CN115511690A - Image processing method and image processing chip - Google Patents
Image processing method and image processing chip Download PDFInfo
- Publication number
- CN115511690A CN115511690A CN202110696747.5A CN202110696747A CN115511690A CN 115511690 A CN115511690 A CN 115511690A CN 202110696747 A CN202110696747 A CN 202110696747A CN 115511690 A CN115511690 A CN 115511690A
- Authority
- CN
- China
- Prior art keywords
- image
- processed
- gaussian
- resolution
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及机器人视觉技术领域,具体涉及一种图像处理方法和图像处理芯片。The invention relates to the technical field of robot vision, in particular to an image processing method and an image processing chip.
背景技术Background technique
SIFT (Scale-Invariant Feature Transform,尺度不变特征转换)图像尺度空间生成方法是在图像多尺度空间理论上发展出来的,SIFT算法为鲁棒性较好的一种图像特征检测方法,具有尺度、旋转、平移、缩放等不变性。广泛应用于视频跟踪、图像三维建模、物体识别、图像全景拼接等领域。由于SIFT算法计算量大,在实际应用中,随着摄像机性能的提高,图像的分辨率越来越高,每幅图像中包含的信息量也越来越大,需要处理的数据也大大增加,单纯使用软件来实现图像处理变得相对困难,难以满足实时性需求。因此,很多文章提出利用硬件电路的高速并行运算能力,对SIFT算法采用高速并行架构设计,以达到实时性的要求。SIFT (Scale-Invariant Feature Transform, scale-invariant feature transformation) image scale space generation method is developed on the basis of image multi-scale space theory. SIFT algorithm is a robust image feature detection method with scale, Invariance to rotation, translation, scaling, etc. Widely used in video tracking, image 3D modeling, object recognition, image panorama stitching and other fields. Due to the large amount of calculation of the SIFT algorithm, in practical applications, with the improvement of the performance of the camera, the resolution of the image is getting higher and higher, the amount of information contained in each image is also increasing, and the data to be processed is also greatly increased. It is relatively difficult to implement image processing by purely using software, and it is difficult to meet real-time requirements. Therefore, many articles propose to use the high-speed parallel computing capability of the hardware circuit and adopt a high-speed parallel architecture design for the SIFT algorithm to meet the real-time requirements.
SIFT算法建立尺度空间高斯金字塔需要进行多次高斯卷积。高斯卷积具有线性可分的性质,一个二维高斯滤波函数可分解为两个一维高斯滤波函数乘积,即采用行高斯滤波和列高斯滤波级联来达到滤波目的,这样做有利于硬件电路并行架构实现,节省硬件资源。SIFT算法尺度空间高斯金字塔的建立在硬件电路实现的过程中,要均衡运算速度、运算精度和硬件电路面积等因素。由于图像数据高斯卷积采用级联方式,先按行做高斯卷积,需要把行高斯卷积结果暂存起来,再按列做高斯卷积。高斯卷积核长度越大,计算精度虽然会越高,但计算的中间过程中需要存储的图像行数就越多,导致硬件电路的面积也就越大。同时,图像宽度分辨率也是影响硬件电路的面积的关键因素,图像宽度分辨率越大,硬件电路的面积也越大。为节省硬件电路面积,现有技术通常会限制高斯卷积核长度和图像宽度分辨率,对SIFT算法的运算精度和大分辨率图像适用有很大影响。因此,如何提高运算精度又能节省硬件电路面积,就成为硬件电路实现SIFT算法尺度空间高斯金字塔的技术难点。The SIFT algorithm needs to perform multiple Gaussian convolutions to establish a scale-space Gaussian pyramid. Gaussian convolution has the property of linear separability. A two-dimensional Gaussian filter function can be decomposed into the product of two one-dimensional Gaussian filter functions, that is, the cascade of row Gaussian filter and column Gaussian filter is used to achieve the purpose of filtering, which is beneficial to hardware circuits. Parallel architecture is implemented to save hardware resources. The SIFT algorithm scale space Gaussian pyramid is established in the process of hardware circuit realization, and factors such as computing speed, computing precision and hardware circuit area must be balanced. Since the Gaussian convolution of image data adopts a cascade method, the Gaussian convolution is performed by row first, and the Gaussian convolution result of the row needs to be temporarily stored, and then the Gaussian convolution is performed by column. The larger the length of the Gaussian convolution kernel, the higher the calculation accuracy, but the more image lines need to be stored in the middle of the calculation, resulting in a larger area of the hardware circuit. At the same time, the image width resolution is also a key factor affecting the area of the hardware circuit. The larger the image width resolution, the larger the area of the hardware circuit. In order to save the hardware circuit area, the existing technology usually limits the length of the Gaussian convolution kernel and the resolution of the image width, which has a great impact on the calculation accuracy of the SIFT algorithm and the application of large-resolution images. Therefore, how to improve the calculation accuracy and save the hardware circuit area has become a technical difficulty for the hardware circuit to realize the scale-space Gaussian pyramid of the SIFT algorithm.
发明内容Contents of the invention
为解决上述问题,本发明提供了一种图像处理方法和图像处理芯片,可以在硬件电路面积减小的情况下,保证较高的运算精度和准确性。本发明的具体技术方案如下:In order to solve the above problems, the present invention provides an image processing method and an image processing chip, which can ensure higher calculation precision and accuracy while reducing the hardware circuit area. Concrete technical scheme of the present invention is as follows:
一种图像处理方法,包括如下步骤:步骤1:基于待处理图像的分辨率大小,沿分辨率的宽度方向将所述待处理图像划分为若干待处理图块;步骤2:相邻的两个待处理图块之间部分叠加,形成一个复用区;步骤3:确定高斯卷积核的长度,并对所述待处理图块进行高斯卷积滤波,得到高斯金字塔图像;步骤4:基于高斯金字塔图像,将高斯金字塔图像中的下一层图像减上一层图像得到高斯差分金字塔图像;步骤5:基于高斯差分金字塔图像,对其待处理图像中的待处理图块的像素点进行极值点搜索,搜索范围达到相邻的复用区;步骤6:根据极值点搜索结果,得到所述待处理图像中的稳定特征点。An image processing method, comprising the following steps: Step 1: Based on the resolution of the image to be processed, the image to be processed is divided into several blocks to be processed along the width direction of the resolution; Step 2: two adjacent The blocks to be processed are partially superimposed to form a multiplexing area; step 3: determine the length of the Gaussian convolution kernel, and perform Gaussian convolution filtering on the block to be processed to obtain a Gaussian pyramid image; step 4: based on Gaussian Pyramid image, the Gaussian difference pyramid image is obtained by subtracting the next layer image in the Gaussian pyramid image from the upper layer image; Step 5: Based on the Gaussian difference pyramid image, perform extreme value on the pixels of the block to be processed in the image to be processed Point search, the search range reaches the adjacent multiplexing area; Step 6: Obtain the stable feature points in the image to be processed according to the extreme point search results.
进一步地,所述步骤1具体包括如下步骤:步骤11:确定待处理图像的分辨率的宽度和高度;步骤12:以待处理图像的分辨率的高度为高度单位,以预设分辨率宽度为宽度单位,沿分辨率的宽度方向将所述待处理图像进行划分,形成标准待处理图块;步骤13:判断所述待处理图像中未划分的部分的分辨率的宽度是否小于所述宽度单位,如果否,则返回步骤12,继续进行标准待处理图块的划分,如果是,则直接将该未划分的部分作为一个非标准待处理图块。Further, the
进一步地,所述步骤11中所述的待处理图像的分辨率的宽度为640pt,分辨率的高度为480pt;所述步骤12中所述的预设分辨率宽度为84pt。Further, the resolution width of the image to be processed in step 11 is 640pt, and the resolution height is 480pt; the preset resolution width described in step 12 is 84pt.
进一步地,所述步骤2具体包括如下步骤:步骤21:确定每个待处理图块的起始列边界和终点列边界;Further, the
步骤22:以当前待处理图块的起始列边界作为复用开始列边界,以上一个待处理图块的终点列边界作为复用结束列边界,所述复用开始列边界和所述复用结束列边界之间的区块作为复用区,所述复用区中设有预设列数的像素点。Step 22: Use the start column boundary of the current block to be processed as the multiplex start column boundary, and the end column boundary of the previous block to be processed as the multiplex end column boundary, the multiplex start column boundary and the multiplex The block between the end column boundaries is used as a multiplexing area, and the multiplexing area is provided with pixels of a preset number of columns.
进一步地,所述步骤22中所述的预设列数为4列。Further, the preset number of columns in step 22 is 4 columns.
进一步地,所述步骤3具体包括如下步骤:步骤31:确定高斯卷积核的长度为L,则高斯卷积核半径为R,R=(L-1)/2;步骤32:搜索当前待处理图块的当前像素点和以当前像素点为中心的高斯卷积核半径范围内的像素点,利用搜索到的像素点进行高斯卷积运算,得到平滑处理后的像素点;步骤33:将当前待处理图块的像素点都进行平滑处理后,进行下一个待处理图块的像素点的平滑处理,直到完成整个待处理图像的像素点的平滑处理,得到一幅高斯图像;步骤34:基于不同的高斯函数,重复步骤32和步骤33,得到多幅高斯图像,形成一组高斯图像组;步骤35:基于不同分辨率的待处理图像,重复步骤32、步骤33和步骤34,得到多组高斯图像组,形成高斯金字塔图像。Further, the
进一步地,所述步骤35中所形成的高斯金字塔图像,其最底层的高斯图像组具有6幅高斯图像。Further, in the Gaussian pyramid image formed in step 35, the Gaussian image group at the bottom layer has 6 Gaussian images.
进一步地,所述步骤5具体包括如下步骤:步骤51:确定高斯差分金字塔图像中的一幅图像作为当前待处理图像;步骤52:从当前待处理图像中的当前待处理图块的起始列边界往后算起的第N个像素点开始进行极值点搜索,搜索至从复用结束列边界往前算起的第N个像素点结束,完成一行像素点的极值点搜索;步骤53:重复步骤52直到完成当前待处理图块中的各行像素点的极值点搜索;步骤54:选取下一个待处理图块作为当前待处理图块,返回步骤52,直到完成当前待处理图像中像素点的极值点搜索。Further, the step 5 specifically includes the following steps: Step 51: Determine an image in the Gaussian difference pyramid image as the current image to be processed; Step 52: From the starting column of the current block to be processed in the current image to be processed The Nth pixel point counted backward from the boundary starts to search for the extreme value point, and the search ends at the Nth pixel point counted forward from the multiplexing end column boundary, and the extreme point point search of a row of pixels is completed; step 53 : Repeat step 52 until the extreme point search of each row of pixels in the current block to be processed is completed; Step 54: select the next block to be processed as the current block to be processed, and return to step 52 until the completion of the current block to be processed Extremum point search for pixels.
一种图像处理芯片,包括:分区模块,用于根据待处理图像的分辨率大小,沿分辨率的宽度方向将所述待处理图像划分为若干待处理图块,并且相邻的两个待处理图块之间部分叠加,形成一个复用区;运算模块,用于根据高斯卷积核的长度,对所述待处理图块进行高斯卷积滤波,得到高斯金字塔图像,并基于高斯金字塔图像,将高斯金字塔图像中的下一层图像减上一层图像得到高斯差分金字塔图像;分析模块,用于根据高斯差分金字塔图像,对其待处理图像中的待处理图块的像素点进行极值点搜索,搜索范围达到相邻的复用区;输出模块,用于根据极值点搜索结果,输出所述待处理图像中的稳定特征点。An image processing chip, comprising: a partition module, configured to divide the image to be processed into several blocks to be processed along the width direction of the resolution according to the resolution of the image to be processed, and two adjacent blocks to be processed The blocks are partially superimposed to form a multiplexing area; the operation module is used to perform Gaussian convolution filtering on the block to be processed according to the length of the Gaussian convolution kernel to obtain a Gaussian pyramid image, and based on the Gaussian pyramid image, The Gaussian difference pyramid image is obtained by subtracting the upper layer image from the next layer image in the Gaussian pyramid image; the analysis module is used to perform extreme value points on the pixels of the block to be processed in the image to be processed according to the Gaussian difference pyramid image Searching, the search range reaches the adjacent multiplexing area; the output module is used to output the stable feature points in the image to be processed according to the extreme point search results.
本发明的由于效果在于:通过把一次处理大分辨率图像的过程,转换成多次处理小分辨图像的过程,对原图像分辨率没有限制,能适应各种分辨率的图像。如此,宽度大的图像就被分割成多块宽度小的图像,在每一块宽度小的图像高斯卷积的计算过程中,中间计算过程存储的每行图像宽度变小,从而能够大大减小图像处理芯片的硬件电路面积,并且还能保证高斯卷积滤波的计算精度。此外,所述方法通过设置复用区,在不同区块边界保证了极值点搜索的连续不间断,实现了相邻区块极值点搜索的无缝对接,确保了数据处理的连续性和准确性。The effect of the present invention is that by converting the process of processing a large-resolution image into multiple processes of processing a small-resolution image, there is no limit to the resolution of the original image and it can adapt to images of various resolutions. In this way, an image with a large width is divided into multiple images with a small width. During the calculation process of the Gaussian convolution of each small-width image, the width of each line of image stored in the intermediate calculation process becomes smaller, which can greatly reduce the image. The hardware circuit area of the processing chip can also ensure the calculation accuracy of Gaussian convolution filtering. In addition, the method ensures the continuous and uninterrupted search of extreme points at the boundaries of different blocks by setting multiplexing areas, realizes the seamless connection of extreme point searches in adjacent blocks, and ensures the continuity of data processing and accuracy.
附图说明Description of drawings
图1为本发明实施例所述的图像处理方法的流程示意图。FIG. 1 is a schematic flowchart of an image processing method according to an embodiment of the present invention.
图2为本发明实施例所述对待处理图像进行区块划分的示意图。FIG. 2 is a schematic diagram of dividing an image to be processed into blocks according to an embodiment of the present invention.
图3为本发明实施例所述待处理图块之间叠加形成复用区的示意图一。FIG. 3 is a schematic diagram 1 of overlapping blocks to be processed to form a multiplexing area according to an embodiment of the present invention.
图4为本发明实施例所述待处理图块之间叠加形成复用区的示意图二。FIG. 4 is a schematic diagram 2 of overlapping blocks to be processed to form a multiplexing area according to an embodiment of the present invention.
图5为本发明实施例所述图像处理芯片的结构示意框图。Fig. 5 is a schematic block diagram of the structure of the image processing chip according to the embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细描述。应当理解,下面所描述的具体实施例仅用于解释本发明,并不用于限定本发明。本领域的普通技术人员可以在没有一些具体细节的情况下实施实施例。例如,某些电路可以采用电路框图表示,避免实施例方案在不必要的细节描述中变得冗余和繁杂。为了不混淆实施例,可以不详细显示公知的电路、结构和技术细节。The technical solutions in the embodiments of the present invention will be described in detail below with reference to the drawings in the embodiments of the present invention. It should be understood that the specific embodiments described below are only used to explain the present invention, not to limit the present invention. Embodiments can be practiced by one of ordinary skill in the art without some of the specific details. For example, some circuits may be represented by circuit block diagrams, so as to avoid redundant and complicated descriptions of the embodiments in unnecessary details. Well-known circuits, structures and technical details may not be shown in detail so as not to obscure the embodiments.
如图1所示的图像处理方法,该处理方法可以由视觉机器人中的主控芯片或者专用图像处理芯片执行。为了便于描述,后续实施例中会直接将该图像处理方法的执行主体表述为机器人。所述方法具体包括如下步骤:The image processing method shown in FIG. 1 can be executed by a main control chip or a dedicated image processing chip in a vision robot. For the convenience of description, in the subsequent embodiments, the execution subject of the image processing method will be directly expressed as a robot. Described method specifically comprises the steps:
步骤1:首先,机器人通过其自身的摄像头拍摄到图像,然后机器人对拍摄到的图像进行处理,所要处理的图像称为待处理图像。机器人基于待处理图像的分辨率大小,沿分辨率的宽度方向将所述待处理图像划分为若干待处理图块。所述待处理图像的分辨率的大小是由机器人的图像传感器的配置决定的,一般为640*480 pt、1024*768 pt或者1920*1080 pt,等等。其中,640、1024和1920就表示图像分辨率的宽度值,480、768和1080就表示图像分辨率的高度值。如图2所示,最外围的长方形边框表示图像的边界,长方形的长边(即图中的横线)方向就是分辨率的宽度方向,长方形的短边(即图中的竖直线)方向就是分辨率的高度方向。1、2、3等数字标示的每一个小长方形边框,表示一个所划分的待处理图块,图2中的图像一共划分为n个待处理图块,n的数值可以根据具体的图像分辨率大小和所要划分的图块大小进行设置,一般选取大于或等于6的数值。Step 1: First, the robot captures images through its own camera, and then the robot processes the captured images, and the images to be processed are called images to be processed. Based on the resolution of the image to be processed, the robot divides the image to be processed into several blocks to be processed along the width direction of the resolution. The resolution of the image to be processed is determined by the configuration of the image sensor of the robot, generally 640*480 pt, 1024*768 pt or 1920*1080 pt, etc. Among them, 640, 1024 and 1920 represent the width value of the image resolution, and 480, 768 and 1080 represent the height value of the image resolution. As shown in Figure 2, the outermost rectangular border represents the boundary of the image, the direction of the long side of the rectangle (that is, the horizontal line in the figure) is the width direction of the resolution, and the direction of the short side of the rectangle (that is, the vertical line in the figure) is the height direction of the resolution. Each small rectangular border marked with numbers such as 1, 2, and 3 represents a divided block to be processed. The image in Figure 2 is divided into n blocks to be processed. The value of n can be determined according to the specific image resolution. Set the size and the size of the block to be divided, and generally select a value greater than or equal to 6.
步骤2:机器人将相邻的两个待处理图块之间进行部分叠加,形成一个复用区。如图3所示,图中最外围的长方形边框是一幅待处理图像的边界,图中的大黑点表示像素点,连续的小黑点表示省略。n的数值可以根据具体的图像分辨率大小和所要划分的图块大小进行设置。假设以n=2为例,待处理图像的像素为480*360,则图3中的待处理图像一共分为3个待处理图块,n-1所标示两个箭头之间的线段对应的图块为第一个待处理图块,n所标示两个箭头之间的线段对应的图块为第二个待处理图块,n+1所标示两个箭头之间的线段对应的图块为第三个待处理图块,每个待处理图块的像素为164*360,即每个待处理图块中包括164列和360行像素点,其中,相邻两个待处理图块之间有4个像素点是叠加的,形成复用区A和复用区B。Step 2: The robot partially superimposes two adjacent blocks to be processed to form a reuse area. As shown in Figure 3, the outermost rectangular border in the figure is the boundary of an image to be processed, the large black dots in the figure represent pixels, and the continuous small black dots represent omissions. The value of n can be set according to the specific image resolution size and the size of the tiles to be divided. Assuming that n=2 is taken as an example, the pixels of the image to be processed are 480*360, then the image to be processed in Figure 3 is divided into 3 blocks to be processed, and the line segment between the two arrows marked by n-1 corresponds to The block is the first block to be processed, the block corresponding to the line segment between the two arrows marked by n is the second block to be processed, and the block corresponding to the line segment between the two arrows marked by n+1 It is the third block to be processed, and the pixel size of each block to be processed is 164*360, that is, each block to be processed includes 164 columns and 360 rows of pixels, wherein, between two adjacent blocks to be processed There are 4 pixels in between that are superimposed to form multiplexing area A and multiplexing area B.
步骤3:机器人根据系统内置的参数,确定高斯卷积核的长度。进行图像的高斯卷积处理时,高斯卷积核长度越大,计算精度虽然会越高,但计算的中间过程中需要存储的图像行数就越多,导致硬件电路的面积也就越大。为节省硬件电路面积,现有技术通常会限制高斯卷积核长度,这样会对SIFT算法的运算精度和大分辨率图像适用有很大影响。由于本图像处理方法通过前述步骤的图像分块技术,可以在保证运算精度的前提下,采用较大值的高斯卷积核长度。然后机器人根据所确定的高斯卷积核的值,对所述待处理图块进行高斯卷积滤波,得到高斯金字塔图像。高斯金字塔图像的构建方法在现有技术中已经公开,此处不再赘述。Step 3: The robot determines the length of the Gaussian convolution kernel according to the built-in parameters of the system. When performing Gaussian convolution processing of images, the larger the length of the Gaussian convolution kernel, the higher the calculation accuracy, but the more image lines need to be stored in the middle of the calculation, resulting in a larger area of the hardware circuit. In order to save the hardware circuit area, the existing technology usually limits the length of the Gaussian convolution kernel, which will have a great impact on the calculation accuracy of the SIFT algorithm and the application of large-resolution images. Since the image processing method adopts the image block technology in the aforementioned steps, it can adopt a larger value of the Gaussian convolution kernel length under the premise of ensuring the accuracy of the operation. Then the robot performs Gaussian convolution filtering on the block to be processed according to the determined value of the Gaussian convolution kernel to obtain a Gaussian pyramid image. The construction method of the Gaussian pyramid image has been disclosed in the prior art, and will not be repeated here.
步骤4:机器人基于高斯金字塔图像,将高斯金字塔图像中的下一层图像减上一层图像得到高斯差分金字塔图像。所述高斯差分金字塔,即DOG(Difference of Gaussian)金字塔是在高斯金字塔的基础上构建起来的,DOG金字塔的第1组第1层是由高斯金字塔的第1组第2层减第1组第1层得到的。以此类推,逐组逐层生成每一个差分图像,所有差分图像构成差分金字塔图像。Step 4: Based on the Gaussian pyramid image, the robot subtracts the upper layer image from the next layer image in the Gaussian pyramid image to obtain a Gaussian difference pyramid image. The Gaussian difference pyramid, that is, the DOG (Difference of Gaussian) pyramid is built on the basis of the Gaussian pyramid. The first group and the first layer of the DOG pyramid are the first group and the second layer of the Gaussian pyramid minus the first group and the first layer. 1 layer is obtained. By analogy, each difference image is generated group by group and layer by layer, and all difference images form a difference pyramid image.
步骤5:机器人基于高斯差分金字塔图像,对其待处理图像中的待处理图块的像素点进行极值点搜索。在进行极值点搜索时,机器人需要对高斯差分金字塔上下两层和同层周围相邻的一共26个像素点进行比较,从而确定极值点。当机器人对待处理图块的边界的像素点进行极值点搜索时,需要用到邻近区块的像素点,如果相邻的待处理图块之间不设置有复用区,而SRAM存储器中只存储了当前待处理图块的像素点,则当前待处理图块边界的像素点就无法进行极值点搜索。为解决此问题,本实施例所述的图像处理方法采取了图像冗余分割法,通过在两个相邻的待处理图块之间叠加若干个像素点进行复用,可以在进行极值点搜索时,搜索起始点从复用区中部的像素点开始,到下一个复用区中部的像素点结束。如图3所示,需要搜索待处理图块n的极值点时,从复用区A的第一行的第3个像素点开始,从左至右依次搜索至复用区B的第2个像素点结束,完成待处理图块n的第一行像素点的极值搜索。采用同样的方式,依次完成第二行、第三行至最后一行的像素点的极值搜索。在对待处理图像的最左侧边界和最右侧边界的像素点进行极值点搜索时,可以忽略边界外的数值,不会对处理结果产生太大的影响。采用本实施例方法可以在不同待处理图块的边界进行极值点搜索的连续不间断,实现了相邻待处理图块极值点搜索的无缝对接,提高数据处理的连续性和准确性。Step 5: Based on the Gaussian difference pyramid image, the robot performs extreme point search on the pixel points of the block to be processed in the image to be processed. When searching for extreme points, the robot needs to compare the upper and lower layers of the Gaussian difference pyramid with a total of 26 adjacent pixels around the same layer to determine the extreme points. When the robot searches for the extreme points of the pixels on the border of the blocks to be processed, the pixels of the adjacent blocks need to be used. If there is no multiplexing area between the adjacent blocks to be processed, and only If the pixel points of the current block to be processed are stored, the pixel points at the boundary of the current block to be processed cannot be searched for extreme points. In order to solve this problem, the image processing method described in this embodiment adopts the image redundancy segmentation method, and by superimposing several pixel points between two adjacent blocks to be processed for multiplexing, the extreme points can be When searching, the search starting point starts from the pixel point in the middle of the multiplexing area and ends at the pixel point in the middle of the next multiplexing area. As shown in Figure 3, when it is necessary to search for the extreme point of block n to be processed, start from the third pixel in the first row of multiplexing area A, and search from left to right to the second pixel in multiplexing area B. The pixel points end, and the extremum search of the first row of pixels of block n to be processed is completed. In the same way, the extremum search of the pixels in the second row, the third row to the last row is completed in sequence. When searching for extreme points on the leftmost and rightmost border pixels of the image to be processed, the values outside the borders can be ignored, and the processing results will not be greatly affected. Using the method of this embodiment, the continuous and uninterrupted search for extreme points can be performed on the boundaries of different blocks to be processed, realizing the seamless connection of the search for extreme points of adjacent blocks to be processed, and improving the continuity and accuracy of data processing .
步骤6:由于所确定的极值点是在不同模糊程度、不同尺度下都存在特征点,这些特征点正是SIFT算法所要提取的稳定特征,所以,根据极值点搜索结果,就可以直接得到所述待处理图像中的稳定特征点,这些稳定特征点能够准确地体现待处理图像中包含的信息。Step 6: Since the determined extreme points have feature points in different fuzzy degrees and different scales, these feature points are the stable features to be extracted by the SIFT algorithm. Therefore, according to the search results of the extreme points, you can directly get The stable feature points in the image to be processed, these stable feature points can accurately reflect the information contained in the image to be processed.
所述方法通过把一次处理大分辨率图像的过程,转换成多次处理小分辨图像的过程,对原图像分辨率没有限制,能适应各种分辨率的图像。如此,宽度大的图像就被分割成多块宽度小的图像,在每一块宽度小的图像高斯卷积的计算过程中,中间计算过程存储的每行图像宽度变小,从而能够大大减小图像处理芯片的硬件电路面积,并且还能保证高斯卷积滤波的计算精度。此外,所述方法通过设置复用区,在不同区块边界保证了极值点搜索的连续不间断,实现了相邻区块极值点搜索的无缝对接,确保了数据处理的连续性和准确性。The method converts a process of processing a large-resolution image into a process of processing a small-resolution image multiple times, has no limitation on the resolution of the original image, and can adapt to images of various resolutions. In this way, an image with a large width is divided into multiple images with a small width. During the calculation process of the Gaussian convolution of each small-width image, the width of each line of image stored in the intermediate calculation process becomes smaller, which can greatly reduce the image. The hardware circuit area of the processing chip can also ensure the calculation accuracy of Gaussian convolution filtering. In addition, the method ensures the continuous and uninterrupted search of extreme points at the boundaries of different blocks by setting multiplexing areas, realizes the seamless connection of extreme point searches in adjacent blocks, and ensures the continuity of data processing and accuracy.
作为其中一种实施方式,所述步骤1具体包括如下步骤:首先,在步骤11中,机器人确定待处理图像的分辨率的宽度和高度。然后进入步骤12,机器人以待处理图像的分辨率的高度为高度单位,以预设分辨率宽度为宽度单位,沿分辨率的宽度方向将所述待处理图像进行划分,形成标准待处理图块。每个标准待处理图块的分辨率宽度和高度都是一样。其中,所述预设分辨率宽度可以根据芯片面积和计算精度等研发设计需求进行相应配置,一般可以配置为60pt至90pt中的任意一值。接着进入步骤13,机器人判断所述待处理图像中未划分的部分的分辨率的宽度是否小于所述宽度单位,如果否,表明未划分的部分还能继续划分出标准待处理图块,则返回步骤12,继续进行标准待处理图块的划分。如果是,表明剩余的部分已经不能满足一个标准待处理图块的划分要求,则直接将该未划分的部分作为一个非标准待处理图块。机器人进行图像处理时,对待标准待处理图块和非标准待处理图块的处理方式是一样的。本实施例所述方法通过标准待处理图块的划分方式,可以适用于不同大小分辨率的图像,并且只要把标准待处理图块的分辨率宽度和高度设置得比较合理,就可以最大限度地提高图像的处理速率。As one of the implementation manners, the
作为其中一种实施方式,所述步骤11中所述的待处理图像的分辨率的宽度为640pt,分辨率的高度为480pt。所述步骤12中所述的预设分辨率宽度为84pt。则,这个待处理图像就可以划分为8个待处理图块,相邻两个待处理图块之间有4个像素点是重叠的。通过这种划分方式,可以划分出8个标准的待处理图块,可以达到最佳的图像处理效果。As one of the implementation manners, the resolution width of the image to be processed in step 11 is 640pt, and the resolution height is 480pt. The preset resolution width described in step 12 is 84pt. Then, the image to be processed can be divided into 8 blocks to be processed, and 4 pixels overlap between two adjacent blocks to be processed. Through this division method, 8 standard tiles to be processed can be divided, and the best image processing effect can be achieved.
作为其中一种实施方式,所述步骤2具体包括如下步骤:首先,在步骤21中,机器人确定每个待处理图块的起始列边界和终点列边界,如图4所示,边界ai是第一个待处理图块的起始列边界,边界ck是第一个待处理图块的终点列边界;边界bj是第二个待处理图块的起始列边界,边界em是第二个待处理图块的终点列边界;边界dl是第三个待处理图块的起始列边界,边界go是第三个待处理图块的终点列边界;边界fn是第四个待处理图块的起始列边界,边界hp是第四个待处理图块的终点列边界。然后进入步骤22,以第二个待处理图块的起始列边界bj作为复用开始列边界,以第一个待处理图块的终点列边界ck作为复用结束列边界,从而形成第一个复用区bckj。以此类推,形成复用区deml和复用区fgon。这些复用区中设有预设列数的像素点,所述预设列数可以根据具体的图像处理要求进行相应设置,一般可以设置为4列至8列。本实施例所述方法通过以边界的形式划分复用区,可以准确地限定复用区的范围,保证复用区内像素点的复用效率。As one of the implementations, the
作为其中一种实施方式,所述步骤22中所述的预设列数为4列。基于极值点的搜索范围,将复用区中的像素点设置为4列,可以达到最大的复用效率,避免不必要的冗余和计算资源浪费。As one of the implementation manners, the preset number of columns in step 22 is 4 columns. Based on the search range of extreme points, setting the pixels in the multiplexing area to 4 columns can achieve the maximum multiplexing efficiency and avoid unnecessary redundancy and waste of computing resources.
作为其中一种实施方式,所述步骤3具体包括如下步骤:首先,在步骤31中,机器人根据系统内置参数确定高斯卷积核的长度为L,则可以计算出高斯卷积核半径为R,R=(L-1)/2。然后进入步骤32,机器人搜索当前待处理图块的当前像素点和以当前像素点为中心的高斯卷积核半径范围内的像素点,利用搜索到的像素点进行高斯卷积运算,得到平滑处理后的像素点。具体的高斯卷积运算,可以参照现有的运算方法,此处不再赘述。接着进入步骤33中,将当前待处理图块的像素点都进行平滑处理后,进行下一个待处理图块的像素点的平滑处理,直到完成整个待处理图像的像素点的平滑处理,得到一幅高斯图像。紧接着进入步骤34,基于不同的高斯函数,重复步骤32和步骤33,得到多幅高斯图像,形成一组高斯图像组。所述高斯函数可以根据具体的产品设计需求进行预先配置。最后进入步骤35,基于不同分辨率的待处理图像,重复步骤32、步骤33和步骤34,得到多组高斯图像组,形成高斯金字塔图像。现有技术中已经公开了高斯金字塔的构建方法,本实施例方法与其的区别主要在于步骤32和步骤33,本实施例方法进行图像的高斯处理时,是根据逐个待处理图块的方式进行,如此可以适应不同分辨率大小的图像。至于其它与现有技术相同的方法步骤,此处就不再赘述。As one of the implementations, the
假定选取高斯卷积核长度为L=33pt,则高斯卷积核半径R=(L-1)/2=16pt。对分辨率为84*480的待处理图块做高斯卷积滤波,建立高斯金字塔,可以利用高斯卷积具有线性可分的性质,将一个二维高斯滤波函数分解为两个一维高斯滤波函数乘积。首先,进行高斯行卷积滤波,然后,由于列高斯卷积滤波需要用行高斯卷积滤波结果,所以SRAM需要存储33行的行滤波数据,即所需存储的像素点为84*33 = 2772个。假如不对原分辨率为640*480的图像进行分割,则所需存储的像素点为640*33 = 21120个,存储面积将大大增加。现有技术为减少硬件电路面积,往往会牺牲计算精度,采用的高斯卷积核长度都比较小,一般为9,需存储的像素点为640*9 = 5760个,存储面积仍然较大。同时,高斯卷积滤波的计算精度会大大降低,导致SIFT算法生成的特征点的稳定性大大降低,不能满足高精度的应用需求。本实施例所述方法通过分区进行高斯卷积处理,不仅可以降低电路面积,还能保证运算精度。Assuming that the length of the Gaussian convolution kernel is selected as L=33pt, the radius of the Gaussian convolution kernel is R=(L-1)/2=16pt. Perform Gaussian convolution filtering on the image blocks to be processed with a resolution of 84*480, and build a Gaussian pyramid. Gaussian convolution can be used to have a linearly separable property, and a two-dimensional Gaussian filter function can be decomposed into two one-dimensional Gaussian filter functions. product. First, perform Gaussian row convolution filtering, and then, because the column Gaussian convolution filtering needs to use the row Gaussian convolution filtering results, the SRAM needs to store 33 rows of row filtering data, that is, the required pixel points for storage are 84*33 = 2772 indivual. If the image with the original resolution of 640*480 is not segmented, 640*33 = 21120 pixels need to be stored, and the storage area will be greatly increased. In order to reduce the area of the hardware circuit in the existing technology, the calculation accuracy is often sacrificed. The length of the Gaussian convolution kernel used is relatively small, generally 9, and the number of pixels to be stored is 640*9 = 5760, and the storage area is still relatively large. At the same time, the calculation accuracy of the Gaussian convolution filter will be greatly reduced, resulting in a greatly reduced stability of the feature points generated by the SIFT algorithm, which cannot meet the high-precision application requirements. The method described in this embodiment performs Gaussian convolution processing by partitioning, which can not only reduce the circuit area, but also ensure the calculation accuracy.
作为其中一种实施方式,所述步骤35中所形成的高斯金字塔图像,其最底层的高斯图像组具有6幅高斯图像,如此可以提高数据的准确性,保证图像处理质量。As one of the implementations, the Gaussian pyramid image formed in step 35 has 6 Gaussian images in the bottom Gaussian image group, which can improve the accuracy of data and ensure the quality of image processing.
作为其中一种实施方式,所述步骤5具体包括如下步骤:首先,在步骤51中,机器人确定高斯差分金字塔图像中的一幅图像作为当前待处理图像。然后进入步骤52,机器人从当前待处理图像中的当前待处理图块的起始列边界往后算起的第N个像素点开始进行极值点搜索,搜索至从复用结束列边界往前算起的第N个像素点结束,完成一行像素点的极值点搜索。所述N的数值可以根据设计需求进行相应设置,一般可以设置为2至4中的任意值,包括2和4。接着进入步骤53,重复执行步骤52直到完成当前待处理图块中的各行像素点的极值点搜索。最后进入步骤54,选取下一个待处理图块作为当前待处理图块,再返回步骤52进行该图块的搜索,直到完成当前待处理图像中各个待处理图块的像素点的极值点搜索。As one of the implementation manners, the step 5 specifically includes the following steps: First, in step 51, the robot determines an image in the Gaussian difference pyramid image as the current image to be processed. Then enter step 52, the robot starts to search for the extreme value point from the Nth pixel point after the start column boundary of the current block to be processed in the current image to be processed, and searches to the end of the multiplexing column boundary forward The counted Nth pixel ends, and the extreme point search of a row of pixels is completed. The value of N can be set correspondingly according to the design requirements, and generally can be set to any value from 2 to 4, including 2 and 4. Then enter step 53, repeat step 52 until the extreme point search of each row of pixel points in the current block to be processed is completed. Finally enter step 54, select the next block to be processed as the current block to be processed, and then return to step 52 to search for the block until the extreme point search of the pixels of each block to be processed in the current image to be processed is completed .
以图3为例,假设该图像为高斯差分金字塔图像中的一幅图像,机器人对该图像进行极值点搜索。机器人进行待处理图块n的极值点搜索时,从复用区A中的第一行的第3个像素点(从左往右算)开始进行搜索,搜索至复用区B中的第2个像素点(从左往右算)结束,如此,完成一行像素点的极值点搜索。同样的,机器人从复用区A中的第二行的第3个像素点(从左往右算)开始进行搜索,搜索至复用区B中的第2个像素点(从左往右算)结束,如此,完成另一行像素点的极值点搜索。以此类推,直到机器人完成当前待处理图块n的极值点搜索。同理,机器人对所有待处理图块都完成了极值点搜索后,即完成了高斯差分金字塔图像中的一幅图像的极值点处理。需要说明的是,第一个待处理图块和最后一个待处理图块,由于最外侧的边界不存在复用区,进行极值点搜索时,可以直接忽略边界外的数据,对搜索结果不会产生太大的影响。Taking Figure 3 as an example, assuming that the image is an image in the Gaussian difference pyramid image, the robot searches for extreme points on the image. When the robot searches for the extreme point of block n to be processed, it starts to search from the third pixel point (counting from left to right) in the first row in multiplexing area A, and searches to the 3rd pixel point in multiplexing area B. 2 pixels (counting from left to right) end, in this way, the extreme point search of a row of pixels is completed. Similarly, the robot starts to search from the third pixel in the second row in multiplexing area A (counting from left to right), and searches to the second pixel in multiplexing area B (counting from left to right) ) ends, and in this way, the extreme point search of another row of pixels is completed. And so on, until the robot completes the extreme point search of the current block n to be processed. Similarly, after the robot completes the extreme point search for all the blocks to be processed, it completes the extreme point processing of an image in the Gaussian difference pyramid image. It should be noted that, since there is no multiplexing area on the outermost boundary of the first block to be processed and the last block to be processed, when searching for extreme points, the data outside the boundary can be directly ignored, and the search results are not affected. would have too much of an impact.
本实施例方法中,SIFT算法在进行极值点搜索时,采取了图像冗余分割法,该方法的特点是每两个相邻的待处理图块有4个素点是重叠的,这样在不同区块边界就保证了极值点搜索的连续不间断,实现了相邻区块极值点搜索的无缝对接,提高了搜索数据的准确性。In the method of this embodiment, the SIFT algorithm adopts the image redundancy segmentation method when searching for extreme points, and the feature of this method is that every two adjacent blocks to be processed have 4 prime points to overlap, so in The boundaries of different blocks ensure the continuous and uninterrupted search of extreme points, realize the seamless connection of extreme point searches in adjacent blocks, and improve the accuracy of search data.
如图5所示的图像处理芯片,包括依次连接的分区模块、运算模块、分析模块和输出模块。其中,所述分区模块用于根据待处理图像的分辨率大小,沿分辨率的宽度方向将所述待处理图像划分为若干待处理图块,并且相邻的两个待处理图块之间部分叠加,形成一个复用区。所述运算模块用于根据高斯卷积核的长度,对所述待处理图块进行高斯卷积滤波,得到高斯金字塔图像,并基于高斯金字塔图像,将高斯金字塔图像中的下一层图像减上一层图像得到高斯差分金字塔图像。所述分析模块用于根据高斯差分金字塔图像,对其待处理图像中的待处理图块的像素点进行极值点搜索,搜索范围达到相邻的复用区。所述输出模块用于根据极值点搜索结果,输出所述待处理图像中的稳定特征点。本实施例所述芯片,采用图像冗余分割法,利用分区模块把分辨率大的图像,分割成多块小分辨率的图像,很巧妙的把一次处理大分辨率图像的过程,转换成多次处理小分辨图像的过程。这种芯片对原图像分辨率没有限制,能适应各种分辨率的图像,在建立尺度空间高斯金字塔时是按照标准化的小区块图像来处理,和原图像大小分辨率无关,支持更大的分辨率和匹配范围。在标准化的小区块图像高斯卷积滤波过程中,中间计算过程存储的每行图像宽度很小,从而能大大减小硬件电路的面积,利于采用更大的高斯卷积核长度来提高SIFT算法精度。在建立尺度空间高斯金字塔时采用图像冗余分割法,对SIFT算法高实时性和高精度的硬件化电路实现有很高的应用价值。The image processing chip shown in FIG. 5 includes a partition module, an operation module, an analysis module and an output module connected in sequence. Wherein, the partitioning module is used to divide the image to be processed into several blocks to be processed along the width direction of the resolution according to the resolution of the image to be processed, and the part between two adjacent blocks to be processed superimposed to form a multiplexing area. The operation module is used to perform Gaussian convolution filtering on the block to be processed according to the length of the Gaussian convolution kernel to obtain a Gaussian pyramid image, and based on the Gaussian pyramid image, subtract the next layer image in the Gaussian pyramid image by A layer of image to get the difference of Gaussian pyramid image. The analysis module is used to search the pixel points of the block to be processed in the image to be processed according to the Gaussian difference pyramid image, and the search range reaches the adjacent multiplexing area. The output module is used to output the stable feature points in the image to be processed according to the extreme point search results. The chip described in this embodiment adopts the image redundancy segmentation method, uses the partition module to divide the image with large resolution into multiple small-resolution images, and very cleverly converts the process of processing a large-resolution image into multiple The process of processing small resolution images for the first time. This chip has no limitation on the resolution of the original image, and can adapt to images of various resolutions. When establishing a scale-space Gaussian pyramid, it is processed according to the standardized small block image, which has nothing to do with the size and resolution of the original image, and supports greater resolution. rate and match range. In the standardized small-block image Gaussian convolution filtering process, the width of each line of image stored in the intermediate calculation process is very small, which can greatly reduce the area of the hardware circuit, which is conducive to the use of a larger Gaussian convolution kernel length to improve the accuracy of the SIFT algorithm . The image redundancy segmentation method is used in the establishment of the scale-space Gaussian pyramid, which has high application value for the realization of the high real-time and high-precision hardware circuit of the SIFT algorithm.
本领域技术人员可以理解实现上述实施方式方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而这些存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。Those skilled in the art can understand that all or part of the steps in the method of the above-mentioned embodiments can be completed by instructing the relevant hardware through a program. (processor) Execute all or part of the steps of the methods described in the various embodiments of the present invention. These storage media can include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施方式对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific implementation manners may be combined in any suitable manner if there is no contradiction. In order to avoid unnecessary repetition, various possible combinations are not further described in the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110696747.5A CN115511690A (en) | 2021-06-23 | 2021-06-23 | Image processing method and image processing chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110696747.5A CN115511690A (en) | 2021-06-23 | 2021-06-23 | Image processing method and image processing chip |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115511690A true CN115511690A (en) | 2022-12-23 |
Family
ID=84499741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110696747.5A Pending CN115511690A (en) | 2021-06-23 | 2021-06-23 | Image processing method and image processing chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115511690A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116882358A (en) * | 2023-09-07 | 2023-10-13 | 深圳比特微电子科技有限公司 | Filter, filtering method, data processing system and chip |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112132914A (en) * | 2019-06-25 | 2020-12-25 | 珠海市一微半导体有限公司 | Image scale space establishing method and image processing chip |
-
2021
- 2021-06-23 CN CN202110696747.5A patent/CN115511690A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112132914A (en) * | 2019-06-25 | 2020-12-25 | 珠海市一微半导体有限公司 | Image scale space establishing method and image processing chip |
Non-Patent Citations (4)
Title |
---|
李增祥 等: "基于小波图像金字塔的工件目标检测与定位研究", 现代电子技术, 1 August 2019 (2019-08-01), pages 33 - 37 * |
杨世沛 等: "一种基于SIFT的图像特征匹配方法", 电子测量技术, 30 June 2014 (2014-06-30), pages 50 - 52 * |
杨天天 等: "一种基于 GPGPU 的 SIFT 加速算法", 计算机技术与应用, 31 December 2015 (2015-12-31), pages 149 - 155 * |
陆丽华: "图像匹配算法及其高速并行实现方法研究", 中国优秀硕士学位论文全文数据库 信息科技辑, 15 August 2012 (2012-08-15), pages 138 - 928 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116882358A (en) * | 2023-09-07 | 2023-10-13 | 深圳比特微电子科技有限公司 | Filter, filtering method, data processing system and chip |
CN116882358B (en) * | 2023-09-07 | 2024-05-28 | 深圳比特微电子科技有限公司 | Filter, filtering method, data processing system and chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101540046B (en) | Method and device for stitching panoramas based on image features | |
US10360494B2 (en) | Convolutional neural network (CNN) system based on resolution-limited small-scale CNN modules | |
JP5058681B2 (en) | Information processing method and apparatus, program, and storage medium | |
Wu | Adaptive split-and-merge segmentation based on piecewise least-square approximation | |
Xie et al. | Dewarping document image by displacement flow estimation with fully convolutional network | |
JP5340088B2 (en) | Information processing method and apparatus | |
CN114708585A (en) | Three-dimensional target detection method based on attention mechanism and integrating millimeter wave radar with vision | |
Gao et al. | A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images | |
Wu et al. | Gomvs: Geometrically consistent cost aggregation for multi-view stereo | |
CN110473247A (en) | Solid matching method, device and storage medium | |
CN113808033A (en) | Image document correction method, system, terminal and medium | |
CN115511690A (en) | Image processing method and image processing chip | |
CN117218344A (en) | Mars surface target segmentation method, device and equipment based on deep neural network | |
CN117975469A (en) | Document image shape correction method and system based on deep learning | |
CN112132914B (en) | Image scale space establishment method and image processing chip | |
US20190318196A1 (en) | Guided sparse feature matching via coarsely defined dense matches | |
CN114580618A (en) | Deconvolution processing method, device, electronic equipment and medium | |
CN115049782A (en) | Method and device for reconstructing dense three-dimensional model and readable storage medium | |
CN100428280C (en) | A Radiation Reprocessing Method of DMC Color Synthetic Image | |
CN109614884A (en) | An FPGA-based vehicle environment perception method | |
Palagyi | Equivalent sequential and parallel reductions in arbitrary binary pictures | |
EP2924649B1 (en) | Method and an apparatus for generating an approximate nearest neighbor field (annf) for images and video sequences | |
CN111768434B (en) | Parallax map acquisition method, parallax map acquisition device, electronic equipment and storage medium | |
CN112132155B (en) | SIFT algorithm image boundary expansion method and processing method based on hardware circuit | |
CN115115912B (en) | Lightweight image super-resolution reconstruction method and device based on series-parallel lookup table |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 519000 Guangdong Province Zhuhai City Hengqin New District Zhi Shui Road 88 Office 1508 Applicant after: Zhuhai Yiwei Semiconductor Co.,Ltd. Address before: 519000 2706, No. 3000, Huandao East Road, Hengqin new area, Zhuhai, Guangdong Applicant before: Zhuhai Yiwei Semiconductor Co.,Ltd. Country or region before: China |