CN115513174A - Semiconductor structures and methods of forming them - Google Patents
Semiconductor structures and methods of forming them Download PDFInfo
- Publication number
- CN115513174A CN115513174A CN202110699501.3A CN202110699501A CN115513174A CN 115513174 A CN115513174 A CN 115513174A CN 202110699501 A CN202110699501 A CN 202110699501A CN 115513174 A CN115513174 A CN 115513174A
- Authority
- CN
- China
- Prior art keywords
- layer
- forming
- dielectric layer
- conductive structure
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 138
- 239000004065 semiconductor Substances 0.000 title claims abstract description 81
- 238000005530 etching Methods 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 96
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 32
- 229910052721 tungsten Inorganic materials 0.000 claims description 32
- 239000010937 tungsten Substances 0.000 claims description 32
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 20
- 239000011737 fluorine Substances 0.000 claims description 20
- 229910052731 fluorine Inorganic materials 0.000 claims description 20
- 238000000231 atomic layer deposition Methods 0.000 claims description 19
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 14
- WIDQNNDDTXUPAN-UHFFFAOYSA-I tungsten(v) chloride Chemical compound Cl[W](Cl)(Cl)(Cl)Cl WIDQNNDDTXUPAN-UHFFFAOYSA-I 0.000 claims description 11
- 238000001465 metallisation Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000012495 reaction gas Substances 0.000 claims description 7
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 claims description 3
- 150000003657 tungsten Chemical class 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 239000010410 layer Substances 0.000 description 271
- 230000015572 biosynthetic process Effects 0.000 description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 229910052710 silicon Inorganic materials 0.000 description 18
- 239000010703 silicon Substances 0.000 description 18
- 229910010271 silicon carbide Inorganic materials 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- -1 silicon carbide nitride Chemical class 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5386—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76895—Local interconnects; Local pads, as exemplified by patent document EP0896365
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the technical field of semiconductors, in particular to a semiconductor structure and a forming method thereof.
背景技术Background technique
目前,在半导体制造过程中,采用刻蚀工艺在层间介质层中形成开口,随后在开口中沉积导电材料,形成电连接结构,以用于半导体器件之间的电连接是一种广泛使用的工艺。At present, in the semiconductor manufacturing process, an etching process is used to form an opening in the interlayer dielectric layer, and then a conductive material is deposited in the opening to form an electrical connection structure for the electrical connection between semiconductor devices. craft.
然而,现有的半导体结构难以在降低半导体结构的制造工艺难度的同时,兼顾半导体结构的性能和可靠性。However, in existing semiconductor structures, it is difficult to balance the performance and reliability of the semiconductor structure while reducing the difficulty of the manufacturing process of the semiconductor structure.
发明内容Contents of the invention
本发明解决的技术问题是提供一种半导体结构及其形成方法,以在降低半导体结构的制造工艺难度的同时,使半导体结构的性能和可靠性较好。The technical problem to be solved by the present invention is to provide a semiconductor structure and its forming method, so as to improve the performance and reliability of the semiconductor structure while reducing the difficulty of the manufacturing process of the semiconductor structure.
为解决上述技术问题,本发明的技术方案提供一种半导体结构,包括:基底,所述基底包括第一导电结构和器件结构,所述基底还包括位于所述第一导电结构和器件结构之间的第一介质层、位于第一介质层上的第二介质层、以及位于第一介质层和第二介质层之间的刻蚀停止层,所述第二介质层内具有电阻层;位于第二介质层内的第二导电结构,所述第二导电结构贯穿刻蚀停止层,所述第二导电结构与第一导电结构顶面接触;位于第二介质层内的中间导电膜,所述中间导电膜还位于所述电阻层顶面;位于第二介质层内的第三导电结构,所述第三导电结构还位于所述中间导电膜表面。In order to solve the above technical problems, the technical solution of the present invention provides a semiconductor structure, including: a substrate, the substrate includes a first conductive structure and a device structure, and the substrate also includes a semiconductor structure located between the first conductive structure and the device structure The first dielectric layer, the second dielectric layer on the first dielectric layer, and the etching stop layer between the first dielectric layer and the second dielectric layer, the second dielectric layer has a resistance layer; The second conductive structure in the second dielectric layer, the second conductive structure penetrates the etching stop layer, the second conductive structure is in contact with the top surface of the first conductive structure; the intermediate conductive film in the second dielectric layer, the The intermediate conductive film is also located on the top surface of the resistance layer; the third conductive structure is located in the second medium layer, and the third conductive structure is also located on the surface of the intermediate conductive film.
可选的,所述中间导电膜的材料包括无氟钨。Optionally, the material of the intermediate conductive film includes fluorine-free tungsten.
可选的,所述中间导电膜的厚度在2纳米以上。Optionally, the thickness of the intermediate conductive film is more than 2 nanometers.
可选的,所述第二导电结构的材料包括含氟钨,所述第三导电结构的材料包括含氟钨。Optionally, the material of the second conductive structure includes tungsten containing fluorine, and the material of the third conductive structure includes tungsten containing fluorine.
可选的,所述第一导电结构的材料包括钴。Optionally, the material of the first conductive structure includes cobalt.
可选的,所述电阻层的材料包括氮化钛。Optionally, the material of the resistance layer includes titanium nitride.
相应的,本发明的技术方案还提供一种半导体结构的形成方法,包括:提供基底,所述基底包括第一导电结构和器件结构,所述基底还包括位于所述第一导电结构和器件结构之间的第一介质层、位于第一介质层上的第二介质层、以及位于第一介质层和第二介质层之间的刻蚀停止层,所述第二介质层内具有电阻层;在所述第二介质层内形成第一开口和第二开口,所述第一开口底部暴露出第一导电结构上的刻蚀停止层,所述第二开口底部暴露出电阻层;采用选择性成膜工艺,在暴露的电阻层表面形成中间导电膜;在形成中间导电膜后,对暴露的刻蚀停止层进行刻蚀,直至暴露出第一导电结构表面;在对暴露的刻蚀停止层进行刻蚀后,在第一开口内形成第二导电结构;在对暴露的刻蚀停止层进行刻蚀后,在第二开口内形成第三导电结构。Correspondingly, the technical solution of the present invention also provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a first conductive structure and a device structure, and the substrate further includes a first dielectric layer in between, a second dielectric layer on the first dielectric layer, and an etching stop layer between the first dielectric layer and the second dielectric layer, the second dielectric layer has a resistance layer therein; A first opening and a second opening are formed in the second dielectric layer, the bottom of the first opening exposes the etch stop layer on the first conductive structure, and the bottom of the second opening exposes the resistance layer; using selective Film forming process, forming an intermediate conductive film on the surface of the exposed resistance layer; after forming the intermediate conductive film, etching the exposed etching stop layer until the surface of the first conductive structure is exposed; After etching, a second conductive structure is formed in the first opening; after the exposed etching stop layer is etched, a third conductive structure is formed in the second opening.
可选的,所述中间导电膜的材料包括无氟钨。Optionally, the material of the intermediate conductive film includes fluorine-free tungsten.
可选的,所述电阻层的材料包括氮化钛。Optionally, the material of the resistance layer includes titanium nitride.
可选的,形成所述无氟钨的选择性成膜工艺包括选择性原子层沉积工艺。Optionally, the selective film-forming process for forming the fluorine-free tungsten includes a selective atomic layer deposition process.
可选的,所述选择性原子层沉积工艺采用的反应气体包括五氯化钨。Optionally, the reactive gas used in the selective atomic layer deposition process includes tungsten pentachloride.
可选的,所述选择性原子层沉积工艺的参数还包括:采用的反应气体还包括氢气;反应温度为350摄氏度~450摄氏度。Optionally, the parameters of the selective atomic layer deposition process further include: the reaction gas used also includes hydrogen; the reaction temperature is 350°C-450°C.
可选的,在形成第二导电结构的同时,形成第三导电结构,其中,所述第二电结构和第三导电结构的材料包括含氟钨。Optionally, while forming the second conductive structure, a third conductive structure is formed, wherein the materials of the second conductive structure and the third conductive structure include fluorine-containing tungsten.
可选的,形成所述含氟钨的工艺包括选择性金属沉积工艺。Optionally, the process of forming the fluorine-containing tungsten includes a selective metal deposition process.
可选的,所述选择性金属沉积工艺采用的反应气体包六氟化钨。Optionally, the reaction gas used in the selective metal deposition process includes tungsten hexafluoride.
可选的,中间导电膜的厚度在2纳米以上,并且,中间导电膜的厚度小于第二开口的深度。Optionally, the thickness of the intermediate conductive film is more than 2 nanometers, and the thickness of the intermediate conductive film is smaller than the depth of the second opening.
可选的,对暴露的刻蚀停止层进行刻蚀的方法包括:在形成中间导电膜后,回刻蚀暴露的刻蚀停止层,直至暴露出第一导电结构表面。Optionally, the method for etching the exposed etch stop layer includes: after forming the intermediate conductive film, etching back the exposed etch stop layer until the surface of the first conductive structure is exposed.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明的技术方案提供的半导体结构的形成过程中,在形成第一开口和第二开口后,形成第二导电结构和第三导电结构。因此,不仅使得第一开口和第二开口的图形可以通过一个掩膜层进行图形传递,减少了掩膜层的数量、对第二介质层进行的刻蚀步骤的次数。并且,能够以一个平坦化步骤平坦化第二导电结构的材料和第三导电结构的材料,以形成第二导电结构和第三导电结构。从而,简化了半导体结构的制造工艺、降低半导体结构的制造工艺难度。在此基础上,由于第一介质层和第二介质层之间具有刻蚀停止层,并且,在对暴露的刻蚀停止层进行刻蚀之前,采用选择性成膜工艺,在暴露的电阻层表面形成中间导电膜,因此,一方面,实现了以采用选择性成膜工艺,在电阻层表面选择性的形成中间导电膜的材料,从而,以简单的工艺步骤,实现了所述中间导电膜的形成。另一方面,中间导电膜能够在形成第二导电结构的过程中保护电阻层,减少形成第二导电结构的工艺对电阻层的损耗,使电阻层能够通过中间导电膜,与第三导电结构之间形成良好的电性连接,从而,半导体结构的性能和可靠性好。综上,所述半导体结构的形成方法能够在降低半导体结构的制造工艺难度的同时,使半导体结构的性能和可靠性较好。In the formation process of the semiconductor structure provided by the technical solution of the present invention, after the first opening and the second opening are formed, the second conductive structure and the third conductive structure are formed. Therefore, not only the patterns of the first opening and the second opening can be transferred through one mask layer, but also the number of mask layers and the number of etching steps performed on the second dielectric layer are reduced. Also, the material of the second conductive structure and the material of the third conductive structure can be planarized in one planarization step to form the second conductive structure and the third conductive structure. Therefore, the manufacturing process of the semiconductor structure is simplified and the difficulty of the manufacturing process of the semiconductor structure is reduced. On this basis, since there is an etch stop layer between the first dielectric layer and the second dielectric layer, and before etching the exposed etch stop layer, a selective film-forming process is used, and the exposed resistive layer An intermediate conductive film is formed on the surface. Therefore, on the one hand, the material of the intermediate conductive film is selectively formed on the surface of the resistance layer by using a selective film-forming process, thereby realizing the realization of the intermediate conductive film with simple process steps. Formation. On the other hand, the intermediate conductive film can protect the resistance layer during the process of forming the second conductive structure, reduce the loss of the resistance layer in the process of forming the second conductive structure, and enable the resistance layer to pass through the intermediate conductive film and connect with the third conductive structure. A good electrical connection is formed between them, so that the performance and reliability of the semiconductor structure are good. To sum up, the method for forming the semiconductor structure can reduce the difficulty of the manufacturing process of the semiconductor structure while improving the performance and reliability of the semiconductor structure.
进一步,由于所述中间导电膜的材料包括无氟钨,所述中间导电膜与第一导电结构均为金属材料,因此,能够以同一个选择性金属沉积工艺同时形成第二导电结构和第三导电结构,进一步简化半导体结构的形成工艺。Further, since the material of the intermediate conductive film includes fluorine-free tungsten, the intermediate conductive film and the first conductive structure are both metal materials, therefore, the second conductive structure and the third conductive structure can be formed simultaneously by the same selective metal deposition process. The conductive structure further simplifies the formation process of the semiconductor structure.
进一步,由于选择性原子层沉积工艺所采用的反应气体包括五氯化钨,使得选择性原子层沉积工艺具有对于材料具有高选择性,极易在例如是氮化钛以及含氟钨、铝等金属表面生长,因此,当所述电阻层的材料包括上述材料时,通过所述选择性原子层沉积工艺能够高选择性的在电阻层表面形成中间导电膜的材料,从而,形成中间导电膜的步骤少、工艺窗口大且易于实现。Further, since the reactive gas used in the selective atomic layer deposition process includes tungsten pentachloride, the selective atomic layer deposition process has high selectivity for materials, and it is very easy to use titanium nitride, fluorine-containing tungsten, aluminum, etc. Metal surface growth, therefore, when the material of the resistance layer includes the above materials, the material of the intermediate conductive film can be formed on the surface of the resistance layer with high selectivity through the selective atomic layer deposition process, thereby forming the material of the intermediate conductive film Fewer steps, large process window and easy to implement.
附图说明Description of drawings
图1至图3是一种半导体结构的形成方法各步骤的剖面结构示意图;1 to 3 are schematic cross-sectional structure diagrams of each step of a method for forming a semiconductor structure;
图4至图9是本发明一实施例的半导体结构形成过程的剖面结构示意图。FIG. 4 to FIG. 9 are schematic cross-sectional structure diagrams of the formation process of the semiconductor structure according to an embodiment of the present invention.
具体实施方式detailed description
正如背景技术所述,现有的半导体结构难以在降低半导体结构的制造工艺难度的同时,兼顾半导体结构的性能和可靠性,以下结合附图进行详细说明。As mentioned in the background, it is difficult for the existing semiconductor structure to reduce the difficulty of the manufacturing process of the semiconductor structure while taking into account the performance and reliability of the semiconductor structure, which will be described in detail below with reference to the accompanying drawings.
图1至图3是一种半导体结构的形成方法各步骤的剖面结构示意图。1 to 3 are schematic cross-sectional structure diagrams of various steps in a method for forming a semiconductor structure.
请参考图1,提供基底(未图示),所述基底包括介质层100,在介质层100内分别具有第一导电层110和电阻层120。Referring to FIG. 1 , a substrate (not shown) is provided, the substrate includes a
所述第一导电层110的材料为钴,所述电阻层120的材料为氮化钛。The material of the first
请继续参考图1,在介质层100内形成第一开口131和第二开口132,其中,第一开口131底部暴露出第一导电层110顶面,第二开口132底部暴露出电阻层120顶面。Please continue to refer to FIG. 1, a
请参考图2,采用选择性钨沉积工艺,在第一开口131内形成第一插塞140,所述第一插塞140与第一导电层110顶面接触。Referring to FIG. 2 , a selective tungsten deposition process is used to form a
所述第一插塞140的材料包括钨,钨的电阻低,能够有效减小半导体结构的寄生电阻,提升半导体结构的性能。The material of the
请参考图3,在第二开口132内形成第二插塞150。Referring to FIG. 3 , a
随着工艺节点进一步减小,第一导电层110和电阻层120的关键尺寸减小、器件密度增大,使得第一开口131和第二开口132的关键尺寸减小、第一开口131和第二开口132间的间距减小,导致以不同掩膜层分别形成第一开口131、第二开口132的制造工艺复杂、工艺窗口小、工艺难度大。As the process node is further reduced, the critical dimensions of the first
在上述方法中,为了简化半导体结构的制造工艺,通过将多个光刻层的图形传递至同一掩膜层,并以同一个掩膜层为掩膜对介质层100进行刻蚀,同时形成第一开口131和第二开口132。从而,一方面,减少了掩膜层的数量、以及对介质层100进行的刻蚀步骤的次数。另一方面,在填充第一插塞140的材料、第二插塞150的材料后,能够在一个平坦化步骤中对第一插塞140的材料和第二插塞150的材料平坦化,使得所述平坦化工艺步骤少、简单。In the above method, in order to simplify the manufacturing process of the semiconductor structure, the patterns of multiple photoresist layers are transferred to the same mask layer, and the
然而,由于同时形成第一开口131和第二开口132,使得形成第一插塞140的过程中,电阻层120表面暴露,因此,所述选择性钨沉积工艺对电阻层120造成损坏,一方面,造成半导体结构的性能较差,另一方面,导致电阻层120与第二插塞150之间接触不良,使半导体结构发生器件连接异常的风险大,造成半导体结构的可靠性较差。具体而言,对于第一导电层110顶面进行预处理时,预处理过程中采用的氢气、氧气会与电阻层120的材料发生反应,使电阻层120的一部分材料由氮化钛转变为富钛(rich Ti),由此,选择性金属沉积工艺采用的含氟反应气体容易刻蚀、损耗电阻层120,使第二开口132正下方(如图2区域A所示)、以及第二开口正下方两侧(如图2中区域B所示)的电阻层120被损耗,导致第二插塞150与电阻层120之间接触不良(如图3中区域C所示),造成半导体结构的性能和可靠性较差。However, since the
综上,难以在降低半导体结构的制造工艺难度的同时,兼顾半导体结构的性能和可靠性。To sum up, it is difficult to take into account the performance and reliability of the semiconductor structure while reducing the difficulty of the manufacturing process of the semiconductor structure.
为了解决所述技术问题,本发明实施例提供一种半导体结构及其形成方法,由于采用选择性成膜工艺,在暴露的电阻层表面形成中间导电膜;在形成中间导电膜后,对暴露的刻蚀停止层进行刻蚀,直至暴露出第一导电结构表面;在对暴露的刻蚀停止层进行刻蚀后,在第一开口内形成第二导电结构,在第二开口内形成第三导电结构。从而,能够在降低半导体结构的制造工艺难度的同时,使半导体结构的性能和可靠性较好。In order to solve the above-mentioned technical problems, the embodiment of the present invention provides a semiconductor structure and its formation method. Due to the selective film formation process, an intermediate conductive film is formed on the surface of the exposed resistance layer; after the intermediate conductive film is formed, the exposed Etching the etch stop layer until the surface of the first conductive structure is exposed; after etching the exposed etch stop layer, a second conductive structure is formed in the first opening, and a third conductive structure is formed in the second opening. structure. Therefore, the performance and reliability of the semiconductor structure can be improved while reducing the difficulty of the manufacturing process of the semiconductor structure.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图4至图9是本发明一实施例的半导体结构形成过程的剖面结构示意图。FIG. 4 to FIG. 9 are schematic cross-sectional structure diagrams of the formation process of the semiconductor structure according to an embodiment of the present invention.
请参考图4,提供基底200,所述基底200包括:第一导电结构240和器件结构(未图示)、位于第一导电结构240和器件结构之间的第一介质层210、位于第一介质层210上的第二介质层220,以及位于第一介质层210和第二介质层220之间的刻蚀停止层230,所述第二介质层220内具有电阻层250。Please refer to FIG. 4 , a
所述器件结构包括PMOS晶体管、NMOS晶体管中的一者或全部。The device structure includes one or all of PMOS transistors and NMOS transistors.
所述第一介质层210的材料包括氧化硅、氮化硅、碳化硅、碳氧化硅、氮氧化硅、氧化铝、氮化铝、氮碳化硅和氮碳氧化硅中的一种或多种的组合。The material of the
在本实施例中,所述第一介质层210的材料包括氧化硅。In this embodiment, the material of the
所述第二介质层220的材料包括氧化硅、氮化硅、碳化硅、碳氧化硅、氮氧化硅、氧化铝、氮化铝、氮碳化硅和氮碳氧化硅中的一种或多种的组合。The material of the
在本实施例中,所述第二介质层220的材料包括氧化硅。In this embodiment, the material of the
所述刻蚀停止层230的作用,一方面在于,能够在形成电阻层250的过程中,保护第一介质层210和第一导电结构240,减少形成电阻层250的工艺对第一介质层210和第一导电结构240造成的损坏。另一方面在于,作为后续形成第一开口时的刻蚀停止层,降低了对第一导电结构240造成的过刻蚀风险。The function of the
不仅如此,所述刻蚀停止层230还能够在后续形成中间导电膜的过程中保护第一导电结构,减少形成中间导电膜的工艺对第一导电结构造成损伤的风险,从而,半导体结构的性能较好。Not only that, the
所述刻蚀停止层230的材料与第一介质层210的材料不同,并且,所述刻蚀停止层230的材料与第二介质层220的材料不同。The material of the
所述刻蚀停止层230的材料包括氧化硅、氮化硅、碳化硅、碳氧化硅、氮氧化硅、氧化铝、氮化铝、氮碳化硅和氮碳氧化硅中的一种或多种的组合。The material of the
在本实施例中,所述刻蚀停止层230的材料包括氮化硅。In this embodiment, the material of the
在本实施例中,所述刻蚀停止层230的厚度在10埃以上。In this embodiment, the thickness of the
所述刻蚀停止层230的厚度过小,容易在后续形成第一开口的刻蚀过程中被损耗至暴露第一导电结构240,造成第一导电结构240受到损伤。因此,刻蚀停止层230具有合适的厚度,即,选择刻蚀停止层230的厚度在10埃以上,能够进一步降低形成第一开口的刻蚀过程中对第一导电结构240造成损伤的风险,提高了半导体结构的性能和可靠性。The thickness of the
在本实施例中,所述第一导电结构240与所述器件结构之间电互连。In this embodiment, the first
在本实施例中,所述第一导电结构240的材料包括钴。In this embodiment, the material of the first
所述电阻层250位于所述刻蚀停止层230表面。The
在本实施例中,所述电阻层250的材料包括氮化钛。In this embodiment, the material of the
所述第一导电结构240在基底200表面的投影和电阻层250在基底表面的投影之间不重合。The projection of the first
在本实施例中,形成第一导电结构240和刻蚀停止层230的方法包括:在第一介质层210内形成第一导电开口(未图示);在所述第一导电开口内、第一介质层表面形成第一导电膜;平坦化所述第一导电膜,直至暴露出第一介质层210表面,以形成第一导电结构240;在第一介质层210表面和第一导电结构240表面形成刻蚀停止层230。In this embodiment, the method for forming the first
形成第一导电膜的工艺金属电镀工艺、化学气相沉积工艺、原子层沉积工艺和选择性金属生长工艺中的至少一种。The process of forming the first conductive film is at least one of metal plating process, chemical vapor deposition process, atomic layer deposition process and selective metal growth process.
在本实施例中,形成电阻层250和第二介质层220的方法包括:在所述刻蚀停止层230表面形成器件材料层(未图示);图形化所述器件材料层,以形成电阻层250;在刻蚀停止层230表面和电阻层250表面形成第二介质层220。In this embodiment, the method for forming the
请参考图5,在所述第二介质层220内形成第一开口261和第二开口262,所述第一开口261底部暴露出第一导电结构240上的刻蚀停止层230,所述第二开口262底部暴露出电阻层250。Referring to FIG. 5 , a
所述第二开口262为后续形成中间导电膜以及第三导电结构提供空间。The
形成第一开口261和第二开口262的方法包括:在第二介质层220表面形成掩膜层263;在所述掩膜层263表面形成第一开口光刻层(未图示),所述第一开口光刻层暴露出第一导电结构240上的至少部分掩膜层263表面;以所述第一开口光刻层为掩膜刻蚀掩膜层263,直至暴露出第二介质层220表面,在掩膜层263内形成第一掩膜开口264;在所述掩膜层263表面形成第二开口光刻层(未图示),所述第二开口光刻层暴露出电阻层250上的至少部分掩膜层263表面;以所述第二开口光刻层为掩膜刻蚀掩膜层263,直至暴露出第二介质层220表面,在掩膜层263内形成第二掩膜开口265;在形成第一掩膜开口264和第二掩膜开口265后,以掩膜层263为掩膜,刻蚀第二介质层220,直至暴露出刻蚀停止层230表面和电阻层250表面,以形成第一开口261和第二开口262。The method for forming the first opening 261 and the second opening 262 includes: forming a mask layer 263 on the surface of the second dielectric layer 220; forming a first opening photoresist layer (not shown) on the surface of the mask layer 263, the The first opening photoresist layer exposes at least part of the surface of the mask layer 263 on the first conductive structure 240; using the first opening photoresist layer as a mask to etch the mask layer 263 until the second dielectric layer 220 is exposed surface, a first mask opening 264 is formed in the mask layer 263; a second opening photoresist layer (not shown) is formed on the surface of the mask layer 263, and the second opening photoresist layer exposes the resistance layer 250 At least part of the surface of the mask layer 263 on the surface; the second opening photoresist layer is used as a mask to etch the mask layer 263 until the surface of the second dielectric layer 220 is exposed, and a second mask is formed in the mask layer 263 Opening 265; after forming the first mask opening 264 and the second mask opening 265, use the mask layer 263 as a mask to etch the second dielectric layer 220 until the surface of the etching stop layer 230 and the resistance layer 250 are exposed surface to form a first opening 261 and a second opening 262 .
刻蚀所述第二介质层220的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of etching the
在本实施例中,采用干法刻蚀工艺刻蚀所述第二介质层220,有利于提高形成的第一开口261和第二开口262的形貌,从而提高形成的半导体结构的性能。In this embodiment, the dry etching process is used to etch the
需要理解的是,根据实际的工艺步骤顺序需求,第一掩膜开口264可以在第二掩膜开口265之前形成,第一掩膜开口264也可以在第二掩膜开口265之前形成。It should be understood that the
在其他实施例中,形成第一开口和第二开口的方法包括:在第二介质层表面形成掩膜层;在所述掩膜层表面形成开口光刻层,所述开口光刻层暴露出第一导电结构和电阻层上的至少部分掩膜层表面;以所述开口光刻层为掩膜,刻蚀掩膜层直至暴露出第二介质层表面,在掩膜层内形成第一掩膜开口和第二掩膜开口;在形成第一掩膜开口和第二掩膜开口后,以掩膜层为掩膜,刻蚀第二介质层,直至暴露出刻蚀停止层和电阻层表面。In other embodiments, the method for forming the first opening and the second opening includes: forming a mask layer on the surface of the second dielectric layer; forming an opening photoresist layer on the surface of the mask layer, and the opening photoresist layer exposes At least part of the surface of the mask layer on the first conductive structure and the resistance layer; using the opening photoresist layer as a mask, etch the mask layer until the surface of the second dielectric layer is exposed, forming a first mask in the mask layer film opening and second mask opening; after forming the first mask opening and the second mask opening, use the mask layer as a mask to etch the second dielectric layer until the etching stop layer and the surface of the resistance layer are exposed .
在本实施例中,在形成第一开口261和第二开口262后,去除掩膜层263。In this embodiment, after the
请参考图6,采用选择性成膜工艺,在暴露的电阻层250表面形成中间导电膜270。Referring to FIG. 6 , an intermediate
通过采用选择性成膜工艺,能够以较为简单方便的工艺步骤实现中间导电膜270的形成。By adopting a selective film forming process, the formation of the intermediate
所述中间导电膜270的作用在于,在后续刻蚀暴露的刻蚀停止层230、以及形成第二导电结构和第三导电结构的过程中保护电阻层250。The function of the intermediate
由于第一介质层210和第二介质层220之间具有刻蚀停止层230,并且,在后续对暴露的刻蚀停止层230进行刻蚀之前,在暴露的电阻层250表面形成中间导电膜270,因此,在形成中间导电膜270的过程中,第一导电结构240被刻蚀停止层230覆盖,从而,能够以选择性成膜工艺,在电阻层250表面选择性的形成中间导电膜270的材料,进而,以简单的工艺步骤,实现了所述中间导电膜270的形成。Since there is an
在本实施例中,所述中间导电膜270的材料包括无氟钨(FFW,Fluorine Free W)。具体而言,所述中间导电膜270的材料包括无氟钨是指:中间导电膜270的材料包括钨,且中间导电膜270的材料中不含氟元素。In this embodiment, the material of the intermediate
由于所述中间导电膜270的材料包括无氟钨,所述中间导电膜270与第一导电结构240均为金属材料,因此,能够以同一个选择性金属沉积工艺,在后续同时形成第二导电结构和第三导电结构,进一步简化半导体结构的形成工艺。Since the material of the intermediate
在本实施例中,所述选择性成膜工艺包括选择性原子层沉积工艺。所述选择性原子层沉积工艺形成的中间导电膜270的致密性较好,因此,能够更好的对电阻层250起到保护作用。In this embodiment, the selective film forming process includes a selective atomic layer deposition process. The intermediate
具体的,所述选择性原子层沉积工艺采用的反应气体包括五氯化钨。由此,实现了形成包括无氟钨的第三导电膜272材料。Specifically, the reaction gas used in the selective atomic layer deposition process includes tungsten pentachloride. Thus, the formation of the material of the third conductive film 272 including fluorine-free tungsten is realized.
由于选择性原子层沉积工艺所采用的反应气体包括五氯化钨,使得选择性原子层沉积工艺具有对于材料具有高选择性,极易在例如是氮化钛以及含氟钨、铝等金属表面生长,因此,当所述电阻层250的材料包括上述材料(氮化钛等)时,通过所述选择性原子层沉积工艺能够高选择性的在电阻层250表面形成中间导电膜270的材料,从而,形成中间导电膜270的步骤少、工艺窗口大且易于实现。Since the reactive gas used in the selective atomic layer deposition process includes tungsten pentachloride, the selective atomic layer deposition process has high selectivity for materials, and it is very easy to be on the surface of metals such as titanium nitride and fluorine-containing tungsten and aluminum. Therefore, when the material of the
在本实施例中,中间导电膜270的厚度在2纳米以上,并且,中间导电膜270的厚度小于第二开口262的深度。In this embodiment, the thickness of the intermediate
一方面,通过使中间导电膜270的厚度在2纳米以上,确保了中间导电膜270的材料连续性,有利于中间导电膜270完全覆盖电阻层250表面,以提高中间导电膜270在后续形成第二导电结构和第三导电结构时,对电阻层250的保护能力,减少后续形成第二导电结构和第三导电结构的工艺对电阻层250造成损耗的风险。另一方面,选择性原子层沉积工艺沉积材料的速率较低,中间导电膜270过厚不仅导致材料浪费,还会造成工艺时间增加、工艺效率变低。因此,选择合适的中间导电膜270的厚度范围,即,使所述中间导电膜270的厚度小于第二开口262的深度,能够使中间导电膜270在更好的保护电阻层250的同时,避免材料浪费并提高工艺效率。On the one hand, by making the thickness of the intermediate
在本实施例中,所述选择性成膜工艺的参数还包括:采用的反应气体还包括氢气;反应温度为350摄氏度~450摄氏度。In this embodiment, the parameters of the selective film forming process further include: the reaction gas used also includes hydrogen; the reaction temperature is 350°C-450°C.
在本实施例中,所述选择性原子层沉积工艺的参数还包括:采用的气体还包括氮气。In this embodiment, the parameters of the selective atomic layer deposition process further include: the gas used also includes nitrogen.
具体而言,所述选择性原子层沉积过程中,在腔体中若干次通入五氯化钨,其中,每次通入五氯化钨的时长为0.1秒至2秒。每次通入五氯化钨后,通过通入氮气进行吹扫,将未吸附的五氯化钨排出腔体,其中,每次通入氮气的时长为0.5秒至3秒。在每次去除未吸附的五氯化钨后,继续通入氢气与吸附的五氯化钨反应,以形成包括无氟钨的部分导电保护膜250材料,其中,每次通入氢气的时长为0.5秒至3秒。Specifically, during the selective atomic layer deposition process, tungsten pentachloride is injected into the cavity several times, wherein the duration of each injection of tungsten pentachloride is 0.1 to 2 seconds. After feeding tungsten pentachloride each time, nitrogen penetrating is used for purging, and unadsorbed tungsten pentachloride is discharged out of the cavity, wherein, the duration of each feeding nitrogen is 0.5 seconds to 3 seconds. After removing unadsorbed tungsten pentachloride each time, continue to feed hydrogen to react with adsorbed tungsten pentachloride to form a part of the conductive
通过采用所述选择性成膜工艺的参数,能够实现形成的中间导电膜270的厚度在所述中间导电膜270的厚度范围内,由此,兼顾了对电阻层250的保护效果与工艺效率。By adopting the parameters of the selective film forming process, the thickness of the formed intermediate
请参考图7,在形成中间导电膜270后,对暴露的刻蚀停止层230进行刻蚀,直至暴露出第一导电结构240表面。Referring to FIG. 7 , after the intermediate
由于在形成中间导电膜270后,对暴露的刻蚀停止层230进行刻蚀,因此,在对暴露的刻蚀停止层230进行刻蚀的过程中,中间导电膜270能够保护电阻层250,减少了所述刻蚀的过程对电阻层250造成损伤的风险,从而,提高了半导体结构的性能和可靠性。Since the exposed
在本实施例中,对暴露的刻蚀停止层230进行刻蚀的方法包括:在形成中间导电膜270后,回刻蚀暴露的刻蚀停止层230,直至暴露出第一导电结构240表面。In this embodiment, the method for etching the exposed
由于中间导电膜270的材料以及第二介质层220的材料均与刻蚀停止层230的材料不同,因此,在对暴露的刻蚀停止层230进行刻蚀的过程中,刻蚀工艺能够对刻蚀停止层230具有较大的刻蚀速率的同时,对中间导电膜270的材料以及第二介质层220的材料具有较小的刻蚀速率,由此,能够采用回刻蚀的方式刻蚀暴露的刻蚀停止层230。Since the material of the intermediate
由于在形成中间导电膜270后,能够通过回刻蚀的方式刻蚀暴露的刻蚀停止层230,因此,减少了半导体制造过程中需要采用的光刻层和掩膜层,从而,简化了半导体结构的制造工艺。Since the exposed
对暴露的刻蚀停止层230进行刻蚀的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The etching process for the exposed
在本实施例中,采用干法刻蚀工艺对暴露的刻蚀停止层230进行刻蚀,有利于提高半导体结构的形貌,从而提高形成的半导体结构的性能。In this embodiment, the exposed
在对暴露的刻蚀停止层230进行刻蚀后,在第一开口261内形成第二导电结构,在第二开口262内形成第三导电结构。After etching the exposed
由于在形成第一开口261和第二开口262后,形成第二导电结构和第三导电结构。因此,不仅使得第一开口261和第二开口262的图形可以通过一个掩膜层(图5所示的掩膜层263)进行图形传递,减少了掩膜层的数量、以及对第二介质层220进行的刻蚀步骤的次数。并且,能够以一个平坦化步骤平坦化第二导电结构的材料和第三导电结构的材料,以形成第二导电结构和第三导电结构。从而,简化了半导体结构的制造工艺、降低半导体结构的制造工艺难度。Because after the
在此基础上,由于第一介质层220和第二介质层230之间具有刻蚀停止层230,并且,在对暴露的刻蚀停止层230进行刻蚀之前,采用选择性成膜工艺,在暴露的电阻层250表面形成中间导电膜270。因此,一方面,实现了以采用选择性成膜工艺,在电阻层250表面选择性的形成中间导电膜270的材料,从而,以简单的工艺步骤,实现了所述中间导电膜270的形成。另一方面,中间导电膜270能够在形成第二导电结构的过程中保护电阻层250,减少形成第二导电结构的工艺对电阻层250的损耗,使电阻层250能够通过中间导电膜270,与第三导电结构之间形成良好的电性连接,从而,半导体结构的性能和可靠性好。On this basis, since there is an
综上,所述半导体结构的形成方法能够在降低半导体结构的制造工艺难度的同时,使半导体结构的性能和可靠性较好。To sum up, the method for forming the semiconductor structure can reduce the difficulty of the manufacturing process of the semiconductor structure while improving the performance and reliability of the semiconductor structure.
具体形成第二导电结构和第三导电结构的过程请参考图8至图9。For the specific process of forming the second conductive structure and the third conductive structure, please refer to FIG. 8 to FIG. 9 .
请参考图8,在对暴露的刻蚀停止层230进行刻蚀后,对暴露的第一导电结构240表面、中间导电膜270表面进行预处理步骤。Referring to FIG. 8 , after etching the exposed
通过所述预处理步骤,能够除第一导电结构240表面、中间导电膜270表面的自然氧化膜、残留污染物等,以提高半导体结构的性能和可靠性。Through the pretreatment step, the natural oxide film and residual pollutants on the surface of the first
由于在电阻层250表面形成中间导电膜270后,进行所述预处理步骤,因此,中间导电膜270能够在所述预处理步骤中对电阻层250起到保护作用,避免了所述预处理步骤的过程中采用的氢气、氧气与电阻层250的材料发生反应,避免了电阻层250的一部分材料由氮化钛转变为富钛,从而,提高了半导体结构的性能和可靠性。同时,也避免了后续形成第二导电结构和第三导电结构的材料的工艺中,反应气体对富钛材料的刻蚀风险。由此,中间导电膜270能够在形成第二导电结构的过程中保护电阻层250,减少形成第二导电结构的工艺对电阻层250的损耗,使电阻层250能够通过中间导电膜270,与第三导电结构之间形成良好的电性连接,从而,半导体结构的性能和可靠性好。Since the pretreatment step is performed after the intermediate
请参考图9,在所述预处理步骤之后,采用选择性金属沉积工艺,在第一开口261和第二开口262内沉积导电材料层(未图示),所述导电材料层表面高于第二介质层220表面;在第二介质层220表面以及导电材料层表面形成牺牲层(未图示),所述牺牲层表面高于导电材料层表面;平坦化所述牺牲层和导电材料层,直至暴露出第二介质层220表面,以在第一开口261内形成第二导电结构281,在第二开口262内形成第三导电结构282。Please refer to FIG. 9, after the pretreatment step, a selective metal deposition process is used to deposit a conductive material layer (not shown) in the
具体而言,在本实施例中,在形成第二导电结构281的同时,形成第三导电结构282,由此,进一步简化了制造工艺。Specifically, in this embodiment, the third
在本实施例中,所述第二导电结构281的材料包括含氟钨,所述第三导电结构282的材料包括含氟钨。具体而言,第二导电结构281和第三导电结构282的材料包括含氟钨是指:第二导电结构281和第三导电结构282的材料包括钨,且第二导电结构281和第三导电结构282的材料中含有氟元素。In this embodiment, the material of the second
具体的,所述选择性金属沉积工艺采用的反应气体包六氟化钨。由此,第二导电结构281和第三导电结构282的材料中含有氟元素。Specifically, the reaction gas used in the selective metal deposition process includes tungsten hexafluoride. Therefore, the materials of the second
在其他实施例中,形成第二导电结构和第三导电结构的工艺包括:金属电镀工艺或化学气相沉积工艺。In other embodiments, the process of forming the second conductive structure and the third conductive structure includes: a metal plating process or a chemical vapor deposition process.
在其他实施例中,第二导电结构和第三导电结构材料包括:铜、钴、氮化钛、钛、钽、氮化钽、钌、氮化钌和铝中的一种或多种的组合。In other embodiments, the materials of the second conductive structure and the third conductive structure include: a combination of one or more of copper, cobalt, titanium nitride, titanium, tantalum, tantalum nitride, ruthenium, ruthenium nitride and aluminum .
在本实施例中,所述牺牲层为所述平坦化工艺提供牺牲材料。需要理解的是,所述牺牲层会在所述平坦化过程中被去除。In this embodiment, the sacrificial layer provides sacrificial material for the planarization process. It should be understood that the sacrificial layer will be removed during the planarization process.
在本实施例中,所述平坦化工艺包括化学机械研磨工艺。In this embodiment, the planarization process includes a chemical mechanical polishing process.
相应的,本发明一实施例还提供一种上述方法所形成的半导体结构,请继续参考9,所述半导体结构包括:基底200(如图4所示),所述基底200包括第一导电结构240和器件结构(未图示)、位于第一导电结构240和器件结构之间的第一介质层210、位于第一介质层210上的第二介质层220、以及位于第一介质层210和第二介质层220之间的刻蚀停止层230,所述第二介质层220内具有电阻层250;位于第二介质层220内的第二导电结构281,所述第二导电结构281贯穿刻蚀停止层230,所述第二导电结构281与第一导电结构240顶面接触;位于第二介质层220内的中间导电膜270,所述中间导电膜270还位于所述电阻层250顶面;位于第二介质层220内的第三导电结构282,所述第三导电结构282还位于所述中间导电膜270表面。Correspondingly, an embodiment of the present invention also provides a semiconductor structure formed by the above method, please continue to refer to 9, the semiconductor structure includes: a substrate 200 (as shown in FIG. 4 ), and the
所述器件结构包括PMOS晶体管、NMOS晶体管中的一者或全部。The device structure includes one or all of PMOS transistors and NMOS transistors.
所述第一介质层210的材料包括氧化硅、氮化硅、碳化硅、碳氧化硅、氮氧化硅、氧化铝、氮化铝、氮碳化硅和氮碳氧化硅中的一种或多种的组合。The material of the
在本实施例中,所述第一介质层210的材料包括氧化硅。In this embodiment, the material of the
所述第二介质层220的材料包括氧化硅、氮化硅、碳化硅、碳氧化硅、氮氧化硅、氧化铝、氮化铝、氮碳化硅和氮碳氧化硅中的一种或多种的组合。The material of the
在本实施例中,所述第二介质层220的材料包括氧化硅。In this embodiment, the material of the
所述刻蚀停止层230的材料与第一介质层210的材料不同,并且,所述刻蚀停止层230的材料与第二介质层220的材料不同。The material of the
所述刻蚀停止层230的材料包括氧化硅、氮化硅、碳化硅、碳氧化硅、氮氧化硅、氧化铝、氮化铝、氮碳化硅和氮碳氧化硅中的一种或多种的组合。The material of the
在本实施例中,所述刻蚀停止层230的材料包括氮化硅。In this embodiment, the material of the
在本实施例中,所述刻蚀停止层230的厚度在10埃以上。In this embodiment, the thickness of the
所述第一导电结构240在基底200表面的投影和电阻层250在基底表面的投影之间不重合。The projection of the first
在本实施例中,所述第一导电结构240与所述器件结构之间电互连。In this embodiment, the first
在本实施例中,所述第一导电结构240的材料包括钴。In this embodiment, the material of the first
所述电阻层250位于所述刻蚀停止层230表面。The
在本实施例中,所述电阻层250的材料包括氮化钛。In this embodiment, the material of the
在本实施例中,所述中间导电膜270的材料包括无氟钨。In this embodiment, the material of the intermediate
在本实施例中,中间导电膜270的厚度在2纳米以上,并且,中间导电膜270的厚度小于第二开口262(如图6所示)的深度。In this embodiment, the thickness of the intermediate
在本实施例中,所述第二导电结构281的材料包括含氟钨,所述第三导电结构282的材料包括含氟钨。In this embodiment, the material of the second
在其他实施例中,第二导电结构和第三导电结构材料包括:铜、钴、氮化钛、钛、钽、氮化钽、钌、氮化钌和铝中的一种或多种的组合。In other embodiments, the materials of the second conductive structure and the third conductive structure include: a combination of one or more of copper, cobalt, titanium nitride, titanium, tantalum, tantalum nitride, ruthenium, ruthenium nitride and aluminum .
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110699501.3A CN115513174B (en) | 2021-06-23 | 2021-06-23 | Semiconductor structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110699501.3A CN115513174B (en) | 2021-06-23 | 2021-06-23 | Semiconductor structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115513174A true CN115513174A (en) | 2022-12-23 |
CN115513174B CN115513174B (en) | 2025-03-18 |
Family
ID=84499680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110699501.3A Active CN115513174B (en) | 2021-06-23 | 2021-06-23 | Semiconductor structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115513174B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119008562A (en) * | 2024-10-23 | 2024-11-22 | 湖北星辰技术有限公司 | Semiconductor device, manufacturing method thereof and memory system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000055478A (en) * | 1999-02-06 | 2000-09-05 | 윤종용 | Method for forming butting contact of semiconductor device |
TW200915429A (en) * | 2007-07-13 | 2009-04-01 | Hitachi Ltd | Semiconductor device and method for manufacturing the same |
US20190229062A1 (en) * | 2018-01-25 | 2019-07-25 | Samsung Electronics Co., Ltd. | Semiconductor device |
CN112309954A (en) * | 2019-07-29 | 2021-02-02 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN112582407A (en) * | 2019-09-30 | 2021-03-30 | 台湾积体电路制造股份有限公司 | Integrated circuit device and method of manufacturing the same |
-
2021
- 2021-06-23 CN CN202110699501.3A patent/CN115513174B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000055478A (en) * | 1999-02-06 | 2000-09-05 | 윤종용 | Method for forming butting contact of semiconductor device |
TW200915429A (en) * | 2007-07-13 | 2009-04-01 | Hitachi Ltd | Semiconductor device and method for manufacturing the same |
US20190229062A1 (en) * | 2018-01-25 | 2019-07-25 | Samsung Electronics Co., Ltd. | Semiconductor device |
CN112309954A (en) * | 2019-07-29 | 2021-02-02 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN112582407A (en) * | 2019-09-30 | 2021-03-30 | 台湾积体电路制造股份有限公司 | Integrated circuit device and method of manufacturing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119008562A (en) * | 2024-10-23 | 2024-11-22 | 湖北星辰技术有限公司 | Semiconductor device, manufacturing method thereof and memory system |
CN119008562B (en) * | 2024-10-23 | 2024-12-27 | 湖北星辰技术有限公司 | Semiconductor device, manufacturing method thereof and memory system |
Also Published As
Publication number | Publication date |
---|---|
CN115513174B (en) | 2025-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6056868B2 (en) | Wiring formation method | |
TWI316739B (en) | Methods of forming dual-damascene metal wiring patterns for integrated circuit devices and wiring patterns formed thereby | |
US9768113B2 (en) | Self aligned via in integrated circuit | |
TWI239069B (en) | Method and apparatus for forming metal-metal oxide etch stop/barrier for integrated circuit interconnects | |
US11488861B2 (en) | Method for manufacturing an interconnect structure having a selectively formed bottom via | |
TWI246730B (en) | A novel nitride barrier layer to prevent metal (Cu) leakage issue in a dual damascene structure | |
TWI603429B (en) | Method of forming a semiconductor component having an air gap | |
CN100372097C (en) | Method for making copper interconnection line in integrated circuit | |
TW517295B (en) | Semiconductor device and method of manufacturing the same | |
CN109841678A (en) | Fin field effect transistor device structure | |
CN107887323A (en) | Interconnection structure and its manufacture method | |
TWI288430B (en) | Structure with via hole and trench and the fabrication method thereof | |
CN115513174A (en) | Semiconductor structures and methods of forming them | |
CN111916391A (en) | Semiconductor structure and forming method thereof | |
CN101345288B (en) | Preparation method of CuxO resistor random memory | |
CN115513177A (en) | Semiconductor structures and methods of forming them | |
CN112309954B (en) | Semiconductor device and method for forming the same | |
KR20240042464A (en) | Barrier construction for metal interconnects using manganese and graphene | |
CN101159310A (en) | Wet oxidation preparation method of Cu2O resistor memory | |
US12080650B1 (en) | Interconnect structure with low capacitance and high thermal conductivity | |
JPH09167801A (en) | Method for forming tungsten plug of semiconductor element | |
US11955329B2 (en) | Method of forming conductive feature including cleaning step | |
US20250140698A1 (en) | Interconnect structure with low capacitance and high thermal conductivity | |
JP2001015596A (en) | Method for manufacturing semiconductor device | |
KR20040051189A (en) | Semiconductor device having ruthenium bitline and method for fabrication of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |