[go: up one dir, main page]

CN115516716A - 高速、高密度连接器 - Google Patents

高速、高密度连接器 Download PDF

Info

Publication number
CN115516716A
CN115516716A CN202180024932.8A CN202180024932A CN115516716A CN 115516716 A CN115516716 A CN 115516716A CN 202180024932 A CN202180024932 A CN 202180024932A CN 115516716 A CN115516716 A CN 115516716A
Authority
CN
China
Prior art keywords
connector
mating
core member
conductive elements
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180024932.8A
Other languages
English (en)
Inventor
J·J·穆豪
S·马丁
D·M·约翰埃斯库
G·A·赫尔
M·E·劳尔曼
J·J·埃里森
J·德格斯特
C·科珀
M·R·格雷
W·塔尼斯
S·E·米尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCI Americas Technology LLC
Original Assignee
FCI Americas Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCI Americas Technology LLC filed Critical FCI Americas Technology LLC
Publication of CN115516716A publication Critical patent/CN115516716A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/20Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve
    • H01R43/24Assembling by moulding on contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6585Shielding material individually surrounding or interposed between mutually spaced contacts
    • H01R13/6586Shielding material individually surrounding or interposed between mutually spaced contacts for separating multiple connector modules
    • H01R13/6587Shielding material individually surrounding or interposed between mutually spaced contacts for separating multiple connector modules for mounting on PCBs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/18Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing bases or cases for contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6582Shield structure with resilient means for engaging mating connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

用于具有高密度的包括频率在112GHz及以上信号的超高速信号的电连接器。这种连接器可以形成有模制到连接器壳体的多个部分中的精细特征,以支持紧密间隔的信号导体。尽管如此,信号导体仍可以通过使用约束直接或间接定位信号导体的壳体部件的弯曲和扭曲的骨架构件来被精确定位,这导致统一的阻抗和其它确保高频操作的电气特性。通过从金属片材冲压出金属骨架和一个或多个载体条,骨架构件可以简单地结合到壳体部件中。壳体部件可以围绕骨架包覆模制,并且随后被从载体条上切下。

Description

高速、高密度连接器
相关申请
本专利申请要求于2020年1月27日提交且名称为“HIGH SPEED,HIGH DENSITYCONNECTOR(高速、高密度连接器)”的美国临时专利申请第62/966,517号的优先权和权益,该美国临时专利申请的全部内容通过引用并入本文。本专利申请要求于2020年1月27日提交且名称为“HIGH SPEED CONNECTOR(高速连接器)”的美国临时专利申请第62/966,528号的优先权和权益,该美国临时专利申请的全部内容通过引用并入本文。本专利申请还要求于2020年9月10日提交且名称为“HIGH SPEED CONNECTOR(高速连接器)”的美国临时专利申请第63/076,692号的优先权和权益,该美国临时专利申请的全部内容通过引用并入本文。
技术领域
本专利申请总体上涉及用于互连电子组件的互连系统,诸如那些包括电连接器的互连系统。
背景技术
在许多电子系统中使用电连接器。将一系统制造为可使用电连接器连结在一起的分开的电子组件(诸如印刷电路板(“PCB”))通常更容易且更具成本效益。用于连结若干个印刷电路板的一种已知布置是将一个印刷电路板用作背板。被称为“子板”或“子卡”的其它印刷电路板可通过该背板连接。
一种已知的背板是其上安装有许多连接器的印刷电路板。背板中的导电迹线可以电连接到连接器中的信号导体,使得可在连接器之间路由信号。子卡也可以具有在其上安装有连接器。安装在子卡上的连接器可插接到安装在背板上的连接器中。通过这种方式,可以通过背板在各子卡之间路由信号。子卡可以成直角地插接到背板中。因此,用于这些应用的连接器可以包括直角弯曲部,并且通常被称为“直角连接器”。
在其它系统配置中,可在彼此叠置的平行板之间路由信号。用于这些应用中的连接器通常被称为“堆叠连接器”或“夹层连接器”。在另外其它配置中,正交板可以被以边缘面对彼此的方式对准。用于这些应用中的连接器通常被称为“直配式正交连接器”。在另外其它系统配置中,线缆可以端接到连接器,该连接器有时被称为线缆连接器。线缆连接器可以插接到安装于印刷电路板的连接器中,使得通过线缆路由通过系统的信号被连接到该印刷电路板上的部件。
不管确切的应用如何,电连接器设计已经被调节成反映电子工业中的趋势。电子系统通常变得更小、更快速且在功能上更复杂。由于这些改变,近年来,电子系统的给定区中的电路数目以及电路操作的频率已显著增大。当前系统在印刷电路板之间传输更多数据,并且需要在电气上能够以比甚至几年前的连接器更高的速度处理更多数据的电连接器。
在高密度、高速连接器中,电导体可以彼此非常靠近,使得相邻信号导体之间可能存在电干扰。为了降低干扰,并且为了以其它方式提供所期望的电特性,通常将屏蔽构件设置在相邻信号导体之间或周围。屏蔽件可以防止在一个导体上承载的信号产生对另一个导体产生“串扰”。屏蔽件也可以影响每个导体的阻抗,这可以进一步促成所期望的电特性。
其它技术可用于控制连接器的性能。例如,差分地传输信号也可降低串扰。差分信号被承载在一对传导路径上,该对传导路径被称为“差分对”。导电路径之间的电压差代表信号。通常,差分对被设计成在该对传导路径之间具有优先耦合。例如,差分对的两个传导路径可以被布置成与连接器中的相邻信号路径相比更靠近彼此延伸。在该对的传导路径之间不期望屏蔽,但是可在各差分对之间使用屏蔽。电连接器可以被设计成用于差分信号和单端信号。
在互连系统中,连接器被附接到印刷电路板。通常,印刷电路板被形成为由介电片材的堆叠(有时被称为“预浸体”)制成的多层组件。介电片材中的一些或全部可以在一个或两个表面上具有导电膜。导电膜中的一些可使用微影或雷射印刷技术被图案化以形成导电迹线,导电迹线用于在被安装到印刷电路板的各部件之间建立互连。其它导电膜可保持实质上完整,并且可用作供应参考电位的接地平面或电源平面。可通过加热堆叠的介电片材并将其按压在一起来将介电片材形成为一体的板结构。
为了建立到导电迹线或接地/电源平面的电连接,可穿过印刷电路板钻孔。这些孔或“过孔”被用金属填充或镀覆,使得过孔电连接到导电迹线或该过孔所穿过的平面中的一个或多个。
为了将连接器附接到印刷电路板,可将来自连接器的接触“尾部”插入到过孔中或附接到印刷电路板的表面上被连接到过孔的导电焊盘。
发明内容
描述了高速、高密度的互连系统的实施例。
一些实施例涉及一种用于保持多个连接器模块的连接器壳体,每个连接器模块包括多个导电元件。所述连接器壳体包括:第一材料的至少一个支撑构件;以及与所述第一材料不同的第二材料的一部分,所述第二材料的所述一部分包括多个开口,所述多个开口被配置成保持所述多个连接器模块,其中,所述第二材料包封所述至少一个支撑构件。
在一些实施例中,所述第一材料是金属。
在一些实施例中,所述第二材料包封所述至少一个支撑构件,使得所述至少一个支撑构件被与所述连接器模块的所述导电元件隔离。
在一些实施例中,所述至少一个支撑构件包括填充有所述第二材料的一个或多个孔。
在一些实施例中,所述至少一个支撑构件包括凸缘和细长构件,所述第二材料的所述一部分包括包封所述凸缘的外壁和包封所述细长构件的内壁。
在一些实施例中,所述第二材料的所述一部分包括被配置成与配合连接器的连接器壳体的匹配特征配合的特征,所述特征包括所述至少一个支撑构件的所述凸缘。
在一些实施例中,所述第二材料的所述一部分包括由多个第二开口分隔开的多个内壁,所述多个第二开口被配置成接收配合连接器的多个连接器模块。
一些实施例涉及一种电连接器。所述连接器包括:多个连接器模块,每个连接器模块包括多个导电元件,每个导电元件包括配合端、与所述配合端相反的安装端、以及在所述配合端与所述安装端之间延伸的中间部;以及壳体,所述壳体包括第一材料的至少一个支撑构件以及包覆模制在所述至少一个支撑构件上的第二材料,所述第二材料包括界定多个开口的多个内壁,其中,所述多个连接器模块的所述多个导电元件的配合端通过所述开口露出。
在一些实施例中,所述至少一个支撑构件被所述第二材料与所述连接器模块的所述导电元件隔离开。
在一些实施例中,所述至少一个支撑构件包括第一凸缘、第二凸缘以及在所述第一凸缘与所述第二凸缘之间延伸的细长构件,所述第二材料包括分别包封所述第一凸缘和所述第二凸缘的第一外壁和第二外壁、以及所述多个内壁中的包封所述细长构件的内壁。
在一些实施例中,所述多个连接器模块中的每个连接器模块包括一个或多个引线框组件以及芯部构件,每个所述引线框组件包括所述多个导电元件中的成列布置的至少一部分,所述一个或多个引线框组件被附接到所述芯部构件的一侧或多侧。
在一些实施例中,所述多个内壁沿第一方向延伸,所述芯部构件包括主体和配合部分,所述配合部分邻近被附接到所述芯部构件的所述一个或多个引线框组件的所述导电元件的配合端,所述芯部构件的所述配合部分包括在垂直于所述第一方向的方向上延伸的突出部。
一些实施例涉及一种制造连接器的方法。所述方法包括:提供至少一个支撑构件,所述至少一个支撑构件通过至少一个连结杆保持到载体条;在具有第一打开/闭合方向的模具中在所述至少一个支撑构件上包覆模制材料,其中,模制在上的所述材料包括所述连接器的壳体,至少一个开口沿着平行于所述第一打开/闭合方向的第一方向延伸穿过所述壳体;切断所述至少一个连结杆;以及将连接器模块附接到所述壳体,其中,所述连接器模块包括具有配合接触部分的多个导电元件,并且所述配合接触部分在所述至少一个开口中的开口中露出。
在一些实施例中,提供所述支撑构件包括对金属片材进行冲压和折弯。
在一些实施例中,在所述至少一个支撑构件上模制所述材料包括将所述材料填充到所述至少一个支撑构件中的支撑构件的孔中。
在一些实施例中,所述方法还包括在具有第二打开/闭合方向的模具中模制所述连接器模块的芯部构件,使得所述芯部构件包括主体和从所述主体沿着平行于所述第二打开/闭合方向且正交于所述第一方向的第二方向延伸的特征。
在一些实施例中,所述方法还包括将一个或多个引线框组件附接到所述芯部构件,使得所述一个或多个引线框组件的导电元件的接触部分邻近所述芯部构件的所述特征。
在一些实施例中,所述壳体包括沿着所述第一方向延伸的通道,并且插入所述连接器模块包括使所述芯部构件的突出部分在所述通道中滑动。
在一些实施例中,模制所述芯部构件包括在屏蔽件上模制损耗性材料。
在一些实施例中,所述损耗性材料形成沿着所述第二方向延伸的所述特征的至少一部分。
这些技术可单独使用或以任何合适组合使用。前述发明内容仅通过图示提供,并且不旨在是限制性的。
附图说明
附图不旨在按比例绘制。在附图中,各幅视图中图示的每个相同或几乎相同的部件由相似的附图标记表示。为了清晰起见,没有在每幅视图中标记出每个部件。在附图中:
图1A是根据一些实施例的配合到互补的直角连接器的插头连接器的立体图。
图1B是根据一些实施例的通过图1A的连接器电连接的两个印刷电路板的侧视图。
图2A是根据一些实施例的图1A的直角连接器的立体图。
图2B是根据一些实施例的图2A的直角连接器的分解视图。
图2C是根据一些实施例的图2A的直角连接器的平面图,其示出了直角连接器的安装界面。
图2D是根据一些实施例的用于图2C的直角连接器的互补占用区(footprint)的俯视平面图。
图2E是根据一些实施例的图2A的直角连接器的组织器(organizer)的立体图,其示出了板安装面。
图2F是根据一些实施例的组织器的在图2E中被标记为“2F”的圆圈内的部分的放大视图。
图2G是根据一些实施例的图2E的组织器的立体图,其示出了连接器附接面。
图2H是根据一些实施例的组织器的在图2G中被标记为“2H”的圆圈内的部分的放大视图。
图3A是根据一些实施例的图2A的直角连接器的前壳的顶部前侧立体图。
图3B是根据一些实施例的图3A的前壳的俯视平面图。
图3C是根据一些实施例的图3A的前壳的前视平面图。
图3D是根据一些实施例的图3A的前壳的后视平面图。
图3E是根据一些实施例的图3A的前壳的侧视图。
图3F是根据一些实施例的被构造成支撑连接器壳体的支撑结构的前部立体图。
图3G是根据一些实施例的图3F的支撑结构的后部立体图。
图3H是根据一些实施例的连接器壳体在从载体条上切断之前的前部立体图。
图3I是根据一些实施例的图3H的连接器壳体的后部立体图。
图4A是根据一些实施例的芯部构件的立体图。
图4B是根据一些实施例的图4A的芯部构件的侧视图。
图4C是根据一些实施例的图4A的芯部构件的在损耗性材料的第一注射(shot)之后且在绝缘材料的第二注射之前的立体图。
图4D是根据一些实施例的芯部构件的立体图。
图4E是根据一些实施例的图4D的芯部构件的侧视图。
图4F是根据一些实施例的图4D的芯部构件在损耗性材料的第一注射之后且在绝缘材料的第二注射之前的立体图。
图5A是根据一些实施例的双插入模制引线框组件(IMLA)组件的立体图。
图5B是根据一些实施例的图5A的双IMLA组件的俯视图,其示出了附接到芯部构件的相反两侧的A型IMLA和B型IMLA。
图5C是根据一些实施例的图5A的双IMLA组件的第一侧视图,其示出了附接到第一侧的A型IMLA。
图5D是根据一些实施例的图5A的双IMLA组件的第二侧视图,其示出了附接到第二侧的B型IMLA。
图5E是根据一些实施例的图5A的双IMLA组件的部分剖开的前视图。
图5F是根据一些实施例的沿着图5D中的线P-P的横截面图,其示出了A型IMLA的屏蔽件通过图4A的芯部构件联接到B型IMLA的屏蔽件。
图5G是根据一些实施例的双IMLA组件的在图5F中被标记为“B”的圆圈内的部分的放大视图。
图5H是根据一些实施例的沿着图5D中的线P-P的横截面图,其示出了A型IMLA的屏蔽件通过图4D的芯部构件联接到B型IMLA的屏蔽件。
图5I是根据一些实施例的图5C的A型IMLA的立体图。
图5J是根据一些实施例的A型IMLA的安装界面的在图5I中被标记为“5J”的圆圈内的部分的放大视图。
图5K是根据一些实施例的图5J中的A型IMLA的该部分的立体图。
图5L是根据一些实施例的图5J中的A型IMLA的部分附接有组织器的立体图。
图5M是根据一些实施例的图5L中的A型IMLA的部分的平面图。
图5N是根据一些实施例的图5I的A型IMLA的分解视图,其中,介电材料被移除。
图5O是根据一些实施例的图5N的A型IMLA的部分横截面图。
图5P是根据一些实施例的图5I的A型IMLA的平面图,其中,接地板被移除。
图5Q是根据一些实施例的图2C的连接器与具有传统安装界面的连接器相比在频率范围内的S参数图表,其示出了表示来自排内的最近干扰源的串扰的S参数。
图6A是根据一些实施例的侧部IMLA组件的立体图。
图6B是根据一些实施例的图6A的侧部IMLA组件的俯视图,其示出了附接到芯部构件的一侧的单个A型IMLA。
图6C是根据一些实施例的图6A的侧部IMLA组件的侧视图,其示出了附接有A型IMLA的一侧。
图6D是根据一些实施例的沿着图6C中的线M-M的横截面图,其示出了图6A的侧部IMLA组件的配合端。
图6E是根据一些实施例的侧部IMLA组件的在图6D中被标记为“A”的圆圈内的部分的放大视图。
图6F是根据一些实施例的图6A的侧部IMLA组件的侧视图,其示出了一排IMLA组件的一端处的一侧。
图7A是根据一些实施例的图1A的插头连接器的立体图。
图7B是根据一些实施例的图7A的插头连接器的分解视图。
图8A是根据一些实施例的图7A的插头连接器的连接器壳体的配合端视图。
图8B是根据一些实施例的图8A的连接器壳体的安装端视图。
图9A是根据一些实施例的图7A的插头连接器的双IMLA组件的立体图。
图9B是根据一些实施例的图9A的双IMLA组件的侧视图。
图9C是根据一些实施例的图9A的双IMLA组件的部分剖开的配合端视图。
图9D是根据一些实施例的沿着图9B中的线Z-Z的横截面图。
图10A是根据一些实施例的图9A的双IMLA组件的引线框组件的立体图。
图10B是根据一些实施例的图10A的引线框组件的面向芯部构件的一侧的视图。
图10C是根据一些实施例的图10A的引线框组件的侧视图。
图10D是根据一些实施例的图10A的引线框组件的背离芯部构件的一侧的视图。
图11A是根据一些实施例的图1A的相配合的连接器的部分剖开的俯视图。
图11B是根据一些实施例的配合界面的在图11A中被标记为“Y”的圆圈内的部分的放大视图。
图11C至图11F是根据一些实施例的图1A的连接器的配合界面的在配合时的连续步骤中的放大视图,其示出了将连接器配合的一种方法。
图11G是根据一些实施例的图1A的相配合的连接器的沿着图11A中被标记为“11G”的线的放大局部平面图。
具体实施方式
发明人已经认识并理解到提升高密度互连系统的性能的连接器设计,尤其是承载支持高数据速率所必需的超高频信号的连接器设计。连接器设计可简单地构造,将传统模制工艺用于连接器壳体,但仍是机械稳健的并且可使用PAM4调制以非常高频率提供所要性能以支持高数据速率(包括112Gbps及更高)。
作为一个示例,对于高密度互连,可以将附加支撑件结合到高密度连接器的模制部件中,以防止部件弯曲和扭曲。支撑件可以包括形成用于部件的骨架的构件。这种骨架可以使用插入模制操作简单地结合到部件中。例如,骨架可以从金属片材切割和由金属片材形成,并且被保持在载体条上,使得一个或多个连结杆将支撑构件保持在期望位置。随后可以将模制材料模制在骨架上。随后,可以切断连结杆,使得所模制的部件可以从载体条上脱离。
这种模制部件可以支撑被配置为支持高速、高密度互连的引线框组件,并将引线框组件物理和/或电气地分隔开。例如,引线框组件可以紧密地间隔,以提供高密度的信号导体,同时还结合屏蔽和/或损耗性材料以保持通过信号导体的信号的完整性。例如,这种模制部件可以用作接收如本文所述的改进的引线框组件的连接器的前壳。
作为另一个示例,发明人已经认识并理解到将导电屏蔽和损耗性材料结合在能够在非常高频率下实现操作以支持高数据速率(例如,以112Gbps或更高)的位置中的技术。为了能够在非常高频率下有效隔离信号导体,连接器可以包括被耦合到选择性定位的损耗性材料的导电材料。导电材料可以在两个连接器所配合的配合区域中提供有效屏蔽。当两个连接器配合时,可以在承载单独信号的导电元件的配合部分之间设置配合界面屏蔽。连接器的配合界面屏蔽可以与配合连接器的内部接地屏蔽交叠,并且提供从连接器的主体到其配合界面的一致屏蔽,这进一步降低串扰。
发明人已经进一步认识到将连接器内的屏蔽件连接到安装有该连接器的印刷电路板的接地平面,以降低谐振并提升传输通过连接器的信号完整性的技术。可通过安装界面屏蔽(其可以是可压缩的)建立连接。安装界面屏蔽可以包括在选定的分立位置处的可压缩部件。可压缩部件可以被配置成与PCB的浸没式(flooded)接地平面建立物理接触。在一些实施例中,安装界面屏蔽可以与连接器的内部接地屏蔽件一体形成。作为特定示例,安装界面屏蔽抑制以约35GHz发生的谐振,借此增大连接器的频率范围。
连接器可以包括被配置成避免连接器的导电元件与配合连接器中的导电元件的机械根部折断(stubbing)的壳体特征。每个连接器可以具有突出部,这些突出部在配合序列期间接合来自配合连接器的导电元件的端头并使其偏转。这种偏转增加待配合的导电元件的端头之间的间距,从而降低这些端头将机械根部折断的风险,即使在制造或使用连接器时可能发生这些端头的位置变化的情况下。此外,这种技术使端头能够在接触点与导电元件的远端之间仅具有短区段,这仅提供延伸超过接触点的短柱。由于短柱可能在与其长度成反比的频率下影响信号完整性,提供短柱确保了对信号完整性的任何影响均在高频率下,借此提供连接器的大的操作频率范围。
连接器可以包括被配置用于稳定且精确地安装到具有高密度占用区的印刷电路板的接触尾部。连接器可以具有设置在信号接触尾部的群组之间的接地接触尾部。信号接触尾部可以具有小于接地接触尾部的尺寸。这种配置可以提供的益处包括例如减少寄生电容、在印刷电路板内提供信号过孔的期望阻抗、以及减小连接器占用区的大小。另一方面,相对较大的接地接触尾部可以协助将接触尾部与印刷电路板上的对应接触孔精确对准,并且以充足的附接力将连接器保持到印刷电路板。
在一些实施例中,连接器可以包括被保持成列以作为引线框组件的导电元件。引线框组件可在排方向上对齐。引线框组件可以在插入到壳体中之前附接到芯部构件。芯部构件可以包括将难以在壳体的内部部分中模制的特征,包括传统地被包括在连接器的配合界面处的相对精细特征。这种设计可以使壳体能够具有实质上一致的壁,而无需传统连接器壳体所需的复杂且薄的区段来保持导电元件的配合部分。这种设计也可以容许使用先前不会填充包括复杂且薄的几何形状的传统壳体模具的材料。此外,这种设计可以允许使用在传统连接器的模制中使用的从前到后的芯实际上无法实现的附加特征,诸如在垂直于列的方向上延伸且被配置为保护接触端头的凹部。
芯部构件可以具有主体部分和顶部部分。引线框组件的主体部分可以被附接到芯部构件的主体部分。从引线框组件的主体部分延伸的导电元件的一列接触部分可以平行于芯部构件的顶部部分。顶部部分可以被模制成具有精细特征,包括平行于导电元件的端头的细长边缘,其将难以被可靠地模制为壳体的一部分。
在一些实施例中,可以通过全面屏蔽两个相配合的连接器来实现高频性能,该两个相配合的连接器均可以形成有附接到芯部构件的引线框组件。这种屏蔽可以从第一连接器的安装界面延伸到安装有第一连接器的第一电路板、通过第一连接器、通过配合界面延伸到第二连接器、通过第二连接器的主体且通过第二连接器的安装界面延伸到安装有第二连接器的第二电路板。引线框组件的主体部分内的屏蔽可以通过附接到引线框组件的侧部的屏蔽件来提供。在配合界面处,屏蔽件可以在芯部构件的顶部部分的内部中。
可以通过将芯部构件的顶部部分中的屏蔽件电连接到引线框组件的屏蔽件的特征来增加屏蔽的效能。此外,可以包括用以将引线框组件的屏蔽件电耦合到安装有连接器的印刷电路板的表面上的接地平面的特征。在一些实施例中,这种电耦合可以被形成有朝着印刷电路板延伸且选择性地定位在高电磁辐射区域中的叉齿。
例如,在一些实施例中,每个引线框组件可以包括信号引线框和至少一个接地板。在一些实施例中,引线框可以被两个接地板夹持。连接器的安装界面屏蔽可以由从接地板延伸的可压缩部件形成。信号引线框可以包括信号导电元件对。从接地板延伸的可压缩部件可以被定位成群组。可压缩部件的每个群组可以至少部分围绕一对信号导电元件。
此外,芯部构件的顶部部分中的屏蔽件可以被电耦合到引线框组件中的接地导电元件。这种耦合可以通过损耗性材料建立,该损耗性材料抑制原本可能由于顶部屏蔽件的远端远离与其它接地结构的连接而导致的谐振。
在一些实施例中,信号导电元件的在引线框组件的主体内的中间部在两侧上被引线框组件屏蔽件屏蔽,但接触部分仅邻近芯部构件的顶部部分内的一个顶部屏蔽件。但是,可通过两个配合的连接器在整个信号路径上提供双侧屏蔽。在配合界面处,两个配合连接器的配合接触部分将分别在两侧中的每侧上由其中一个连接器的芯部构件的顶部部分界定。因此,每个接触部分将在两侧上由顶部屏蔽件界定,一个顶部屏蔽件是来自其所属的连接器,并且一个顶部屏蔽件是来自其所配合的连接器。在整个信号路径上提供呈相同配置的屏蔽(诸如双侧屏蔽)可以实现高完整性信号互连,这是因为避免了模式转换以及可使屏蔽配置之间的过渡处的信号完整性劣化的其它效应。
可以在互连系统的多个区域之中的每个区域中简单且可靠地形成这种屏蔽。在一些实施例中,可以通过二次注射工艺形成芯部构件。在第一(次)注射中,可以模制损耗性材料。在一些实施例中,可以将损耗性材料选择性地模制在导电材料上。在第二(次)注射中,可以使用绝缘材料选择性地包覆模制损耗性材料。
前述技术可单独使用,或者以任何合适的组合一起使用。
在图1A和图1B中示出了这种连接器的示例性实施例。图1A和图1B描绘了具有可用于电子系统中的形式的电互连系统100。电互连系统100可以包括两个配合的连接器,这两个配合的连接器在此被示出为直角连接器200和插头连接器700。
在图示的实施例中,直角连接器200在安装界面114处附接到子卡102,并且在配合界面106处配合到插头连接器700。插头连接器700可以在安装界面108处附接到背板104。在安装界面处,连接器内的用作信号导体的导电元件可以被连接到相应印刷电路板内的信号迹线。在配合界面处,每个连接器中的导电元件建立机械连接和电连接,使得子卡102中的导电迹线可以通过相配合的连接器电连接到背板104中的导电迹线。每个连接器内的用作接地导体的导电元件可类似地连接,使得子卡102内的接地结构可类似地电连接到背板104中的接地结构。
为了支持将连接器安装到相应印刷电路板,直角连接器200可以包括被配置为附接到子卡102的接触尾部110。插头连接器700可以包括被配置成附接到背板104的接触尾部112。在图示的实施例中,这些接触尾部形成了导电元件的穿过相配合的连接器的一端。当连接器安装到印刷电路板时,这些接触尾部将与印刷电路板内的承载信号或被连接到参考电位的导电结构建立电连接。在图示的示例中,接触尾部是压配合式“针眼(EON)”触头,其被设计为按压到印刷电路板中的过孔中,过孔又可连接到信号迹线、接地平面或印刷电路板内的其它导电结构。但是,也可使用其它形式的接触尾部,例如,表面安装触头或压力触头。
图2A和图2B分别描绘了根据一些实施例的直角连接器200的立体图和分解视图。直角连接器200可以由多个子组件形成,其在此示例中是在一排中并排对齐的T形顶(T-Top)组件。T形顶组件可以包括芯部构件204和被附接到该芯部构件的至少一个引线框组件206。如下文更详细描述的,这些部件可以单独地配置以实现简单制造且,并在组装时提供高频操作。
在图2B的示例中,图示三种类型的T形顶组件。T形顶组件202A在该排的第一端处,且T形顶组件202B在该排的第二端处。多个第三类型的T形顶组件202C在T形顶组件202A与202B之间定位在该排内。各类型的T形顶组件可在引线框组件的数目和配置上不同。
引线框组件可以保持形成信号导体的一导电元件列。在一些实施例中,信号导体可以被成形并间隔为形成单端信号导体(例如,图2C中的208A)。在一些实施例中,信号导体可以被成对地成形并间隔为提供差分信号导体对(例如,图2C中的208B)。在图示的实施例中,各列具有四对导体和一个单端导体,但此配置是示例性的,并且其它实施例可以具有更多或更少对导体和更多或更少个单端导体。
信号导体列可以包括用作接地导体(例如,212)的导电元件,或者由用作接地导体(例如,212)的导电元件界定。应理解到,接地导体不必连接到接地,而是被成形为承载参考电位,这些参考电位可以包括接地、DC电压或其它合适参考电位。“接地”或“参考”导体可以具有与信号导体不同的形状,信号导体被配置为给高频信号提供合适的信号传输特性。
在图示的实施例中,列内的信号导体成对地分组,被成对分组的信号导体被定位成进行边缘耦合以支持差分信号。在一些实施例中,每对可邻近至少一个接地导体,并且在一些实施例中,每对可以被定位在相邻的接地导体之间。这些接地导体可以在与信号导体在同一列内。
在一些实施例中,T形顶组件可以可选地或额外地包括在正交于列方向的排方向上相对于信号导体列偏移的接地导体。这种接地导体可以具有平面区域,其可将信号导体的相邻列隔开。这种接地导体可用作信号导体列之间的电磁屏蔽件。
导电元件可由金属或导电且给电连接器中的导电元件提供合适机械性质的任何其它材料制成。磷青铜、铍铜及其它铜合金是可使用的材料的非限制性示例。导电元件可由这些材料以任何合适方式形成,包括通过冲压和/或成形。
可通过从金属片材冲压出导电元件来构造插入模制引线框组件。导电元件的弯曲部和其它特征也可作为冲压操作的一部分形成,或者在单独操作中形成。例如,一列的信号导体和接地导体可由一金属片材冲压而成。在冲压操作中,可留下金属片材的部分以用作导电元件之间的连结杆,以便将导电元件保持在适当位置中。可以由塑料包覆模制导电元件,该塑料在此示例中是绝缘的并且用作连接器壳体的一部分,其将导电元件保持在适当位置中。随后,可切断连结杆。
在一些实施例中,引线框的信号导体和接地导体可通过夹销(pinchpin)保持稳定。夹销可从在插入模制操作中使用的模具的表面延伸。在传统插入模制操作中,来自模具的相对侧的夹销可在其间夹紧信号导体和接地导体。通过这种方式,控制信号导体和接地导体相对于模制在其上的绝缘壳体的位置。当打开模具且移出IMLA时,在绝缘壳体中的在夹销位置仍有孔(例如,图5P中的孔550)。对于完成IMLA,这些孔通常被视为非功能性的,这是因为其是使用具有足够小直径的销制成,使得它们不会实质地影响信号导体的电性质。
但是,在一些实施例中,可选择夹紧各信号导体的夹销的数目,以便提供功能益处。作为特定示例,在传统连接器中,对于一对相邻信号导体中的每个信号导体,夹销的数目及所得的夹销孔的数目可以相同。在一些连接器(诸如直角连接器)中,一对信号导体中的一个可比另一者更长。更多夹销可用于各对中的较长信号导体。更多夹销导致更多夹销孔以及壳体沿着较长信号导体的长度的有效介电常数比沿着较短信号导体的长度的有效介电常数低。这种配置可导致沿着较长导体的夹销孔比所需更多,但也可减少对内偏斜,并以其它方式改善连接器的性能。
在一些实施例中,可以不同地配置不同的引线框组件中的导电元件。在此示例中,存在两种类型的引线框组件,其不同之处在于信号导体和接地导体在列内的位置,使得当两种类型的引线框组件并排定位时,一个引线框组件中的接地导电元件(例如,A型IMLA206A)邻近另一个引线框组件中的信号导电元件(例如,B型IMLA206B)。在图示的示例中,A型IMLA被定位在芯部构件的左侧(当从看向配合界面的角度观察连接器时)。B型IMLA被定位在该芯部构件的右侧。这种配置可以降低引线框组件之间的列对列串扰。
在图示的实施例中,直角连接器200包括在T形顶组件202所沿着其对准的排的第一端处的单个A型IMLAT形顶组件202A、在该排的与该排的第一端相反的第二端处的单个B型IMLAT形顶组件202B、以及在该第一端与该第二端之间的多个双IMLAT形顶组件202C。A型IMLA T形顶组件202A具有附接到芯部构件的单个引线框组件206A。B型IMLAT形顶组件202B具有附接到芯部构件的单个引线框组件206B。因此,A型IMLAT形顶组件和B型IMLAT形顶组件中的每个具有没有与引线框组件附接的一侧。这种配置允许使用A型IMLA T形顶组件202A和B型IMLA T形顶组件202B的芯部构件的敞开侧作为连接器壳体的一部分。
双IMLA T形顶组件202C的芯部构件可以具有附接到芯部构件的相反两侧的两个引线框组件,这两个引线框组件在此为A型IMLA和B型IMLA。在一些实施例中,两个引线框组件中的导电元件可以被配置为相同的。
一个或多个构件可以将T形顶组件保持在期望的位置。例如,支撑构件222可以以并排配置分别保持多个T形顶组件的顶部和后部。支撑构件222可以由任何合适的材料形成,诸如经冲压具有突片、开口或接合各个T形顶组件上的对应特征的其它特征的金属片材。作为另一示例,支撑构件可以由塑料模制而成,并且可以保持T形顶组件的其它部分且用作连接器壳体(诸如前壳300)的一部分。
图2C描绘了根据一些实施例的直角连接器200的安装界面114。连接器200的接触尾部110可以布置成阵列,该阵列包括多个平行的列216,其在与列方向垂直的排方向上彼此偏移。每列216的接触尾部110可以包括设置在信号触头208B对之间的接地接触尾部212。在一些实施例中,信号触头208B中的全部或一部分可被制造成比接地触头更薄。较薄的信号触头可提供所需阻抗。接地接触尾部212可以较厚,以便提供良好机械强度。
在一些实施例中,通过将金属片材冲压成所需形状来在同一引线框中形成信号触头。尽管如此,可通过减小信号触头中的全部或一部分的厚度(诸如通过压印信号触头)来使其比接地触头更薄。在一些实施例中,信号触头厚度的可以在接地触头的厚度的75%与95%之间。在其它实施例中,信号触头厚度的可以在接地触头的厚度的80%与90%之间。
在一些实施例中,信号触头的中间部可以具有与接地触头的中间部相同的厚度。尽管如此,信号触头的尾部可以具有减小的厚度。在信号触头的尾部被配置用于压配合安装的实施例中,这种配置可使信号触头的尾部装配在相对小的孔内。例如,可使用直径0.3mm至0.4mm或0.32mm到0.37mm的钻(诸如0.35mm钻)形成孔。完成孔的尺寸可为0.26mm+/-10%。相比之下,接地尾部可插入到较大的孔中。例如,可使用0.4mm至0.5mm钻(诸如0.45mm钻)形成孔,例如具有0.31mm至0.41mm的完成直径。接触尾部可以被配置成具有比其所插入到其中的相应孔的完成直径大的宽度,并且可压缩到与完成孔直径相同或小于完成孔直径的宽度。
形成具有这些尺寸的接触尾部可以减小例如在使用这种连接器的组件中的信号导体与相邻接地之间的寄生电容。尽管如此,接地件可以提供足够的附接力以将连接器保持在连接器所安装到的印刷电路板上。此外,通过从同一金属片材冲压信号件和接地件,尽管它们具有不同的完成厚度,但也可提供使信号尾部相对于接地尾部的精确定位。如相对于接地触头的尾部的位置测量的,信号接触尾部的位置例如可在其设计位置的0.1mm或更小的范围内。这种配置简化了连接器到印刷电路板的附接。可使用更稳健的接地接触尾部,以通过接合其对应的孔来使连接器相对于印刷电路板对准。随后,信号接触尾部将与其对应的孔充分对准,以在连接器被按压到板中时进入孔,而几乎没有损坏风险。因此,可使用简单工具安装连接器,该工具相对于印刷电路板垂直地按压连接器,而无需昂贵配件或其它工具。
接地接触尾部和/或信号接触尾部可以被配置成通过这种方式支持连接器到印刷电路板的安装。如可见到的,例如在图5I中,接地接触尾部可以比信号接触尾部更长。接地触头可以长出一定量,该量使得接地触头在信号触头的端头到达平行于印刷电路板的表面的平面之前进入印刷电路板中与其对应的孔中。在图示的实施例中,接触尾部朝向端头渐缩。在图示的实施例中,接地接触尾部的主体具有贯穿的开口,该开口使得能够尾部在插入到孔中时能够压缩尾部。尾部的远端部分是细长的,使得其比主体更窄且能够容易地进入印刷电路板上的孔。信号触头在其远端处具有较短的细长部分。
连接器200可以包括安装界面屏蔽互连件214,其被配置成针对至少高频信号在连接器内的用作信号导体列之间的屏蔽件的接地导体与连接器所安装到的PCB内的接地结构之间建立电连接。屏蔽互连件214与子卡102的浸没式接地平面相邻和/或进行接触。在此示例中,安装界面屏蔽互连件214包括多个叉齿520,其被配置为邻近和/或实体接触子卡的浸没式接地平面。
叉齿520可以被定位成还降低安装界面114处的辐射发射。在一些实施例中,叉齿520可被布置成包括列218的阵列。接触尾部110的邻近列216可通过界面屏蔽互连件214的叉齿520的一个或多个列218分隔开。叉齿520可以具有与接地导体的在连接器内用作列之间的屏蔽件的主体在同一平面上的一部分。因此,叉齿520的一部分可以在垂直于列方向的排方向上相对于接触尾部110偏移。另外,每个叉齿可以包括从该平面朝着信号导体的列弯曲出来的一部分。叉齿520的该部分可以被定位在接地接触尾部212与信号接触尾部208B之间。
在一些实施例中,安装界面屏蔽互连件214可以是可压缩的。可压缩互连件可以产生与印刷电路板上的接地平面建立可靠接触的力,例如尽管连接器相对于印刷电路板表面的位置存在公差也能通过产生接触力和/或确保接触。在一些实施例中,当连接器200安装到子卡102时,叉齿214中的一些或全部可以与子卡102建立实体接触。可选地或额外地,叉齿214中的一些或全部可以在没有实体接触的情况下电容地耦合到子卡102上的接地平面,和/或足够数量叉齿214可以耦合到接地平面以达成所需效应。
在一些实施例中,安装界面屏蔽互连件214可以从连接器200的内部屏蔽件延伸,并且可以与连接器200的内部屏蔽件一体形成。在一些实施例中,安装界面屏蔽互连件214可以由从引线框组件206的内部屏蔽件延伸的可压缩构件(例如,图5I中所示的可压缩构件518)形成,和/或可以是单独的可压缩部件。
图2D部分示意性地描绘了根据一些实施例的在子卡102上用于直角连接器200的占用区230的俯视图。占用区230可以包括通过路由通道250分隔开的占用区图案252的列。占用区图案252可以被配置成接收引线框组件的安装结构(例如,引线框组件206的接触尾部110和可压缩构件518)。
占用区图案252可以包括在列254中对齐的信号过孔240以及对齐到列254的接地过孔242。接地过孔242可以被配置成接收来自接地导电元件(例如,212)的接触尾部。信号过孔240可以被配置成接收信号导电元件(例如,208A、208B)的接触尾部。如图所示,接地过孔242可以比信号过孔240大。当连接器安装到板时,较大且更稳健的接地接触尾部可以将连接器与较大的接地过孔对准。这将信号接触尾部与较小信号过孔对准。这种配置可以通过例如以下方式提高电子组件的经济性:使得能使用传统安装方法(诸如使用平岩工具(flat-rock tooling)的压配合),且在不损坏原本可能易受损坏的较薄信号接触尾部的情况下省去将连接器安装到印刷电路板原本所必要的昂贵特殊工具。
信号过孔240可以被定位在相应反焊盘(anti-pad)246中。印刷电路板可以具有包含大导电区域的层,这些层穿插有经图案化而具有导电迹线的层。迹线可以承载信号,并且主要为导电材料片材的层可以用作接地。反焊盘246可以被形成为接地层中的开口,使得PCB的接地层的导电材料不连接到信号过孔。在一些实施例中,信号导电元件的差分对可共用一个反焊盘。
过孔图案252可以包括用于安装界面屏蔽互连件214的可压缩构件518的接地过孔244。在一些实施例中,接地过孔244可以是被配置为增强连接器的内部屏蔽件到PCB之间的电连接而不接收接地接触尾部的阴影过孔(shadow vias)。在一些实施例中,阴影过孔可以在可压缩构件518下方和/或被可压缩构件518(例如,通过可压缩构件518的叉齿520(图5K))压缩。接地过孔244的尺寸和位置可以被设计为在占用区图案252之间提供足够空间,使得迹线248能够在路由通道250中延伸。在一些实施例中,接地过孔244可以相对于列254偏移。在一些实施例中,接地过孔244可以在反焊盘246的宽度内,使得反焊盘246的宽度界定占用区图案252的排的宽度。
应理解到,尽管针对一些信号过孔图示了诸如迹线248的一些结构,但是本申请在此方面不受限制。例如,每个信号过孔可以具有诸如迹线248的分支部(breakout)。
图2D示出了可以在PCB中的一些结构,包括可在印刷电路板的表面上可见的结构以及可在PCB的内部层中的一些结构。例如,反焊盘246可以被形成于印刷电路板的表面上的接地平面中,和/或可以被形成于PCB的内层中的一些或全部接地平面中。此外,即使被形成于PCB的表面上,接地平面仍可由焊料掩膜或涂层覆盖,使得其不可见。同样地,迹线248可以在一个或多个内层上。
返回参考图1B和图2B,连接器200可以包括组织器210,该组织器210可以被配置成将接触尾部110保持成阵列。组织器210可以包括尺寸被设计成且被布置成使一些或全部接触尾部110穿过该组织器210的多个开口。在一些实施例中,组织器210可以由刚性材料制成,并且可以促进接触尾部以预定图案对齐。在一些实施例中,当连接器安装到印刷电路板时,组织器可以通过将接触尾部的位置的变动限制于能够被可靠地定位的狭槽的位置来降低损坏接触尾部的风险。
组织器可以与薄和/或窄的信号接触尾部结合使用,如本文中别处描述。在一些实施例中,组织器可以与引线框结合使用,其中接地接触尾部位置用于相对于印刷电路板定位引线框。在图示的实施例中,开口在列方向上是细长的。开口的尺寸可以被设计成在垂直于列方向的方向上比在该列方向上对接触尾部的移动提供更大限制。开口可以确保接触尾部与印刷电路板中的开口在垂直于列方向的方向上对准。如上文描述的,引线框组件中的接地触头与印刷电路板中的孔的对准可使得引线框组件中的全部接触尾部在列方向上的对准。以组合的方式,此两种技术可在两个维度上提供接触尾部与印刷电路板的孔的精确对准,从而使得薄且窄的信号接触尾部以低损坏风险与印刷电路板中的相应小直径信号孔对准。
在一些实施例中,组织器可以减小连接器与板之间的气隙,该气隙可导致沿着导电元件的长度的非期望的阻抗改变。组织器也可减少T形顶组件202间的相对运动。在一些实施例中,组织器210可以由绝缘材料制成,并且可在连接器安装到印刷电路板时支撑接触尾部110或保持接触尾部110防止其短接在一起。在一些实施例中,组织器210可以包括损耗性材料,以降低通过连接器的安装界面传输的信号的信号完整性的劣化。损耗性材料可以被定位成连接到或优先耦合到从连接器行进到板的接地导电元件。在一些实施例中,组织器的介电常数可以与在前壳300和/或芯部构件204和/或引线框组件206中使用的材料的介电常数相匹配。
在图1B所示的实施例中,组织器被配置为占据T形顶组件202与子卡102的表面之间的空间。为了提供此功能,例如,组织器210可以具有用于抵靠子卡102安装的平坦表面。面向T形顶组件202的相对表面可以具有突出部,突出部可以具有任何其它合适轮廓以匹配T形顶组件的轮廓。通过这种方式,组织器210可以有助于沿着通过连接器200进入子卡102中的信号导电元件的一致阻抗。根据一些实施例,图2E和图2G是直角连接器200的组织器210的立体图,其分别示出了板安装面和连接器附接面。图2F和图2H分别是组织器210的在图2E中被标记为“2F”的圆圈和在图2G中被标记为“2H”的圆圈内的部分的放大视图。
组织器210可以包括主体262以及通过桥接件266实体连接到主体262的岛部264。岛部264可以包括大小和位置被设计成使信号接触尾部经由其穿过的狭槽268。用于使界面屏蔽互连件214经由其穿过的狭槽270形成于主体262与岛部264之间且由桥接件266分隔开。主体262可以包括在相邻岛部之间被配置为使接地接触尾部经由其穿过的狭槽272。
前壳300可以被配置成保持T形顶组件的配合区域。组装直角连接器200的方法可以包括如图2B所示地将T形顶组件206从背侧插入前壳300中。图3A至图3E描绘了根据一些实施例的前壳300从各个角度的视图。前壳300可以包括被配置为将相邻T形顶组件分隔开的内壁304以及基本上垂直于内壁的长度延伸且连接内壁的外壁306。内壁304可以在上外壁与下外壁之间延伸。外壁306可以具有在相邻内壁之间的对准特征302。对准特征302是成对的且被配置为接合芯部构件的匹配特征。T形顶组件206可以通过对准特征302保持在前壳300中,与包括薄内壁和复杂薄特征以保持导电元件的配合部分的传统连接器相比,这使得内壁和外壁具有基本相似的厚度并简化了壳体模具。
前壳可以由诸如塑料或尼龙的介电材料形成。合适材料的示例包括但不限于液晶聚合物(LCP)、聚苯硫醚(PPS)、高温尼龙或聚苯醚(PPO)或聚丙烯(PP)。可采用其它合适材料,这是因为本公开的各方面不限于此。
发明人已经认识并理解到,连接器壳体的诸如内壁之类的部分可能在连接器的制造或使用期间出现的力的作用下弯曲或扭曲。这可能是因为形成连接器壳体以将高速引线框组件紧密保持在一起以提供高密度互连所需的材料体积小于常规连接器壳体中的材料体积。因此,传统设计的连接器壳体可能缺乏支撑诸如T形顶组件之类的连接器模块的强度。这种弯曲或扭曲可能会使连接器模块移出其设计位置或以其它方式产生问题。
发明人已经认识并理解到,可以通过形成一个或多个支撑构件随后在支撑构件上模制材料来加强连接器壳体。在一些实施例中,支撑构件可以由金属或提供合适机械性能的任何其它材料形成。在一些实施例中,包覆模制材料可以是介电材料,或者在一些实施例中可以是损耗性材料或包括损耗性材料。因此,连接器壳体可以包括第一材料的至少一个支撑构件,其被完全或部分封装在第二材料的一部分中,例如绝缘包覆模制件。
根据一些实施例,在图3F至图3G中示出了具有嵌入式骨架的前壳。图3F和图3G分别描绘了金属冲压件360的前部立体图和后部立体图。骨架可以包括在从其形成冲压件360的金属的平面上的一个或多个构件。在该示例中,支撑构件320和/或其它细长构件326在该平面上。在一些示例中,一个或多个构件可以从该平面弯曲出来。在此示例中,凸缘以直角从平面弯曲出来,但部件可以成其它角度从平面弯曲出来。同样在该示例中,凸缘从平面内的构件延伸,但在其它实施例中,凸缘可以从冲压件360的其它部分延伸。
冲压件360可以包括载体条330,载体条330被在此示出为通过连结杆328附接到支撑构件320。可选择地或附加地,冲压件360可以包括建立形成骨架的构件的相对位置的连结条。例如,在一些实施例中,连结条358可以连接骨架的两个构件,以使得在包覆模制操作期间能够保持这些构件之间的间隔。
在该示例中,冲压件360内的骨架被配置为加强前壳340。在图3H和图3I中示出了通过模制在支撑构件320上来形成的前壳340。在所示示例中,载体条330包括有助于插入模制操作的特征,包括例如用于将冲压件360相对于模具定位的孔。尽管图3F示出了用于连接器壳体的一个冲压件360,但在一些实施例中,长条金属可以冲压有多个冲压件,每个冲压件均用于连接器壳体。随后可以将该长条缠绕在卷轴上,并随后送入模制工艺。从载体条垂直延伸的突片362可以保护支撑结构在缠绕在卷轴上时免受损坏。在同时或依次模制多个连接器壳体之后,可以通过切断连结杆获得各个连接器壳体。
冲压件360的形成骨架的构件可以被冲压成与连接器壳体的易于弯曲或扭曲的位置和/或连接器壳体的可以被加强以防止在其它位置弯曲或扭曲的位置对齐。例如,连接器的前壳可以具有外壁,多个内壁在相反的两个外壁之间延伸。内壁可以间隔开,以在相邻内壁之间提供开口。开口的尺寸可以被设计成接收配合连接器的配合界面。为了实现高密度的配合触头,内壁可以是长且薄的,以使配合界面能够提供配合接触部分的多个紧密间隔的列。在各种实施例中,内壁的纵横比,以最长尺寸与最短尺寸之比测量,可以大于10:1,例如在10:1和100:1之间,或者在10:1和50:1之间,或者在10:1和25:1之间,或者在15:1和30:1之间。具有如此大纵横比的内壁可以允许前壳弯曲或变形。
在图3F和图3G所示的示例中,冲压件包括四个支撑构件320。端壁凸缘322和侧壁凸缘324可以从每个支撑构件320延伸。两个支撑构件320可以通过一个或多个细长件326连结。凸缘322和324可以在与细长件326延伸的方向垂直的方向上延伸。这种三维配置可以提供比二维结构更大的结构强度。凸缘可以包括诸如孔332之类的特征,使材料能够在模制期间流过,从而使凸缘能够更牢固地锁定在模制材料中。
前壳340可以通过在支撑结构上包覆模制绝缘材料来形成,例如在图3F和图3G的冲压件360中的支撑结构。包覆模制可以导致支撑结构的构件被包覆模制材料完全或部分地包封。在示例性实施例中,包覆模制材料是绝缘的,并且骨架被绝缘包覆模制件充分包封/封装,使得骨架的金属与附接到前壳340的引线框组件的任何导电构件绝缘。
在图3H和图3I所示的示例中,前壳340包括外壁342、侧壁344和内壁346。端壁凸缘322可以嵌入外壁342中并支撑外壁342。侧壁凸缘324可以嵌入侧壁344中并支撑侧壁344。每个细长件326可以嵌入侧壁346中并支撑内壁346。在所示实施例中,仅内壁在前壳中的子集包括细长件326。
如上所述,骨架的诸如凸缘322、324和细长件326之类的各特征的位置可以被选择性地设置成提供更稳健的部件,同时在随后的模制操作期间不会实质上干扰绝缘材料的流动。在所示示例中,细长件326被设置成支撑两个最外面的内壁346。每个支撑构件320仅在外壁长度的一部分上延伸。在一些实施例中,形成骨架的构件可以延伸穿过连接器部件的更大部分。例如,一个支撑构件可以在每个外壁的全部或大致全部长度上延伸,或者多个支撑构件共同可以在每个外壁的全部或大致全部长度上延伸。作为另一示例,骨架可以包括附加的细长件,其中附加件被对齐,以分别由附加的内壁包覆模制。例如,代替相对于内壁偏移的连结杆358或除了该连接杆358之外,细长结构可以与邻近最外边内壁的内壁对齐。通过这种方式,骨架的构件可以加强四个最外边内壁。在其它实施例中,可以存在附加的细长构件,使得骨架可以加强前壳340中的所有或任意数量的内壁。
在其它实施例中,其它连接器壳体部分可以具有不同尺寸和数量的骨架构件。例如,前壳340具有嵌入其中的四个支撑构件320,在前壳340的每个角部上各有一个支撑构件320。在一些实施例中,不管连接器壳体的尺寸如何,骨架构件都可以延伸穿过附加部分。例如,附加支撑构件320可以延伸穿过壳体的中心部分中的细长件326。
类似地,可以包括附加的凸缘。侧壁凸缘324可以被嵌入前壳340的侧壁344的一部分中,该部分比侧壁344的其它部分薄。例如,对于具有其它减薄的侧壁区段的连接器,其它凸缘可以嵌入这些减薄部分中。
前壳340可以包括精细特征,例如被配置为与配合连接器壳体的匹配特征相配合的配合特征352。可以将支撑构件嵌入形成精细特征的材料中以提供额外的强度。例如,配合特征352可以由围绕端壁凸缘322模制的材料形成。
与图3A至图3E中所示的前壳300类似,前壳340可以包括开口356,诸如T形顶组件之类的连接器模块可以插入到开口356中。前壳340还可以包括对准特征354,以用于插入的准确性。在所示示例中,对准特征354包括通道365,连接器模块的诸如图5B中的延伸部510之类的突出部分可以滑动到通道365中。
在所示示例中,连结杆358可以例如在包覆模制操作之后被切断。可以保留其它连结杆328,使得模制的壳体可以与载体条一起被处理,但可以在使用之前被切断以使经模制的部分与载体条脱离。
应理解到,图3H和图3I所示的前壳340比图3A至图3E所示的前壳300具有更多的开口。前壳可用于集成比前壳300更多的引线框组件的连接器模块。如本文所述的骨架可用于实现大型连接器,例如具有六个或更多个引线框组件的连接器,或者在一些实施例中,具有八个或更多个引线框组件的连接器。每个引线框组件可以提供用于承载信号的至少一列导电元件。在如本文所述的实施例中,每个引线框组件可以提供两列导电元件。此外,利用如本文所述的骨架提供的支撑,每个引线框组件可以足够长以支撑多对信号导体。例如,沿着每列可能有至少六对或八对信号导体。尽管这种连接器的密度很高,但其在机械上能够是坚固的。例如,本文所述的壳体可以具有七个开口,每个开口接收双插入模制引线框组件,如图3H和图3I所示。可以在连接器的端部提供两个额外的空间来接收单插入模制引线框架组件。这种连接器的壳体可以具有如图3F和图3G所示的骨架结构。
图4A至图4B描绘了根据一些实施例的芯部构件204。在图示的实施例中,芯部构件204由三个部件制成:金属屏蔽件、损耗性材料和绝缘材料。图4C描绘了根据一些实施例的芯部构件204的在损耗性材料的第一注射之后且在绝缘材料的第二注射之前的中间状态。
在一些实施例中,可通过二次注射工艺形成芯部构件204。在第一注射中,可将损耗性材料402选择性地模制在T形顶界面屏蔽件404上。损耗性材料402可以形成肋406,该肋406被配置为通过例如实体接触附接到芯部构件的引线框组件中的接地导电元件来在接地导电元件之间提供连接,如图5E所示。在没有芯部构件的传统连接器中,通过模制绝缘材料来制成壳体,而没有损耗性耗性材料的诸如肋406的薄特征。损耗性材料402可以包括狭槽418,通过该狭槽418可露出界面屏蔽件404的多个部分。此配置可使引线框组件内的屏蔽件能够诸如通过穿过狭槽418的梁来被连接到界面屏蔽件404。
在第二注射中,可将绝缘材料408选择性地模制在损耗性材料402和T形顶界面屏蔽件404上,从而形成芯部构件的T形顶区域410。T形顶区域410可以被配置成保持引线框组件的导电元件的配合部分。T形顶区域的绝缘材料可以通过例如形成肋416来在引线框组件的信号导电元件之间提供隔离,并且对导电元件提供机械支撑。
在一些实施例中,损耗性材料402的注射可以在多次注射(例如,2次注射)中完成以提高填充模具的可靠性。类似地,绝缘材料408的注射可在多次注射(例如,2次注射)中完成。
T形顶组件的部件可以被配置成实现简单且低成本的模制。在没有芯部构件的传统连接器中,连接器的配合界面部分包括壳体,该壳体经模制以在导电元件的配合接触部分之间具有旨在电分离的壁。类似地,可在壳体中模制其它精细细节(诸如预加载架),以在IMLA插入到壳体中时支持连接器的适当操作。
能够可靠地模制这些特征的容易程度至少部分取决于特征的尺寸和形状以及它们相对于待模制的零件中的其它特征的位置。模制零件的形状由半模(mold halves)的内表面上的凹部和突出部界定,这些半模被闭合以包围其中形成模制零件的腔室。通过将模制材料(诸如熔化塑料)注入到该腔室中来形成零件。在模制期间,模制材料旨在流动通过整个腔室,以填充腔室且产生呈腔室的形状的模制零件。难以可靠地填充模制材料仅可在流动通过相对窄的通路之后才能到达的形成于模腔室的部分中的特征,因为有可能没有足够的模制材料流入模具的这些部分。可通过在模制期间使用较高压力或在模制材料可注入至其中的模腔室中创建更多入口来避免这种可能。但是,这些对策增大模制程序的复杂性,且仍可能留下不可接受的缺陷零件风险。
此外,希望在模制操作中,当打开半模时,模制零件易于从模具释放。模制零件中的由与半模在打开或闭合时移动的方向平行地延伸的突出部或凹部形成的特征可在模具打开时不受模制零件的阻碍而移动。
相比之下,由模具的在正交方向上突出的部分形成的特征导致了增大的复杂性,这是因为这些突出部在模制操作结束时位于模制零件的开口或抽芯(coring)内部。为了从模具移出模制零件,可使模具的这些突出部缩回。可使用可缩回突出部执行模制操作,但可缩回突出部增加模具的成本。因此,模制连接器壳体的成本和/或复杂性可取决于抽芯相对于半模在打开或闭合时移动的方向而延伸到模制零件中的方向。
发明人已经认识并意识到简化模制操作、减少成本和制造缺陷的连接器设计。在图示的实施例中,使用前壳300和芯部构件204中的特征的组合更简单地形成配合界面,两者都可以被成形为避免仅通过模具腔室的相对较长和较窄的部分填充到模具中的部分。
例如,前壳300包括容纳连接器的配合界面的相对大的开口312。开口312由具有相对较少特征的壁界定,使得可在模制操作中可靠地填充模具的这些壁所形成的部分。此外,壳体300具有可以通过模具中的突出部形成的特征,其中半模在垂直于图3C和图3D的顶底定向的方向上移动。在模具中需要移动零件的位置可能很少具有抽芯(若存在)。
可以在芯部构件204中形成一些精细特征,包括支持连接器的可靠操作的特征。虽然这些特征(如果其被形成在传统连接器壳体)在被形成在传统连接器壳体中的情况下会增大模制复杂性或具有制造缺陷风险,但是可以在简单模制操作中可靠地形成这些特征。例如,从相对大的主体部分412向外延伸的肋416比传统连接器壳体内的复杂且薄的区段更易于形成。
尽管如此,肋416可以延伸足够的长度以在相邻导电元件的配合接触部分之间提供隔离,但是肋416不是通过模具腔室中的相对长且窄的通路来填充的。
此外,这些特征位于模具中的零件的在与主体412的表面垂直的方向上敞开或封闭的外表面上。如在图4A中可见的,诸如肋416和边界部420的特征相对于主体412的表面垂直延伸。通过这种方式,可以在模具中减少或消除使用活动零件。
绝缘材料408可以延伸超出T形顶区域410,以形成芯部构件的主体412。IMLA可以被附接到主体412。主体412可以包括保持特征414,该保持特征414被配置成固定被附接到芯部构件的引线框组件,保持特征414例如为装配至IMLA中的孔中的柱或者接收来自IMLA的柱的孔。
T形顶界面屏蔽件404可以由金属或完全导电或部分导电并给电连接器中的屏蔽件提供合适机械性质的任何其它材料制成。磷青铜、铍铜和其它铜合金是可使用的材料的非限制性示例。界面屏蔽件可以由这些材料以任何合适方式形成,包括通过冲压和/或成形。
在图示的实施例中,使用损耗性材料包覆模制在屏蔽件404上,并且随后使第二绝缘材料注射包覆模制在该结构上,从而形成T形顶区域410和主体412二者的绝缘部分。当IMLA附接到芯部构件204时,屏蔽件404邻近IMLA的导电元件的配合接触部分定位。对于双IMLA组件202C,屏蔽件404定位在附接到芯的两个IMLA的信号导体的配合接触部分之间并且因此邻近信号导体的配合接触部分。将屏蔽件404定位成邻近配合接触部分且平行于配合接触部分的列可以诸如通过降低从一列到下一列的串扰和/或在配合界面处沿着信号导体的长度的阻抗改变来降低连接器的配合界面处的信号完整性的劣化。被电耦合到屏蔽件404的损耗性材料也可以降低信号完整性的劣化。
任何合适的损耗性材料都可用于T形顶区域410的损耗性材料402和其它“损耗性”结构。导电但有些损耗的材料,或通过另一物理机制吸收在有利害关系的频率范围内的电磁能量的材料,在本文中一般被称为“损耗性”材料。电损耗性材料可以由损耗性介电材料和/或不良导性电材料和/或损耗性磁材料形成。磁损耗性材料可以例如由传统上被认为是铁磁材料的材料形成,诸如那些在有利害关系的频率范围内具有大于约0.05的磁损耗角正切值的材料。“磁损耗角正切值”是材料的复介电常数的虚部与实部的比率。实际的损耗性磁性材料或包含损耗性磁性材料的混合物也可在有利害关系的频率范围的部分内表现出有用的介电损耗量或导电损耗效应。电损耗性材料可以由传统上被认为是介电材料的材料形成,诸如在有利害关系的频率范围内具有大于约0.05的电损耗角正切值的材料。“电损耗角正切值”是材料的复介电常数的虚部与实部的比率。电损耗性材料也可以由一般被认为是导体的材料形成,但在有利害关系的频率范围内是相对弱的导体,包含充分分散的导电颗粒或区域,这样它们不提供高导电性或以其它方式制备为具有这种特性:该特性导致在有利害关系的频率范围内,与诸如纯铜之类的良好导体相比,体电导率相对较弱。
电损耗性材料通常具有约1西门子/米(siemen/meter)到约10,000西门子/米的体电导率,并且优选地具有约1西门子/米到约5,000西门子/米的体电导率。在一些实施例中,可以使用体电导率在约10西门子/米与约200西门子/米之间的材料。作为特定示例,可使用电导率为约50西门子/米的材料。然而,应理解到,材料的导电率可以根据经验或使用已知模拟工具通过电模拟来选择,以确定提供适当低串扰和适当低信号路径衰减或插入损耗的适当导电率。
电损耗性材料可以是部分导电材料,诸如那些具有在1Ω/square与100,000Ω/square之间的表面电阻率的部分导电材料。在一些实施例中,电损耗性材料具有在10Ω/square与1000Ω/square之间的表面电阻率。作为特定示例,材料可以具有在约20Ω/square与80Ω/square之间的表面电阻率。
在一些实施例中,电损耗性材料通过将包含导电颗粒的填料添加到结合剂中来形成。在此类实施例中,损耗性构件可以通过模制或以其它方式将结合剂与填料成形为期望的形式来形成。可以用作填料以形成电损耗性材料的导电颗粒的示例包括被形成为纤维、薄片、纳米颗粒或其它类型的颗粒的碳或石墨。也可使用呈粉末、薄片、纤维或其它颗粒形式的金属来提供合适的电损耗特性。可选择地,可以使用填料的组合。例如,可以使用金属镀覆的碳颗粒。银和镍是适用于纤维的金属镀层。镀覆颗粒可以单独使用,或者与诸如碳薄片之类的其它填料组合使用。结合剂或基质可以是任何将凝固以定位填料、固化以定位填料或能够以其它方式被用于定位填料的材料。在一些实施例中,结合剂可以是传统上用于制造电连接器的热塑性材料,以促进将电损耗性材料模制成所需的形状和模制到所需的位置,作为制造电连接器的一部分。这种材料的示例包括液晶聚合物(LCP)和尼龙。然而,可以使用许多可选形式的结合剂材料。诸如环氧树脂之类的可固化材料可以用作结合剂。可选择地,可以使用诸如热固性树脂或粘合剂之类的材料。
虽然上述结合剂材料可用于通过在导电颗粒填料周围形成结合剂来形成电损耗性材料,但本发明不限于此。例如,导电颗粒可以浸渍到所形成的基质材料中,或者可以涂覆到所形成的基质材料上,例如通过将导电涂层施加到塑料构件或金属构件上。如本文所用的,术语“结合剂”包括包封填料、浸渍有填料或以其它方式充当保持填料的基材的材料。
优选地,这些填料将以足以允许形成从颗粒到颗粒的导电路径的体积百分比存在。例如,当使用金属纤维时,该纤维可以以按体积计约3%至30%存在。填料的量可以影响材料的导电性能。
填充材料可以商购,诸如Celanese公司以商标名
Figure BDA0003865799330000221
销售的材料,这些材料可填充有碳纤维或不锈钢细丝。也可使用损耗性材料,诸如填充有粘性预制件的损耗性导电碳,诸如由美国马萨诸塞州比勒利卡的Techfilm销售的材料。此预制件可以包括填充有碳纤维和/或其它碳颗粒的环氧树脂结合剂。结合剂包围碳颗粒,以作为预制件的加强结构。此预制件可插入连接器晶片中以形成壳体的全部或一部分。在一些实施例中,预制件可以通过预制件中的粘合剂来粘附,该粘合剂可以在热处理程序中固化。在一些实施例中,粘合剂可以采取单独导电或非导电粘合剂层的形式。在一些实施例中,可选地或额外地,预制件中的粘合剂可用于将诸如箔条之类的一个或多个导电元件固定到损耗性材料。
各种形式的加强纤维(织物或非织物形式)可以涂覆或非涂覆地使用。非织物的碳纤维为一种合适的材料。可以采用另外的合适材料,诸如RTP公司出售的定制混合物,因为本申请不限于此。
在一些实施例中,可以通过冲压损耗性材料的预制件或片材来制造损耗性部分。例如,可以通过使用适当开口图案冲压如上文描述的预制件来形成损耗性部分。但是,代替或除此预制件以外,可使用其它材料。例如,可使用铁磁材料片材。
然而,也可以其它方式形成损耗性部分。在一些实施例中,损耗性部分可以由损耗性材料和导电材料(诸如金属箔)的交错层形成。这些层可以诸如通过使用环氧树脂或其它粘合剂而彼此刚性地附接,或可以任何其它合适方式保持在一起。这些层可以在彼此固定之前具有所要形状,或者可以在其被保持在一起之后被冲压或以其它方式成形。作为进一步可选方案,可通过使用损耗性涂层(诸如扩散金属涂层)镀覆塑料或其它绝缘材料来形成损耗性部分。
图4D至图4F描绘了芯部构件的另一实施例。图4D是芯部构件432的立体图。图4E是芯部构件432的侧视图。图4F是芯部构件432的在损耗性材料的第一注射之后且在绝缘材料的第二注射之前的立体图。芯部构件432可以包括具有贯穿孔440的T形顶界面屏蔽件434、选择性地模制在T形顶界面屏蔽件434上的损耗性材料436、以及被模制在T形顶界面屏蔽件434的露出部分上且形成主体450的绝缘材料442。损耗性材料436的多个部分可以间隔开间隙438,T形顶界面屏蔽件434可以从间隙438露出。绝缘材料442可以模制在T形顶界面屏蔽件434的露出的区域上,填充贯穿孔440并形成肋444。绝缘材料442可以填充损耗性材料436的多个部分之间的间隙438,以便在芯部构件的主体450与T形顶界面屏蔽件434之间提供机械强度。与图4B中示出的主体412一样,主体450可以包括用于A型IMLA的保持特征446A和用于B型IMLA的保持特征446B。另外,主体450可以包括开口448,其尺寸和位置可根据屏蔽件502的开口452(例如,参见图5N)来设计。开口448可以在被附接到芯部构件432的A型IMLA和B型IMLA的屏蔽件502之间实现电连接。完全或部分导电的构件可以通过开口来建立这些连接。例如,开口可以填充有损耗性耗性材料。作为另一示例,来自屏蔽件502的导电指状部可以通过开口。这种配置可以降低例如IMLA之间的串扰。
图5A至图5D描绘了根据一些实施例的双IMLA组件202C。双IMLA组件202C可以包括芯部构件204。A型IMLA 206A可以被附接到芯部构件204的一侧。B型IMLA206B可以被附接到芯部构件204的另一侧。每个IMLA可以包括分别被成形且定位成用于信号和接地的一列导电元件。在图示的示例中,接地导电元件比信号导电元件宽。接地导电元件的配合接触部分可以包括被成形且定位成用于提供与信号导电元件的配合接触部分的配合力接近的配合力的开口530。芯部构件204的损耗性材料402的肋406可被定位为使得当IMLA被附接到芯部构件时,IMLA的接地导电元件通过肋406电耦合到损耗性材料402。在一些操作状态中,接地导电元件可以压靠在肋406上和/或可以足够靠近以电容地耦合到肋406。
芯部构件204的T形顶界面屏蔽件404可以包括延伸部510。延伸部510可以延伸超出IMLA的配合面536,使得界面屏蔽件404的延伸部510可以延伸至配合连接器中。这种配置可以使得界面屏蔽件404能够与配合连接器的内部屏蔽件交叠,如图11A至图11B的示例性实施例中所示的。可使用绝缘材料408以厚度t1包覆模制在界面屏蔽件404的延伸部510上,该厚度t1可小于包覆模制在T形顶区域410的主体上的绝缘材料的厚度t2。在一些实施例中,厚度t1可以小于厚度t2的20%,或者小于15%,或者小于10%。
除了使由屏蔽件404提供的接地参考延伸通过配合界面以外,相对薄的延伸部510可以有助于互连系统的机械稳健性。这种配置允许将界面屏蔽件的延伸部510插入到配合连接器的壳体中的匹配狭槽中,其可形成为对配合连接器的壳体的机械结构仅有很小影响。在图示的实施例中,配合连接器具有类似的配合界面。因此,连接器200(图3A)的前壳300图示出也存在于配合连接器(例如,插头连接器700)中的某些特征。一个这种特征是被配置成在T形顶区域的远端处接收延伸部510的狭槽310。
如果芯部构件204没有这种延伸部510,而是在远端处具有呈例如矩形形状的实质上一致厚度,则将缩短配合连接器的接收壳体壁以容纳延伸部510,这将降低连接器壳体的机械结构的稳健性。
图5E描绘了根据一些实施例的双IMLA组件202C的局部剖开的前视图。如在剖开区段中可见的,损耗性材料402的肋406朝着每个列中的配合接触部分中的特定若干个延伸。这些配合接触部分可以具有接地导电元件。在此,损耗性材料402被示出为占据连续体积,但在其它实施例中,损耗性材料可以位于不连续的区域中。例如,在屏蔽件404的一侧上的损耗性材料402可以与在屏蔽件的另一侧上的损耗性材料402实体地断开。
图5F描绘了根据一些实施例的沿着图5D中的线P-P的横截面图,其示出了A型IMLA通过芯部构件204(图4A)耦合到B型IMLA。图5F显示,在图示的实施例中,每个IMLA具有屏蔽件502,屏蔽件502与用作信号导体或接地导体的导电元件的通过IMLA的中间部平行。屏蔽件404平行于导电元件的配合接触部分。屏蔽件404和502可电连接。
图5G示出了根据一些实施例的在图5F中被标记为“B”的圆圈的放大视图中的用于连接屏蔽件404和502的特征。该区域包含芯部构件204的损耗性部分中的开口422(也参见图4C),屏蔽件404的多个部分通过这些开口422露出。屏蔽件404的露出部分包括连接到屏蔽件502的特征。在此,这些特征是狭槽418。屏蔽件502可由金属片材冲压而成,且可经冲压具有诸如梁506的结构,当IMLA被按压到芯部构件204上时,梁506可以被插入到狭槽418中,以便电连接屏蔽件404与502。
图5H描绘了根据一些实施例的沿着图5D中的线P-P的横截面图,其示出了A型IMLA通过芯部构件432(图4D)耦合到B型IMLA。如图所示,在一些实施例中,T形顶可以被配置成没有T形顶屏蔽狭槽418、。省去狭槽418可使连接器能够具有较小间距,该间距诸如为小于3mm,且可为例如大约2mm。
在一些实施例中,也可简单地形成用于连接屏蔽件的特征。例如,开口422在垂直于主体部分412的表面的方向上延伸且可在没有模具的活动部分的情况下模制。并且,示出了预加载特征512,其也在垂直于主体部分412的表面的方向上延伸。
同样地,芯部构件204可以模制有开口508。当IMLA安装到芯部构件204时,开口508可以被配置成接收导电元件的梁端头。开口508使梁端头能够在与配合连接器配合时弯曲。
在一些实施例中,芯部构件204可以包括被配置为对配合连接器的导电元件预加载的预加载特征512。预加载特征可被定位成超出IMLA的导电元件的端头532的远端。在这种配置中,预加载特征可以在配合连接器的导电元件到达端头532之前接触该导电元件。例如,在配合包括图5F的IMLA组件的第一连接器与具有类似配合界面的第二连接器时,第一连接器的预加载特征512可以接合第二连接器的端头532并将其按压到开口508中。因此,第二连接器的端头532被从第一连接器的路径按压出来,这降低了短接的可能。当第一连接器和第二连接器的配合界面类似时,通过第二连接器的预加载特征512将第一连接器的端头532从第二连接器的路径按压出来。
图5F所示的预加载特征不同于传统连接器中的预加载架,在传统连接器中,导电元件的梁端头在部分偏转状态中受到同一连接器的预加载特征的约束。例如,这种设计可以涉及梁端头的一部分搁置于其上的预加载架。在该配置中,端头的一部分延伸得足够远到预加载架上,以被可靠地保持就位。
这种配置需要在每个导电元件的凸形收缩点与导电元件的最远端头之间的导电元件的区段。导电元件的该区段在所期望的信号路径之外,并且可构成未端接的短柱,这可能会不利地影响沿导电元件传播的信号的完整性。该影响的频率可与短柱的长度负相关,使得缩短短柱能够实现高频连接器操作。接地导电元件上的未端接短柱可以类似地影响信号完整性。
然而,在图示的实施例中,导电元件的端头是不受约束的。凸形收缩点536与端头532的远端之间的区段不必长到足以接合预加载架。这种设计能够减少导电元件的端头的长度,而不会增加配合时的短接风险。在一些实施例中,凸形接触位置与导电元件的端头之间的距离可在0.02mm与2mm的范围内并且可以是其间的任何合适值,或在0.1mm与1mm的范围内并且可以是其间的任何合适值,或小于0.3mm,或小于0.2mm,或小于0.1mm。参照图11A至图11F描述了一种操作具有这种预加载特征的连接器以使其彼此配合的方法。
将这些特征形成为芯部构件的部分使得连接器能够小型化,这是因为这些特征将具有与导电元件的尺寸及其之间的间隔成比例的尺寸。然而,由于这些特征形成于芯部构件中,而非形成为与前壳300一体形成的情况下的薄且复杂几何形状,因此可以更可靠地形成这些特征。这些特征可用于高速、高密度连接器中,其中信号导电元件彼此间隔(中心至中心)小于2mm,或小于1mm,或在一些实施例中小于0.75mm,诸如在0.5mm至1.0mm的范围内或其间的任何合适值。成对的信号导电元件可彼此间隔(中心至中心)小于6mm,或小于3mm,或在一些实施例中小于1.5mm,诸如在1.5mm至3.0mm的范围内或其间的任何合适值。
在一些实施例中,引线框组件可以包括平行于一列导电元件504延伸的IMLA屏蔽件502。IMLA屏蔽件502可以包括在与IMLA屏蔽件延伸沿着其延伸的平面基本垂直的方向上延伸的梁506。梁506可以被插入开口422中,并诸如通过插入到屏蔽狭槽418中来接触T形顶界面屏蔽件404的一部分。在图示的示例中,A型IMLA的IMLA屏蔽件502通过芯部构件204的损耗性材料402和界面屏蔽件404电耦合到B型IMLA的IMLA屏蔽件。
图5I是根据一些实施例的A型IMLA 206A的立体图。在图示的示例中,A型IMLA206A包括夹置在接地板502A与502B之间的引线框514。在附接接地板502A及502B之前,可使用介电材料546选择性地包覆模制引线框514。图5N是根据一些实施例的移除了介电材料546的A型IMLA 206A的分解视图。图5O是根据一些实施例的图5N的A型IMLA 206A的一部分的横截面图。图5P是根据一些实施例的A型IMLA 206A的平面图,其中移除了接地板502A及502B并且示出了介电材料546。
引线框514可以包括一列信号导电元件。信号导电元件可以包括单端信号导电元件208A和差分信号对208B,其可以由接地导电元件212分隔开。在一些实施例中,导电元件208A可以用于除了传输差分信号以外的目的,包括传输例如低速或低频信号、电力、接地或任何合适信号。
基本围绕差分信号对208B的屏蔽件可以由接地导电元件连同接地板502A、502B一起形成。如图所示,接地导电元件212可比信号导电元件208A、208B宽。接地导电元件212可以包括开口212H。在一些实施例中,可使用绝缘材料选择性地模制引线框514,该绝缘材料可以基本上包覆模制在信号导电元件的中间部上。接地板502A、502B可以被附接到所包覆模制的引线框514。
在一些实施例中,引线框可以包括接触并电连接接地板和接地导体的损耗性材料。在一些实施例中,损耗性材料可以延伸穿过接地导体中的开口212H和/或穿过接地板502A和502B的开口452以建立电接触。在一些实施例中,这种配置可通过在附接接地板之后模制损耗性材料的第二注射来实现。例如,损耗性材料可穿过接地板502A、502B的开口452填充开口212H的至少一部分,以便将接地导电元件212与接地板502A、502B电连接,并且密封它们之间的由绝缘引线框包覆成型导致的间隙。接地导电元件212的开口212H和接地板502A、502B的开口452可被成形为增加用于填充损耗性材料的容限。例如,如图5N所示的,与基本上圆形的开口452相比,接地导电元件212的开口212H可以具有细长的形状。可选地或额外地,损耗性材料可以被模制在引线框组件上,使得在表面处具有毂部(hub)。可以通过将毂部按压穿过开口452来附接接地板502A、502B。
接地板502A和502B可以在两侧上给导电元件的中间部提供屏蔽。接地板502A可以被配置成面向芯部构件204,例如,包括附接到芯部构件204的特征。接地板502B可以被配置成背离芯部构件204。由接地板502A和502B提供的屏蔽可以连接到由界面屏蔽互连件214提供的屏蔽和由引线框所附接到的T形顶及配合连接器的另一T形顶提供的配合界面屏蔽,例如,如图11B所示。这种配置通过在两个配合的连接器的整个范围上实施屏蔽来实现高频性能。
接地板和/或介电部分可以包括被配置为接收芯部构件的保持特征(例如,保持特征414)的开口。应理解到,尽管B型IMLA 206B具有与A型IMLA不同的信号导体及接地导体的配置,其也可被类似地配置为具有类似于A型IMLA 206A的接地板和保持特征。
每种类型的IMLA可以包括将接地板连接到形成有这些IMLA的连接器所安装到的印刷电路板上的接地结构的结构。例如,A型IMLA 206A可以包括可压缩构件518,其可形成安装界面屏蔽互连件214(图2C)的多个部分。在一些实施例中,可压缩构件518可以与接地板502A及502B一体形成。例如,可压缩构件518可以通过对形成接地板的金属片材进行冲压和折弯来形成。一体形成的屏蔽互连件简化制造工艺并降低制造成本。
在一些实施例中,屏蔽互连件214可以被形成为支持小的连接器占用区。例如,屏蔽互连件可被设计为在压靠在印刷电路板的表面上时变形,以产生相对小的反作用力。反作用力可以足够小以使得压配合接触尾部(如图5I所示)可以充分保持连接器以抵抗该反作用力。这种配置减小了连接器占用区,因为其无需诸如螺钉之类的保持特征。
在图5J至图5M中示出了使用可压缩构件518实施的屏蔽互连件214的放大视图。图5J和图5K描绘了根据一些实施例的A型IMLA 206A的在图5I中被标记为“5J”的圆圈内的一部分516的放大立体图。图5L和图5M分别描绘了根据一些实施例的A型IMLA 206A的附接有组织器210的部分516的立体图和平面图。A型IMLA 206A的附接有组织器210的部分516也在图2C中被标记为“5L”的圆圈内示出。图5K和图5L示出了通过压配合接触尾部的颈部截取的视图。可存在接触尾部的远侧顺应性部分,在图5J中示出为针眼部段。但是,接触尾部可以呈除了针眼压配合部以外的配置。
屏蔽互连件214可以填充连接器与板之间的空间,并且在板的接地平面与连接器的诸如接地板之类的内部接地结构之间提供电流路径。在一些实施例中,一对差分信号导电元件(例如,208B)可以部分地由屏蔽互连件214围绕,该屏蔽互连件214从夹持具有该对的引线框的接地板延伸。该对的接触尾部可以通过组织器210的介电材料与屏蔽互连件214分隔开。
在一些实施例中,屏蔽互连件214可以包括从IMLA屏蔽件的边缘延伸的主体562。可以在主体562中切出一个或多个间隙528,从而产生悬臂式的可压缩构件518。可压缩构件518的远侧部分可以被成形有叉齿520。当将连接器推动到板上时,叉齿520可以与板建立实体接触,从而导致可压缩构件518的偏转。可压缩构件518是悬臂式的,并且可以在一些实施例中用作顺应性梁。但是,在图示的实施例中,可压缩构件518的偏转产生相对低的弹簧力。在这种实施例中,间隙528包括在可压缩构件518的基部处的放大开口568,其被配置为通过使可压缩构件518更容易偏转和/或变形来减弱弹簧力。低弹簧力可以在接触板时防止叉齿回弹,使得不会将连接器推离板。在一些实施例中,每个叉齿的所得弹簧力可以在0.1N至10N的范围内或其间的任何合适值。可压缩构件可以与建立实体接触,或者可以不与板建立实体接触。在一些实施例中,可压缩构件可以邻近板,这可以提供充分的耦合以抑制安装界面处的发射。
在一些实施例中,主体562和可压缩构件518可以包括从接地板(例如,502A或502B)延伸的列内部分(in-column portion)522、基本垂直于列内部分522的远侧部分526、以及在列内部分522与远侧部分526之间的过渡部分524。这种配置使从两个相邻屏蔽件延伸的屏蔽互连件214能够协作以至少部分地围绕一对信号导电元件的接触尾部。例如,如图所示,四个屏蔽互连件214可以围绕一对信号导电元件,两个屏蔽互连件214在信号导电元件的两侧上的每个IMLA延伸,并且在该对信号导电元件的两侧中的每个有一个屏蔽互连件214。
在所示中,例如在图5L中,在屏蔽互连件之间存在间隙。例如,在一对信号导体的相反两侧上的屏蔽互连件214的远侧部分526之间存在间隙542。在一对信号导体的同一侧上的屏蔽互连件214的列内部分522之间也存在间隙544。组织器210的桥接件266可以至少部分占据间隙542和544。尽管如此,在连接器的期望操作范围(诸如高达112Gbps或更高)内,图示的配置可有效地降低连接器的接地结构中的谐振。
在一些实施例中,可压缩构件518上的叉齿520可被选择性地定位,以便更有效地抑制谐振。由于叉齿520给高频接地返回电流提供流动到PCB的接地平面或从PCB的接地平面流动的路径,因此叉齿520给电磁波提供参考/基准。在图示的示例中,叉齿520和因此参考的位置被定位在由屏蔽互连件214部分围绕的该对信号导体周围的电磁场较高的位置处。在图示的示例中,该对信号导体尾部周围的电磁场会在列中的对之间最强,但相对于该列的中心线216偏移角度α,角度α是在5度至30度或5度至15度的范围内或其间的任何合适数字。因此,相对于每对的信号导体的尾部定位在该位置的叉齿520能够有效地降低谐振并改善信号完整性。
在图示的示例中,叉齿520从远侧部分526延伸。应理解到,本公开不限于叉齿520的图示位置。在一些实施例中,叉齿520可以被定位成例如从列内部分522或过渡部分524延伸。还应理解到,本公开不限于叉齿520的图示数目。差分信号对可以如图所示地由四个叉齿520围绕,或者在一些实施例中由多于四个叉齿围绕,或者在一些实施例中由少于四个叉齿围绕。此外,应理解到,并非全部叉齿均须与安装板的接地平面建立实体接触。例如,取决于安装板的实际表面拓扑,叉齿可以与安装板建立实体接触,或者可以不与安装板建立实体接触。例如,叉齿520可被定位成与图2D中的接地过孔244建立实体或电容接触。
B型IMLA可以类似地具有相对于成对信号导体定位的可压缩构件,如图5J和图5K所示。但是,对在列内的配置可在A型IMLA与B型IMLA之间不同。
图5Q示出了在频率范围内S参数的模拟结果。S参数代表来自列内的最近干扰源的串扰。根据一些实施例,模拟结果显示出具有安装界面屏蔽互连件214的连接器200的S参数结果552(相比于具有传统安装界面的对应连接器的S参数结果554)。如图所示,连接器200显著降低了串扰,同时维持了插入损耗和回波损耗。在一些案例中,可通过依频率而变化的S参数的量值来设定连接器的操作范围。操作频率范围可被定义为例如S参数在其中大于或小于某一阈值量的频率范围。作为特定示例,操作频率范围可以是基于具有小于-30dB的值的S参数。在图5P的示例中,迹线552示出了超过50GHz的操作频率范围,其是对由迹线554表示的具有小于45GHz的操作频率范围的传统连接器的改进。
图6A至图6F描绘了根据一些实施例的侧部IMLA组件202A。侧部IMLA组件202A可以包括芯部构件204A。如图6C所示,芯部构件204的一侧可以与A型IMLA 206A附接。如图6F所示,芯部构件204A的另一侧可以形成连接器的绝缘外壳的一部分。芯部构件204A可以在接收IMLA 206A的一侧上以与上文描述的芯部构件204相同的方式成形。无需包括接收IMLA的特征的相反一侧可以是平坦的。
图6D描绘了根据一些实施例的侧部IMLA组件202A的部分剖视的前视图。图6D显示了具有肋406的损耗性材料402A邻近接地导体的配合接触部分定位。屏蔽件404也邻近配合接触部分,并且平行于配合接触部分,如在图5E中的。在接地导体下面的损耗性材料402A将接地导体电连接到屏蔽件404,并且因此减少由接地导体间隔开的成对信号导体之间的串扰。
图6E描绘了根据一些实施例的在图6D中被标记为“A”的圆圈的放大视图。尽管侧部IMLA组件600被示出为与A型IMLA206A附接,应理解到,侧部IMLA组件可以被形成为接收B型IMLA 206B。如同芯部构件204A,用于此B型IMLA的芯部构件可以在一侧上具有接收IMLA的特征,并且在另一侧上可以是平坦的或者以其它方式配置为连接器的外壁。用于B型IMLA组件的芯部构件与芯部构件204A不同之处可在于,其被配置为在相对于A型芯部构件相反的一侧上接收具有不同导电元件配置的B型IMLA。例如,绝缘和导电肋可以在该相反一侧上,预加载特征512也可以在该相反一侧上。
直角连接器可以与插头连接器配合。图7A和图7B描绘了根据一些实施例的插头连接器700的立体图和分解视图。插头连接器700可以包括在壳体800中成排对齐的双IMLA T形顶组件702。T形顶组件702可以包括与至少一个引线框组件706附接的芯部构件704。插头连接器700可以包括附接到其安装端的组织器710。
虽然插头连接器是竖直的,而非像连接器200那样地成直角,但可应用类似构造技术。例如,可通过将绝缘材料模制在列上方并且附接引线框组件屏蔽件来形成引线框组件。这些组件可以附接到芯部构件,这些芯部构件随后被插入到壳体中以形成连接器。
配合界面可以被配置为与连接器200的配合界面互补。在此实施例中,插头连接器700的IMLA组件装配在A型侧部IMLA组件与B型侧部IMLA组件之间,使得插头连接器700不具有形成插头连接器700的侧部的单独侧部IMLA组件。相应地,在图示的实施例中,插头连接器700的全部IMLA组件皆为双侧IMLA组件。
图8A和图8B分别描绘了根据一些实施例的壳体800的配合端视图和安装端视图。壳体800可以包括被配置成插入到配合连接器的壳体中的匹配狭槽中的配合键802,该匹配狭槽例如为壳体300的配合键槽308(图3B)。壳体800可以包括壁804,壁804被配置为将相邻T形顶组件702分隔开,并提供隔离和机械支撑。壁804可以包括被配置为接收直角连接器200的T形顶区域410的远端的狭槽(未示出)。壳体800可以包括成对的构件806和成对的IMLA支撑特征810。每对构件806可以包括被配置为用于对准和固定T形顶组件的对准特征808、以及被配置为用于对T形顶组件的引线框组件提供机械支撑的IMLA支撑特征810。应理解到,壳体800不包括传统连接器所需的复杂且薄的特征,因此更易于制造。壳体800可容易地形成于在垂直于图8A和图8B中示出的表面的方向上闭合和打开的模具中。诸如绝缘和损耗性肋的精细特征以及预加载特征可以被形成于芯部构件的T形顶部分中,如上文描述。
在一些实施例中,插头连接器700的双IMLA组件702可以包括类似于直角连接器200的双IMLA组件202C的那些特征的特征。图9A和图9B描绘了根据一些实施例的插头连接器700的双IMLA组件702。图9C描绘了根据一些实施例的双IMLA组件702的配合端的部分剖开的视图。图9D描绘了根据一些实施例的沿着图9B中的线Z-Z的横截面图。
双IMLA组件702可以包括附接有两个引线框组件706的芯部构件704。每个引线框组件706可以包括成列对准的多个导电元件910。芯部构件704可以包括T形顶界面屏蔽件904、被选择性地模制在界面屏蔽件904上的损耗性材料902、以及被选择性地模制在损耗性材料902和界面屏蔽件904上的绝缘塑胶908。尽管在图9D中示出了界面屏蔽件904的两个部分之间的间隙914,应理解到,界面屏蔽件904可以是整体件。间隙914可以是从屏蔽件切出的孔的横截面图,使得其它材料(例如,损耗性材料902和/或绝缘材料908)可以在屏蔽件904周围流动。损耗性材料902可以包括从界面屏蔽件904朝着引线框组件的接地导电元件延伸的肋912,使得接地导电元件通过损耗性材料902和界面屏蔽件电连接,这降低谐振并且以其它方式改善信号完整性。尽管图示的示例仅示出用于插头连接器700的双IMLA组件,但插头连接器可以包括例如与直角连接器200的侧部IMLA组件202A、202B类似地配置的侧部IMLA组件。这种配置将使插头能够与没有侧部IMLA组件的直角连接器配合。在一些实施例中,芯部构件的相反两侧上的IMLA组件可以具有以与配合的直角连接器互补的顺序设置的导电元件。例如,芯部构件的相反两侧上的IMLA组件可以包括分别与A型IMLA 206A和B型IMLA 206B的引线框互补的引线框。
图10A描绘了根据一些实施例的双IMLA组件702的引线框组件706的立体图。图10B描绘了根据一些实施例的引线框组件706的面向芯部构件704的一侧的平面图。图10C描绘了根据一些实施例的引线框组件706的侧视图。图10D描绘了根据一些实施例的引线框组件706的背离芯部构件704的一侧的平面图。
在一些实施例中,可以通过以下步骤制造引线框组件706:将绝缘材料1004模制在包括导电元件的列910的引线框上;将接地板1002附接到导电元件910的列的模制有绝缘材料1004的侧部;以及选择性地模制损耗性材料杆1006。绝缘材料1004可以包括被配置用于辅助对准和支撑的突出部1004B。损耗性材料杆可以被配置成保持接地板1002,并且在接地板与接地导电元件的列之间提供电连接,同时维持与信号导电元件的列的隔离。在一些实施例中,损耗性材料杆1006可以包括朝着接地导电元件1022延伸的肋或其它突出部。
在一些实施例中,导电元件的列910可以包括由接地导电元件(例如,1022)分隔开的信号导电元件(例如,1020)。信号导电元件可以包括信号配合部分和信号安装尾部。接地导电元件可以比信号导电元件宽,并且可以包括接地配合部分1010和接地安装尾部1012。
在一些实施例中,接地板1002可以包括梁1008,梁基本上垂直于导电元件910的长度并且朝着芯部构件延伸,引线框组件706被配置为附接到该芯部构件。在一些实施例中,梁1008可以邻近信号导电元件1020定位。在这种配置中,通过IMLA屏蔽件和T形顶屏蔽件的接地电流路径更靠近信号导电元件且通常平行于信号导电元件,这可以改善屏蔽效能并增强信号完整性。在一些实施例中,接地板1002可以不包括梁1008,例如,如图9D所示。
在一些实施例中,损耗性材料杆1006可以包括保持特征,诸如突出部1016和开口1018。在一些实施例中,芯部构件可以包括突出部和开口,以插入到开口1018中和接收突出部1016。在一些实施例中,芯部构件可以被配置成使突出部1016能够穿过附接到同一芯部构件的互补引线框组件的开口且插入到所述开口中。例如,突出部1016可以被配置成附接到被附接到同一芯部构件的互补引线框组件的开口。开口1018可以被配置成接收被附接到同一芯部构件的互补引线框组件的突出部。这些保持特征给双IMLA组件提供机械支撑,并且也在双IMLA组件的接地结构之间提供电流路径。
如同直角连接器200一样,插头连接器700可以包括安装界面屏蔽互连件。安装界面屏蔽互连件可以由例如从屏蔽件1002延伸的可压缩构件1014形成。可压缩构件1014可以与可压缩构件518类似地配置。
图11A描绘了根据一些实施例的电互连系统100的部分剖开的俯视图。图11B描绘了根据一些实施例的在图11A中被标记为“Y”的圆圈的放大视图。
在图示的示例中,通过在直角连接器200的导电元件504与插头连接器400的导电元件902之间在一个或多个接触位置1104处形成电连接来使直角连接器200与插头连接器700配合。图11B以横截面示出了插头连接器700的一部分和直角连接器200的一部分,在该处来自各个连接器的导电元件配合。导电元件可以是信号导电元件或接地导电元件,这是因为在图示的实施例中,该两者在横截面上具有相同的轮廓。
在这种配置中,导电元件504和902的配合部分被直角连接器200的芯部构件204的T形顶界面屏蔽件404和插头连接器700的芯部构件704的T形顶界面屏蔽件904屏蔽。通过这种方式,将在导电元件的两侧上具有平面屏蔽件的屏蔽配置承载到相配合的连接器的配合界面中。但是,并非如对于IMLA绝缘内的导电元件的中间部那样通过IMLA屏蔽件502或1002提供双侧屏蔽,而是通过两个T形顶的T形顶屏蔽件承载两个配合的导电元件的配合接触部分来提供双侧屏蔽。
还应理解到,当将连接器配合时,直角连接器200的芯部构件204的T形顶界面屏蔽件404与插头连接器700的引线框组件706的屏蔽件1002交叠。当将连接器配合时,插头连接器700的芯部构件704的T形顶界面屏蔽件904与直角连接器200的引线框组件206的屏蔽件1002交叠。交叠的长度可以由界面屏蔽件的延伸部(例如,T形顶界面屏蔽件404的延伸部510)的长度来控制。延伸部510可以具有小于芯部构件的其余部分的厚度,使得延伸部510可以被插入到配合连接器的匹配开口中。芯部构件204和704的T形顶界面屏蔽件404和904的上文描述配置不仅给导电元件在配合界面106处的配合部分提供屏蔽,而且减少由从引线框组件的内部屏蔽件(例如,屏蔽件1002、1102)到界面屏蔽件(例如,T形顶界面屏蔽件404、904)的改变引起的屏蔽不连续性。
本文中描述了根据一些实施例的操作连接器200与700以使其彼此配合的方法。这种方法可以使导电元件能够在接触点与远端之间具有短的引入区段,这增强了高频性能。然而,可能存在低的根部折断风险。图11C至图11F描绘了图1A的两个连接器或呈具有类似配合界面的其它配置的连接器的配合界面的放大视图。图11G描绘了配合界面的沿着图11A中被标记为“11G”的线的放大局部平面图。导电元件可以包括具有在凸形表面上的接触位置的弯曲接触部分1106。接触部分1106可以从导电元件的中间部并且从IMLA的绝缘部分延伸到开口1110中。为了配合到另一连接器,接触部分可以压靠在配合导电元件。端头1108可以从接触部分1106延伸。如图11G所示,连接器200和700的配合的成对信号导电元件可以在其侧部上具有连接器的配合的接地导电元件,以阻挡能量传播穿过接地,从而降低串扰。
图11C至图11F示出了使用可比传统连接器中更短的端头1108操作的配合顺序。与导电元件的配合部分的端头可以由包围导电元件的壳体中的特征保持的连接器相比,端头1108是自由的,并且实质上完全在配合导电元件902将插入到其中的开口中露出。在传统连接器中,这种配置面临在连接器配合时导电元件根部折断的风险。然而,由于通过其它导电元件周围的壳体上的特征将每个导电元件移出其它导电元件的路径,因此避免导电元件902及504的根部折断。
操作连接器200和700的方法可以开始于将连接器放在一起,使得配合导电元件对准,如图11C所示。在此状态中,直角连接器200的导电元件504和插头连接器700的导电元件902可处于各自静止状态,且在配合方向上彼此对准。
连接器200和700可以在配合方向上进一步按压在一起,直至它们达到图11D所示的状态。在此状态中,直角连接器200的导电元件504已经与插头连接器700的预加载特征512B接合。为了达到此状态,成角度的引入部分1108沿着预加载特征512B的渐缩前导边缘滑动。插头连接器700的预加载特征512B使直角连接器200的导电元件504从其静止状态偏转。
在此示例中,两个连接器具有相似的配合界面元件,并且插头连接器700的导电元件902已经类似地与直角连接器200的预加载特征512A接合。直角连接器200的预加载特征512A使插头连接器700的导电元件902从其静止状态偏转。其结果是,导电元件902和504已经在相反方向上偏转,使得在其对应的端头的最远部分之间的距离已经增加。端头之间的这种增加距离使两个端头远离配合的导电元件的中心线移动,降低了在配合期间连接器的制造或定位变化将导致导电元件902和504的根部折断的机会。更确切地说,在连接器被按压在一起时,导电元件902及504的渐缩引入部分将沿着彼此骑行。
连接器200和700可以在配合方向上进一步按压在一起,直至其达到图11E所示的状态。在此状态中,直角连接器200的导电元件504和插头连接器400的导电元件902已经从预加载特征512A和512B脱离,并且彼此进行接触。当每个导电元件与相应的预加载特征512A或512B接合时,每个导电元件被相对于图11D中的状态进一步偏转。在此状态中,每个导电元件的凸形接触表面压靠在配合导电元件的接触表面(其可以是平坦的)。
连接器200和700可以在配合方向上进一步按压在一起,直至它们达到图11F所示的状态。在此状态中,直角连接器200的导电元件504与插头连接器400的导电元件902可以处于完全配合状态,并且在位置1104A和1104B处彼此进行接触。位置1104A和1104B可以位于接触部分1106的凸形表面的顶点处。该配置可以使连接器能够在到达对应的接触位置(例如,位置1104A、1104B)之前具有用于接触部分(例如,接触部分1106)的较小的刮擦长度,诸如小于2.5mm,且可为例如大约1.9mm。
每个导电元件具有分别延伸超出其对应的接触位置1104A和1104B的未端接部分1108A和1108B。该未端接部分可以形成短柱,其可支持谐振。但由于短柱是短的,因此该谐振可高于连接器的操作频率范围,诸如高于35GHz或高于56GHz。未端接部分1108A和1108B的长度可以具有在0.02mm至2mm的范围内及其间的任何合适值,或者在0.1mm至1mm的范围内及其间的任何合适值,或者小于0.8mm,或者小于0.5mm,或者小于0.1mm。
尽管上文描述了导电元件、壳体和屏蔽构件的特定配置的细节,但应理解到,这些细节仅出于图示目的来提供,因为本文中公开的概念能够以其它方式实施。在此方面,本文中描述的各种连接器设计可以任何合适组合使用,因为本发明的方面不限于图中示出的特定组合。
因此,在已经描述若干实施例的情况下,应理解到,本领域技术人员能够容易地想到各种改变、修改和改型。这些改变、修改和改型旨在位于本发明的精神和范围内。因此,前述描述和图示仅作为示例。
可以对本文示出和描述的阐释性结构做出各种改变。作为可能变型的特定示例,连接器可以被配置成用于有利害关系频率范围,其可取决于其中使用此连接器的系统的操作参数,但通常可以具有在约15GHz与224GHz之间(诸如25GHz、30GHz、40GHz、56GHz、112GHz或224GHz)的上限,但在一些应用中可关注更高频率或更低频率。一些连接器设计可以具有仅跨越此范围的一部分(诸如1GHz至10GHz或5GHz至35GHz或56GHz至112GHz)的有利害关系频率范围。
互连系统的操作频率范围可以基于能够通过具有可接受的信号完整性的互连的频率范围来确定。信号完整性可以根据许多标准来衡量,这些标准取决于互连系统的设计应用。这些标准中的一些可能与信号沿单端信号路径、差分信号路径、中空波导或任何其它类型的信号路径的传播有关。这种标准的两个示例是信号沿信号路径的衰减或信号从信号路径的反射。
其它标准可以涉及多个不同信号路径的相互影响。这种标准可以包括例如近端串扰,其被定义为在互连系统的一端处在一个信号路径上注入的信号可以在该互连系统的同一端上在任何其它信号路径处测量到的一部分。另一种这样的标准可以是远端串扰其被定义为在互连系统的一端处在一个信号路径上注入的信号的可以在该互连系统的另一端上在任何其它信号路径处测量到的一部分。
作为特定示例,可要求信号路径衰减不多于3dB功率损耗,反射功率比不大于-20dB,且各个信号路径对信号路径串扰贡献不大于-50dB。由于这些特性与频率有关,互连系统的工作范围被定义为满足指定标准的频率范围。
本文描述了电连接器的设计,这些设计改善了高频信号的信号完整性(诸如在GHz范围内的频率,包括高达约25GHz或高达约40GHz、高达约56GHz或高达约60GHz或高达约75GHz或高达112GHz或更高的频率),同时维持高密度(诸如在相邻配合触头之间具有约3mm或更小的间隔,包括在列中的相邻触头之间例如在1mm与2.5mm之间或在2mm与2.5mm之间的中心至中心间隔)。配合接触部分的列之间的间隔可以是类似的,但不要求连接器中的全部配合触头之间的间隔都相同。
也可以改变制造技术。例如,描述了通过将多个晶片组织到加强件上来形成子卡连接器200的实施例。可以通过将多个屏蔽件和信号插座插入模制壳体中来形成等效结构。
使用特定连接器配置作为示例来描述连接器制造技术。举例说明了适合安装在背板上的插头连接器和适合安装在子卡上以便以直角插入背板的直角连接器。本文描述的用于形成连接器的配合和安装界面的技术适用于呈其它配置的连接器,诸如背板连接器、线缆连接器、堆叠连接器、夹层连接器、I/O连接器、芯片插座等。
在一些实施例中,接触尾部被示出为压配合式“针眼”顺应性区段,其被设计为装配在印刷电路板的过孔内。但是,也可使用其它配置,诸如表面安装组件、可焊接销等,因为本发明的方面不限于使用任何特定机构将连接器附接到印刷电路板。
本发明不限于前述描述和/或图中阐述的构造细节或组件配置。仅出于图解目的而提供各种实施例,并且本文中描述的概念能够以其它方式来实践或实行。而且,本文中使用的词组学和术语学是出于描述目的,并且不应被视为限制性。“包括”、“包含”、“具有”、“含有”或“涉及”及其等在本文中的变动的使用意欲涵盖在其后列出的项(或它们的等效物)和/或额外项。

Claims (20)

1.一种用于保持多个连接器模块的连接器壳体,每个连接器模块包括多个导电元件,所述连接器壳体包括:
第一材料的至少一个支撑构件;以及
与所述第一材料不同的第二材料的一部分,所述第二材料的所述一部分包括多个开口,所述多个开口被配置成保持所述多个连接器模块,
其中,所述第二材料包封所述至少一个支撑构件。
2.根据权利要求1所述的连接器壳体,其特征在于:
所述第一材料是金属。
3.根据权利要求1所述的连接器壳体,其特征在于:
所述第二材料包封所述至少一个支撑构件,使得所述至少一个支撑构件被与所述连接器模块的所述导电元件隔离。
4.根据权利要求1所述的连接器壳体,其特征在于:
所述至少一个支撑构件包括填充有所述第二材料的一个或多个孔。
5.根据权利要求1所述的连接器壳体,其特征在于:
所述至少一个支撑构件包括凸缘和细长构件,以及
所述第二材料的所述一部分包括包封所述凸缘的外壁和包封所述细长构件的内壁。
6.根据权利要求5所述的连接器壳体,其特征在于:
所述第二材料的所述一部分包括被配置成与配合连接器的连接器壳体的匹配特征配合的特征,以及
所述特征包括所述至少一个支撑构件的所述凸缘。
7.根据权利要求5所述的连接器壳体,其特征在于:
所述第二材料的所述一部分包括由多个第二开口分隔开的多个内壁,所述多个第二开口被配置成接收配合连接器的多个连接器模块。
8.一种电连接器,包括:
多个连接器模块,每个连接器模块包括多个导电元件,每个导电元件包括配合端、与所述配合端相反的安装端、以及在所述配合端与所述安装端之间延伸的中间部;以及
壳体,所述壳体包括第一材料的至少一个支撑构件以及包覆模制在所述至少一个支撑构件上的第二材料,所述第二材料包括界定多个开口的多个内壁,其中,所述多个连接器模块的所述多个导电元件的配合端通过所述开口露出。
9.根据权利要求8所述的电连接器,其特征在于:
所述至少一个支撑构件通过所述第二材料与所述连接器模块的所述导电元件隔离开。
10.根据权利要求8所述的电连接器,其特征在于:
所述至少一个支撑构件包括第一凸缘、第二凸缘以及在所述第一凸缘与所述第二凸缘之间延伸的细长构件,以及
所述第二材料包括分别包封所述第一凸缘和所述第二凸缘的第一外壁和第二外壁、以及所述多个内壁中的包封所述细长构件的内壁。
11.根据权利要求8所述的电连接器,其特征在于:
所述多个连接器模块中的每个连接器模块包括一个或多个引线框组件以及芯部构件,
每个所述引线框组件包括所述多个导电元件中的成列布置的至少一部分,以及
所述一个或多个引线框组件被附接到所述芯部构件的一侧或多侧。
12.根据权利要求11所述的电连接器,其特征在于:
所述多个内壁沿第一方向延伸;
所述芯部构件包括主体和配合部分,所述配合部分邻近被附接到所述芯部构件的所述一个或多个引线框组件的所述导电元件的配合端;以及
所述芯部构件的所述配合部分包括在垂直于所述第一方向的方向上延伸的突出部。
13.一种制造连接器的方法,所述方法包括:
提供至少一个支撑构件,所述至少一个支撑构件通过至少一个连结杆保持到载体条;
在具有第一打开/闭合方向的模具中在所述至少一个支撑构件上包覆模制材料,其中,模制在上的所述材料包括所述连接器的壳体,至少一个开口沿着平行于所述第一打开/闭合方向的第一方向延伸穿过所述壳体;
切断所述至少一个连结杆;以及
将连接器模块附接到所述壳体,其中,所述连接器模块包括具有配合接触部分的多个导电元件,并且所述配合接触部分在所述至少一个开口中的开口中露出。
14.根据权利要求13所述的方法,其特征在于,提供所述支撑构件包括:
对金属片材进行冲压和折弯。
15.根据权利要求13所述的方法,其特征在于,在所述至少一个支撑构件上模制所述材料包括:
将所述材料填充到所述至少一个支撑构件中的支撑构件的孔中。
16.根据权利要求13所述的方法,其特征在于,所述方法还包括:
在具有第二打开/闭合方向的模具中模制所述连接器模块的芯部构件,使得所述芯部构件包括主体和从所述主体沿着平行于所述第二打开/闭合方向且正交于所述第一方向的第二方向延伸的特征。
17.根据权利要求16所述的方法,其特征在于,所述方法还包括:
将一个或多个引线框组件附接到所述芯部构件,使得所述一个或多个引线框组件的导电元件的接触部分邻近所述芯部构件的所述特征。
18.根据权利要求16所述的方法,其特征在于:
所述壳体包括沿着所述第一方向延伸的通道,并且插入所述连接器模块包括使所述芯部构件的突出部分在所述通道中滑动。
19.根据权利要求16所述的方法,其特征在于,模制所述芯部构件包括:
在屏蔽件上模制损耗性材料。
20.根据权利要求19所述的方法,其特征在于:
所述损耗性材料形成沿着所述第二方向延伸的所述特征的至少一部分。
CN202180024932.8A 2020-01-27 2021-01-27 高速、高密度连接器 Pending CN115516716A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US202062966517P 2020-01-27 2020-01-27
US202062966528P 2020-01-27 2020-01-27
US62/966,517 2020-01-27
US62/966,528 2020-01-27
US202063076692P 2020-09-10 2020-09-10
US63/076,692 2020-09-10
PCT/US2021/015178 WO2021154779A1 (en) 2020-01-27 2021-01-27 High speed, high density connector

Publications (1)

Publication Number Publication Date
CN115516716A true CN115516716A (zh) 2022-12-23

Family

ID=77079597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180024932.8A Pending CN115516716A (zh) 2020-01-27 2021-01-27 高速、高密度连接器

Country Status (3)

Country Link
US (1) US11791585B2 (zh)
CN (1) CN115516716A (zh)
WO (1) WO2021154779A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115428275A (zh) 2020-01-27 2022-12-02 富加宜(美国)有限责任公司 高速连接器
WO2024097610A1 (en) * 2022-11-04 2024-05-10 Amphenol Corporation Miniaturized high speed connector

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979215B2 (en) 2001-11-28 2005-12-27 Molex Incorporated High-density connector assembly with flexural capabilities
CN100524954C (zh) 2002-12-04 2009-08-05 莫莱克斯公司 具有漏电接地结构的高密度连接器组件
US7371117B2 (en) 2004-09-30 2008-05-13 Amphenol Corporation High speed, high density electrical connector
US8157589B2 (en) 2004-11-24 2012-04-17 John Mezzalingua Associates, Inc. Connector having a conductively coated member and method of use thereof
US20060110977A1 (en) 2004-11-24 2006-05-25 Roger Matthews Connector having conductive member and method of use thereof
US7309257B1 (en) 2006-06-30 2007-12-18 Fci Americas Technology, Inc. Hinged leadframe assembly for an electrical connector
US7500871B2 (en) 2006-08-21 2009-03-10 Fci Americas Technology, Inc. Electrical connector system with jogged contact tails
US7794240B2 (en) 2007-04-04 2010-09-14 Amphenol Corporation Electrical connector with complementary conductive elements
JP5684710B2 (ja) 2008-09-23 2015-03-18 アンフェノール コーポレイション 高密度電気コネクタ
US7883366B2 (en) * 2009-02-02 2011-02-08 Tyco Electronics Corporation High density connector assembly
CN201374417Y (zh) 2009-03-02 2009-12-30 富士康(昆山)电脑接插件有限公司 背板连接器
US8366485B2 (en) 2009-03-19 2013-02-05 Fci Americas Technology Llc Electrical connector having ribbed ground plate
CN102598430B (zh) 2009-09-09 2015-08-12 安费诺有限公司 用于高速电连接器的压缩触头
WO2011140438A2 (en) 2010-05-07 2011-11-10 Amphenol Corporation High performance cable connector
US9257778B2 (en) 2012-04-13 2016-02-09 Fci Americas Technology High speed electrical connector
US9240644B2 (en) 2012-08-22 2016-01-19 Amphenol Corporation High-frequency electrical connector
CN115189187A (zh) 2016-10-19 2022-10-14 安费诺有限公司 柔性屏蔽件及电连接器
US11152729B2 (en) 2016-11-14 2021-10-19 TE Connectivity Services Gmbh Electrical connector and electrical connector assembly having a mating array of signal and ground contacts
US9923309B1 (en) 2017-01-27 2018-03-20 Te Connectivity Corporation PCB connector footprint
US9985389B1 (en) 2017-04-07 2018-05-29 Te Connectivity Corporation Connector assembly having a pin organizer
US10148025B1 (en) 2018-01-11 2018-12-04 Te Connectivity Corporation Header connector of a communication system
US10665973B2 (en) 2018-03-22 2020-05-26 Amphenol Corporation High density electrical connector
US10355416B1 (en) 2018-03-27 2019-07-16 Te Connectivity Corporation Electrical connector with insertion loss control window in a contact module
US11469554B2 (en) 2020-01-27 2022-10-11 Fci Usa Llc High speed, high density direct mate orthogonal connector

Also Published As

Publication number Publication date
US20230107361A1 (en) 2023-04-06
WO2021154779A1 (en) 2021-08-05
US11791585B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US11469553B2 (en) High speed connector
US12074398B2 (en) High speed connector
US12184012B2 (en) High speed, high density electrical connector with shielded signal paths preliminary class
US11799230B2 (en) High-frequency electrical connector with in interlocking segments
US11189971B2 (en) Robust, high-frequency electrical connector
US11588277B2 (en) High-frequency electrical connector with lossy member
US8801464B2 (en) Mezzanine connector
CN103682705B (zh) 高密度电连接器
US20090011641A1 (en) High speed, high density electrical connector
CN218827938U (zh) 可靠的高速、高密度连接器
CN115516716A (zh) 高速、高密度连接器
US20240332867A1 (en) High speed, high density connector
CN118738944A (zh) 高速、高密度连接器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination