CN115501348A - Nano-drug carrier with anticancer activity and preparation method and application thereof - Google Patents
Nano-drug carrier with anticancer activity and preparation method and application thereof Download PDFInfo
- Publication number
- CN115501348A CN115501348A CN202210525142.4A CN202210525142A CN115501348A CN 115501348 A CN115501348 A CN 115501348A CN 202210525142 A CN202210525142 A CN 202210525142A CN 115501348 A CN115501348 A CN 115501348A
- Authority
- CN
- China
- Prior art keywords
- gox
- mofs
- uio
- nano
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000003937 drug carrier Substances 0.000 title claims abstract description 20
- 230000001093 anti-cancer Effects 0.000 title claims abstract description 11
- 229940116332 glucose oxidase Drugs 0.000 claims abstract description 85
- 239000012621 metal-organic framework Substances 0.000 claims abstract description 65
- 108010015776 Glucose oxidase Proteins 0.000 claims abstract description 42
- 235000019420 glucose oxidase Nutrition 0.000 claims abstract description 41
- 239000004366 Glucose oxidase Substances 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 28
- 201000011510 cancer Diseases 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 15
- 239000003814 drug Substances 0.000 claims abstract description 13
- 229940079593 drug Drugs 0.000 claims abstract description 10
- 239000013207 UiO-66 Substances 0.000 claims description 50
- 238000003756 stirring Methods 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 17
- 238000011282 treatment Methods 0.000 claims description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- 239000013132 MOF-5 Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 9
- 239000013148 Cu-BTC MOF Substances 0.000 claims description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 7
- 239000008103 glucose Substances 0.000 claims description 7
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229960000583 acetic acid Drugs 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- VZJJZMXEQNFTLL-UHFFFAOYSA-N chloro hypochlorite;zirconium;octahydrate Chemical compound O.O.O.O.O.O.O.O.[Zr].ClOCl VZJJZMXEQNFTLL-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 239000012362 glacial acetic acid Substances 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 21
- 239000002245 particle Substances 0.000 abstract description 11
- 235000003642 hunger Nutrition 0.000 abstract description 9
- 230000037351 starvation Effects 0.000 abstract description 9
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract description 7
- 239000006185 dispersion Substances 0.000 abstract description 6
- 230000001225 therapeutic effect Effects 0.000 abstract description 6
- 238000011068 loading method Methods 0.000 abstract description 5
- 230000002195 synergetic effect Effects 0.000 abstract description 5
- 238000002474 experimental method Methods 0.000 abstract description 4
- 241001465754 Metazoa Species 0.000 abstract description 3
- 230000004083 survival effect Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 230000031700 light absorption Effects 0.000 abstract 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 238000002560 therapeutic procedure Methods 0.000 description 14
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 12
- 239000008367 deionised water Substances 0.000 description 11
- 229910021641 deionized water Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 238000012377 drug delivery Methods 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 238000002428 photodynamic therapy Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- GPNNOCMCNFXRAO-UHFFFAOYSA-N 2-aminoterephthalic acid Chemical compound NC1=CC(C(O)=O)=CC=C1C(O)=O GPNNOCMCNFXRAO-UHFFFAOYSA-N 0.000 description 1
- 206010000871 Acute monocytic leukaemia Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 238000009214 sonodynamic therapy Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/38—Silver; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/44—Oxidoreductases (1)
- A61K38/443—Oxidoreductases (1) acting on CH-OH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6949—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/03—Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
- C12Y101/03004—Glucose oxidase (1.1.3.4)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Inorganic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于生物医药技术领域,具体涉及一种具有抗癌活性的纳米药物载体及其制备方法与应用。具体为采用葡萄糖氧化酶(GOx)来修饰金属有机框架(MOFs)材料的方法和技术,修饰后的MOFs材料在水中具有良好的分散性和长时间稳定性,修饰后的MOFs可作为药物载体负载一种或者多种其他药物或者生物分子。本发明将纳米银颗粒负载到GOx修饰后的MOFs表面,实现了银纳米颗粒在MOFs中的均匀分散与负载,且两者结合后具有优异的近红外光吸收和光热转换性能。该纳米药物在细胞和动物实验中均具有优异的饥饿和光热协同治疗性能,能显著降低癌细胞的存活率,提高癌症的治疗效果。
The invention belongs to the technical field of biomedicine, and in particular relates to a nano drug carrier with anticancer activity and its preparation method and application. Specifically, it is a method and technology for using glucose oxidase (GOx) to modify metal-organic framework (MOFs) materials. The modified MOFs materials have good dispersion and long-term stability in water, and the modified MOFs can be used as drug carriers. One or more other drugs or biomolecules. The invention loads nano-silver particles on the surface of MOFs modified by GOx, realizes uniform dispersion and loading of silver nanoparticles in MOFs, and has excellent near-infrared light absorption and photothermal conversion performance after the combination of the two. The nanomedicine has excellent starvation and photothermal synergistic therapeutic properties in both cell and animal experiments, which can significantly reduce the survival rate of cancer cells and improve the therapeutic effect of cancer.
Description
技术领域technical field
本发明属于生物医药技术领域,具体涉及一种具有抗癌活性的纳米药物载体及其制备方法与应用。The invention belongs to the technical field of biomedicine, and in particular relates to a nano drug carrier with anticancer activity, its preparation method and application.
背景技术Background technique
癌症作为影响身体健康的重大疾病,给患者自身及其家庭都带来了巨大的困扰,癌症治疗一直是医药学领域的技术研究与开发的重点。临床中使用最多、最常规的的治疗方法依然是手术治疗、化学疗法还有放射疗法等,但是上述疗法均会对患者的身体产生比较严重的负面影响,出现较多的副作用,甚至可能会对患者的身体造成严重损害。为了减少常规疗法对患者身体带来的毒副作用,医药开发领域一直在研究新的治疗手段,比如光动力治疗、声动力治疗、光热转换治疗和化学动力治疗等治疗手段被证实具有较大的前景被应用于癌症的治疗。但是,这些“新”的治疗手段,都需要依赖合适的药物递送体系将药物递送至病灶处。因此,研究开发成熟的药物递送体系成为将上述疗法在临床癌症治疗中推广应用的关键。As a major disease that affects the health of the body, cancer has brought great distress to patients themselves and their families. Cancer treatment has always been the focus of technical research and development in the field of medicine. The most commonly used and most conventional treatment methods in clinical practice are still surgical treatment, chemotherapy and radiotherapy, etc., but the above-mentioned treatments will have a relatively serious negative impact on the patient's body, there will be more side effects, and may even have a negative effect on the patient's body. Serious damage to the patient's body. In order to reduce the toxic and side effects of conventional therapy on the patient's body, the field of pharmaceutical development has been researching new treatments, such as photodynamic therapy, sonodynamic therapy, photothermal conversion therapy and chemodynamic therapy, which have been proven to have greater therapeutic effects. The prospect is applied to the treatment of cancer. However, these "new" treatments all need to rely on a suitable drug delivery system to deliver the drug to the lesion. Therefore, the research and development of a mature drug delivery system has become the key to the promotion and application of the above-mentioned therapies in clinical cancer treatment.
金属有机框架(MOFs)作为一种由金属离子/团簇和有机配体组成的晶态多孔材料,具有高孔隙率、可调的孔径以及巨大的比表面积等特点,在气体存储与分离、催化、生物传感、药物递送等方面具有较好的应用前景。MOFs较大的比表面积,能吸附并递送诸如化疗药物、光敏剂、荧光染料等小分子药物,也能用于固定或者封装生物酶等大分子药物,可以实现化疗、光动力疗法和生物医学成像等多维态的联合治疗。但是,作为生物材料,MOFs在水中易于团聚的性质,使其分散尺寸较大、很难被细胞摄取,而其在水中的不稳定性会进一步导致其在药物输送过程中发生骨架坍塌而分解,或者出现负载物的提早释放现象。MOFs存在的生物稳定性及分散性的问题,一直限制着其在纳米药物递送方面的应用。因此,研究开发新的功能化修饰手段成为迫切需要解决的问题。Metal-organic frameworks (MOFs), as a crystalline porous material composed of metal ions/clusters and organic ligands, have the characteristics of high porosity, adjustable pore size, and huge specific surface area. , biosensing, drug delivery and other aspects have good application prospects. The large specific surface area of MOFs can adsorb and deliver small molecule drugs such as chemotherapy drugs, photosensitizers, fluorescent dyes, etc., and can also be used to immobilize or encapsulate macromolecular drugs such as biological enzymes, which can realize chemotherapy, photodynamic therapy and biomedical imaging. Combined treatment of multidimensional states. However, as biomaterials, MOFs are easy to agglomerate in water, making them large in size and difficult to be taken up by cells, and their instability in water will further lead to their skeleton collapse and decomposition during drug delivery. Or there is an early release of the load. The biological stability and dispersibility of MOFs have limited their application in nano-drug delivery. Therefore, the research and development of new functional modification methods has become an urgent problem to be solved.
葡萄糖氧化酶(GOx)作为一种内源性生物酶,能有效消耗细胞内的葡萄糖,进而抑制细胞的生长和活性,将GOx递送到癌细胞内能实现饥饿治疗,该疗法具有无毒副作用、抗癌效果显著的优点。另外, GOx表面具有许多亲水基团,其在水中具有良好的分散性,在抗癌领域具有广泛的研究前景。Glucose oxidase (GOx), as an endogenous biological enzyme, can effectively consume glucose in cells, thereby inhibiting cell growth and activity. Delivering GOx into cancer cells can achieve starvation therapy. This therapy has no toxic side effects, The advantages of remarkable anticancer effect. In addition, the surface of GOx has many hydrophilic groups, which has good dispersibility in water, and has broad research prospects in the field of anticancer.
基于前期调研,目前尚缺少利用GOx对MOFs进行修饰并同步实现饥饿治疗的公开报道和技术研究,也没有用GOx和纳米金属颗粒同时修饰MOFs并用于癌症的饥饿/光热协同治疗的研究方法和技术。Based on previous investigations, there is still a lack of public reports and technical research on the use of GOx to modify MOFs and simultaneously achieve starvation therapy, and there is no research method and method for simultaneous modification of MOFs with GOx and nano-metal particles for starvation/photothermal synergistic therapy of cancer. technology.
发明内容Contents of the invention
针对现有创新疗法在临床应用中存在的问题,本发明通过葡萄糖氧化酶(GOx)对金属有机框架(MOFs)的修饰实现癌症饥饿治疗与药物递送的多功能体系的构建;通过GOx修饰的MOFs对纳米银颗粒的负载实现癌症的饥饿疗法、光热协同治疗及药物递送的多维态治疗体系构建。通过对MOFs的功能化修饰,不仅可以显著提高MOFs 材料在生物体内的长时间稳定性以及水分散性,还能使得MOFs材料具备释放可控性等功能,从而实现药物的可控释放,实现针对癌症的多维态治疗,降低治疗过程中的毒副作用。Aiming at the problems existing in the clinical application of existing innovative therapies, the present invention realizes the construction of a multifunctional system for cancer starvation therapy and drug delivery through the modification of metal-organic frameworks (MOFs) by glucose oxidase (GOx); the MOFs modified by GOx The loading of nano-silver particles realizes the construction of a multi-dimensional therapeutic system for cancer starvation therapy, photothermal synergistic therapy, and drug delivery. Through the functional modification of MOFs, not only the long-term stability and water dispersibility of MOFs materials in vivo can be significantly improved, but also the release controllability of MOFs materials can be achieved, so as to realize the controllable release of drugs and achieve targeted The multidimensional treatment of cancer reduces the toxic and side effects during treatment.
为实现上述发明目的,本发明具体技术方案如下:In order to realize the above-mentioned purpose of the invention, the specific technical scheme of the present invention is as follows:
一方面,本发明提供一种具有抗癌活性的纳米药物载体,所述药物载体是葡萄糖氧化酶GOx修饰的金属有机框架MOFs纳米药物载体,以MOFs@GOx表示。In one aspect, the present invention provides a nano-drug carrier with anticancer activity, the drug carrier is a metal-organic framework MOFs nano-drug carrier modified with glucose oxidase GOx, represented by MOFs@GOx.
进一步地,所述MOFs选自UiO-66、MOF-808、MOF-5、HKUST-1、 MIL-125、NH2-MIL-125;其中UiO-66是由对苯二甲酸与氯氧化锆反应制得的金属有机框架、MOF-808是由均苯三甲酸与四氯化锆反应制得的金属有机框架、MOF-5是由对苯二甲酸与硝酸锌反应制得的金属有机框架、HKUST-1是由均苯三甲酸与硝酸铜反应制得的金属有机框架、MIL-125是由对苯二甲酸与钛酸四丁酯反应制得的金属有机框架、NH2-MIL-125是由2-氨基对苯二甲酸与钛酸四丁酯反应制得的金属有机框架。Further, the MOFs are selected from UiO-66, MOF-808, MOF-5, HKUST-1, MIL-125, NH 2 -MIL-125; wherein UiO-66 is formed by reacting terephthalic acid with zirconium oxychloride The prepared metal-organic framework, MOF-808 is a metal-organic framework prepared by the reaction of trimesic acid and zirconium tetrachloride, MOF-5 is a metal-organic framework prepared by the reaction of terephthalic acid and zinc nitrate, HKUST -1 is a metal-organic framework prepared by the reaction of trimesic acid and copper nitrate; MIL-125 is a metal-organic framework prepared by the reaction of terephthalic acid and tetrabutyl titanate; NH 2 -MIL-125 is a Metal-organic frameworks prepared by the reaction of 2-aminoterephthalic acid and tetrabutyl titanate.
进一步地,所述MOFs@GOx选自UiO-66@GOx、 MOF-808@GOx、MOF-5@GOx、HKUST-1@GOx、MIL-125@GOx、 NH2-MIL-125@GOx。Further, the MOFs@GOx is selected from UiO-66@GOx, MOF-808@GOx, MOF-5@GOx, HKUST-1@GOx, MIL-125@GOx, NH 2 -MIL-125@GOx.
进一步地,所述具有抗癌活性的纳米药物载体的粒径为10 nm~500nm;优选粒径为10~100nm。Further, the particle size of the nano-drug carrier with anticancer activity is 10 nm to 500 nm; preferably, the particle size is 10 to 100 nm.
另一方面,本发明提供一种所述纳米药物载体的制备方法,所述方法包括如下步骤:In another aspect, the present invention provides a method for preparing the nano drug carrier, the method comprising the steps of:
将葡萄糖氧化酶与MOFs材料混合,搅拌反应,即得到葡萄糖氧化酶修饰的MOFs,即为MOFs@GOx。Glucose oxidase is mixed with MOFs materials, stirred and reacted to obtain glucose oxidase-modified MOFs, namely MOFs@GOx.
进一步地,制备方法中所述的MOFs选自UiO-66、MOF-808、 MOF-5、HKUST-1、MIL-125、NH2-MIL-125。Further, the MOFs described in the preparation method are selected from UiO-66, MOF-808, MOF-5, HKUST-1, MIL-125, NH 2 -MIL-125.
进一步地,制备方法中所述的混合过程,具体操作为将MOFs 材料置于葡糖糖氧化酶水溶液中,然后超声,超声功率为200W~400 W;超声功率优选为300W;在此超声功率区间内可使MOFs在GOx 溶液中分散均匀,便于GOx均匀修饰到MOFs表面。Further, in the mixing process described in the preparation method, the specific operation is to place the MOFs material in the aqueous solution of glucose oxidase, and then ultrasonicate, the ultrasonic power is 200W-400W; the ultrasonic power is preferably 300W; in this ultrasonic power range The MOFs can be uniformly dispersed in the GOx solution, which facilitates the uniform modification of GOx to the surface of MOFs.
进一步地,制备方法中所述的搅拌反应,搅拌速率为15rad~30 rad,优选为20rad;在此搅拌速率区间内可使MOFs与GOx充分反应,修饰效果理想。Further, in the stirring reaction described in the preparation method, the stirring rate is 15 rad to 30 rad, preferably 20 rad; within this stirring rate range, MOFs and GOx can fully react, and the modification effect is ideal.
进一步地,制备方法中所述的搅拌反应,搅拌时间为40min~90 min;优选为60min;在此搅拌时间区间内可使MOFs与GOx充分反应,修饰效果理想。Further, for the stirring reaction described in the preparation method, the stirring time is 40 min to 90 min; preferably 60 min; within this stirring time interval, the MOFs and GOx can fully react, and the modification effect is ideal.
进一步地,制备方法中所述的搅拌反应在室温下进行;优选为 20~30℃。Further, the stirring reaction described in the preparation method is carried out at room temperature; preferably 20-30°C.
进一步地,制备方法中所述的MOFs@GOx选自UiO-66@GOx、 MOF-808@GOx、MOF-5@GOx、HKUST-1@GOx、MIL-125@GOx、 NH2-MIL-125@GOx。Further, the MOFs@GOx described in the preparation method is selected from UiO-66@GOx, MOF-808@GOx, MOF-5@GOx, HKUST-1@GOx, MIL-125@GOx, NH 2 -MIL-125 @GOx.
进一步地,所述的UiO-66@GOx纳米药物载体的制备方法包括:Further, the preparation method of the UiO-66@GOx nano drug carrier includes:
步骤1:1,4-苯二甲酸与八水合·氯氧化锆分别溶解后进行混合,混合液中加入冰醋酸,后在反应釜中进行水热法合成反应即得 UiO-66。Step 1: Dissolve 1,4-phthalic acid and zirconium oxychloride octahydrate separately and then mix them. Add glacial acetic acid to the mixture, and then carry out hydrothermal synthesis reaction in a reaction kettle to obtain UiO-66.
步骤2:将UiO-66置于葡糖糖氧化酶水溶液中,然后超声处理,后搅拌反应,即得到葡萄糖氧化酶修饰的UiO-66(即为 UiO-66@GOx)。Step 2: Put UiO-66 in the glucose oxidase aqueous solution, then sonicate, and then stir the reaction to obtain glucose oxidase-modified UiO-66 (that is, UiO-66@GOx).
进一步地,步骤1中的混合过程为1,4-苯二甲酸超声溶解于N,N- 二甲基甲酰胺(DMF)中,八水合·氯氧化锆机械搅拌溶于DMF中,而后二者混合均匀。Further, the mixing process in step 1 is that 1,4-phthalic acid is ultrasonically dissolved in N,N-dimethylformamide (DMF), zirconium oxychloride octahydrate is mechanically stirred and dissolved in DMF, and the latter two well mixed.
进一步地,步骤1中所述的混合液中加入冰醋酸后超声处理1~2 min,通过该步骤可以在后续水热反应中调节合成的UiO-66的粒径。Further, glacial acetic acid was added to the mixed liquid described in step 1 and then ultrasonically treated for 1-2 min. Through this step, the particle size of the synthesized UiO-66 could be adjusted in the subsequent hydrothermal reaction.
进一步地,步骤1中所述的水热法的反应温度为90℃~120℃;优选为90℃;Further, the reaction temperature of the hydrothermal method described in step 1 is 90°C to 120°C; preferably 90°C;
进一步地,步骤1中所述的水热法的反应时间为10~24h;优选为18h。Further, the reaction time of the hydrothermal method described in step 1 is 10-24 hours; preferably 18 hours.
进一步地,步骤1中所述水热反应完成后,后处理过程包括:将反应产物离心,转速为11000rpm,离心时间为10min;而后用DMF 和甲醇进行溶剂交换,交换3次;后将所得产物在烘箱中干燥,干燥温度为60℃,干燥时间为12h。Further, after the hydrothermal reaction described in step 1 is completed, the post-treatment process includes: centrifuging the reaction product at a speed of 11,000 rpm, and centrifuging for 10 minutes; then performing solvent exchange with DMF and methanol for 3 times; Dry in an oven, the drying temperature is 60°C, and the drying time is 12h.
进一步地,步骤2中所述的超声功率为200W~400W;优选为 300W。Further, the ultrasonic power described in
进一步地,步骤2中所述的搅拌反应搅的拌速率为15rad~30rad;优选为20rad。Further, the stirring rate of the stirring reaction described in
进一步地,步骤2中所述的搅拌反应搅的搅拌时间为40min~90 min;优选为60min。Further, the stirring time of the stirring reaction described in
进一步的,步骤2中所述的搅拌反应的反应温度为室温;优选为 20~30℃。Further, the reaction temperature of the stirring reaction described in
再一方面,本发明提供一种所述纳米药物载体MOFs@GOx在制备治疗癌症的药物或治疗体系中的应用。In another aspect, the present invention provides an application of the nano drug carrier MOFs@GOx in the preparation of a drug or a treatment system for treating cancer.
进一步地,所述的应用为制备具有近红外吸收和光热转换性能的多功能纳米药物UiO-66@GOx@Ag,实现癌症的饥饿疗法、光热协同治疗及药物递送的一体化构建。Further, the application is to prepare a multifunctional nanomedicine UiO-66@GOx@Ag with near-infrared absorption and photothermal conversion properties, to realize the integrated construction of cancer starvation therapy, photothermal synergistic therapy and drug delivery.
进一步地,所述多功能纳米药物UiO-66@GOx@Ag的制备方法包括:Further, the preparation method of the multifunctional nanomedicine UiO-66@GOx@Ag includes:
将纳米银溶液与UiO-66@GOx共同搅拌反应,将所得溶液冷冻干燥即得UiO-66@GOx@Ag。The nano-silver solution was stirred and reacted with UiO-66@GOx, and the resulting solution was freeze-dried to obtain UiO-66@GOx@Ag.
进一步地,所述纳米银溶液的制备方法包括如下步骤:将聚乙烯吡咯烷酮(PVP)超声溶于去离子水中,加入硝酸银,混合均匀,而后在室温搅拌下逐滴加入硼氢化钠溶液。反应完成后,需进行洗涤。将产物离心,转速为12000rpm,离心时间为20min。而后用乙醇洗涤3次,去离子水洗涤3次,将产物重新分散在去离子水中得到纳米银溶液。Further, the preparation method of the nano-silver solution comprises the following steps: ultrasonically dissolving polyvinylpyrrolidone (PVP) in deionized water, adding silver nitrate, mixing uniformly, and then adding sodium borohydride solution dropwise under stirring at room temperature. After the reaction is completed, washing is required. The product was centrifuged at 12000 rpm for 20 minutes. Then wash with ethanol for 3 times, wash with deionized water for 3 times, and redisperse the product in deionized water to obtain nano-silver solution.
进一步地,所述制备UiO-66@GOx@Ag的搅拌反应在室温下进行;搅拌速率为15rad~30rad,优选为20rad;搅拌时间为30min~60 min,优选为40min;在此搅拌速率和搅拌时间区间内,纳米银颗粒可充分被锚定在MOFs@GOx表面。Further, the stirring reaction for preparing UiO-66@GOx@Ag is carried out at room temperature; the stirring rate is 15rad to 30rad, preferably 20rad; the stirring time is 30min to 60min, preferably 40min; the stirring rate and stirring In this time interval, silver nanoparticles can be fully anchored on the surface of MOFs@GOx.
进一步地,所述癌症包括肺癌、宫颈癌、乳腺癌、肝癌、慢性粒细胞性白血病以及急性单核细胞性白血病、卵巢癌、肾癌、脑癌、结肠癌或胃癌。Further, the cancer includes lung cancer, cervical cancer, breast cancer, liver cancer, chronic myelogenous leukemia and acute monocytic leukemia, ovarian cancer, kidney cancer, brain cancer, colon cancer or gastric cancer.
与现有技术相比,本发明具有以下显著的优势和有益效果:Compared with the prior art, the present invention has the following significant advantages and beneficial effects:
(1)创新性的用人体细胞内源性物质GOx来修饰MOFs材料,该方法对多种MOFs材料均具有良好的修饰效果,修饰的MOFs材料具有均一的分散尺寸,在水中长时间分散后也不会发生分解,具有优异的稳定性,可作为药物载体负载一种或者多种其他药物或者生物分子。该技术方法操作简便,设备要求低,具有良好的普适应和可推广性,有助于较大规模生产。(1) Innovatively use GOx, an endogenous substance of human cells, to modify MOFs materials. This method has a good modification effect on various MOFs materials. The modified MOFs materials have a uniform dispersion size and can be dispersed in water for a long time. It will not decompose, has excellent stability, and can be used as a drug carrier to load one or more other drugs or biomolecules. The technical method is easy to operate, requires less equipment, has good general adaptability and scalability, and is conducive to large-scale production.
(2)同步实现了载体修饰与抗癌活性物质负载的有效统一和结合。GOx是内源性生物酶,本身没有任何毒性,除了改善MOFs的稳定性和分散性之外,更可作为治疗癌症的药物,大量消耗癌细胞内的葡萄糖,实现饥饿治疗,避免了由于化学药物而引起的身体机能损伤,可以实现对癌细胞的针对性损伤,极大的降低了药物的毒副作用。(2) Simultaneously realize the effective unification and combination of carrier modification and anticancer active substance loading. GOx is an endogenous biological enzyme without any toxicity itself. In addition to improving the stability and dispersion of MOFs, it can also be used as a drug for treating cancer. It consumes a large amount of glucose in cancer cells, realizes starvation therapy, and avoids the need for chemical drugs. The resulting damage to body functions can achieve targeted damage to cancer cells, greatly reducing the side effects of drugs.
(3)高效实现了纳米银颗粒的可控负载,制备了具有近红外吸收和光热转换性能的多功能纳米药物,该纳米药物具有低的毒性和良好的生物相容性,易被细胞摄取并能在细胞中保持良好的GOx释放和催化葡萄糖降解性能,在近红外光的照射下,发挥优异的饥饿和光热协同治疗性能,细胞和动物实验均证实该纳米药物能显著降低癌细胞的存活率,提高癌症的治疗效果。(3) The controllable loading of silver nanoparticles was efficiently realized, and a multifunctional nanomedicine with near-infrared absorption and photothermal conversion properties was prepared. The nanomedicine has low toxicity and good biocompatibility, and is easily taken up by cells. And it can maintain good GOx release and catalytic glucose degradation performance in cells. Under the irradiation of near-infrared light, it can exert excellent starvation and photothermal synergistic therapeutic performance. Both cell and animal experiments have confirmed that the nano-medicine can significantly reduce cancer cells Survival rate, improve the effect of cancer treatment.
附图说明Description of drawings
图1.UiO-66的透射电镜照片。Figure 1. Transmission electron micrographs of UiO-66.
图2.UiO-66@GOx的透射电镜照片。Fig. 2. TEM images of UiO-66@GOx.
图3.UiO-66@GOx@Ag的透射电镜照片。Fig. 3. TEM images of UiO-66@GOx@Ag.
图4.UiO-66@GOx@Ag的X射线光电子能谱图。Fig. 4. X-ray photoelectron spectroscopy of UiO-66@GOx@Ag.
图5.不同浓度的GOx和UiO-66@GOx@Ag在近红外光照射下抗癌活性数据。Figure 5. Anticancer activity data of different concentrations of GOx and UiO-66@GOx@Ag under near-infrared light irradiation.
图6.分别注射PBS、GOx和UiO-66@GOx@Ag的小鼠14天的肿瘤体积变化数据。Figure 6. The 14-day tumor volume change data of mice injected with PBS, GOx, and UiO-66@GOx@Ag, respectively.
图7.GOx修饰前和修饰后的MOFs材料的分散性和粒径数据。Figure 7. Dispersion and particle size data of MOFs materials before and after GOx modification.
具体实施方式detailed description
下面将以实施例的方式对本申请作进一步的详细描述,以使本领域技术人员能够实践本申请。应当理解,可以采用其他实施方式,并且可以做出适当的改变而不偏离本申请的精神或范围。为了避免对于使本领域技术人员能够实践本申请来说不必要的细节,说明书可能省略了对于本领域技术人员来说已知的某些信息。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围仅由所附权利要求界定。以下的实施例便于更好地理解本申请,但并不用来限制本申请的范围。The present application will be described in further detail below in the form of embodiments, so that those skilled in the art can practice the present application. It is to be understood that other embodiments may be utilized, and that appropriate changes may be made without departing from the spirit or scope of the application. To avoid detail not necessary to enable those skilled in the art to practice the application, the description may omit certain information known to those skilled in the art. Accordingly, the following detailed description should not be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims. The following examples facilitate a better understanding of the present application, but are not intended to limit the scope of the present application.
本发明中所述的MOF-808、MOF-5、HKUST-1、MIL-125、NH2-MIL-125购买自市售产品。MOF-808, MOF-5, HKUST-1, MIL-125, NH 2 -MIL-125 described in the present invention were purchased from commercially available products.
实施例1金属有机框架UiO-66的制备Example 1 Preparation of Metal Organic Framework UiO-66
750mg 1,4-苯二甲酸超声溶解于15mL DMF中,至溶液澄清; 315mg八水合·氯氧化锆机械搅拌溶于45mL DMF中,至溶液澄清;将上述两溶液混合均匀后,加入9.6mL冰醋酸,超声1~2min,随后将溶液转移至100mL反应釜中,在90℃下反应18h。反应完成后将产物离心,转速为11000rpm,离心时间为10min。随后用DMF和甲醇进行溶剂交换,交换3次,最后离心产物在烘箱中干燥,干燥温度为60℃,干燥时间为12h,即得金属有机框架UiO-66,透射电镜照片见图1。Dissolve 750mg of 1,4-phthalic acid in 15mL of DMF ultrasonically until the solution is clear; 315mg of zirconium oxychloride octahydrate is mechanically stirred and dissolved in 45mL of DMF until the solution is clear; after mixing the above two solutions evenly, add 9.6mL of ice Acetic acid, sonicate for 1-2min, then transfer the solution to a 100mL reactor, and react at 90°C for 18h. After the reaction was completed, the product was centrifuged at a rotation speed of 11000 rpm for 10 min. Then solvent exchange was performed with DMF and methanol for 3 times, and finally the centrifuged product was dried in an oven at a drying temperature of 60°C for 12 hours to obtain a metal organic framework UiO-66.
实施例2葡萄糖氧化酶GOx的修饰
4mg葡萄糖氧化酶超声溶解于5mL去离子水中,取2mg金属有机框架UiO-66,超声分散于葡萄糖氧化酶溶液中。随后用磁子进行搅拌反应,搅拌速率为20rad,搅拌温度为室温,搅拌时间为1h。反应完成后将产物离心,转速为11000rpm,离心时间为10min。随后用去离子水洗涤3次,最后离心产物进行冷冻干燥,即得 UiO-66@GOx,透射电镜照片见图2,结果显示修饰了GOx的MOFs 分散均匀,为单分散状态。4 mg of glucose oxidase was ultrasonically dissolved in 5 mL of deionized water, and 2 mg of metal-organic framework UiO-66 was ultrasonically dispersed in the glucose oxidase solution. Subsequently, the reaction was stirred with a magnet, the stirring rate was 20 rad, the stirring temperature was room temperature, and the stirring time was 1 h. After the reaction was completed, the product was centrifuged at a rotation speed of 11000 rpm for 10 min. Then it was washed with deionized water three times, and finally the centrifuged product was freeze-dried to obtain UiO-66@GOx. The transmission electron microscope photo is shown in Figure 2. The results show that the MOFs modified with GOx are uniformly dispersed and in a monodisperse state.
适用相同的修饰方法完成本发明所适用的其他MOFs材料的修饰,得到MOF-808@GOx、MOF-5@GOx、HKUST-1@GOx、 MIL-125@GOx、NH2-MIL-125@GOx。所得GOx修饰的MOFs材料的分散性照片以及其在GOx修饰前后的粒径大小数据如图7所示。结果显示没有修饰的MOFs材料在水中分散性很差并且非常容易团聚,团聚后粒径尺寸较大;GOx修饰后的MOFs材料分散性大幅度改善,在水中长时间分散也不会发生团聚,粒径尺寸和单分散的纯 MOFs纳米颗粒接近,证实其修饰后在水中为单分散的纳米材料,尤其是修饰后的UiO-66@GOx的粒径在100nm以下,此粒径下的纳米药物载体可以更快速的被肿瘤细胞内吞并且具有显著EPR效应。Apply the same modification method to complete the modification of other MOFs materials applicable to the present invention, and obtain MOF-808@GOx, MOF-5@GOx, HKUST-1@GOx, MIL-125@GOx, NH 2 -MIL-125@GOx . The dispersion photos of the obtained GOx-modified MOFs materials and their particle size data before and after GOx-modification are shown in Figure 7. The results show that the unmodified MOFs material has poor dispersibility in water and is very easy to agglomerate, and the particle size after agglomeration is large; the dispersibility of the MOFs material modified by GOx is greatly improved, and it will not agglomerate in water for a long time. The particle size is close to that of monodisperse pure MOFs nanoparticles, which confirms that it is a monodisperse nanomaterial in water after modification, especially the particle size of the modified UiO-66@GOx is below 100nm. It can be endocytosed by tumor cells more rapidly and has a significant EPR effect.
实施例3纳米银颗粒的负载The loading of embodiment 3 nano-silver particles
44.9mg聚乙烯吡咯烷酮超声溶解于30mL去离子水,5.1mg硝酸银溶于5mL去离子水,而后将两溶液混合均匀;3.0mg硼氢化钠溶于10mL去离子水中,而后立即逐滴加入上述混合溶液中;反应完成后,将产物离心,转速为12000rpm,离心时间为20min;而后用乙醇洗涤3次,用去离子水洗涤3次;将产物重新分散在5mL去离子水中得到纳米银溶液。44.9mg of polyvinylpyrrolidone was ultrasonically dissolved in 30mL of deionized water, 5.1mg of silver nitrate was dissolved in 5mL of deionized water, and then the two solutions were mixed evenly; 3.0mg of sodium borohydride was dissolved in 10mL of deionized water, and then immediately added dropwise to the above mixture solution; after the reaction was completed, the product was centrifuged at 12000rpm for 20min; then washed 3 times with ethanol and 3 times with deionized water; the product was redispersed in 5mL deionized water to obtain a nano-silver solution.
2mg UiO-66@GOx超声分散于(1)中制得的纳米银溶液中,随后用磁子进行搅拌反应,搅拌速率为20rad,搅拌温度为室温,搅拌时间为40min;反应完成后将产物离心,转速为11000rpm,离心时间为10min,随后用去离子水洗涤3次,最后离心产物进行冷冻干燥,即得UiO-66@GOx@Ag。2mg UiO-66@GOx was ultrasonically dispersed in the nano-silver solution prepared in (1), and then the reaction was stirred with a magneton at a stirring rate of 20rad, stirring temperature was room temperature, and stirring time was 40min; after the reaction was completed, the product was centrifuged , the rotation speed was 11000rpm, the centrifugation time was 10min, and then washed three times with deionized water, and finally the centrifuged product was freeze-dried to obtain UiO-66@GOx@Ag.
图3所示的透射电镜照片显示银纳米颗粒均匀分散在UiO-66表面,UiO-66未发生明显团聚,银纳米颗粒也未发生明显团聚。The transmission electron microscope photos shown in Fig. 3 show that silver nanoparticles are evenly dispersed on the surface of UiO-66, and UiO-66 and silver nanoparticles have no obvious agglomeration.
图4所示的X射线光电子能谱图数据表明:除了UiO-66中的碳 (286.0eV)、氧(532.1eV)和锆(181.1eV,331.4eV,349.0eV)元素外,GOx中的氮(400.0eV)元素,以及银纳米颗粒中的银(368.1eV, 373.9eV)元素也被检测到,证实GOx与Ag均修饰和负载到UiO-66的表面。The X-ray photoelectron spectroscopy data shown in Figure 4 show that, in addition to the carbon (286.0eV), oxygen (532.1eV) and zirconium (181.1eV, 331.4eV, 349.0eV) elements in UiO-66, the nitrogen in GOx (400.0eV) elements, and silver (368.1eV, 373.9eV) elements in silver nanoparticles were also detected, confirming that both GOx and Ag were modified and loaded on the surface of UiO-66.
验证实施例Verification Example
1、MTT实验:UiO-66@GOx@Ag抗癌活性测试1. MTT experiment: UiO-66@GOx@Ag anticancer activity test
将HeLa细胞分别接种于96孔板中,24小时后将GOx和 UiO-66@GOx@Ag分别加入并形成相应的浓度梯度,加入培养基后进行培养,6小时后用近红外光照射。24小时后进行细胞存活率检测。HeLa cells were seeded in 96-well plates, GOx and UiO-66@GOx@Ag were added 24 hours later to form a corresponding concentration gradient, cultured after adding medium, and irradiated with near-infrared light after 6 hours. Cell viability was detected after 24 hours.
图5所示结果显示在相同浓度下,GOx对HeLa细胞几乎不产生毒性,而UiO-66@GOx@Ag+NIR浓度达到0.04μg/mL时,HeLa细胞存活率接近于0,显著抑制癌细胞的生长,显示出优异的治疗效果。The results shown in Figure 5 show that at the same concentration, GOx has almost no toxicity to HeLa cells, and when the concentration of UiO-66@GOx@Ag+NIR reaches 0.04 μg/mL, the survival rate of HeLa cells is close to 0, which significantly inhibits cancer cells. growth, showing excellent therapeutic effects.
2、动物实验:2. Animal experiments:
健康雌性裸鼠(体重25克)皮下注射含有1×106个癌细胞的细胞悬液。当肿瘤大小达到约100mm3时,将肿瘤小鼠分为三组(每组 3只)。第一组皮下注射200μL纯GOx,第二组皮下注射 UiO-66@GOx@Ag,然后在12小时后用近红外光照射,GOx和 UiO-66@GOx@Ag的浓度都是1mg/ml,对照组注射200μL PBS(0.01 M)。每天注射一次药物,持续13天,每天定期记录小鼠的肿瘤体积,每天一次。肿瘤体积(V)由以下公式确定:V=0.5xy2,其中x和y 分别为肿瘤的长度和宽度。Healthy female nude mice (body weight 25 g) were subcutaneously injected with a cell suspension containing 1×10 6 cancer cells. When the tumor size reached about 100 mm 3 , the tumor mice were divided into three groups (3 mice in each group). The first group was subcutaneously injected with 200 μL of pure GOx, the second group was subcutaneously injected with UiO-66@GOx@Ag, and then irradiated with near-
图6所示结果显示UiO-66@GOx@Ag在近红外光照射下能显著抑制肿瘤的生长,而单纯注射GOx与注射PBS类似,不能抑制肿瘤生长。The results shown in Figure 6 show that UiO-66@GOx@Ag can significantly inhibit tumor growth under near-infrared light irradiation, while simple injection of GOx is similar to injection of PBS and cannot inhibit tumor growth.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210525142.4A CN115501348A (en) | 2022-05-14 | 2022-05-14 | Nano-drug carrier with anticancer activity and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210525142.4A CN115501348A (en) | 2022-05-14 | 2022-05-14 | Nano-drug carrier with anticancer activity and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115501348A true CN115501348A (en) | 2022-12-23 |
Family
ID=84500892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210525142.4A Pending CN115501348A (en) | 2022-05-14 | 2022-05-14 | Nano-drug carrier with anticancer activity and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115501348A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116019933A (en) * | 2023-03-30 | 2023-04-28 | 南京邮电大学 | A nanomaterial for starvation treatment combined with copper death and its preparation method and application |
CN117122556A (en) * | 2023-03-31 | 2023-11-28 | 江西师范大学 | Glucose controlled silver ion slow-release composite material and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097354A (en) * | 2018-08-27 | 2018-12-28 | 盐城工学院 | Cellulase-metal organic frame composite catalyst and its preparation method and application |
CN109897846A (en) * | 2019-04-03 | 2019-06-18 | 辽宁大学 | A kind of immobilized glucose oxidase and its preparation method and application |
CN112773896A (en) * | 2021-01-13 | 2021-05-11 | 中国人民解放军陆军军医大学第一附属医院 | Preparation method and application of MOFs-based nano composite |
CN114177311A (en) * | 2021-11-30 | 2022-03-15 | 郑州大学 | Preparation method and application of a glucose oxidase-modified iron-based metal-organic framework nano-drug delivery system |
-
2022
- 2022-05-14 CN CN202210525142.4A patent/CN115501348A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097354A (en) * | 2018-08-27 | 2018-12-28 | 盐城工学院 | Cellulase-metal organic frame composite catalyst and its preparation method and application |
CN109897846A (en) * | 2019-04-03 | 2019-06-18 | 辽宁大学 | A kind of immobilized glucose oxidase and its preparation method and application |
CN112773896A (en) * | 2021-01-13 | 2021-05-11 | 中国人民解放军陆军军医大学第一附属医院 | Preparation method and application of MOFs-based nano composite |
CN114177311A (en) * | 2021-11-30 | 2022-03-15 | 郑州大学 | Preparation method and application of a glucose oxidase-modified iron-based metal-organic framework nano-drug delivery system |
Non-Patent Citations (3)
Title |
---|
CONGCONG HAN ET AL.: "Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells", J NANOPART RES, 16 March 2018 (2018-03-16), pages 1, XP036472023, DOI: 10.1007/s11051-018-4187-5 * |
MAN WANG ET AL.: "Recent Advances in Glucose-Oxidase-Based Nanocomposites for Tumor Therapy", SMALL, 20 November 2019 (2019-11-20), pages 2 - 3 * |
YAOJIA LI ET AL.: "MOF-shielded and glucose-responsive ultrasmall silver nano-factory for highly-efficient anticancer and antibacterial therapy", CHEMICAL ENGINEERING JOURNAL, 4 November 2020 (2020-11-04), pages 1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116019933A (en) * | 2023-03-30 | 2023-04-28 | 南京邮电大学 | A nanomaterial for starvation treatment combined with copper death and its preparation method and application |
CN117122556A (en) * | 2023-03-31 | 2023-11-28 | 江西师范大学 | Glucose controlled silver ion slow-release composite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy | |
CN109602919B (en) | Black phosphorus quantum dot coated by core-shell metal organic framework and preparation method and application thereof | |
Gao et al. | AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy | |
CN112717147B (en) | Preparation method and application of a Fe, Pt dual active site single-atom diagnostic agent | |
CN105797157B (en) | A kind of preparation method and application of porous nucleocapsid bimetallic organic frame nano drug-carrying body | |
Yao et al. | π–π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework | |
CN108324955B (en) | A kind of preparation method of ultra-small copper sulfide-supported hollow mesoporous silicon targeted nano-drug-loaded composite | |
CN112245579B (en) | Photodynamic therapeutic agent for relieving tumor hypoxia and preparation method and application thereof | |
CN115501348A (en) | Nano-drug carrier with anticancer activity and preparation method and application thereof | |
CN111821282B (en) | A kind of nanoparticle that mediates cascade reaction and preparation method thereof | |
CN110433145A (en) | A kind of Nano medication of cancer target and application and preparation method | |
CN111358964A (en) | Magnetic octahedral platinum-doped gold nanoshell, its preparation method and application | |
Pang et al. | Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer | |
CN112641946A (en) | Polydopamine-coated gold nano-composite, preparation method thereof and application thereof in multi-modal tumor diagnosis and treatment | |
Feng et al. | Progress of stimuli-responsive nanoscale metal organic frameworks as controlled drug delivery systems | |
CN115845086A (en) | Photo-thermal Fenton-like reaction artificial nano enzyme and preparation method and application thereof | |
CN113941009A (en) | A kind of metal organic framework nanocarrier and its preparation method and application | |
CN114848854A (en) | A kind of 131 I-HSA-ICG nano-particle and preparation method and application thereof | |
CN113750252A (en) | A kind of preparation method and application of cobalt-doped metal organic framework nanoparticles | |
CN103768620B (en) | Fe/ mesoporous monox nanometer composite and its preparation method and application | |
Qiao et al. | Tumor microenvironment activation amplify oxidative stress promoting tumor energy remodeling for mild photothermal therapy and cuproptosis | |
CN110075296B (en) | Gold nanoflowers with liver cancer targeting and radiotherapy sensitization characteristics and preparation and application thereof | |
CN104815340A (en) | Magnetic resonance imaging guided targeting metal organic framework drug carrier preparation method | |
CN107961375A (en) | A kind of nano metal sulfide material and its preparation method and application | |
CN109550050B (en) | A kind of melanin-loaded molybdenum dioxide drug-loaded complex and its preparation and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |