CN115497824A - Semiconductor structure and manufacturing method thereof - Google Patents
Semiconductor structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN115497824A CN115497824A CN202211214119.XA CN202211214119A CN115497824A CN 115497824 A CN115497824 A CN 115497824A CN 202211214119 A CN202211214119 A CN 202211214119A CN 115497824 A CN115497824 A CN 115497824A
- Authority
- CN
- China
- Prior art keywords
- semiconductor substrate
- deep well
- npn
- depth
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 121
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 97
- 238000002955 isolation Methods 0.000 claims abstract description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- 239000001301 oxygen Substances 0.000 claims abstract description 35
- 238000005530 etching Methods 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 42
- 238000005468 ion implantation Methods 0.000 claims description 22
- 150000004767 nitrides Chemical class 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- 238000004151 rapid thermal annealing Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 62
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
Landscapes
- Bipolar Transistors (AREA)
Abstract
本发明提供了一种半导体结构及其制造方法,应用于半导体技术领域。具体的,在本发明提供的制造方法中,其是通过增加有源区区域的刻蚀时间的方式,加深场氧隔离结构LOCOS在半导体衬底内的深度,因此其在形成用于形成LOCOS结构的沟槽时,会形成一定的半导体衬底的siliconloss的情况,因此,这样得到的LOCOS结构深度可以加深,且要求形成的LOCOS深度大于NPN的N+和P+的结深,并同时对NPN器件结构的制造工艺的影响较小,即,在能够不增加生产成本的同时,避免了因为金属插塞刻蚀波动带来的NPN器件结构的beta参数不稳定的问题。
The invention provides a semiconductor structure and a manufacturing method thereof, which are applied in the technical field of semiconductors. Specifically, in the manufacturing method provided by the present invention, the depth of the field oxygen isolation structure LOCOS in the semiconductor substrate is deepened by increasing the etching time of the active region, so it is used to form the LOCOS structure When the groove is formed, a certain siliconloss of the semiconductor substrate will be formed. Therefore, the depth of the LOCOS structure obtained in this way can be deepened, and the depth of the formed LOCOS is required to be greater than the junction depth of the N+ and P+ of the NPN. At the same time, the NPN device structure The impact of the manufacturing process is small, that is, while the production cost can not be increased, the problem of unstable beta parameters of the NPN device structure caused by the fluctuation of the metal plug etching is avoided.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种半导体结构及其制造方法。The invention relates to the technical field of semiconductors, in particular to a semiconductor structure and a manufacturing method thereof.
背景技术Background technique
BCD工艺是一种单片集成工艺技术,1986年由意法半导体(ST)公司研制成功。这种技术能够在同一芯片上制作双极型晶体管(Bipolar Junction Transistor)、CMOS和DMOS器件。BCD工艺不仅综合了双极型器件高跨导、强负载驱动能力和CMOS集成度高、低功耗的优点,而且集成了开关速度很快的DMOS功率器件。由于DMOS同时具有高速和大电流能力的特性,耐压通常也较高,因而用BCD工艺制造的电源管理芯片能工作在是高频、高压和大电流下,是制造高性能电源芯片的理想工艺。采用BCD工艺制造的单片集成芯片还可以提高系统性能,节省电路的封装费用,并具有更好的可靠性。BCD工艺的主要应用领域为电源管理(电源和电池控制)、显示驱动、汽车电子、工业控制等领域。由于BCD工艺的应用领域的不断扩大,对BCD工艺的要求越来越高。近来,BCD工艺主要朝着高压、高功率、高密度方向分化发展。The BCD process is a monolithic integration process technology, which was successfully developed by STMicroelectronics (ST) in 1986. This technology can make bipolar transistor (Bipolar Junction Transistor), CMOS and DMOS devices on the same chip. The BCD process not only combines the advantages of high transconductance, strong load driving capability of bipolar devices, high integration and low power consumption of CMOS, but also integrates DMOS power devices with fast switching speed. Since DMOS has the characteristics of high speed and high current capability at the same time, the withstand voltage is usually high, so the power management chip manufactured by BCD process can work under high frequency, high voltage and high current, which is an ideal process for manufacturing high performance power chip . The monolithic integrated chip manufactured by the BCD process can also improve system performance, save circuit packaging costs, and have better reliability. The main application fields of BCD technology are power management (power supply and battery control), display drive, automotive electronics, industrial control and other fields. Due to the continuous expansion of the application field of the BCD process, the requirements for the BCD process are getting higher and higher. Recently, the BCD process is mainly differentiated and developed in the direction of high voltage, high power, and high density.
图1为目前BCD工艺中的NPN器件结构(双极型晶体管)的结构示意图。从图1中可知,NPN器件结构的beta=Ic/Ib,而Ib电流路径主要为图1中的A路径和D路径。而在实际工艺中,CT刻蚀的深度会有正常波动或者面内分布,当CT刻蚀深度浅一些时,Ib电流大部分为A路径电流,当CT刻蚀深度深一些时,CT更靠近Emmiter(发射极)结底部,Ib电流大部分为D路径电流,因为D流经的PW浓度比A流经的PW浓度淡,所以D路径主导的beta比A路径主导的beta大,进而导致了NPN器件结构的beta的不稳定的问题。FIG. 1 is a schematic structural diagram of an NPN device structure (bipolar transistor) in the current BCD process. It can be seen from FIG. 1 that beta=Ic/Ib of the NPN device structure, and the Ib current path is mainly the A path and the D path in FIG. 1 . In the actual process, the CT etching depth will have normal fluctuations or in-plane distribution. When the CT etching depth is shallower, most of the Ib current is the A path current. When the CT etching depth is deeper, the CT is closer to At the bottom of the Emmiter (emitter) junction, most of the Ib current is the D path current, because the PW concentration flowing through D is lighter than the PW concentration flowing through A, so the beta dominated by the D path is larger than the beta dominated by the A path, which in turn leads to The beta instability problem of the NPN device structure.
发明内容Contents of the invention
本发明的目的在于提供一种半导体结构及其制造方法,以解决现有技术中由于NPN器件结构中的CT刻蚀深度波动带来的NPN器件结构的beta的不稳定的问题。The object of the present invention is to provide a semiconductor structure and a manufacturing method thereof, so as to solve the problem of unstable beta of the NPN device structure caused by CT etching depth fluctuations in the NPN device structure in the prior art.
第一方面,为解决上述技术问题,本发明提供一种半导体结构的制造方法,至少包括以下步骤:In the first aspect, in order to solve the above technical problems, the present invention provides a method for manufacturing a semiconductor structure, which at least includes the following steps:
提供一半导体衬底,所述半导体衬底内形成有第一深阱,且在所述半导体衬底的表面上形成有依次堆叠的氧化物层、氮化物层和硬掩膜层;A semiconductor substrate is provided, a first deep well is formed in the semiconductor substrate, and an oxide layer, a nitride layer and a hard mask layer are sequentially stacked on the surface of the semiconductor substrate;
以所述硬掩膜层为掩膜,刻蚀所述氮化物层、氧化物层和部分厚度的半导体衬底,以在形成由刻蚀后的氮化物层、氧化物层组成的多个分立堆叠结构的同时,在相邻所述堆叠结构之间的半导体衬底内形成多个沟槽;Using the hard mask layer as a mask, etching the nitride layer, the oxide layer and the partial thickness of the semiconductor substrate to form a plurality of discrete layers composed of the etched nitride layer and oxide layer While stacking structures, forming a plurality of trenches in the semiconductor substrate between adjacent stack structures;
在每一所述沟槽内形成场氧隔离结构,并对相邻两个所述场氧隔离结构之间的半导体衬底进行离子注入,以形成NPN结构的集电极、基极和发射极;Forming a field oxygen isolation structure in each of the trenches, and performing ion implantation on the semiconductor substrate between two adjacent field oxygen isolation structures to form a collector, a base, and an emitter of an NPN structure;
分别形成用于电性外接所述NPN结构的集电极、基极和发射极的金属插塞,其中所述金属插塞插入所述集电极、基极和发射极所对应的半导体衬底中的深度小于所述场氧隔离结构在所述半导体衬底内的深度。forming metal plugs for electrically externally connecting the collector, base, and emitter of the NPN structure, wherein the metal plugs are inserted into the semiconductor substrate corresponding to the collector, base, and emitter The depth is smaller than the depth of the field oxygen isolation structure in the semiconductor substrate.
进一步的,所述氧化物层可以为二氧化硅,所述氮化物层可以为氮化硅。Further, the oxide layer may be silicon dioxide, and the nitride layer may be silicon nitride.
进一步的,所述沟槽的深度范围可以为 Further, the depth range of the groove can be
进一步的,所述场氧隔离结构在沿垂直于所述半导体衬底的方向的深度范围可以为 Further, the depth range of the field oxygen isolation structure along the direction perpendicular to the semiconductor substrate may be
进一步的,在形成所述场氧隔离结构之后,且在形成所述NPN结构的集电极、基极和发射极之前,所述方法还可以包括:Further, after forming the field oxygen isolation structure and before forming the collector, base and emitter of the NPN structure, the method may further include:
形成牺牲氧化层,所述牺牲氧化层覆盖部分所述第一深阱所对应的半导体衬底的顶表面;forming a sacrificial oxide layer, the sacrificial oxide layer covering part of the top surface of the semiconductor substrate corresponding to the first deep well;
以所述牺牲氧化层为掩膜,对未被所述牺牲氧化层覆盖的半导体衬底进行离子注入工艺,以在所述第一深阱中形成第二深阱。Using the sacrificial oxide layer as a mask, an ion implantation process is performed on the semiconductor substrate not covered by the sacrificial oxide layer to form a second deep well in the first deep well.
进一步的,所述第一深阱可以为N型阱,所述第二深阱可以为P型阱。Further, the first deep well may be an N-type well, and the second deep well may be a P-type well.
进一步的,在形成所述第二深阱之后,所述方法还可以包括:对所述半导体衬底进行快速热退火处理,并利用湿法刻蚀工艺去除所述牺牲氧化层。Further, after forming the second deep well, the method may further include: performing rapid thermal annealing on the semiconductor substrate, and removing the sacrificial oxide layer by using a wet etching process.
进一步的,所述牺牲氧化层的厚度范围可以为 Further, the thickness range of the sacrificial oxide layer can be
进一步的,形成所述NPN结构的集电极、基极和发射极的步骤,可以包括:Further, the step of forming the collector, base and emitter of the NPN structure may include:
对所述第二深阱所对应的部分半导体衬底的表面进行N型离子注入,以在所述第二深阱所对应的部分半导体衬底内形成NPN结构的发射极;Performing N-type ion implantation on the surface of the part of the semiconductor substrate corresponding to the second deep well to form an emitter of an NPN structure in the part of the semiconductor substrate corresponding to the second deep well;
再次对所述第二深阱所对应的剩余半导体衬底的表面进行P型离子注入,以在所述第二深阱所对应的剩余半导体衬底内形成位于所述发射极两侧的NPN结构的基极;以及,Performing P-type ion implantation on the surface of the remaining semiconductor substrate corresponding to the second deep well again, so as to form NPN structures located on both sides of the emitter in the remaining semiconductor substrate corresponding to the second deep well the base of ; and,
进一步对所述第一深阱的除所述第二深阱之外的半导体衬底进行N型离子注入,以在所述第一深阱所对应的半导体衬底内形成所述NPN结构的集电极。N-type ion implantation is further performed on the semiconductor substrate of the first deep well except the second deep well, so as to form a collection of the NPN structure in the semiconductor substrate corresponding to the first deep well. electrode.
进一步的,所述NPN结构的发射极、基极所在半导体衬底内对应形成的离子注入区的结深需要小于所述场氧隔离结构在沿垂直于所述半导体衬底的方向的深度。Further, the junction depth of the ion implantation region correspondingly formed in the semiconductor substrate where the emitter and the base of the NPN structure are located needs to be smaller than the depth of the field oxygen isolation structure along a direction perpendicular to the semiconductor substrate.
第二方面,基于相同的发明构思,本发明还提供了一种NPN器件结构,具体可以采用如上所述的半导体结构的制造方法制备而成。In the second aspect, based on the same inventive concept, the present invention also provides an NPN device structure, which can be specifically prepared by using the above-mentioned semiconductor structure manufacturing method.
与现有技术相比,本发明的技术方案至少具有以下有益效果之一:Compared with the prior art, the technical solution of the present invention has at least one of the following beneficial effects:
在本发明提供的半导体结构的制造方法中,其将NPN结构的发射极与基极端的金属插塞的引出端通过场氧隔离结构LOCOS隔开,并且要求场氧隔离结构LOCOS在半导体衬底内的深度比NPN结构的发射极与基极端的金属插塞的引出端在半导体衬底内的深度要深,这样就可以杜绝A路径的电流通路,即可以得到较大的beta,又可以避免金属插塞刻蚀深度的变化带来的NPN结构的beta参数的变化,即,稳定了NPN结构的beta参数。In the manufacturing method of the semiconductor structure provided by the present invention, the emitter of the NPN structure is separated from the lead-out end of the metal plug at the base end by the field oxygen isolation structure LOCOS, and the field oxygen isolation structure LOCOS is required to be in the semiconductor substrate The depth of the NPN structure is deeper than that of the lead-out end of the metal plug at the emitter and base terminals of the NPN structure in the semiconductor substrate, so that the current path of the A path can be eliminated, that is, a larger beta can be obtained, and the metal plug can be avoided. The beta parameter of the NPN structure is changed due to the change of the plug etching depth, that is, the beta parameter of the NPN structure is stabilized.
进一步的,在本发明提供的制造方法中,其是通过增加有源区区域的刻蚀时间的方式,加深场氧隔离结构LOCOS在半导体衬底内的深度,因此其在形成用于形成LOCOS结构的沟槽时,会形成一定的半导体衬底的siliconloss的情况,因此,这样得到的LOCOS结构深度可以加深,且要求形成的LOCOS深度大于NPN的N+和P+的结深,并同时对NPN器件结构的制造工艺的影响较小,即,在能够不增加生产成本的同时,避免了因为金属插塞刻蚀波动带来的NPN器件结构的beta参数不稳定的问题。Further, in the manufacturing method provided by the present invention, the depth of the field oxygen isolation structure LOCOS in the semiconductor substrate is deepened by increasing the etching time of the active region, so it is used to form the LOCOS structure When the groove is formed, a certain siliconloss of the semiconductor substrate will be formed. Therefore, the depth of the LOCOS structure obtained in this way can be deepened, and the depth of the formed LOCOS is required to be greater than the junction depth of the N+ and P+ of the NPN. At the same time, the NPN device structure The impact of the manufacturing process is small, that is, while the production cost can not be increased, the problem of unstable beta parameters of the NPN device structure caused by the fluctuation of the etching of the metal plug is avoided.
附图说明Description of drawings
图1为目前BCD工艺中的NPN器件结构(双极型晶体管)的结构示意图;Fig. 1 is the structural representation of the NPN device structure (bipolar transistor) in the current BCD technology;
图2为本发明一实施例中的半导体结构的制造方法的流程图;2 is a flowchart of a method for manufacturing a semiconductor structure in an embodiment of the present invention;
图3a~图3d为本发明实施例中提供的一种半导体结构在制造过程中的结构示意图;3a to 3d are structural schematic diagrams of a semiconductor structure provided in an embodiment of the present invention during the manufacturing process;
其中,附图标记如下:Wherein, the reference signs are as follows:
100-半导体衬底; 110-氧化物层;100-semiconductor substrate; 110-oxide layer;
120-氮化物层; 130-硬掩膜层;120-nitride layer; 130-hard mask layer;
140-金属插塞; NDW-第一深阱;140 - metal plug; NDW - first deep well;
Pwell-第二深阱。Pwell - the second deep well.
具体实施方式detailed description
承如背景技术所述,目前,在实际工艺中,CT刻蚀的深度会有正常波动或者面内分布,当CT刻蚀深度浅一些时,Ib电流大部分为A路径电流,当CT刻蚀深度深一些时,CT更靠近Emmiter(发射极)结底部,Ib电流大部分为D路径电流,因为D流经的PW浓度比A流经的PW浓度淡,所以D路径主导的beta比A路径主导的beta大,进而导致了NPN器件结构的beta的不稳定的问题。As mentioned in the background technology, at present, in the actual process, the CT etching depth will have normal fluctuations or in-plane distribution. When the CT etching depth is shallower, most of the Ib current is the A path current. When the CT etching depth When the depth is deeper, CT is closer to the bottom of the Emmiter (emitter) junction, and most of the Ib current is the current of the D path, because the concentration of PW flowing through D is lighter than that of PW flowing through A, so the beta dominated by the D path is stronger than that of the A path The dominant beta is large, which in turn leads to the instability of the beta of the NPN device structure.
基于此,本发明提供了一种半导体结构及其制造方法,以解决现有技术中由于NPN器件结构中的CT刻蚀深度波动带来的NPN器件结构的beta的不稳定的问题。Based on this, the present invention provides a semiconductor structure and its manufacturing method to solve the problem of unstable beta of the NPN device structure caused by CT etching depth fluctuations in the NPN device structure in the prior art.
例如参考图2所示,本发明所提供的半导体结构的制造方法至少包括以下步骤:For example, referring to FIG. 2, the method for manufacturing a semiconductor structure provided by the present invention at least includes the following steps:
步骤S100,提供一半导体衬底,所述半导体衬底内形成有第一深阱,且在所述半导体衬底的表面上形成有依次堆叠的氧化物层、氮化物层和硬掩膜层;Step S100, providing a semiconductor substrate, in which a first deep well is formed, and an oxide layer, a nitride layer and a hard mask layer are sequentially stacked on the surface of the semiconductor substrate;
步骤S200,以所述硬掩膜层为掩膜,刻蚀所述氮化物层、氧化物层和部分厚度的半导体衬底,以在形成由刻蚀后的氮化物层、氧化物层组成的多个分立堆叠结构的同时,在相邻所述堆叠结构之间的半导体衬底内形成多个沟槽;Step S200, using the hard mask layer as a mask to etch the nitride layer, oxide layer and a part of the thickness of the semiconductor substrate, so as to form the nitride layer and oxide layer after etching While multiple discrete stack structures are formed, multiple trenches are formed in the semiconductor substrate between adjacent stack structures;
步骤S300,在每一所述沟槽内形成场氧隔离结构,并对相邻两个所述场氧隔离结构之间的半导体衬底进行离子注入,以形成NPN结构的集电极、基极和发射极;Step S300, forming a field oxygen isolation structure in each of the trenches, and performing ion implantation on the semiconductor substrate between two adjacent field oxygen isolation structures, so as to form a collector, a base and an NPN structure. emitter;
步骤S400,分别形成用于电性外接所述NPN结构的集电极、基极和发射极的金属插塞,其中所述金属插塞插入所述集电极、基极和发射极所对应的半导体衬底中的深度小于所述场氧隔离结构在所述半导体衬底内的深度。Step S400, respectively forming metal plugs for electrically externally connecting the collector, base, and emitter of the NPN structure, wherein the metal plugs are inserted into the semiconductor substrate corresponding to the collector, base, and emitter The depth in the bottom is smaller than the depth of the field oxygen isolation structure in the semiconductor substrate.
即,在本发明提供的半导体结构的制造方法中,其将NPN结构的发射极与基极端的金属插塞的引出端通过场氧隔离结构LOCOS隔开,并且要求场氧隔离结构LOCOS在半导体衬底内的深度比NPN结构的发射极与基极端的金属插塞的引出端在半导体衬底内的深度要深,这样就可以杜绝A路径的电流通路,即可以得到较大的beta,又可以避免金属插塞刻蚀深度的变化带来的NPN结构的beta参数的变化,即,稳定了NPN结构的beta参数。进一步的,在本发明提供的制造方法中,其是通过增加有源区区域的刻蚀时间的方式,加深场氧隔离结构LOCOS在半导体衬底内的深度,因此其在形成用于形成LOCOS结构的沟槽时,会形成一定的半导体衬底的silicon loss的情况,因此,这样得到的LOCOS结构深度可以加深,且要求形成的LOCOS深度大于NPN的N+和P+的结深,并同时对NPN器件结构的制造工艺的影响较小,即,在能够不增加生产成本的同时,避免了因为金属插塞刻蚀波动带来的NPN器件结构的beta参数不稳定的问题。That is, in the manufacturing method of the semiconductor structure provided by the present invention, the emitter of the NPN structure and the lead-out end of the metal plug at the base end are separated by the field oxygen isolation structure LOCOS, and the field oxygen isolation structure LOCOS is required to be formed on the semiconductor substrate. The depth inside the bottom is deeper than the depth of the lead-out end of the metal plug of the emitter and base terminals of the NPN structure in the semiconductor substrate, so that the current path of the A path can be eliminated, that is, a larger beta can be obtained, and a larger beta can be obtained. The change of the beta parameter of the NPN structure caused by the change of the etching depth of the metal plug is avoided, that is, the beta parameter of the NPN structure is stabilized. Further, in the manufacturing method provided by the present invention, the depth of the field oxygen isolation structure LOCOS in the semiconductor substrate is deepened by increasing the etching time of the active region, so it is used to form the LOCOS structure When the groove is formed, a certain silicon loss of the semiconductor substrate will be formed. Therefore, the depth of the LOCOS structure obtained in this way can be deepened, and the depth of the formed LOCOS is required to be greater than the junction depth of the N+ and P+ of the NPN. At the same time, the NPN device The influence of the manufacturing process of the structure is small, that is, while the production cost can not be increased, the problem of unstable beta parameters of the NPN device structure caused by metal plug etching fluctuations is avoided.
以下结合附图和具体实施例对本发明提出的半导体结构及其制造方法作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。The semiconductor structure and its manufacturing method proposed by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become clearer from the following description. It should be noted that all the drawings are in a very simplified form and use imprecise scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention. In the following description, many specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways than those described here, so the present invention is not limited by the specific embodiments disclosed below.
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。As indicated in this application and claims, the terms "a", "an", "an" and/or "the" do not refer to the singular and may include the plural unless the context clearly indicates an exception. Generally speaking, the terms "comprising" and "comprising" only suggest the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list, and the method or device may also contain other steps or elements. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional view showing the device structure will not be partially enlarged according to the general scale, and the schematic diagram is only an example, which should not limit the protection scope of the present invention. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
图3a~图3d为本发明一实施例中的一种半导体结构的制造方法的结构示意图。3a to 3d are structural schematic diagrams of a method for manufacturing a semiconductor structure in an embodiment of the present invention.
在步骤S100中,具体参考图3a所示,提供一半导体衬底100,所述半导体衬底100内形成有第一深阱DNW,且在所述半导体衬底100的表面上形成有依次堆叠的氧化物层110、氮化物层120和硬掩膜层130。其中,所述半导体衬底100可以为绝缘体上硅衬底SOI,其为具有自下至上依次堆叠的底部半导体层(未图示)、绝缘埋层(未图示)和顶部半导体层(未图示),所述底部半导体层和所述顶部半导体层的材料可以为硅(Si)、锗(Ge)、锗硅(SiGe)、碳硅(SiC)、碳锗硅(SiGeC)、砷化铟(InAs)、砷化镓(GaAs)、磷化铟(InP)或者其它III/V化合物半导体中的至少一种,所述绝缘埋层的材料可以包括二氧化硅。示例性的,在本发明实施例中,所述半导体衬底100为导电的硅衬底。而所述氧化物层110可以为二氧化硅,所述氮化物层120可以为氮化硅,所述硬掩膜层130可以为光刻胶层。In step S100, specifically referring to FIG. 3a, a
在本实施例中,可以先提供一衬底材料为硅衬底的半导体衬底100,并对其进行P型离子注入,以形成P型掺杂的硅衬底100;之后,在该硅衬底100(或者称为半导体衬底100)的两边形成光刻胶层(未图示),以暴露出该硅P型掺杂的硅衬底100的中间部位的表面,然后利用离子注入工艺,对该P型掺杂的硅衬底100的中间部位进行N型离子注入,而后经高温推阱后,形成N-高阻区,即,如图3a所示的第一深阱DNW。In this embodiment, a
在步骤S200中,具体参考图3b所示,以所述硬掩膜层130为掩膜,刻蚀所述氮化物层110、氧化物层120和部分厚度的半导体衬底100,以在形成由刻蚀后的氮化物层110、氧化物层120组成的多个分立堆叠结构251的同时,在相邻所述堆叠结构251之间的半导体衬底100内形成多个沟槽101。In step S200, specifically referring to FIG. 3b, using the
在本实施例中,在执行完上述步骤S100之后,可以在该半导体衬底100的表面上依次沉积形成二氧化硅层、氮化硅层和光刻胶层,然后以该光刻胶层为掩膜,沿垂直于该半导体衬底100的表面的方向向下垂直刻蚀,例如,为湿法刻蚀工艺,以在形成如图3b所述的堆叠结构251的同时,在所述半导体衬底100的内部形成一具有一定深度的沟槽101。其中,所述沟槽101的深度范围可以示例性的为具体可以为 和 In this embodiment, after the above step S100 is performed, a silicon dioxide layer, a silicon nitride layer and a photoresist layer may be sequentially deposited and formed on the surface of the
需要说明的是,在本发明中,通过所述硬掩膜层130刻蚀形成的由刻蚀后的氮化物层110、氧化物层120组成的多个分立堆叠结构251的过程,其是定义出NPN器件结构的有源区,而位于相邻两个所述分立堆叠结构251之间的区域则为用于形成LOCOS场氧隔离结构的区域。并且,在此过程中,其是通过增加有源区区域的刻蚀时间的方式(即为步骤S200中形成堆叠结构251的过程),加深场氧隔离结构LOCOS在半导体衬底内的深度(即为沟槽101),因此其在形成用于形成LOCOS结构的沟槽时,会形成一定的半导体衬底的silicon loss的情况,因此,这样得到的LOCOS结构深度可以加深,同时对NPN器件结构的制造工艺的影响较小。并且,同时还需要后续步骤形成的NPN结构的发射极、基极所在半导体衬底100内对应形成的离子注入区的结深需要小于所述场氧隔离结构LOCOS在沿垂直于所述半导体衬底100的方向的深度。It should be noted that, in the present invention, the process of etching the
在步骤S300中,具体参考图3c所示,在每一所述沟槽101内形成场氧隔离结构LOCOS,并对相邻两个所述场氧隔离结构LOCOS之间的半导体衬底100进行离子注入,以形成NPN结构的集电极C、基极B和发射极E。In step S300, specifically referring to FIG. 3c, a field oxygen isolation structure LOCOS is formed in each of the
在本实施例中,可以利用现有的场氧隔离结构的形成工艺,形成所述图3c中的场氧隔离结构LOCOS,之后,在执行步骤S301,形成牺牲氧化层(未图示),所述牺牲氧化层覆盖部分所述第一深阱DNM所对应的半导体衬底100的顶表面;其中,所述牺牲氧化层的厚度范围为再执行步骤S302,以所述牺牲氧化层为掩膜,对未被所述牺牲氧化层覆盖的半导体衬底100进行离子注入工艺,以在所述第一深阱中形成第二深阱Pwell。之后,在执行步骤S303,对所述半导体衬底100进行快速热退火处理,并利用湿法刻蚀工艺去除所述牺牲氧化层。最后,在利用多步离子注入工艺,分别形成NPN结构的集电极C、基极B和发射极E。In this embodiment, the field oxygen isolation structure LOCOS in FIG. 3c can be formed by using the existing formation process of the field oxygen isolation structure, and then, in step S301, a sacrificial oxide layer (not shown) is formed, so The sacrificial oxide layer covers part of the top surface of the
示例性的,在本发明实施例中,其提供了一种具体形成所述NPN结构的集电极C、基极B和发射极E的具体步骤,包括:Exemplarily, in the embodiment of the present invention, it provides a specific step of forming the collector C, base B and emitter E of the NPN structure, including:
对所述第二深阱Pwell所对应的部分半导体衬底100的表面进行N型离子注入,以在所述第二深阱Pwell所对应的部分半导体衬底100内形成NPN结构的发射极E;Performing N-type ion implantation on the surface of the part of the
再次对所述第二深阱Pwell所对应的剩余半导体衬底100的表面进行P型离子注入,以在所述第二深阱Pwell所对应的剩余半导体衬底100内形成位于所述发射极E两侧的NPN结构的基极B;以及,Perform P-type ion implantation on the surface of the remaining
进一步对所述第一深阱DNW的除所述第二深阱Pwell之外的半导体衬底100进行N型离子注入,以在所述第一深阱DNW所对应的半导体衬底100内形成所述NPN结构的集电极C。N-type ion implantation is further performed on the
需要说明的是,在本发明实施例中,所述场氧隔离结构LOCOS在沿垂直于所述半导体衬底100的方向的深度范围可以为示例性的其具体可以为:和 It should be noted that, in the embodiment of the present invention, the depth range of the field oxygen isolation structure LOCOS along the direction perpendicular to the
在步骤S400中,具体参考图3d所示,分别形成用于电性外接所述NPN结构的集电极C、基极B和发射极E的金属插塞140,其中所述金属插塞140插入所述集电极C、基极B和发射极E所对应的半导体衬底100中的深度小于所述场氧隔离结构LOCOS在所述半导体衬底100内的深度。In step S400, specifically referring to FIG. 3d, metal plugs 140 for electrically externally connecting the collector C, base B, and emitter E of the NPN structure are respectively formed, wherein the metal plugs 140 are inserted into the The depth in the
在本实施例中,可以先在半导体衬底100的表面上淀积BPSG(层间绝缘膜),然后利用化学机械研磨工艺CMP磨平该膜层,之后利用刻蚀工艺形成用于电性外接所述NPN结构的集电极C、基极B和发射极E的金属插塞,即,通过CT光刻定义出CT区域,进行刻蚀、填充W,淀积金属,通过金属光刻定义出金属连线区域,进行刻蚀,完成BJT各端子的连接。In this embodiment, a BPSG (interlayer insulating film) can be deposited on the surface of the
综上所述,在本发明提供的半导体结构的制造方法中,其将NPN结构的发射极与基极端的金属插塞的引出端通过场氧隔离结构LOCOS隔开,并且要求场氧隔离结构LOCOS在半导体衬底内的深度比NPN结构的发射极与基极端的金属插塞的引出端在半导体衬底内的深度要深,这样就可以杜绝A路径的电流通路,即可以得到较大的beta,又可以避免金属插塞刻蚀深度的变化带来的NPN结构的beta参数的变化,即,稳定了NPN结构的beta参数。In summary, in the manufacturing method of the semiconductor structure provided by the present invention, the emitter of the NPN structure and the lead-out end of the metal plug at the base end are separated by the field oxygen isolation structure LOCOS, and the field oxygen isolation structure LOCOS is required The depth in the semiconductor substrate is deeper than that of the lead-out end of the metal plug of the emitter and base terminals of the NPN structure in the semiconductor substrate, so that the current path of the A path can be eliminated, that is, a larger beta can be obtained , and can avoid the change of the beta parameter of the NPN structure caused by the change of the etching depth of the metal plug, that is, the beta parameter of the NPN structure is stabilized.
进一步的,在本发明提供的制造方法中,其是通过增加有源区区域的刻蚀时间的方式,加深场氧隔离结构LOCOS在半导体衬底内的深度,因此其在形成用于形成LOCOS结构的沟槽时,会形成一定的半导体衬底的silicon loss的情况,因此,这样得到的LOCOS结构深度可以加深,且要求形成的LOCOS深度大于NPN的N+和P+的结深,并同时对NPN器件结构的制造工艺的影响较小,即,在能够不增加生产成本的同时,避免了因为金属插塞刻蚀波动带来的NPN器件结构的beta参数不稳定的问题。Further, in the manufacturing method provided by the present invention, the depth of the field oxygen isolation structure LOCOS in the semiconductor substrate is deepened by increasing the etching time of the active region, so it is used to form the LOCOS structure When the groove is formed, a certain silicon loss of the semiconductor substrate will be formed. Therefore, the depth of the LOCOS structure obtained in this way can be deepened, and the depth of the formed LOCOS is required to be greater than the junction depth of the N+ and P+ of the NPN. At the same time, the NPN device The influence of the manufacturing process of the structure is small, that is, while the production cost can not be increased, the problem of unstable beta parameters of the NPN device structure caused by metal plug etching fluctuations is avoided.
之后,在基于与上述所述的半导体结构的制造方法的发明构思相同的构思的情况下,本发明还提供了一种NPN器件结构。具体的,在本发明实施例中提供的NPN器件结构的场氧隔离结构LOCOS在半导体衬底内的深度比现有技术中其他NPN器件结构的场氧隔离结构LOCOS的深度要深。After that, the present invention also provides an NPN device structure based on the same concept as the above-mentioned inventive concept of the manufacturing method of the semiconductor structure. Specifically, the depth of the field oxygen isolation structure LOCOS of the NPN device structure provided in the embodiment of the present invention in the semiconductor substrate is deeper than that of the field oxygen isolation structure LOCOS of other NPN device structures in the prior art.
需要说明的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围。It should be noted that although the present invention has been disclosed above with preferred embodiments, the above embodiments are not intended to limit the present invention. For any person skilled in the art, without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make many possible changes and modifications to the technical solution of the present invention, or be modified to be equivalent to equivalent changes. Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the content of the technical solution of the present invention, still belong to the scope of protection of the technical solution of the present invention.
还应当理解的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。It should also be understood that, unless otherwise specified or pointed out, the terms “first”, “second”, “third” and other descriptions in the specification are only used to distinguish each component, element, step, etc. in the specification, rather than It is used to express the logical relationship or sequence relationship between various components, elements, and steps.
此外还应该认识到,此处描述的术语仅仅用来描述特定实施例,而不是用来限制本发明的范围。必须注意的是,此处的以及所附权利要求中使用的单数形式“一个”和“一种”包括复数基准,除非上下文明确表示相反意思。例如,对“一个步骤”或“一个装置”的引述意味着对一个或多个步骤或装置的引述,并且可能包括次级步骤以及次级装置。应该以最广义的含义来理解使用的所有连词。以及,词语“或”应该被理解为具有逻辑“或”的定义,而不是逻辑“异或”的定义,除非上下文明确表示相反意思。此外,本发明实施例中的方法和/或设备的实现可包括手动、自动或组合地执行所选任务。In addition, it should be understood that the terminology described herein is used to describe particular embodiments only and is not intended to limit the scope of the invention. It must be noted that as used herein and in the appended claims, the singular forms "a" and "an" include plural referents unless the context clearly dictates otherwise. For example, a reference to "a step" or "a means" means a reference to one or more steps or means, and may include sub-steps as well as sub-means. All conjunctions used should be understood in their broadest sense. And, the word "or" should be understood as having the definition of logical "or" rather than logical "exclusive or", unless the context clearly expresses the contrary meaning. Additionally, implementation of the method and/or apparatus in embodiments of the present invention may include performing selected tasks manually, automatically, or in combination.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211214119.XA CN115497824A (en) | 2022-09-30 | 2022-09-30 | Semiconductor structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211214119.XA CN115497824A (en) | 2022-09-30 | 2022-09-30 | Semiconductor structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115497824A true CN115497824A (en) | 2022-12-20 |
Family
ID=84471988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211214119.XA Pending CN115497824A (en) | 2022-09-30 | 2022-09-30 | Semiconductor structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115497824A (en) |
-
2022
- 2022-09-30 CN CN202211214119.XA patent/CN115497824A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100557786C (en) | Semiconductor device and manufacturing method thereof | |
CN104217936B (en) | Method for Producing a Semiconductor Component | |
US5476809A (en) | Semiconductor device and method of manufacturing the same | |
CN104347625B (en) | Integrated circuit and method of manufacturing integrated circuit | |
CN108122746A (en) | The method being used for producing the semiconductor devices with power semiconductor | |
CN100530644C (en) | Semiconductor integrated circuit and manufacturing method | |
US20030193077A1 (en) | Bipolar transistor and method of fabricating the same | |
CN114464675A (en) | Composite gate IGBT device structure and preparation method thereof | |
JPH05218335A (en) | Trench capacitor memory cell and its manufacture | |
CN113745346A (en) | Semiconductor device having dual gate structure, method of manufacturing the same, and electronic apparatus | |
JP5616720B2 (en) | Semiconductor device and manufacturing method thereof | |
KR20210122643A (en) | Gate-all-around devices with optimized gate spacers and gate end dielectric | |
JP2009032967A (en) | Semiconductor apparatus and method of manufacturing the same | |
JP2654607B2 (en) | Method for manufacturing semiconductor device | |
CN217691181U (en) | semiconductor device | |
CN115497824A (en) | Semiconductor structure and manufacturing method thereof | |
CN118471980A (en) | Integrated circuit device and method of forming the same | |
CN113054011B (en) | Power semiconductor device and manufacturing method thereof | |
CN114823841A (en) | Semiconductor structure and forming method thereof | |
CN106024887B (en) | Semiconductor device and method of forming the same | |
JP4457798B2 (en) | Manufacturing method of semiconductor device | |
TWI866134B (en) | Semiconductor device and method of manufacturing the same | |
US6222249B1 (en) | Semiconductor device | |
JP2006100825A (en) | Thick oxide region in semiconductor device and its forming method | |
TWI550864B (en) | Trench-gate metal oxide semiconductor device and fabricating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |