1.5Hz, 12.5Hz), 4.35-4.30(m, 1H), 4.23(dd, 1H, J=5.0Hz, 13.0Hz), 4.14-4.02(m, 5H), 4.00(dd, 1H, J= 6.0Hz, 13.0Hz), 3.90(t, 1H, J=6.0Hz), 3.80(s, 3H), 3.80-3.77(m, 1H), 3.59(s, 3H), 3.21(dd, 1H, J= 7.5Hz, 14.0Hz), 3.12(dd, 1H, J=5.5Hz, 14.5Hz), 3.09(d, 1H, J=3.5Hz), 2.59(dd, 1H, J=4.5Hz, 12.5Hz), 2.21 (t,1H,J=12.5Hz),2.14,2.14,2.07,2.04,2.04,1.88(s,6*3H); 13 C NMR(100MHz,CDCl 3 )δ172.39,170.94,170.79,170.30,170.26,170.21 ,167.94,133.54,117.75,96.51,94.76,72.94,71.21,69.73,69.48,68.51,68.16,67.90,67.80,63.92,62.52,52.89,52.83,50.68,49.39,34.95,23.32,23.15,21.08,20.84,20.81 , 20.77; HRMS (ESI) Anal. Calcd for C 32 H 50 N 3 O 18 [M+H] + : 764.3084, found 764.3088.
将式5-1-1所示结构的化合物(图1中的化合物12)(30mg,0.039mmol)溶于甲醇(2mL),室温下搅拌,加入30%甲醇钠一滴,30分钟后TLC显示反应完全。浓缩抽干溶剂后,加入1NNaOH水溶液(1.3mL)。4小时后TLC显示反应完全,通入二氧化碳气体至中性,蒸干后残留物用反相柱层析分离(纯水至甲醇:水,1:4),得到白色固体为式1-1所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物,19mg,收率83%。Dissolve the compound shown in formula 5-1-1 (
1HNMR(400MHz,D2O)δ5.88-5.80(m,1H),5.24(dq,1H,J=1.6Hz,17.6Hz),5.15(dd,1H,J=1.6Hz,10.8Hz),4.83(d,1H,J=3.6Hz),4.13(ddt,1H,J=1.2Hz,5.2Hz,13.2Hz),4.05(dd,1H,J=4Hz,11.2Hz),4.02-3.94(m,3H),3.84(dd,1H,J=3.2Hz,11.2Hz),3.78-3.72(m,2H),3.70-3.64(m,2H),3.57-3.45(m,6H),3.10(dd,1H,J=6.8Hz,14.4Hz),2.98(dd,1H,J=6.4Hz,14.4Hz),2.61(dd,1H,J=4.4Hz,12.4Hz),1.93(s,3H),1.92(s,3H),1.80(t,1H,J=12.4Hz);13C NMR(100MHz,D2O)δ174.94,174.60,173.11,133.63,118.03,96.56,95.66,72.88,71.92,69.14,68.79,68.70,68.63,68.38,67.76,64.01,62.62,52.94,51.83,49.87,37.70,22.03,21.92;HRMS(ESI)Anal.Calcd for C23H40N3O14[M+H]+:582.2505,found 582.2517。 1 HNMR (400MHz, D 2 O) δ5.88-5.80 (m, 1H), 5.24 (dq, 1H, J = 1.6Hz, 17.6Hz), 5.15 (dd, 1H, J = 1.6Hz, 10.8Hz), 4.83(d, 1H, J=3.6Hz), 4.13(ddt, 1H, J=1.2Hz, 5.2Hz, 13.2Hz), 4.05(dd, 1H, J=4Hz, 11.2Hz), 4.02-3.94(m, 3H), 3.84(dd, 1H, J=3.2Hz, 11.2Hz), 3.78-3.72(m, 2H), 3.70-3.64(m, 2H), 3.57-3.45(m, 6H), 3.10(dd, 1H ,J=6.8Hz,14.4Hz),2.98(dd,1H,J=6.4Hz,14.4Hz),2.61(dd,1H,J=4.4Hz,12.4Hz),1.93(s,3H),1.92(s ,3H),1.80(t,1H,J=12.4Hz); 13 C NMR(100MHz,D 2 O)δ174.94,174.60,173.11,133.63,118.03,96.56,95.66,72.88,71.92,69.14,68.79,68.70, 68.63, 68.38, 67.76, 64.01, 62.62, 52.94, 51.83, 49.87, 37.70, 22.03, 21.92; HRMS (ESI) Anal. Calcd for C 23 H 40 N 3 O 14 [M+H] + : 582.2505, found 582.2517.
实施例2Example 2
按照图2所示实施例2提供式1-2所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图:According to Example 2 shown in Figure 2, the synthesis flow chart of the sialic acid (α-(2→6))-D-aminogalactopyranose derivative of the structure shown in the formula 1-2 is provided:
将式10所示结构的化合物(D-氨基半乳糖盐酸盐,2.5g,11.6mmol)溶于34.7mL甲醇,加入4.1mL三乙胺和三氟乙酸甲酯(1.5mL,12.6mmol),室温搅拌过夜后减压浓缩。将残留物溶于28.9mL烯丙醇,加入18.1mL 3M盐酸乙醚,回流0.5h。过滤,将滤液浓缩。将残留物溶于18.6mL吡啶,加入TBDMSCl(1.9g,12.6mmol),室温搅拌16h。减压浓缩后用二氯甲烷和饱和碳酸氢钠萃取,有机相用硫酸钠干燥,抽滤,将滤液浓缩,残留物用柱层析分离(石油醚:乙酸乙酯,4:1至2:1),得到油状物为式13所示结构的化合物(图2中的化合物13),2.3g,收率46%。The compound of the structure shown in formula 10 (D-galactosamine hydrochloride, 2.5g, 11.6mmol) was dissolved in 34.7mL of methanol, 4.1mL of triethylamine and methyl trifluoroacetate (1.5mL, 12.6mmol) were added, After stirring overnight at room temperature, it was concentrated under reduced pressure. The residue was dissolved in 28.9 mL of allyl alcohol, 18.1 mL of 3M diethyl ether hydrochloride was added, and refluxed for 0.5 h. Filter and concentrate the filtrate. The residue was dissolved in 18.6 mL of pyridine, TBDMSCl (1.9 g, 12.6 mmol) was added, and stirred at room temperature for 16 h. After concentration under reduced pressure, extract with dichloromethane and saturated sodium bicarbonate, dry the organic phase with sodium sulfate, filter with suction, concentrate the filtrate, and separate the residue by column chromatography (petroleum ether: ethyl acetate, 4:1 to 2: 1) The oily substance was obtained as a compound of formula 13 (
1H NMR(400MHz,CDCl3)δ6.53(d,1H,J=8.9Hz),5.91-5.84(m,1H),5.30-5.24(m,2H),4.97(d,1H,J=3.7Hz),4.41(td,1H,J=3.6Hz,9.9Hz),4.19(dd,1H,J=5.3Hz,12.9Hz),4.14(s,1H),4.01(dd,1H,J=6.3Hz,12.9Hz),3.94(d,2H,J=4.4Hz),3.82-3.71(m,2H),3.63(s,1H),2.72-2.70(m,1H),0.92(s,9H),0.12(s,6H);13C NMR(100MHz,CDCl3)δ158.01(q,J=37.0Hz),133.10,118.28,115.79(q,J=286.0Hz),96.11,69.84,69.84,69.69,68.43,63.81,51.08,25.76,18.20,-5.54,-5.57;HRMS(ESI)Anal.CalcdforC17H34N2O6F3Si[M+NH4]+:447.2133,found447.2122。 1 H NMR (400MHz, CDCl 3 ) δ6.53 (d, 1H, J = 8.9Hz), 5.91-5.84 (m, 1H), 5.30-5.24 (m, 2H), 4.97 (d, 1H, J = 3.7 Hz), 4.41(td, 1H, J=3.6Hz, 9.9Hz), 4.19(dd, 1H, J=5.3Hz, 12.9Hz), 4.14(s, 1H), 4.01(dd, 1H, J=6.3Hz ,12.9Hz),3.94(d,2H,J=4.4Hz),3.82-3.71(m,2H),3.63(s,1H),2.72-2.70(m,1H),0.92(s,9H),0.12 (s, 6H); 13 C NMR (100MHz, CDCl 3 ) δ158.01(q, J=37.0Hz), 133.10, 118.28, 115.79(q, J=286.0Hz), 96.11, 69.84, 69.84, 69.69, 68.43 , 63.81, 51.08, 25.76, 18.20, -5.54, -5.57; HRMS (ESI) Anal. Calcd for C 17 H 34 N 2 O 6 F 3 Si[M+NH 4 ] + : 447.2133, found 447.2122.
将化合物13(1.9g,4.43mmol)溶于53.2mL乙腈,加入DMP(10.8mL,88.2mmol)和樟脑磺酸(506mg,2.22mmol),室温搅拌15分钟。用二氯甲烷和饱和食盐水萃取,有机相用硫酸钠干燥,抽滤,将滤液浓缩,残留物用柱层析分离(石油醚:乙酸乙酯,20:1至10:1),得到油状物为式14所示结构的化合物(图2中的化合物14),1.1g,收率51%。Compound 13 (1.9 g, 4.43 mmol) was dissolved in 53.2 mL of acetonitrile, DMP (10.8 mL, 88.2 mmol) and camphorsulfonic acid (506 mg, 2.22 mmol) were added, and stirred at room temperature for 15 minutes. Extract with dichloromethane and saturated brine, dry the organic phase with sodium sulfate, filter with suction, concentrate the filtrate, and separate the residue by column chromatography (petroleum ether: ethyl acetate, 20:1 to 10:1) to obtain an oily The compound is a compound of the structure shown in formula 14 (
1H NMR(400MHz,CDCl3)δ6.40(d,1H,J=9.3Hz),5.90-5.80(m,1H),5.28-5.22(m,2H),4.83(d,1H,J=3.3Hz),4.27-4.14(m,3H),4.11(dd,1H,J=4.9Hz,8.8Hz),4.03(td,1H,J=2.1Hz,6.5Hz),3.97(dd,1H,J=6.4Hz,12.8Hz),3.89(dd,1H,J=6.7Hz,10.0Hz),3.82(dd,1H,J=6.6Hz,10.0Hz),1.55(s,3H),1.33(s,3H),0.90(s,9H),0.08(s,6H);13CNMR(100MHz,CDCl3)δ157.17(q,J=37.0Hz),132.98,118.41,115.78(q,J=286.2Hz),109.84,95.89,74.02,72.26,68.39,68.34,62.19,51.52,27.93,26.39,25.76,18.20,-5.42,-5.55;HRMS(ESI)Anal.Calcd for C20H34NO6F3SiK[M+K]+:508.1734,found508.1734。 1 H NMR (400MHz, CDCl 3 ) δ6.40(d, 1H, J=9.3Hz), 5.90-5.80(m, 1H), 5.28-5.22(m, 2H), 4.83(d, 1H, J=3.3 Hz), 4.27-4.14(m, 3H), 4.11(dd, 1H, J=4.9Hz, 8.8Hz), 4.03(td, 1H, J=2.1Hz, 6.5Hz), 3.97(dd, 1H, J= 6.4Hz, 12.8Hz), 3.89(dd, 1H, J=6.7Hz, 10.0Hz), 3.82(dd, 1H, J=6.6Hz, 10.0Hz), 1.55(s, 3H), 1.33(s, 3H) ,0.90(s,9H),0.08(s,6H); 13 CNMR(100MHz,CDCl 3 )δ157.17(q,J=37.0Hz),132.98,118.41,115.78(q,J=286.2Hz),109.84 ,95.89,74.02,72.26,68.39,68.34,62.19,51.52,27.93,26.39,25.76,18.20,-5.42,-5.55; HRMS(ESI)Anal.Calcd for C 20 H 34 NO 6 F 3 SiK[M+K ] + :508.1734,found508.1734.
将化合物14(58mg,0.12mmol)溶于3.2mL四氢呋喃,加入乙酸(65.8μL,1.25mmol),0℃氩气保护下加入三水合四丁基氟化铵(157.7mg,0.50mmol)。50℃下搅拌4小时后,将体系浓缩至原体积一半,用二氯甲烷和饱和食盐水萃取,有机相用硫酸钠干燥,抽滤,将滤液浓缩,残留物用柱层析分离(石油醚:乙酸乙酯,2:1至1:1),得到油状物为式15所示结构的化合物(图2中的化合物15)38mg,收率87%。Compound 14 (58 mg, 0.12 mmol) was dissolved in 3.2 mL THF, acetic acid (65.8 μL, 1.25 mmol) was added, and tetrabutylammonium fluoride trihydrate (157.7 mg, 0.50 mmol) was added under argon protection at 0°C. After stirring at 50°C for 4 hours, the system was concentrated to half of the original volume, extracted with dichloromethane and saturated brine, the organic phase was dried over sodium sulfate, filtered with suction, the filtrate was concentrated, and the residue was separated by column chromatography (petroleum ether : ethyl acetate, 2:1 to 1:1), to obtain 38 mg of the compound (
1H NMR(400MHz,CDCl3)δ6.50(d,1H,J=8.9Hz),5.90-5.81(m,1H),5.30-5.23(m,2H),4.89(d,1H,J=3.1Hz),4.29-4.14(m,4H),4.12-4.05(m,1H),4.03-3.94(m,2H),3.91-3.81(m,1H),2.32(dd,1H,J=2.8Hz,8.8Hz),1.56(s,3H),1.34(s,3H);13C NMR(100MHz,CDCl3)δ157.28(q,J=38.0Hz),132.83,118.59,115.76(q,J=286.0Hz),110.29,96.10,74.03,73.31,68.66,67.87,62.52,51.38,27.89,26.47;HRMS(ESI)Anal.CalcdforC14H20NO6F3Na[M+Na]+:378.1135,found 378.1134。 1 H NMR (400MHz, CDCl 3 ) δ6.50(d, 1H, J=8.9Hz), 5.90-5.81(m, 1H), 5.30-5.23(m, 2H), 4.89(d, 1H, J=3.1 Hz), 4.29-4.14(m, 4H), 4.12-4.05(m, 1H), 4.03-3.94(m, 2H), 3.91-3.81(m, 1H), 2.32(dd, 1H, J=2.8Hz, 8.8Hz), 1.56(s, 3H), 1.34(s, 3H); 13 C NMR (100MHz, CDCl 3 ) δ157.28(q, J=38.0Hz), 132.83, 118.59, 115.76(q, J=286.0 Hz), 110.29, 96.10, 74.03, 73.31, 68.66, 67.87, 62.52, 51.38, 27.89, 26.47; HRMS (ESI) Anal. Calcd for C 14 H 20 NO 6 F 3 Na[M+Na] + : 378.1135, found 378.1134.
化合物15(681mg,1.92mmol)溶于3.2mL二氯甲烷,加入TEMPO(29mg,0.19mmol)和BAIB(679mg,2.11mmol),40℃搅拌6小时。用15mL二氯甲烷稀释,加入20mL硫代硫酸钠和碳酸氢钠的共饱和水溶液,剧烈搅拌10min。用二氯甲烷萃取,硫酸钠干燥,蒸干。将残留物溶于6.3mL吡啶,加入MeONH2·HCl(240mg,2.85mmol),室温搅拌1小时,蒸干,残留物用柱层析分离(石油醚:乙酸乙酯,10:1至4:1),得到白色固体为式16所示结构的化合物(图2中的化合物16),735mg,两步反应收率100%(Z/E=1/2or2/1)。Compound 15 (681 mg, 1.92 mmol) was dissolved in 3.2 mL of dichloromethane, TEMPO (29 mg, 0.19 mmol) and BAIB (679 mg, 2.11 mmol) were added, and stirred at 40°C for 6 hours. Dilute with 15mL of dichloromethane, add 20mL of co-saturated aqueous solution of sodium thiosulfate and sodium bicarbonate, and stir vigorously for 10min. Extract with dichloromethane, dry over sodium sulfate and evaporate to dryness. The residue was dissolved in 6.3 mL of pyridine, MeONH 2 ·HCl (240 mg, 2.85 mmol) was added, stirred at room temperature for 1 hour, evaporated to dryness, and the residue was separated by column chromatography (petroleum ether: ethyl acetate, 10:1 to 4: 1) to obtain a white solid of the compound represented by formula 16 (
1H NMR(400MHz,CDCl3)δ7.52(d,2H,J=7.3Hz),6.87(d,1H,J=4.9Hz),6.32(d,3H,J=8.9Hz),5.91-5.81(m,3H),5.36-5.22(m,6H),5.13(dd,1H,J=2.7Hz,4.8Hz),4.90-4.88(m,3H),4.59(dd,2H,J=2.4Hz,7.3Hz),4.48(dd,1H,J=2.7Hz,4.9Hz),4.33-4.12(m,11H),4.05-3.97(m,3H),3.94(s,3H),3.91(s,6H),1.59(s,6H),1.58(s,3H),1.35(s,9H);HRMS(ESI)Anal.Calcd for C15H21N2O6F3K[M+K]+:421.0978,found421.0982。 1 H NMR (400MHz, CDCl 3 ) δ7.52 (d, 2H, J = 7.3Hz), 6.87 (d, 1H, J = 4.9Hz), 6.32 (d, 3H, J = 8.9Hz), 5.91-5.81 (m,3H),5.36-5.22(m,6H),5.13(dd,1H,J=2.7Hz,4.8Hz),4.90-4.88(m,3H),4.59(dd,2H,J=2.4Hz, 7.3Hz), 4.48(dd, 1H, J=2.7Hz, 4.9Hz), 4.33-4.12(m, 11H), 4.05-3.97(m, 3H), 3.94(s, 3H), 3.91(s, 6H) ,1.59(s,6H),1.58(s,3H),1.35(s,9H);HRMS(ESI)Anal.Calcd for C 15 H 21 N 2 O 6 F 3 K[M+K] + :421.0978, Found421.0982.
将化合物16(279mg,0.73mmol)溶于冰醋酸/甲醇(2.4mL/2.4mL)混合溶液,0℃、氩气保护下加入NaCNBH3(69mg,1.09mmol),搅拌,4小时反应进行完全,加入少量甲苯,蒸干,残留物用柱层析分离(石油醚:乙酸乙酯,2:1),得到白色固体为式2-2-1所示结构的糖基受体(图2中的化合物17)268mg,收率96%。Compound 16 (279mg, 0.73mmol) was dissolved in a mixed solution of glacial acetic acid/methanol (2.4mL/2.4mL), and NaCNBH 3 (69mg, 1.09mmol) was added at 0°C under the protection of argon, stirred, and the reaction was complete in 4 hours. Add a small amount of toluene, evaporate to dryness, and the residue is separated by column chromatography (petroleum ether: ethyl acetate, 2:1), and the white solid is the glycosyl acceptor of the structure shown in formula 2-2-1 (the Compound 17) 268 mg, yield 96%.
1H NMR(400MHz,CDCl3)δ6.38(d,1H,J=9.3Hz),5.99-5.75(m,2H),5.28-5.22(m,2H),4.84(d,1H,J=3.4Hz),4.33-4.31(m,1H),4.25-4.17(m,2H),4.14-4.10(m,2H),3.97(dd,1H,J=6.3Hz,12.7Hz),3.52(s,3H),3.25(dd,1H,J=3.8Hz,14.1Hz),3.18(dd,1H,J=8.9Hz,14.1Hz),1.55(s,3H),1.33(s,3H);13C NMR(100MHz,CDCl3)δ157.19(q,J=37.1Hz),132.97,118.49,115.77(q,J=286.3Hz),110.04,95.84,74.19,73.58,68.45,63.32,61.39,51.97,51.47,27.91,26.46;HRMS(ESI)Anal.Calcd for C15H24N2O6F3[M+H]+:385.1581,found 385.1570。 1 H NMR (400MHz, CDCl 3 ) δ6.38 (d, 1H, J = 9.3Hz), 5.99-5.75 (m, 2H), 5.28-5.22 (m, 2H), 4.84 (d, 1H, J = 3.4 Hz), 4.33-4.31(m, 1H), 4.25-4.17(m, 2H), 4.14-4.10(m, 2H), 3.97(dd, 1H, J=6.3Hz, 12.7Hz), 3.52(s, 3H ), 3.25(dd, 1H, J=3.8Hz, 14.1Hz), 3.18(dd, 1H, J=8.9Hz, 14.1Hz), 1.55(s, 3H), 1.33(s, 3H); 13 C NMR ( 100MHz, CDCl 3 )δ157.19(q,J=37.1Hz),132.97,118.49,115.77(q,J=286.3Hz),110.04,95.84,74.19,73.58,68.45,63.32,61.39,51.97,51.47,27.91 , 26.46; HRMS (ESI) Anal. Calcd for C 15 H 24 N 2 O 6 F 3 [M+H] + : 385.1581, found 385.1570.
将式3所示结构的糖基供体(图2中的化合物10)(1209mg,1.98mmol),2-2-1所示结构的糖基受体(378mg,0.98mmol)和1.6g分子筛在氮气保护下溶于16.1mL二氯甲烷中,室温搅拌1小时。将反应体系冷却至0℃,加入TMSOTf(26μL,0.15mmol)。TLC显示式2-2-1所示结构的糖基受体(化合物17)基本反应完全后,加一滴三乙胺萃灭反应。待反应体系升至室温后,将反应体系用硅藻土抽滤。将滤液蒸干。残留物用柱层析分离(石油醚:丙酮,1:1)得油状物。将油状物溶解在7.9mL甲醇中,将PPTS(373mg,1.49mmol)加入到反应体系中,65℃搅拌3小时,蒸干,残留物用柱层析分离(石油醚:丙酮,1:2,随后甲苯:甲醇=10:1至5:1)得油状物为式5-2-1所示结构的化合物(图2中的化合物18),319mg,两步收率40%。The glycosyl donor (
1H NMR(400MHz,CDCl3)δ6.74(d,1H,J=9.0Hz),5.93-5.84(m,1H),5.46-5.21(m,5H),4.96(d,1H,J=3.7Hz),4.92-4.81(m,1H),4.46-4.33(m,2H),4.25(dd,1H,J=5.1Hz,13.0Hz),4.13-4.00(m,5H),3.97(t,1H,J=5.8Hz),3.90-3.79(m,4H),3.61(s,3H),3.35(d,1H,J=4.4Hz),3.21(d,2H,J=5.9Hz),3.09(d,1H,J=9.4Hz),2.64(dd,1H,J=4.4Hz,12.6Hz),2.20(t,1H,J=12.4Hz),2.16(s,3H),2.16(s,3H),2.06(s,3H),2.05(s,3H),1.90(s,3H);13C NMR(100MHz,CDCl3)δ170.97,170.94,170.47,170.41,170.20,168.07,157.89(q,J=37.0Hz),133.22,118.13,115.82(q,J=285.9Hz),95.97,94.53,72.89,69.60,69.39,69.23,68.57,68.48,67.68,63.48,62.62,52.98,52.91,51.13,49.42,34.84,23.09,21.11,20.81,20.79,20.73;HRMS(ESI)Anal.Calcd for C32H47N3O18F3[M+H]+:818.2801,found 818.2808。 1 H NMR (400MHz, CDCl 3 ) δ6.74(d, 1H, J=9.0Hz), 5.93-5.84(m, 1H), 5.46-5.21(m, 5H), 4.96(d, 1H, J=3.7 Hz), 4.92-4.81(m, 1H), 4.46-4.33(m, 2H), 4.25(dd, 1H, J=5.1Hz, 13.0Hz), 4.13-4.00(m, 5H), 3.97(t, 1H ,J=5.8Hz),3.90-3.79(m,4H),3.61(s,3H),3.35(d,1H,J=4.4Hz),3.21(d,2H,J=5.9Hz),3.09(d ,1H,J=9.4Hz),2.64(dd,1H,J=4.4Hz,12.6Hz),2.20(t,1H,J=12.4Hz),2.16(s,3H),2.16(s,3H), 2.06(s,3H),2.05(s,3H),1.90(s,3H); 13 C NMR(100MHz,CDCl 3 )δ170.97,170.94,170.47,170.41,170.20,168.07,157.89(q,J=37.0Hz ), 133.22, 118.13, 115.82 (q, J=285.9Hz), 95.97, 94.53, 72.89, 69.60, 69.39, 69.23, 68.57, 68.48, 67.68, 63.48, 62.62, 52.98, 52.91, 51.13, 49.49, 2 21.11, 20.81, 20.79, 20.73; HRMS (ESI) Anal. Calcd for C 32 H 47 N 3 O 18 F 3 [M+H] + : 818.2801, found 818.2808.
化合物18(20mg,0.024mmol)溶于1.1mL甲醇,室温下搅拌,加入0.02mL 30%甲醇钠,1小时后TLC显示反应完全。浓缩抽干溶剂后,加入0.6mL 2M氢氧化钠水溶液,0.5小时后TLC显示反应完全,通入二氧化碳气体至中性,蒸干。将残留物溶于1.2mL甲醇,氩气保护下加入0.5mL三乙胺和0.2mL氟乙酸甲酯,回流搅拌过夜,蒸干后残留物用反相柱层析分离(纯水至甲醇:水,1:4),随后通过一根离子交换树脂柱除去残留的三乙胺盐,得到白色固体为式1-2所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物,11mg,收率75%。Compound 18 (20 mg, 0.024 mmol) was dissolved in 1.1 mL of methanol, stirred at room temperature, 0.02 mL of 30% sodium methoxide was added, and TLC showed that the reaction was complete after 1 hour. After concentrating and draining the solvent, 0.6 mL of 2M aqueous sodium hydroxide solution was added. After 0.5 hours, TLC showed that the reaction was complete, and carbon dioxide gas was introduced until neutral, and evaporated to dryness. Dissolve the residue in 1.2mL methanol, add 0.5mL triethylamine and 0.2mL methyl fluoroacetate under the protection of argon, reflux and stir overnight, evaporate to dryness and separate the residue by reverse phase column chromatography (pure water to methanol:water , 1:4), followed by an ion-exchange resin column to remove the residual triethylamine salt to obtain a white solid of nitrogen-linked sialic acid (α-(2→6))-D- Aminogalactopyranose derivatives, 11 mg, yield 75%.
1H NMR(400MHz,D2O)δ5.93-5.85(m,1H),5.28(dd,1H,J=1.2Hz,17.3Hz),5.19(d,1H,J=10.5Hz),4.91(d,1H,J=3.8Hz),4.87(d,1H,J=46.4Hz),4.25-4.14(m,2H),4.07(t,1H,J=6.2Hz),4.04-3.94(m,3H),3.83-3.67(m,4H),3.62-3.48(m,6H),3.16(dd,1H,J=6.5Hz,14.2Hz),3.03(dd,1H,J=5.9Hz,14.1Hz),2.66(dd,1H,J=4.5Hz,12.3Hz),1.97(s,3H),1.85(t,1H,J=12.0Hz);13C NMR(100MHz,D2O)δ174.96,173.12,171.09(d,J=18.6Hz),133.61,118.14,96.49,95.70,79.77(d,J=179.6Hz),72.92,71.97,69.18,68.81,68.75,68.67,68.49,67.63,64.05,62.66,52.96,51.87,49.60,37.74,22.06;HRMS(ESI)Anal.Calcd for C23H38N3O14FNa[M+Na]+:622.2230,found 622.2229。 1 H NMR (400MHz, D 2 O) δ5.93-5.85 (m, 1H), 5.28 (dd, 1H, J = 1.2Hz, 17.3Hz), 5.19 (d, 1H, J = 10.5Hz), 4.91 ( d,1H,J=3.8Hz),4.87(d,1H,J=46.4Hz),4.25-4.14(m,2H),4.07(t,1H,J=6.2Hz),4.04-3.94(m,3H ),3.83-3.67(m,4H),3.62-3.48(m,6H),3.16(dd,1H,J=6.5Hz,14.2Hz),3.03(dd,1H,J=5.9Hz,14.1Hz), 2.66 (dd, 1H, J = 4.5Hz, 12.3Hz), 1.97 (s, 3H), 1.85 (t, 1H, J = 12.0Hz); 13 C NMR (100MHz, D 2 O) δ 174.96, 173.12, 171.09 ( d,J=18.6Hz),133.61,118.14,96.49,95.70,79.77(d,J=179.6Hz),72.92,71.97,69.18,68.81,68.75,68.67,68.49,67.63,64.05,62.66,52.96,51.87, 49.60, 37.74, 22.06; HRMS (ESI) Anal. Calcd for C 23 H 38 N 3 O 14 FNa[M+Na] + : 622.2230, found 622.2229.
实施例3Example 3
按照图2所示实施例2提供式1-2所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图:According to Example 2 shown in Figure 2, the synthesis flow chart of the sialic acid (α-(2→6))-D-aminogalactopyranose derivative of the structure shown in the formula 1-2 is provided:
按照实施例2中的制备方法制备得到式5-2-1所示结构的化合物;According to the preparation method in Example 2, the compound with the structure shown in formula 5-2-1 was prepared;
式5-2-1所示结构的化合物(图2中的化合物18)(20mg,0.024mmol)溶于1.1mL甲醇。室温下搅拌,加入0.02mL 30%甲醇钠,1小时后TLC显示反应完全。浓缩抽干溶剂后,加入0.6mL 2M氢氧化钠水溶液。0.5小时后TLC显示反应完全,通入二氧化碳气体至中性,蒸干。将残留物溶于1.2mL甲醇,氩气保护下加入0.5mL三乙胺和0.2mL二氟乙酸甲酯,回流搅拌过夜,蒸干后残留物用反相柱层析分离(纯水至甲醇:水,1:4),随后通过一根离子交换树脂柱除去残留的三乙胺盐,得到白色固体为式1-3所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物,13mg,收率86%。The compound represented by formula 5-2-1 (
1H NMR(400MHz,D2O)δ6.10(t,1H,J=53.6Hz),5.87(ddd,1H,J=5.8Hz,11.0Hz,22.4Hz),5.26(dd,1H,J=1.5Hz,17.3Hz),5.18(d,1H,J=10.5Hz),4.92(d,1H,J=3.8Hz),4.22-4.13(m,2H),4.06(t,1H,J=6.3Hz),4.03-3.94(m,3H),3.83-3.76(m,2H),3.76-3.66(m,2H),3.62-3.52(m,5H),3.50(dd,1H,J=1.4Hz,8.9Hz),3.15(dd,1H,J=6.4Hz,14.3Hz),3.02(dd,1H,J=6.0Hz,14.4Hz),2.65(dd,1H,J=4.5Hz,12.3Hz),1.95(s,3H),1.84(t,1H,J=12.0Hz);13C NMR(100MHz,D2O)δ179.92,178.09,170.29(t,J=25.7Hz),138.52,123.17,113.14(t,J=245.6Hz),101.10,100.65,77.88,76.93,74.16,73.74,73.71,73.62,73.45,72.39,69.00,67.61,57.91,56.82,55.13,42.69,27.02;HRMS(ESI)Anal.Calcd for C23H37N3O14F2Na[M+Na]+:640.2136,found 640.2139。 1 H NMR (400MHz, D 2 O) δ6.10 (t, 1H, J = 53.6Hz), 5.87 (ddd, 1H, J = 5.8Hz, 11.0Hz, 22.4Hz), 5.26 (dd, 1H, J = 1.5Hz, 17.3Hz), 5.18(d, 1H, J=10.5Hz), 4.92(d, 1H, J=3.8Hz), 4.22-4.13(m, 2H), 4.06(t, 1H, J=6.3Hz ),4.03-3.94(m,3H),3.83-3.76(m,2H),3.76-3.66(m,2H),3.62-3.52(m,5H),3.50(dd,1H,J=1.4Hz,8.9 Hz), 3.15(dd, 1H, J=6.4Hz, 14.3Hz), 3.02(dd, 1H, J=6.0Hz, 14.4Hz), 2.65(dd, 1H, J=4.5Hz, 12.3Hz), 1.95( s,3H),1.84(t,1H,J=12.0Hz); 13 C NMR(100MHz,D 2 O)δ179.92,178.09,170.29(t,J=25.7Hz),138.52,123.17,113.14(t,J =245.6Hz), 101.10, 100.65, 77.88, 76.93, 74.16, 73.74, 73.71, 73.62, 73.45, 72.39, 69.00, 67.61 , 57.91, 56.82, 55.13, 42.69, 27.02; 37 N 3 O 14 F 2 Na[M+Na] + : 640.2136, found 640.2139.
实施例4Example 4
按照图2所示实施例3提供式1-3所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图:According to Example 3 shown in Figure 2, the synthesis flow chart of the sialic acid (α-(2→6))-D-aminogalactopyranose derivative of the structure shown in the formula 1-3 is provided:
按照实施例2中的制备方法制备得到式5-2-1所示结构的化合物;According to the preparation method in Example 2, the compound with the structure shown in formula 5-2-1 was prepared;
式5-2-1所示结构的化合物(图2中的化合物18)(40mg,0.049mmol)溶于2.3mL甲醇。室温下搅拌,加入0.02mL 30%甲醇钠,1小时后TLC显示反应完全。浓缩抽干溶剂后,加入1.1mL 2M氢氧化钠水溶液。0.5小时后TLC显示反应完全,通入二氧化碳气体至中性,蒸干。将残留物溶于2.4mL甲醇,氩气保护下加入1.0mL三乙胺和0.5mL三氟乙酸甲酯,回流搅拌过夜,蒸干后残留物用反相柱层析分离(纯水至甲醇:水,1:4),随后通过一根离子交换树脂柱除去残留的三乙胺盐,得到白色固体为式1-4所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物,18mg,收率58%。The compound of the structure represented by formula 5-2-1 (
1H NMR(400MHz,D2O)δ5.94-5.80(m,1H),5.27(dd,1H,J=1.5Hz,17.3Hz),5.19(d,1H,J=10.4Hz),4.94(d,1H,J=3.8Hz),4.23-4.14(m,2H),4.07(t,1H,J=6.3Hz),4.04-3.97(m,3H),3.84-3.77(m,2H),3.77-3.67(m,2H),3.62-3.53(m,5H),3.51(dd,1H,J=1.4Hz,8.9Hz),3.15(dd,1H,J=6.4Hz,14.3Hz),3.03(dd,1H,J=6.1Hz,14.3Hz),2.65(dd,1H,J=4.5Hz,12.3Hz),1.96(s,3H),1.84(t,1H,J=12.0Hz);13C NMR(100MHz,D2O)δ180.00,178.13,164.36(q,J=37.5Hz),138.58,123.28,120.83(q,J=284.3Hz),100.95,100.74,77.95,77.00,74.24,73.84,73.76,73.71,73.56,72.21,69.05,67.71,57.98,56.91,55.84,42.76,27.10;HRMS(ESI)Anal.Calcd for C23H37N3O14F3[M+H]+:636.2222,found 636.2232。 1 H NMR (400MHz, D 2 O) δ5.94-5.80 (m, 1H), 5.27 (dd, 1H, J = 1.5Hz, 17.3Hz), 5.19 (d, 1H, J = 10.4Hz), 4.94 ( d,1H,J=3.8Hz),4.23-4.14(m,2H),4.07(t,1H,J=6.3Hz),4.04-3.97(m,3H),3.84-3.77(m,2H),3.77 -3.67(m,2H),3.62-3.53(m,5H),3.51(dd,1H,J=1.4Hz,8.9Hz),3.15(dd,1H,J=6.4Hz,14.3Hz),3.03(dd , 1H, J=6.1Hz, 14.3Hz), 2.65(dd, 1H, J=4.5Hz, 12.3Hz), 1.96(s, 3H), 1.84(t, 1H, J=12.0Hz); 13 C NMR ( 100MHz, D2O ) δ180.00, 178.13, 164.36(q, J=37.5Hz), 138.58, 123.28, 120.83(q, J=284.3Hz), 100.95, 100.74, 77.95, 77.00, 74.24, 73.84, 73.76, 73.71, 73.56, 72.21, 69.05, 67.71, 57.98, 56.91, 55.84, 42.76, 27.10; HRMS (ESI) Anal. Calcd for C 23 H 37 N 3 O 14 F 3 [M+H] + : 636.2222, found 636.2232.
实施例5Example 5
按照图2所示实施例5提供式1-5所示结构的唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物的合成流程图:According to Example 5 shown in Figure 2, the synthesis flow chart of the sialic acid (α-(2→6))-D-aminogalactopyranose derivative of the structure shown in the formula 1-5 is provided:
按照实施例2中的制备方法制备得到式5-2-1所示结构的化合物;According to the preparation method in Example 2, the compound with the structure shown in formula 5-2-1 was prepared;
式5-2-1所示结构的化合物(图2中的化合物18)(40mg,0.049mmol)溶于2.3mL甲醇。室温下搅拌,加入0.02mL 30%甲醇钠,1小时后TLC显示反应完全。浓缩抽干溶剂后,加入1.1mL 2M氢氧化钠水溶液。0.5小时后TLC显示反应完全,通入二氧化碳气体至中性,蒸干。将残留物溶于4.9mL甲醇,0℃加入丙酸酐(25.2μL,0.20mmol),搅拌0.5小时。蒸干后残留物用反相柱层析分离(纯水至甲醇:水,1:4),得到白色固体为式1-5所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物,131mg,收率100%。The compound of the structure represented by formula 5-2-1 (
1H NMR(400MHz,D2O)δ5.87(dq,1H,J=5.8Hz,10.7Hz),5.27(d,1H,J=17.3Hz),5.18(d,1H,J=10.4Hz),4.87(d,1H,J=3.6Hz),4.17(dd,1H,J=5.0Hz,12.9Hz),4.09(dd,1H,J=3.4Hz,11.1Hz),4.06-3.95(m,3H),3.88(dd,1H,J=2.5Hz,11.2Hz),3.78-3.68(m,4H),3.62-3.48(m,6H),3.13(dd,1H,J=6.1Hz,14.2Hz),3.02(dd,1H,J=6.1Hz,14.3Hz),2.65(dd,1H,J=4.2Hz,12.2Hz),2.23(q,2H,J=7.6Hz),1.96(s,3H),1.83(t,1H,J=11.9Hz),1.04(t,3H,J=7.6Hz);13C NMR(100MHz,D2O)δ178.60,174.95,173.11,133.60,118.14,96.57,95.67,72.91,71.95,69.20,68.87,68.73,68.65,68.42,67.71,64.02,62.65,52.99,51.86,49.80,37.74,29.12,22.05,9.57;HRMS(ESI)Anal.Calcd forC24H41N3O14Na[M+Na]+:618.2481,found 618.2487。 1 H NMR (400MHz, D 2 O) δ5.87 (dq, 1H, J = 5.8Hz, 10.7Hz), 5.27 (d, 1H, J = 17.3Hz), 5.18 (d, 1H, J = 10.4Hz) ,4.87(d,1H,J=3.6Hz),4.17(dd,1H,J=5.0Hz,12.9Hz),4.09(dd,1H,J=3.4Hz,11.1Hz),4.06-3.95(m,3H ),3.88(dd,1H,J=2.5Hz,11.2Hz),3.78-3.68(m,4H),3.62-3.48(m,6H),3.13(dd,1H,J=6.1Hz,14.2Hz), 3.02(dd, 1H, J=6.1Hz, 14.3Hz), 2.65(dd, 1H, J=4.2Hz, 12.2Hz), 2.23(q, 2H, J=7.6Hz), 1.96(s, 3H), 1.83 (t, 1H, J = 11.9Hz), 1.04 (t, 3H, J = 7.6Hz); 13 C NMR (100MHz, D 2 O) δ178.60, 174.95, 173.11, 133.60, 118.14, 96.57, 95.67, 72.91, 71.95 ,69.20,68.87,68.73,68.65,68.42,67.71,64.02,62.65,52.99,51.86,49.80,37.74,29.12,22.05,9.57; HRMS(ESI)Anal.Calcd forC 24 H 41 N 3 O 14 Na[M+ Na] + :618.2481, found 618.2487.
实施例6Example 6
按照图10所述的糖蛋白缀合物合成流程制备:Prepare according to the glycoprotein conjugate synthesis process described in Figure 10:
将实施例1~5制备的式1-1~式1-5所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物、式17所示结构的STn分别溶解于5mL无水甲醇中,-72℃下通入含有臭氧的空气,当体系变成蓝色(约需10-30分钟)后,停止通臭氧,10分钟后体系仍然为蓝色。向反应体系通入氮气约10分钟,以便除去过量的臭氧。滴加二甲硫醚0.2mL,之后让反应体系温度自然升至室温,2小时后将反应体系在真空下除去溶剂,即得到了含有醛基的半抗原。Nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivatives with structures shown in formulas 1-1 to 1-5 prepared in Examples 1 to 5, and structures shown in
将含有醛基的半抗原分别与KLH共同溶解于pH值为7.6的缓冲液中,加入氰基硼氢化钠,室温下在摇床上避光反应24小时。透析后即得到糖蛋白缀合物N(OMe)-STn-KLH,分别记为1-KLH、2-KLH,3-KLH,4-KLH,5-KLH。Haptens containing aldehyde groups were dissolved together with KLH in a buffer solution with a pH value of 7.6, sodium cyanoborohydride was added, and reacted on a shaker at room temperature in the dark for 24 hours. After dialysis, the glycoprotein conjugates N(OMe)-STn-KLH were obtained, which were respectively denoted as 1-KLH, 2-KLH, 3-KLH, 4-KLH, and 5-KLH.
实施例7Example 7
与实施例6的制备方法基本相同,不同之处在于:采用CRM197替换实施6中的KLH,得到糖蛋白缀合物N(OMe)-STn-KLH,分别记为1-CRM197、2-CRM197,3-CRM197,4-CRM197,5-CRM197。The preparation method is basically the same as in Example 6, except that: KLH in Example 6 is replaced by CRM197 to obtain glycoprotein conjugates N(OMe)-STn-KLH, which are respectively denoted as 1-CRM197 and 2-CRM197, 3-CRM197, 4-CRM197, 5-CRM197.
实施例8Example 8
按照图11所述的糖蛋白缀合物1-NHS-CRM197的合成流程制备:Prepared according to the synthesis process of glycoprotein conjugate 1-NHS-CRM197 described in Figure 11:
将实施例5制备的式1-5所示结构的氮连接唾液酸(α-(2→6))-D-氨基吡喃半乳糖衍生物10mg与巯基乙胺盐酸盐2.88mg溶解于1mL去氧去离子水中,室温下紫外照射反应10min后,减压浓缩,使用葡聚糖G10凝胶柱纯化,将纯化所得产物溶于1mL超干DMF中,滴入含有57.8mg双(2,5-二氧代吡咯烷-1-基)己二酸酯的1mL超干DMF中,剧烈搅拌室温反应2小时。反应结束,减压浓缩,甲醇复溶,HPLC分离后,冷冻干燥,得白色固体产物半抗原N(OMe)-STn-NHS。Dissolve 10 mg of the nitrogen-linked sialic acid (α-(2→6))-D-aminogalactopyranose derivative of the formula 1-5 prepared in Example 5 and 2.88 mg of mercaptoethylamine hydrochloride in 1 mL In deoxygenated deionized water, after 10 min of ultraviolet irradiation reaction at room temperature, concentrated under reduced pressure, purified using a dextran G10 gel column, dissolved the purified product in 1 mL of ultra-dry DMF, and added dropwise a solution containing 57.8 mg of bis(2,5 -Dioxopyrrolidin-1-yl) adipate in 1 mL of ultra-dry DMF, stirred vigorously at room temperature for 2 hours. After the reaction was completed, it was concentrated under reduced pressure, redissolved in methanol, separated by HPLC, and freeze-dried to obtain the white solid product hapten N(OMe)-STn-NHS.
将N(OMe)-STn-NHS与CRM197共同溶解在PH=8.0的K2HPO4-PBS缓冲液中,室温下在摇床上反应12小时,超滤后得到糖蛋白缀合物1-NHS-CRM197。Dissolve N(OMe)-STn-NHS and CRM197 in K 2 HPO 4 -PBS buffer at pH=8.0, react on a shaker at room temperature for 12 hours, and obtain glycoprotein conjugate 1-NHS- CRM197.
应用例Application example
一、试验材料及来源1. Test materials and sources
1、供试化合物:本发明实施例6、7、8所制备的糖蛋白(多肽)缀合物;1. Test compound: glycoprotein (polypeptide) conjugates prepared in Examples 6, 7, and 8 of the present invention;
二、试验方法2. Test method
(一)小鼠免疫(1) Immunization of mice
每组6只Balb/c雌性小鼠,6—8周龄(Number:SCXKjing2007-0001,SPF/VAF),购自北京大学医学部动物科学部并于动物部饲养。用STn-KLH、STn-CRM197以及氮连接的STn衍生物与KLH或CRM197的缀合物(1-KLH、2-KLH、3-KLH、4-KLH、5-KLH和1-CRM197、2-CRM197、3-CRM197、4-CRM197、5-CRM197)分别免疫小鼠,每次免疫的糖蛋白(多肽)中含有1—3μg的糖(溶解于PBS),每2周免疫一次,免疫途径为腹腔注射,共免疫4次。分别于免疫前、第2次免疫后13天、第3次免疫后13天及第4次免疫后14天取血,分离血清,-80℃冰箱冻存待测。Six Balb/c female mice in each group, aged 6-8 weeks (Number: SCXKjing2007-0001, SPF/VAF), were purchased from the Department of Animal Science, Peking University Health Science Center and raised in the Department of Animals. Conjugates of STn derivatives with STn-KLH, STn-CRM197 and nitrogen-linked with KLH or CRM197 (1-KLH, 2-KLH, 3-KLH, 4-KLH, 5-KLH and 1-CRM197, 2- CRM197, 3-CRM197, 4-CRM197, 5-CRM197) were used to immunize mice respectively, and each immunized glycoprotein (polypeptide) contained 1-3 μg of sugar (dissolved in PBS), which was immunized once every 2 weeks, and the immunization route was as follows: Intraperitoneal injection, a total of 4 times of immunization. Blood was collected before immunization, 13 days after the second immunization, 13 days after the third immunization, and 14 days after the fourth immunization, and the serum was separated and stored in a -80°C refrigerator for testing.
(二)小鼠免疫前后血清中抗体滴度的测定(2) Determination of antibody titers in serum of mice before and after immunization
各组小鼠混合血清的滴度,以及实施例6和实施例7制备的1-KLH、2-KLH、3-KLH、4-KLH、5-KLH和1-CRM197、2-CRM197、3-CRM197、4-CRM197、5-CRM197免疫组每只小鼠血清的滴度均采用ELISA方法检测。The titer of mixed serum of each group of mice, and 1-KLH, 2-KLH, 3-KLH, 4-KLH, 5-KLH and 1-CRM197, 2-CRM197, 3-KLH prepared in
1包被抗原:酶标板上包被100μL的STn-BSA(包含0.02μg的STn)4℃过夜。1 Coating antigen:
2洗涤与封闭:每孔加入200μL洗涤缓冲液PBS-Tween20(0.05%)洗板,洗3次,然后每孔加入200μL封闭液(3%BSA-PBS),37℃,1小时。2 Washing and blocking: add 200 μL of washing buffer PBS-Tween20 (0.05%) to each well to wash the plate, wash 3 times, then add 200 μL of blocking solution (3% BSA-PBS) to each well, 37° C. for 1 hour.
3加一抗(即免疫血清):洗涤3次(具体方法同上)。血清用抗体稀释液(1%BSA-PBS)从某一稀释度开始倍比稀释,每孔加100μL,37℃,1小时。3. Add primary antibody (ie, immune serum): wash 3 times (the specific method is the same as above). The serum was serially diluted with antibody diluent (1% BSA-PBS) from a certain dilution, and 100 μL was added to each well, at 37° C. for 1 hour.
4加酶标二抗:洗涤3次,每孔加入用抗体稀释液5000倍稀释的100μL的二抗(为辣根过氧化物酶标记的羊抗小鼠IgG(γ-chain特异)),37℃,1小时。4 Add enzyme-labeled secondary antibody: wash 3 times, add 100 μL of secondary antibody (horseradish peroxidase-labeled goat anti-mouse IgG (γ-chain specific)) diluted 5000 times with antibody diluent to each well, 37 °C, 1 hour.
5显色:洗涤3次,每孔加入现配的显色底物邻苯二胺(OPD)100μL,室温避光显色15分钟,每孔加入2M H2SO4终止显色。5 Color development: wash 3 times, add 100 μL of the ready-to-use chromogenic substrate o-phenylenediamine (OPD) to each well, develop color at room temperature in the dark for 15 minutes, add 2M H 2 SO 4 to each well to stop color development.
6结果判断:用酶标仪于490nm波长读取OD值。把减去空白血清孔读数后的OD值为0.1时的血清稀释倍数作为抗体滴度。6 Judgment of results: Read the OD value at a wavelength of 490nm with a microplate reader. The serum dilution factor when the OD value after subtracting the blank serum well reading was 0.1 was regarded as the antibody titer.
(三)小鼠免疫治疗(3) Mouse immunotherapy
每组8只Balb/c雌性小鼠,6—8周龄(Number:SCXKjing2007-0001,SPF/VAF),购自北京大学医学部动物科学部并于动物部饲养。在第0天每只小鼠腋下接种5×10^5个CT26细胞,第2、6、10、17天分别皮下注射含有1~3μg糖的1-NHS-CRM197、1-CRM197以及1-KLH的PBS溶液。Eight Balb/c female mice in each group, aged 6-8 weeks (Number: SCXKjing2007-0001, SPF/VAF), were purchased from the Animal Science Department of Peking University Health Science Center and raised in the Animal Department. On
三、试验结果3. Test results
测试结果如表1和图3~6所示。其中,图3为本发明实施例6制备的1-KLH第四次免疫后血清STn-KLH和1-KLH组每只小鼠血清的滴度;图4为本发明实施例6制备的1-KLH施用后小鼠生存曲线;图5为本发明实施例7制备的1-CRM197施用后小鼠肿瘤生长曲线;图6为本发明实施例7制备的1-CRM197施用后小鼠生存曲线,图7为本发明实施例8制备的1-NHS-CRM197施用后小鼠肿瘤生长曲线。The test results are shown in Table 1 and Figures 3-6. Wherein, Fig. 3 is the titer of each mouse serum in the serum STn-KLH and 1-KLH groups after the fourth immunization of 1-KLH prepared in Example 6 of the present invention; Fig. 4 is the titer of 1-KLH prepared in Example 6 of the present invention Mouse survival curve after KLH administration; Fig. 5 is the mouse tumor growth curve after 1-CRM197 administration prepared in Example 7 of the present invention; Fig. 6 is the mouse survival curve after 1-CRM197 administration prepared in Example 7 of the present invention, Fig. 7 is the mouse tumor growth curve after administration of 1-NHS-CRM197 prepared in Example 8 of the present invention.
表1为实施例6制备的糖缀合物第三次和第四次免疫后13天测定小鼠血清中识别STn的抗体滴度Table 1 is the third and fourth immunization of the glycoconjugates prepared in Example 6 to measure the antibody titer of recognizing STn in the
表2为实施例7制备的1-CRM197和实施例8制备的1-NHS-CRM197的糖负载量的比较。Table 2 is the comparison of sugar loading of 1-CRM197 prepared in Example 7 and 1-NHS-CRM197 prepared in Example 8.
表2 1-CRM197和1-NHS-CRM197的糖负载量Table 2 Sugar loading of 1-CRM197 and 1-NHS-CRM197
用表达STn糖抗原的CT-26结肠癌细胞构建了小鼠荷瘤模型;然后用本发明专利中的糖缀合物(1-KLH、1-CRM197或1-NHS-CRM197)免疫荷瘤小鼠,观察小鼠生存期、肿瘤体积以及抗体滴度。实验结果表明与对照组相比,糖缀合物1-KLH、1-CRM197或1-NHS-CRM197接种小鼠后明显延长了小鼠的生存期、抑制肿瘤生长、增加抗体滴度,表明具有良好的抗肿瘤效果。A tumor-bearing mouse model was constructed with CT-26 colon cancer cells expressing STn sugar antigen; then the tumor-bearing mice were immunized with the glycoconjugate (1-KLH, 1-CRM197 or 1-NHS-CRM197) in the patent of the present invention Rats were used to observe the survival period, tumor volume and antibody titer of the mice. The experimental results showed that compared with the control group, glycoconjugates 1-KLH, 1-CRM197 or 1-NHS-CRM197 significantly prolonged the survival period of mice, inhibited tumor growth, and increased antibody titers after inoculation of mice, indicating that they have Good antitumor effect.
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。Although the foregoing embodiment has described the present invention in detail, it is only a part of the embodiments of the present invention, rather than all embodiments, and other embodiments can also be obtained according to the present embodiment without inventive step, and these embodiments are all Belong to the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211248083.7A CN115521348B (en) | 2022-10-12 | 2022-10-12 | Sialyl (α-(2→6))-D-aminogalactopyranose derivative or its salt, sugar conjugate and preparation method thereof |
PCT/CN2023/124243 WO2024078578A1 (en) | 2022-10-12 | 2023-10-12 | SIALIC ACID (α-(2→6))-D-AMINOPYRAN GALACTOSE DERIVATIVE OR SALT THEREOF, GLYCOCONJUGATE AND PREPARATION METHOD THEREFOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211248083.7A CN115521348B (en) | 2022-10-12 | 2022-10-12 | Sialyl (α-(2→6))-D-aminogalactopyranose derivative or its salt, sugar conjugate and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115521348A true CN115521348A (en) | 2022-12-27 |
CN115521348B CN115521348B (en) | 2025-05-16 |
Family
ID=84701943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211248083.7A Active CN115521348B (en) | 2022-10-12 | 2022-10-12 | Sialyl (α-(2→6))-D-aminogalactopyranose derivative or its salt, sugar conjugate and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115521348B (en) |
WO (1) | WO2024078578A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024078578A1 (en) * | 2022-10-12 | 2024-04-18 | 北京大学 | SIALIC ACID (α-(2→6))-D-AMINOPYRAN GALACTOSE DERIVATIVE OR SALT THEREOF, GLYCOCONJUGATE AND PREPARATION METHOD THEREFOR |
WO2024125643A1 (en) * | 2022-12-16 | 2024-06-20 | 中国科学院上海药物研究所 | Method for preparing tumor-associated antigen dsgb5 glycolipid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371202A (en) * | 1991-02-28 | 1994-12-06 | The Nisshin Oil Mills, Ltd. | Processes of preparing sialoglycosyl compounds |
US6013779A (en) * | 1994-05-02 | 2000-01-11 | Biomira, Inc. | Process for preparation of glycosides of tumor-associated carbohydrate antigens |
CN102276662A (en) * | 2010-06-09 | 2011-12-14 | 北京大学 | Sialic acid (alpha-(2-6))-D-pyranose derivative and its synthetic method and use |
CN108164573A (en) * | 2017-12-20 | 2018-06-15 | 天津科技大学 | Synthetic method and its application of sialylated TF antigens and its fluoro derivatives |
CN110064050A (en) * | 2019-04-29 | 2019-07-30 | 北京大学 | Glycoconjugate containing STn or F-STn and preparation method thereof and the application in anti-tumor vaccine |
CN114306586A (en) * | 2022-01-04 | 2022-04-12 | 天津科技大学 | Tumor vaccine based on TF antigen and chitosan oligosaccharide endogenous adjuvant, method and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8383767B2 (en) * | 2008-06-27 | 2013-02-26 | Academia Sinica | Immunogenic protein carrier containing an antigen presenting cell binding domain and a cysteine-rich domain |
CN115521348B (en) * | 2022-10-12 | 2025-05-16 | 北京大学 | Sialyl (α-(2→6))-D-aminogalactopyranose derivative or its salt, sugar conjugate and preparation method thereof |
-
2022
- 2022-10-12 CN CN202211248083.7A patent/CN115521348B/en active Active
-
2023
- 2023-10-12 WO PCT/CN2023/124243 patent/WO2024078578A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371202A (en) * | 1991-02-28 | 1994-12-06 | The Nisshin Oil Mills, Ltd. | Processes of preparing sialoglycosyl compounds |
US6013779A (en) * | 1994-05-02 | 2000-01-11 | Biomira, Inc. | Process for preparation of glycosides of tumor-associated carbohydrate antigens |
CN102276662A (en) * | 2010-06-09 | 2011-12-14 | 北京大学 | Sialic acid (alpha-(2-6))-D-pyranose derivative and its synthetic method and use |
CN108164573A (en) * | 2017-12-20 | 2018-06-15 | 天津科技大学 | Synthetic method and its application of sialylated TF antigens and its fluoro derivatives |
CN110064050A (en) * | 2019-04-29 | 2019-07-30 | 北京大学 | Glycoconjugate containing STn or F-STn and preparation method thereof and the application in anti-tumor vaccine |
CN114306586A (en) * | 2022-01-04 | 2022-04-12 | 天津科技大学 | Tumor vaccine based on TF antigen and chitosan oligosaccharide endogenous adjuvant, method and application |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024078578A1 (en) * | 2022-10-12 | 2024-04-18 | 北京大学 | SIALIC ACID (α-(2→6))-D-AMINOPYRAN GALACTOSE DERIVATIVE OR SALT THEREOF, GLYCOCONJUGATE AND PREPARATION METHOD THEREFOR |
WO2024125643A1 (en) * | 2022-12-16 | 2024-06-20 | 中国科学院上海药物研究所 | Method for preparing tumor-associated antigen dsgb5 glycolipid |
Also Published As
Publication number | Publication date |
---|---|
CN115521348B (en) | 2025-05-16 |
WO2024078578A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5484668B2 (en) | Synthesis of breast cancer-associated antigens identified by monoclonal antibody MBR1 and their use | |
WO2024078578A1 (en) | SIALIC ACID (α-(2→6))-D-AMINOPYRAN GALACTOSE DERIVATIVE OR SALT THEREOF, GLYCOCONJUGATE AND PREPARATION METHOD THEREFOR | |
AU725715B2 (en) | Synthesis of glycoconjugates of the lewis Y epitope and uses thereof | |
Danishefsky et al. | Application of the glycal assembly method to the concise synthesis of neoglycoconjugates of Ley and Leb blood group determinants and of H-type I and H-type II oligosaccharides | |
KR950007923B1 (en) | Sialic acid derivatives with active carbonyl groups | |
US5679769A (en) | Synthesis of asparagine-linked glycopeptides on a polymeric solid support | |
WO2017220753A1 (en) | Pneumococcal polysaccharide-protein conjugate composition | |
CN111760020A (en) | A kind of conjugate and its preparation method and application | |
WO2020177234A1 (en) | Synthesis method of helicobacter pylori o:6 serotype o-antigen sugar chain | |
JP2003507485A (en) | Novel complex polysaccharides, glycoamino acids, intermediates thereof, and uses thereof | |
JPH0371440B2 (en) | ||
EP0642523B1 (en) | Ganglioside analogs | |
WO2016104647A1 (en) | Glycosylated vaccine antigen and glycosylating agent | |
CN102276662B (en) | Sialic acid (alpha-(2-6))-D-pyranose derivative and its synthetic method and use | |
Zhang et al. | Synthesis of Double-Chain Bis-sulfone Neoglycolipids of the 2'-, 3'-, and 6'-Deoxyglobotrioses | |
CN106432371A (en) | Beta-1,2-D-oligomeric mannoprotein conjugates and preparation method and application thereof | |
ITMI20011777A1 (en) | NON-MUCINA SYNTHETIC COMPOUNDS AND THEIR VECTOR CONJUGATE COMPOUNDS | |
Boons et al. | Preparation of a well-defined sugar-peptide conjugate: a possible approach to a synthetic vaccine against Neisseria meningitidis | |
EP3269385A1 (en) | Pneumococcal polysaccharide-protein conjugate composition | |
CN113292615B (en) | A kind of serotype VIII group B streptococcus oligosaccharide fragment and its preparation method and application | |
CN116601163A (en) | Protected disaccharides, methods for their preparation, their use in the synthesis of zwitterionic oligosaccharides and conjugates thereof | |
CN118791540A (en) | A liposome A derivative conjugated TF compound and its preparation and application | |
CN117024494A (en) | Conjugate, preparation method and application thereof | |
CN119661616A (en) | Synthesis method of Botrytis cinerea lipopolysaccharide O-antigen and application of Botrytis cinerea lipopolysaccharide O-antigen in immunocompetence | |
KR830002059B1 (en) | Process for the preparation of novel compounds in the form of mul-amyl-pentide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |