CN115494568A - A kind of preparation method of microlens array and its microlens array, application - Google Patents
A kind of preparation method of microlens array and its microlens array, application Download PDFInfo
- Publication number
- CN115494568A CN115494568A CN202211461501.0A CN202211461501A CN115494568A CN 115494568 A CN115494568 A CN 115494568A CN 202211461501 A CN202211461501 A CN 202211461501A CN 115494568 A CN115494568 A CN 115494568A
- Authority
- CN
- China
- Prior art keywords
- microlens array
- microlens
- pattern
- etching process
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0012—Arrays characterised by the manufacturing method
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电器件制备方法的技术领域,尤其是涉及一种微透镜阵列的制备方法及其微透镜阵列、应用。The invention relates to the technical field of photoelectric device preparation methods, in particular to a preparation method of a microlens array and the microlens array and its application.
背景技术Background technique
微纳结构是指人为设计的、具有微米或纳米尺度特征尺寸、按照特定方式排布的功能结构。随着第三代光学成像技术向集成化、轻量化、超大口径发展,传统折反式光学系统面临着诸多瓶颈,而微纳结构光学元件具有重量轻、设计自由度高、结构灵活等特点,在成像领域展现出显著优势。Micro-nanostructures refer to artificially designed functional structures with micron or nanoscale feature sizes and arranged in a specific way. With the development of the third-generation optical imaging technology towards integration, light weight, and ultra-large aperture, the traditional catadioptric optical system faces many bottlenecks, while micro-nano structured optical components have the characteristics of light weight, high degree of design freedom, and flexible structure. Shows significant advantages in the field of imaging.
微透镜及微透镜阵列作为一种非常重要的微纳结构光学元器件,通过精确控制微透镜分布,焦距,占空比,数值孔径等参数可以实现对光束的有效调制满足消费者的需求。通过有效控制的微透镜的参数得到的微透镜可以广泛应用于光电子及半导体检测领域,具有良好的应用前景。Microlenses and microlens arrays are very important micro-nano structural optical components. Through precise control of microlens distribution, focal length, duty cycle, numerical aperture and other parameters, effective modulation of beams can be achieved to meet consumer needs. The microlens obtained by effectively controlling the parameters of the microlens can be widely used in the fields of optoelectronics and semiconductor detection, and has good application prospects.
而目前用于制备微透镜阵列的平面工艺离子交换法、光敏玻璃法、全息法、菲涅尔波带透镜法、光刻胶热熔融法等因为误差较大、精度难以控制、工序复杂等问题均难以实现批量化生产。为了解决这一技术问题,近年来提出了一种微透镜阵列的新的制备方法,该方法使用纳米压印的技术调整微透镜阵列的尺寸间距,实现1:1原位转移微透镜的球冠形状,有利于提高微透镜阵列成型的一致性,为微透镜阵列的批量化生产提供了可能;但由于不同器件或设备所需的微透镜阵列的参数不同,因此如何实现不同微透镜阵列的参数的调整和精确控制依然是微透镜阵列制备的一大难点。However, the planar process ion exchange method, photosensitive glass method, holographic method, Fresnel zone lens method, and photoresist thermal melting method currently used to prepare microlens arrays have problems such as large errors, difficult control of precision, and complicated procedures. It is difficult to achieve mass production. In order to solve this technical problem, a new preparation method of microlens arrays has been proposed in recent years. This method uses nanoimprinting technology to adjust the size spacing of microlens arrays, and realizes 1:1 in-situ transfer of spherical caps of microlenses. The shape is conducive to improving the consistency of microlens array molding, which provides the possibility for mass production of microlens arrays; but because the parameters of microlens arrays required by different devices or equipment are different, how to realize the parameters of different microlens arrays The adjustment and precise control of microlens arrays are still a major difficulty in the preparation of microlens arrays.
发明内容Contents of the invention
本申请的目的在于提供一种微透镜阵列的制备方法,改善了现有技术中微透镜阵列的难以调整和精确控制难度大的技术问题。The purpose of the present application is to provide a method for preparing a microlens array, which solves the technical problems of difficult adjustment and precise control of the microlens array in the prior art.
另一目的,本申请还提供一种微透镜阵列。Another purpose of the present application is to provide a microlens array.
再一目的,本申请还提供一种微透镜阵列的在光学领域的应用。As another object, the present application also provides an application of a microlens array in the optical field.
第一方面,基于上述技术问题,本申请提供了一种微透镜阵列的制备方法,包括:In the first aspect, based on the above technical problems, the application provides a method for preparing a microlens array, including:
提供基板、具有微透镜阵列图案或具有微透镜阵列反向图案的纳米压印模板;在基板上形成第一压印胶层;providing a substrate, a nanoimprint template with a microlens array pattern or a microlens array reverse pattern; forming a first imprint adhesive layer on the substrate;
利用压印工艺将微透镜阵列图案转移到第一压印胶层上,或者利用压印工艺将微透镜阵列反向图案反向转移到第一压印胶层上;Transferring the pattern of the microlens array to the first embossing adhesive layer by using an embossing process, or reversely transferring the reverse pattern of the microlens array to the first embossed adhesive layer by using an embossing process;
利用刻蚀工艺将第一压印胶层上的图案转移到基板上,形成阵列的微透镜单元;Transferring the pattern on the first embossed adhesive layer to the substrate by an etching process to form an array of microlens units;
在阵列的微透镜单元表面形成介质层,得到所需的微透镜阵列;其中,介质层的厚度和材料根据微透镜阵列应用的器件的焦距和/或折射率的需求获取;Forming a dielectric layer on the surface of the microlens unit of the array to obtain the required microlens array; wherein, the thickness and material of the dielectric layer are obtained according to the focal length and/or refractive index requirements of the device used in the microlens array;
其中,刻蚀工艺中,根据待得到的微透镜阵列的微透镜单元的底面直径D与中心厚度d与的比值,调整刻蚀工艺中所采用的处理气体中卤化氢和氟化物的比例,得到所需的微透镜阵列。Wherein, in the etching process, according to the ratio of the bottom surface diameter D and the center thickness d of the microlens unit of the microlens array to be obtained, the ratio of hydrogen halide and fluoride in the processing gas used in the etching process is adjusted to obtain required microlens array.
进一步地,在本申请的一些实施例中,调整刻蚀工艺中所采用的处理气体的比例包括:Further, in some embodiments of the present application, adjusting the ratio of the processing gas used in the etching process includes:
当D/d≥20时,卤化氢和氟化物的比例的体积比为1:4.5~8;When D/d≥20, the volume ratio of hydrogen halide and fluoride is 1:4.5~8;
当8≤D/d<20时,卤化氢和氟化物的比例的体积比为1:3.5~5;When 8≤D/d<20, the volume ratio of hydrogen halide and fluoride is 1:3.5~5;
当2<D/d<8时,卤化氢和氟化物的比例的体积比为1:2~4。When 2<D/d<8, the volume ratio of hydrogen halide and fluoride is 1:2~4.
进一步地,在本申请的一些实施例中,制备方法还包括,在刻蚀工艺中,根据待得到的微透镜阵列的微透镜单元的底面直径D与中心厚度d与的比值,调整进行刻蚀工艺的设备的偏振功率:Further, in some embodiments of the present application, the preparation method further includes, in the etching process, adjusting the etching process according to the ratio of the bottom surface diameter D of the microlens unit of the microlens array to the center thickness d and Polarization power of process equipment:
当D/d≥20时,进行刻蚀工艺的设备的偏振功率为150~300W;When D/d≥20, the polarization power of the equipment for etching process is 150~300W;
当8≤D/d<20时,进行刻蚀工艺的设备的偏振功率为80~150W;When 8≤D/d<20, the polarization power of the equipment for etching process is 80~150W;
当D/d<8时,进行刻蚀工艺的设备的偏振功率为0~100W。When D/d<8, the polarization power of the equipment performing the etching process is 0~100W.
进一步地,在本申请的一些实施例中,利用压印工艺将微透镜阵列图案转移到第一压印胶层上,包括:Further, in some embodiments of the present application, using an embossing process to transfer the microlens array pattern to the first embossed adhesive layer, including:
提供转移版,转移版的表面设置有第二压印胶层;Provide a transfer plate, the surface of the transfer plate is provided with a second embossing adhesive layer;
利用纳米压印模板在转移版上进行压印,将微透镜阵列图案反向转移到转移版上,得到反向转移版;Using a nanoimprint template to imprint on the transfer plate, reversely transfer the pattern of the microlens array to the transfer plate to obtain a reverse transfer plate;
利用反向转移版在第一压印胶层上进行压印,将微透镜阵列图案转移到第一压印胶层上;embossing on the first embossing adhesive layer by using a reverse transfer plate, and transferring the pattern of the microlens array to the first embossing adhesive layer;
利用刻蚀工艺将第一压印胶层上的图案转移到基板上,包括:Using an etching process to transfer the pattern on the first embossed adhesive layer to the substrate, including:
以反向转移版为掩模,利用刻蚀工艺将纳米压印模板上的图案转移到基板上。Using the reverse transfer plate as a mask, the pattern on the nanoimprint template is transferred to the substrate by etching process.
进一步地,在本申请的一些实施例中,利用压印工艺将微透镜阵列反向图案反向转移到第一压印胶层上,包括:Further, in some embodiments of the present application, using an embossing process to reversely transfer the reverse pattern of the microlens array to the first embossed adhesive layer, including:
利用具有微透镜阵列反向图案的纳米压印模板在第一压印胶层上进行压印,将微透镜阵列反向图案反向转移到第一压印胶层上形成微透镜阵列图案。The nano-imprint template with the reverse pattern of the microlens array is used to imprint on the first embossing adhesive layer, and the reverse transfer pattern of the microlens array is reversely transferred to the first embossing adhesive layer to form a pattern of the microlens array.
进一步地,在本申请的一些实施例中,进行刻蚀工艺的腔室内的压力为5~50mTorr;和/或Further, in some embodiments of the present application, the pressure in the chamber for performing the etching process is 5-50 mTorr; and/or
进行刻蚀工艺的设备所采用的源功率为100~1000w;和/或The source power used by the equipment for etching process is 100~1000w; and/or
进行刻蚀工艺的时间为60~180s;和/或The time for performing the etching process is 60-180s; and/or
氟化物的流量为100~1000SCCM;和/或The flow rate of fluoride is 100~1000SCCM; and/or
卤化氢的流量为20~200SCCM。The flow rate of hydrogen halide is 20~200SCCM.
进一步地,在本申请的一些实施例中,氟化物选自氟化氮、四氟化碳、CHF3、CH2F2、C4F8、C4F6、C5F8、六氟化硫中的一种或多种;和/或Further, in some embodiments of the present application, the fluoride is selected from nitrogen fluoride, carbon tetrafluoride, CHF 3 , CH 2 F 2 , C 4 F 8 , C 4 F 6 , C 5 F 8 , hexafluoro one or more of sulfide; and/or
卤化氢选自溴化氢、氯化氢、氟化氢中的一种或多种;和/或Hydrogen halide is selected from one or more of hydrogen bromide, hydrogen chloride, hydrogen fluoride; and/or
介质层的材料针对目标应用波段,选自Si3N4、SiO2、SiON、玻璃、氟化镁、氟化钙中的一种或多种,或者其他透明度高的介电层材料等中的一种或多种;和/或The material of the dielectric layer is selected from one or more of Si 3 N 4 , SiO 2 , SiON, glass, magnesium fluoride, calcium fluoride, or other high-transparency dielectric layer materials for the target application band. one or more; and/or
所述基板选自硅基板、二氧化硅基板、玻璃基板、蓝宝石基板中的任一种。The substrate is selected from any one of silicon substrates, silicon dioxide substrates, glass substrates, and sapphire substrates.
进一步地,在本申请的一些实施例中,在阵列的微透镜单元表面形成介质层,包括:Further, in some embodiments of the present application, a dielectric layer is formed on the surface of the microlens unit of the array, including:
根据微透镜阵列应用的器件的折射率的需求,确认介质层的材料;According to the requirements of the refractive index of the device used in the microlens array, confirm the material of the dielectric layer;
根据介质层的材料选择形成介质层的工艺气体;Selecting the process gas for forming the dielectric layer according to the material of the dielectric layer;
在200~450℃、0.5~2.0Torr下,利用工艺气体在微透镜阵列表面形成介质层。At 200-450°C and 0.5-2.0 Torr, a dielectric layer is formed on the surface of the microlens array by using process gas.
进一步地,在本申请的一些实施例中,介质层的厚度为应用波长λ的1/4或者λ/4的奇数倍;其中,所述应用波长为所述微透镜阵列应用时的工作光波的波长;和/或Further, in some embodiments of the present application, the thickness of the dielectric layer is 1/4 of the application wavelength λ or an odd multiple of λ/4; wherein, the application wavelength is 1/4 of the working light wave when the microlens array is applied. wavelength; and/or
介质层的厚度与中心厚度d的比值为1:100~2000。The ratio of the thickness of the dielectric layer to the central thickness d is 1:100~2000.
第二方面,本申请还提供一种微透镜阵列,采用第一方面提供的微透镜阵列的制备方法制备得到。In the second aspect, the present application also provides a microlens array, which is prepared by using the method for preparing the microlens array provided in the first aspect.
第三方面,本申请还提供第一方面所提供的微透镜阵列的制备方法制备得到的微透镜阵列或第二方面所提供的微透镜阵列在光学领域的应用。In the third aspect, the present application also provides the microlens array prepared by the method for preparing the microlens array provided in the first aspect or the application of the microlens array provided in the second aspect in the optical field.
本申请提供一种微透镜阵列的制备方法,利用纳米压印技术简化微透镜阵列的图案转移过程的工艺,并减少微透镜阵列的图案转移过程中的工艺的误差;同时,针对不同D/d的微透镜阵列,调整刻蚀工艺中卤化氢和氟化物的比例,实现微透镜阵列的参数的灵活调整,使其满足不同微透镜阵列应用的器件的要求,提高微透镜阵列的精度;此外,本申请提供的微透镜阵列的制备方法,还在微透镜单元上形成介质层,调整微透镜阵列的焦距和折射率,进一步降低实际制备的微透镜阵列与理论值的误差,提高微透镜阵列的精度和调整的灵活性;同时,介质层还可以起到水汽隔绝的效果,避免水汽对微透镜单元的伤害,减少水汽对微透镜阵列的影响。本申请提供的微透镜阵列的制备方法,其工艺步骤简单,微透镜阵列的参数可以灵活调整,使其满足不同的器件需求,精度高,有利于微透镜阵列的推广使用;还可以隔绝水汽,延长微透镜阵列的使用寿命。The present application provides a method for preparing a microlens array, which uses nanoimprinting technology to simplify the process of the pattern transfer process of the microlens array, and reduces the process error in the pattern transfer process of the microlens array; at the same time, for different D/d The microlens array, adjusting the ratio of hydrogen halide and fluoride in the etching process, realizes the flexible adjustment of the parameters of the microlens array, so that it can meet the requirements of devices used in different microlens arrays, and improve the accuracy of the microlens array; in addition, The preparation method of the microlens array provided by the application also forms a dielectric layer on the microlens unit, adjusts the focal length and refractive index of the microlens array, further reduces the error between the actually prepared microlens array and the theoretical value, and improves the microlens array. Accuracy and flexibility of adjustment; at the same time, the dielectric layer can also play a role of water vapor isolation, avoid water vapor damage to the microlens unit, and reduce the impact of water vapor on the microlens array. The preparation method of the microlens array provided by this application has simple process steps, and the parameters of the microlens array can be flexibly adjusted to meet different device requirements. The precision is high, which is conducive to the popularization and use of the microlens array; it can also isolate water vapor, Extend the life of the microlens array.
本申请还提供一种微透镜阵列,其采用纳米压印技术进行微透镜阵列的图案转移,并通过刻蚀工艺和介质层灵活微调微透镜阵列的参数和精度,,便于其推广应用。The present application also provides a microlens array, which uses nanoimprint technology to transfer the pattern of the microlens array, and flexibly fine-tunes the parameters and precision of the microlens array through the etching process and dielectric layer, so as to facilitate its popularization and application.
本申请还提供一种微透镜阵列的应用,其采用高精度的微透镜阵列应用在光学领域,提高光学领域的器件的精确度和应用范围。The present application also provides an application of a microlens array, which uses a high-precision microlens array to be applied in the optical field, and improves the accuracy and application range of devices in the optical field.
附图说明Description of drawings
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific embodiments of the present application or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the specific embodiments or prior art. Obviously, the accompanying drawings in the following description The drawings are some implementations of the present application, and those skilled in the art can obtain other drawings based on these drawings without creative work.
图1为本申请实施例1提供的微透镜阵列的制备方法的流程图;Fig. 1 is the flowchart of the preparation method of the microlens array that the embodiment 1 of the present application provides;
图2为经步骤3得到的刻蚀前的半成品器件的俯视图;Fig. 2 is the top view of the semi-finished device before etching obtained through step 3;
图3为经步骤3得到的刻蚀前的半成品器件的A-A截面示意图;Fig. 3 is the A-A cross-sectional schematic view of the semi-finished device before etching obtained in step 3;
图4为经步骤4得到被刻蚀后的半成品器件的A-A截面示意图;Fig. 4 is the A-A cross-sectional schematic view of the etched semi-finished device obtained through step 4;
图5为经步骤5得到的微透镜阵列的A-A截面示意图;Fig. 5 is the A-A sectional schematic view of the microlens array obtained through step 5;
图6为本申请实施例1得到的微透镜阵列的A-A截面示意图;Fig. 6 is the A-A cross-sectional schematic view of the microlens array obtained in Example 1 of the present application;
图7为本申请实施例1得到的微透镜阵列的扫描透镜图片;Fig. 7 is the scanning lens picture of the microlens array that the embodiment 1 of the present application obtains;
图8为本申请实施例1得到的微透镜阵列的截面扫描透镜图片;Fig. 8 is the cross-sectional scanning lens picture of the microlens array obtained in Example 1 of the present application;
图9为本申请实施例3得到的微透镜阵列的A-A截面示意图;Fig. 9 is the A-A cross-sectional schematic view of the microlens array obtained in Example 3 of the present application;
图10为本申请实施例4得到的微透镜阵列的A-A截面示意图;Fig. 10 is the A-A cross-sectional schematic view of the microlens array obtained in Example 4 of the present application;
图11为本申请对比例得到的微透镜阵列的截面扫描透镜图片;Fig. 11 is the cross-sectional scanning lens picture of the microlens array that the comparative example of the present application obtains;
主要元件符号说明:Description of main component symbols:
10-玻璃基板,20-微透镜单元,30-介质层。10-glass substrate, 20-microlens unit, 30-dielectric layer.
具体实施方式detailed description
下面将结合实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions of the present application will be clearly and completely described below in conjunction with the embodiments. Apparently, the described embodiments are part of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The following disclosure provides many different implementations or examples for implementing different structures of the present application. To simplify the disclosure of the present application, components and arrangements of specific examples are described below. Of course, they are examples only and are not intended to limit the application. Furthermore, the present application may repeat reference numerals and/or reference letters in various instances, such repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various examples of specific materials are provided herein, but one of ordinary skill in the art may recognize the application of other processes and/or the use of other materials.
本申请提供了一种微透镜阵列的制备方法,参阅图1,包括:The application provides a preparation method of a microlens array, referring to Fig. 1, comprising:
步骤1:提供基板、具有微透镜阵列图案或具有微透镜阵列反向图案的纳米压印模板;Step 1: providing a substrate, a nanoimprint template with a microlens array pattern or a microlens array reverse pattern;
步骤2:在基板上形成第一压印胶层;Step 2: forming the first embossed adhesive layer on the substrate;
步骤3:利用压印工艺将微透镜阵列图案转移到第一压印胶层上,或者利用压印工艺将微透镜阵列反向图案反向转移到第一压印胶层上,参阅图2、图3;Step 3: transfer the pattern of the microlens array to the first embossed adhesive layer using an embossing process, or transfer the reverse pattern of the microlens array to the first embossed adhesive layer using an embossing process, see Fig. 2, image 3;
步骤4:利用刻蚀工艺将第一压印胶层的图案转移到基板上,形成阵列的微透镜单元,参阅图4;Step 4: Utilize the etching process to transfer the pattern of the first embossed adhesive layer to the substrate to form the microlens unit of the array, referring to Fig. 4;
步骤5:在阵列的微透镜单元表面形成介质层,得到所需的微透镜阵列,参阅图5;其中,介质层的厚度和材料根据微透镜阵列应用的器件的焦距和/或折射率的需求获取;Step 5: form medium layer on the microlens unit surface of array, obtain required microlens array, refer to Fig. 5; Wherein, the thickness of medium layer and the requirement of the focal length and/or refractive index of the device according to microlens array application Obtain;
其中,刻蚀工艺中,根据待得到的微透镜阵列的微透镜单元的底面直径D与中心厚度d与的比值,调整刻蚀工艺中所采用的处理气体中卤化氢和氟化物的比例,得到所需的微透镜阵列。Wherein, in the etching process, according to the ratio of the bottom surface diameter D and the center thickness d of the microlens unit of the microlens array to be obtained, the ratio of hydrogen halide and fluoride in the processing gas used in the etching process is adjusted to obtain required microlens array.
需要说明的是,在本身请中,器件所需的微透镜阵列的参数可以通过有限元电磁仿真软件进行模拟得到,其参数包括微透镜阵列的微透镜单元的球面曲率半径R0、微透镜单元的中心厚度d、微透镜单元的表面的切面与底面的夹角θ;参阅图2,当微透镜形成时,微透镜的焦距f是确定的,原因在于:焦距f的大小由微透镜单元的球面曲率半径R0和组成微透镜的基板材料的折射率n0和覆盖在微透镜上的介质层的材料的折射率n1决定,即:It should be noted that in the application itself, the parameters of the microlens array required by the device can be simulated by finite element electromagnetic simulation software, and its parameters include the spherical curvature radius R 0 of the microlens unit of the microlens array, the microlens unit The central thickness d of the microlens unit, the angle θ between the cut surface of the surface of the microlens unit and the bottom surface; referring to Fig. 2, when the microlens is formed, the focal length f of the microlens is determined, because: the size of the focal length f is determined by the microlens unit The radius of curvature of the spherical surface R 0 is determined by the refractive index n 0 of the substrate material of the microlens and the refractive index n 1 of the material of the medium layer covering the microlens, namely:
球面曲率半径R0的大小由微透镜单元的底面直径D和微透镜单元的中心厚度d决定;即:The size of the radius of curvature R of the spherical surface is determined by the bottom surface diameter D of the microlens unit and the center thickness d of the microlens unit ; that is:
由于微透镜在形成时,D和d是确定的,所以球面曲率半径R0 也是确定的。Since D and d are determined when the microlens is formed, the radius of curvature R 0 of the spherical surface is also determined.
在微透镜形成时,其覆盖在微透镜的出光面的介质通常为空气,因此,覆盖在微透镜上的介质层的材料的折射率n1即为空气的折射率;而空气的折射率为1,即:当微透镜的出光面不覆盖其他介质层时,其微透镜的焦距为:When the microlens is formed, the medium covered on the light-emitting surface of the microlens is usually air, therefore, the refractive index n of the material of the medium layer covered on the microlens is the refractive index of air; and the refractive index of air is 1, that is: when the light-emitting surface of the micro-lens does not cover other dielectric layers, the focal length of the micro-lens is:
其中,D为微透镜单元的底面直径;Wherein, D is the diameter of the bottom surface of the microlens unit;
其中,L为微透镜单元的球面与微透镜单元的表面切面的交界位置在微透镜的投影到微透镜单元的底面中心的距离。Wherein, L is the distance from the projection of the microlens to the center of the bottom surface of the microlens unit at the junction of the spherical surface of the microlens unit and the surface section of the microlens unit.
需要说明的是,在本申请中,微透镜单元的底面直径应该理解为一微透镜单元在基板上垂直投影形成的圆的直径;微透镜单元的中心厚度应当理解为微透镜单元的顶点(每一微透镜单元离基板最远的一点)到微透镜单元在基板上垂直投影形成的阴影的距离。微透镜阵列包括若干在基板上阵列的结构为球面凸起或者近似球面凸起的微透镜单元。其中,基板材料的折射率根据基板的材料确定;微透镜单元的焦距由微透镜阵列即将应用的器件所需要的性能确定。It should be noted that, in this application, the diameter of the bottom surface of the microlens unit should be understood as the diameter of a circle formed by the vertical projection of a microlens unit on the substrate; the central thickness of the microlens unit should be understood as the vertex of the microlens unit (each The distance from the farthest point of a microlens unit to the substrate) to the shadow formed by the vertical projection of the microlens unit on the substrate. The microlens array includes several microlens units arrayed on the substrate in the form of spherical protrusions or approximately spherical protrusions. Wherein, the refractive index of the substrate material is determined according to the material of the substrate; the focal length of the microlens unit is determined by the performance required by the device to which the microlens array is to be applied.
因此,在提供具有微透镜阵列图案的纳米压印模板之前,根据器件的性能需求和基板的材料,利用有限元电磁仿真软件模拟出微透镜的相关参数,并根据这一参数制备具有微透镜阵列图案的纳米压印模板。Therefore, before providing a nanoimprint template with a microlens array pattern, according to the performance requirements of the device and the material of the substrate, use finite element electromagnetic simulation software to simulate the relevant parameters of the microlens, and prepare a nanoimprint template with a microlens array according to this parameter. Patterned nanoimprint templates.
其中,有限元电磁仿真软件为市售的可以任一实现光电组件三维仿真的软件,如ANSYS Maxwell有限元电磁场仿真软件。Wherein, the finite element electromagnetic simulation software is commercially available software that can realize three-dimensional simulation of photoelectric components, such as ANSYS Maxwell finite element electromagnetic field simulation software.
在一些实施例中,第一压印胶层的材料可以为紫外光刻胶(包括紫外正性光刻胶、紫外负性光刻胶)、深紫外光刻胶、X-射线胶、电子束胶、离子束胶中的任一种。对应的,可以利用光源或者辐射源对第一压印胶层进行曝光。In some embodiments, the material of the first embossing glue layer can be UV photoresist (including UV positive photoresist, UV negative photoresist), deep UV photoresist, X-ray glue, electron beam Any of glue and ion beam glue. Correspondingly, a light source or a radiation source may be used to expose the first embossed adhesive layer.
由于在刻蚀过程中,微透镜单元的刻蚀效果受刻蚀气体影响明显,而申请人经过研究发现,不同D/d的微透镜单元对于刻蚀气体的要求不仅要求不同的刻蚀时长,还需要在横向刻蚀有不同的要求,才能使获得微透镜单元的表面近似球面,由此可见,在本申请中,不仅要求存在横向刻蚀还要求限制横向刻蚀的程度,鉴于这样的刻蚀需求,本身请提供的制备方法中采用在刻蚀气体中添加了卤化氢用于限制微透镜单元的横向刻蚀,并在此基础上,根据D/d值来调整刻蚀气体的比例,使其达到即满足限制横向刻蚀又限制横向刻蚀的作用,使得到的微透镜单元的表面无限接近球面。Since the etching effect of the microlens unit is significantly affected by the etching gas during the etching process, the applicant has found through research that the requirements of different D/d microlens units for the etching gas not only require different etching durations, but also It is also necessary to have different requirements for lateral etching so that the surface of the microlens unit can be approximated to a spherical surface. It can be seen that in this application, not only lateral etching is required but also the extent of lateral etching is required to be limited. In view of such etching According to the etching requirements, please provide the preparation method by adding hydrogen halide to the etching gas to limit the lateral etching of the microlens unit, and on this basis, adjust the ratio of the etching gas according to the D/d value, It achieves the effect of not only limiting lateral etching but also restricting lateral etching, so that the surface of the obtained microlens unit is infinitely close to a spherical surface.
在一些实施例中,基板可以选自硅基板、二氧化硅基板、玻璃基板、蓝宝石基板中的任一种。根据应用波长范围,选取在可以透过该波段的不同基板材质。如硅基板适用于红外光波段,二氧化硅、玻璃、蓝宝石等基板适用于紫外光波段、可见光波段、红外光波段。In some embodiments, the substrate may be selected from any one of a silicon substrate, a silicon dioxide substrate, a glass substrate, and a sapphire substrate. According to the application wavelength range, select different substrate materials that can pass through this wavelength band. For example, silicon substrates are suitable for infrared light bands, and silicon dioxide, glass, sapphire and other substrates are suitable for ultraviolet light bands, visible light bands, and infrared light bands.
在一些实施例中,调整刻蚀工艺中所采用的处理气体的比例包括:In some embodiments, adjusting the ratio of processing gases used in the etching process includes:
当D/d≥20时,卤化氢和氟化物的比例的体积比为1:4.5~8;When D/d≥20, the volume ratio of hydrogen halide and fluoride is 1:4.5~8;
当8≤D/d<20时,卤化氢和氟化物的比例的体积比为1:3.5~5;When 8≤D/d<20, the volume ratio of hydrogen halide and fluoride is 1:3.5~5;
当2<D/d<8时,卤化氢和氟化物的比例的体积比为1:2~4。When 2<D/d<8, the volume ratio of hydrogen halide and fluoride is 1:2~4.
对于不同D/d值的微透镜阵列,刻蚀气体中卤化氢的含量不宜过低,也不宜过高,这是因为过低的卤化氢含量过高,容易造成微透镜单元在刻蚀过程中侧壁保护不足,刻蚀出来的透镜不能达到较好的圆滑过渡状态,甚至在微透镜表面呈现为不平整的阶梯状,影响光学性能;而卤化氢含量过低则会造成整体刻蚀速度偏低,影响工艺效率。For microlens arrays with different D/d values, the content of hydrogen halide in the etching gas should not be too low, nor should it be too high. Insufficient sidewall protection, the etched lens cannot achieve a smooth transition state, and even presents an uneven stepped shape on the surface of the microlens, which affects optical performance; and the low hydrogen halide content will cause the overall etching speed to be skewed. Low, affecting process efficiency.
在一些实施例中,制备方法还包括,在刻蚀工艺中,根据待得到的微透镜阵列的微透镜单元的底面直径D与中心厚度d与的比值,调整进行刻蚀工艺的设备的偏振功率:In some embodiments, the preparation method further includes, in the etching process, adjusting the polarization power of the equipment performing the etching process according to the ratio of the bottom surface diameter D and the central thickness d of the microlens unit of the microlens array to be obtained :
当D/d≥20时,进行刻蚀工艺的设备的偏振功率为150~300W;When D/d≥20, the polarization power of the equipment for etching process is 150~300W;
当8≤D/d<20时,进行刻蚀工艺的设备的偏振功率为80~150W;When 8≤D/d<20, the polarization power of the equipment for etching process is 80~150W;
当2<D/d<8时,进行刻蚀工艺的设备的偏振功率为0~100W。When 2<D/d<8, the polarization power of the equipment performing the etching process is 0~100W.
刻蚀气体在偏振电压作用下加速轰击样品表面,偏振功率越高,偏振电压方向上刻蚀速率越快,抑制各向同性刻蚀。The etching gas accelerates to bombard the sample surface under the action of the polarization voltage. The higher the polarization power is, the faster the etching rate is in the direction of the polarization voltage, and the isotropic etching is suppressed.
在一些实施例中,利用压印工艺将微透镜阵列图案转移到第一压印胶层上,包括:In some embodiments, using an embossing process to transfer the pattern of the microlens array to the first embossed adhesive layer includes:
提供转移版,转移版的表面设置有第二压印胶层;Provide a transfer plate, the surface of the transfer plate is provided with a second embossing adhesive layer;
利用纳米压印模板在转移版上进行压印,将微透镜阵列图案反向转移到转移版上,得到反向转移版;Using a nanoimprint template to imprint on the transfer plate, reversely transfer the pattern of the microlens array to the transfer plate to obtain a reverse transfer plate;
利用反向转移版在第一压印胶层上进行压印,将微透镜阵列图案转移到第一压印胶层上;embossing on the first embossing adhesive layer by using a reverse transfer plate, and transferring the pattern of the microlens array to the first embossing adhesive layer;
利用刻蚀工艺将第一压印胶层上的图案转移到基板上,包括:Using an etching process to transfer the pattern on the first embossed adhesive layer to the substrate, including:
以反向转移版为掩模,利用刻蚀工艺将纳米压印模板上的图案转移到基板上。Using the reverse transfer plate as a mask, the pattern on the nanoimprint template is transferred to the substrate by etching process.
由于纳米压印模板的制备成本很高、制备时间长,且每次纳米压印工序都会对纳米压印模板产生细微的损伤;若每制备一微透镜阵列均采用纳米压印模板进行压印,则纳米压印模板很快就易被损坏或者产生较大误差,难以继续使用。对此,本申请的一些实施例中,利用纳米压印模板制备转移版,并以转移版为模板在第一压印胶层上形成微透镜阵列的图案,减少纳米压印模板的使用频率,而转移版的成本远低于纳米压印模板,进而实现生产成本降低;同时,在转移版的精度下降时,可以通过纳米压印模板再制作精度达到要求的新的转移版,保证微透镜阵列的产品的性能的一致性。Due to the high cost and long preparation time of the nanoimprint template, and each nanoimprint process will cause slight damage to the nanoimprint template; if a nanoimprint template is used for imprinting each microlens array, Then the nano-imprint template will be easily damaged or have large errors soon, making it difficult to continue to use. In this regard, in some embodiments of the present application, a nanoimprint template is used to prepare a transfer plate, and the transfer plate is used as a template to form a microlens array pattern on the first imprint adhesive layer, reducing the frequency of use of the nanoimprint template, The cost of the transfer plate is much lower than that of the nanoimprint template, thereby reducing the production cost; at the same time, when the accuracy of the transfer plate decreases, a new transfer plate with the required precision can be made through the nanoimprint template to ensure the microlens array Consistency of product performance.
在一些实施例中,转移版通过以下步骤获得:In some embodiments, the transferred version is obtained by the following steps:
提供衬板;provide liners;
在衬板上形成第二压印胶层;forming a second embossed adhesive layer on the liner;
在50~70℃下预热处理1~2min,再在第二压印胶层上涂布一层防粘结层后在85~95℃下热处理0.5~1min,得到转移版。Preheating at 50-70°C for 1-2min, coating an anti-adhesion layer on the second embossing adhesive layer, and then heat-treating at 85-95°C for 0.5-1min to obtain a transfer plate.
在一些实施例中,衬板的材料选自聚酯材料,如选择清洁度较高、表面粗糙度较低的聚酯衬板。In some embodiments, the material of the liner is selected from polyester materials, for example, a polyester liner with high cleanliness and low surface roughness is selected.
在一些实施例中,在50~70℃下预热处理1~2min,再在第二压印胶层上涂布一层防粘结层后在85~95℃下热处理0.5~1min,包括:In some embodiments, preheat treatment at 50-70°C for 1-2min, and then heat-treat at 85-95°C for 0.5-1min after coating an anti-adhesion layer on the second embossed adhesive layer, including:
在60℃下进行预烘1min,紧接着在第二压印胶层上面涂布一层防粘结层,再在90℃下烘45s,得到转移版。Pre-baking at 60°C for 1 min, followed by coating an anti-adhesive layer on the second embossing rubber layer, and then baking at 90°C for 45s to obtain a transfer plate.
在一些实施例中,纳米压印模板上可以直接设置有反向利用压印工艺将微透镜阵列反向图案反向转移到第一压印胶层上,包括:In some embodiments, the reverse pattern of the microlens array can be reversely transferred to the first imprint adhesive layer by the imprint process directly on the nanoimprint template, including:
利用具有微透镜阵列反向图案的纳米压印模板在第一压印胶层上进行压印,将微透镜阵列反向图案反向转移到第一压印胶层上形成微透镜阵列图案。The nano-imprint template with the reverse pattern of the microlens array is used to imprint on the first embossing adhesive layer, and the reverse transfer pattern of the microlens array is reversely transferred to the first embossing adhesive layer to form a pattern of the microlens array.
由于,压印技术是指通过外加机械力,使具有微纳结构的模板于压印胶紧密贴合,处于黏流态或液态下的压印胶逐渐填充模板上的微纳结构,然后将压印胶固化,分离模板与压印胶,即可等比例地将模板结构图形复制到压印胶上。本申请所要加工的微纳结构为微透镜阵列,其具有若干阵列布设的具有球面的凸透镜,其中凸透镜即为微透镜单元,因此其对应的微纳结构的模板上的图案通常设置为若干阵列的具有球弧面的凹槽,这些凹槽与阵列的微透镜单元一一对应,即可实现微透镜单元形成在压印胶层上,进而可以通过刻蚀工艺将微透镜单元复制在基板上,形成微透镜阵列。Because imprinting technology refers to the application of mechanical force to make the template with micro-nano structure closely adhere to the imprinting glue, and the imprinting glue in a viscous or liquid state gradually fills the micro-nano structure on the template, and then the embossed The stamping glue is cured, and the template and the stamping glue are separated, so that the pattern of the template structure can be copied to the stamping glue in equal proportions. The micro-nano structure to be processed in this application is a micro-lens array, which has several convex lenses with a spherical surface arranged in arrays. There are grooves on the spherical arc surface, and these grooves are in one-to-one correspondence with the microlens units of the array, so that the microlens units can be formed on the embossed adhesive layer, and then the microlens units can be copied on the substrate through an etching process. A microlens array is formed.
因此,在本申请中“微透镜阵列反向图案”为每一微透镜单元的型腔与各个型腔之间的区域组成的图案;该图案中的型腔与微透镜单元一一对应,在压印过程中作为微透镜单元的型腔,用于微透镜单元成型。在本申请中的“反向转移”应当理解为利用微透镜阵列反向图案中的型腔在压印胶层上形成与型腔的内表面呈凹凸匹配的微透镜单元。Therefore, in this application, the "microlens array reverse pattern" is a pattern composed of the cavity of each microlens unit and the area between each cavity; the cavity in the pattern corresponds to the microlens unit one by one, in In the embossing process, it serves as a cavity for the microlens unit and is used for molding the microlens unit. "Reverse transfer" in this application should be understood as using the cavity in the reverse pattern of the microlens array to form a microlens unit on the embossed adhesive layer that is concave-convex to match the inner surface of the cavity.
在一些实施例中,进行刻蚀工艺的腔室内的压力为5~50mTorr;和/或In some embodiments, the pressure in the chamber for the etching process is 5-50 mTorr; and/or
进行刻蚀工艺的设备所采用的源功率为100~1000w;和/或The source power used by the equipment for etching process is 100~1000w; and/or
进行刻蚀工艺的时间为60~180s;和/或The time for performing the etching process is 60-180s; and/or
氟化物的流量为100~1000SCCM;和/或The flow rate of fluoride is 100~1000SCCM; and/or
卤化氢的流量为20~200SCCM。The flow rate of hydrogen halide is 20~200SCCM.
优选地,进行刻蚀工艺的腔室内的压力为5~40mTorr;和/或Preferably, the pressure in the chamber for the etching process is 5-40mTorr; and/or
进行刻蚀工艺的设备所采用的源功率为100~800w;和/或The source power used by the equipment for etching process is 100~800w; and/or
氟化物的流量为100~800SCCM;和/或The flow rate of fluoride is 100~800SCCM; and/or
卤化氢的流量为50~180SCCM。The flow rate of hydrogen halide is 50~180SCCM.
需要说明的是,“SCCM”为气体质量流量单位,SCCM(Standard Cubic Centimeterper Minute)是表示每分钟标准毫升;mTorr是压强的单位。mTorr就是微米汞柱的压强,是毫米汞柱压强的千分之一。1mTorr等于0.133Pa。It should be noted that "SCCM" is the gas mass flow unit, SCCM (Standard Cubic Centimeterper Minute) is standard milliliters per minute; mTorr is the unit of pressure. mTorr is the pressure in microns of mercury, which is one-thousandth of the pressure in millimeters of mercury. 1mTorr is equal to 0.133Pa.
需要说明的是,刻蚀时间可以根据微透镜单元的中心厚度进行调整,当微透镜单元的中心厚度越高,刻蚀时间越长。It should be noted that the etching time can be adjusted according to the central thickness of the microlens unit, and the etching time is longer when the central thickness of the microlens unit is higher.
在一些实施例中,在形成阵列的微透镜单元之后、在阵列的微透镜单元表面形成介质层之前,还包括:利用有机溶剂和水对阵列的微透镜单元表面进行清洁,去除微透镜单元和基板表面的有机杂质和颗粒。In some embodiments, after forming the microlens units of the array and before forming the dielectric layer on the surface of the microlens units of the array, it also includes: cleaning the surface of the microlens units of the array with an organic solvent and water, removing the microlens units and Organic impurities and particles on the substrate surface.
其中,有机溶剂选自于市售的有机溶剂,如丙酮、乙醇。水选自去离子水、纯水、超纯水中的任一种。Wherein, the organic solvent is selected from commercially available organic solvents, such as acetone and ethanol. Water is selected from any of deionized water, pure water, and ultrapure water.
在一些实施例中,利用有机溶剂和水对阵列的微透镜单元表面进行清洁,包括:In some embodiments, the surface of the microlens unit of the array is cleaned with an organic solvent and water, including:
利用丙酮和乙醇的混合溶液清洗为形成了微透镜单元的半成品器件2~5min,再用去离子水超声洗涤形成了微透镜单元的半成品器件0.5~3min。其中,丙酮和乙醇的质量比可以为1:100~100:1。The semi-finished device formed with the microlens unit is cleaned with a mixed solution of acetone and ethanol for 2-5 minutes, and then the semi-finished device formed with the microlens unit is ultrasonically washed with deionized water for 0.5-3 minutes. Wherein, the mass ratio of acetone and ethanol may be 1:100-100:1.
在一些实施例中,氟化物选自氟化氮、四氟化碳、六氟化硫以及CHF3、CH2F2、C4F8、C4F6、C5F8等碳氟气体中的一种或多种;和/或In some embodiments, the fluoride is selected from nitrogen fluoride, carbon tetrafluoride, sulfur hexafluoride, and fluorocarbon gases such as CHF 3 , CH 2 F 2 , C 4 F 8 , C 4 F 6 , and C 5 F 8 . one or more of; and/or
卤化氢选自溴化氢、氯化氢、氟化氢中的一种或多种;和/或Hydrogen halide is selected from one or more of hydrogen bromide, hydrogen chloride, hydrogen fluoride; and/or
介质层的材料选自Si3N4、SiO2、SiON、玻璃、氟化钙、氟化镁或者其他透明或者半透明的介质层材料中的一种或多种。介质层的材料选择可以根据本申请所提供的微透镜阵列应用时的工作光波的波长(以下简称为:应用波长)进行选择,选择在该光的波段范围内透光的材质作为介质层材质;且为了实现增透作用,介质层材料的选择可以根据:空气折射率n0(≈1)<介质层折射率n1<微透镜折射率n2的条件选择。The material of the dielectric layer is selected from one or more of Si 3 N 4 , SiO 2 , SiON, glass, calcium fluoride, magnesium fluoride or other transparent or translucent dielectric layer materials. The material of the dielectric layer can be selected according to the wavelength of the working light wave (hereinafter referred to as: application wavelength) when the microlens array provided by this application is applied, and the material that transmits light within the wavelength range of the light is selected as the material of the dielectric layer; And in order to achieve anti-reflection effect, the material of the medium layer can be selected according to the condition: the refractive index of air n 0 (≈1)<the refractive index of the medium layer n 1 <the refractive index of the microlens n 2 .
其中,理论反射率R可通过下式计算:Among them, the theoretical reflectance R can be calculated by the following formula:
R=(n0×n2-n1^2 )^2/(n0×n2+n1^2 )^2R=(n 0 ×n 2 -n 1 ^2 )^2/(n 0 ×n 2 +n 1 ^2 )^2
理想的增透膜材料折射率n1=,此时理论反射率可达到0。Ideal AR coating material refractive index n 1 = , then the theoretical reflectance can reach 0.
介质层的材料优先选取化学性质稳定,抗侵蚀及氧化的透明度高的介电材料,同时起到保护及减少反射的作用。此外,另外介质层也可以设置多层复合,且多层复合的介质层可以采用不同材料制备的介质层复合,以实现特殊的增透作用,如零反射或在大带宽范围内应用。The material of the dielectric layer is preferably a dielectric material with stable chemical properties, high transparency against corrosion and oxidation, and at the same time plays the role of protection and reducing reflection. In addition, the dielectric layer can also be multi-layer composite, and the multi-layer composite dielectric layer can be composited with dielectric layers made of different materials to achieve special anti-reflection effects, such as zero reflection or application in a wide bandwidth range.
在一些实施例中,在阵列的微透镜单元表面形成介质层,包括:In some embodiments, a dielectric layer is formed on the surface of the microlens unit of the array, including:
根据微透镜阵列应用的器件的折射率的需求,确认介质层的材料;According to the requirements of the refractive index of the device used in the microlens array, confirm the material of the dielectric layer;
根据介质层的材料选择形成介质层的工艺气体;Selecting the process gas for forming the dielectric layer according to the material of the dielectric layer;
在200~450℃、0.5~2.0Torr下,利用工艺气体在微透镜阵列表面形成介质层。At 200-450°C and 0.5-2.0 Torr, a dielectric layer is formed on the surface of the microlens array by using process gas.
其中,“Torr”为真空压强单位,相当于1毫米水银柱的压强。Among them, "Torr" is the vacuum pressure unit, which is equivalent to the pressure of 1 mm of mercury column.
需要说明的是,介质层的材料可以与微透镜单元的材料相同也可以不相同。It should be noted that the material of the medium layer may be the same as or different from that of the microlens unit.
介质层的材料沉积在微透镜单元上,形成一层位于基板表面的透明介质膜层,不仅可以改变微透镜阵列的焦距、微透镜阵列的折射率,实现微透镜阵列的焦距、出射光角度的精确调整,提高微透镜阵列的精度和应用器件的灵活调整;还可以隔绝水汽,避免水汽对微透镜单元的影响,延长微透镜阵列的使用寿命。The material of the dielectric layer is deposited on the microlens unit to form a layer of transparent dielectric film on the surface of the substrate, which can not only change the focal length of the microlens array and the refractive index of the microlens array, but also realize the adjustment of the focal length of the microlens array and the angle of the outgoing light. Precise adjustment improves the precision of the microlens array and the flexible adjustment of the application device; it can also isolate water vapor, avoid the influence of water vapor on the microlens unit, and prolong the service life of the microlens array.
在一些实施例中,在介质层的沉积工艺选自于物理气相沉积(PVD)、化学气相沉积(CVD)、原子层沉积(ALD)中的一种或多种。In some embodiments, the deposition process of the dielectric layer is selected from one or more of physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD).
当在介质层的沉积工艺为CVD和/或ALD时,本申请中用于形成介质层的工艺气体根据介质层的材料不同而进行调整。如:当介质层的材料为SiO2时,其工艺气体可以包括:SiH4、N2O、N2;当介质层的材料为Si3N4时,其工艺气体可以包括:SiH4、NH3、N2。When the deposition process of the dielectric layer is CVD and/or ALD, the process gas used to form the dielectric layer in this application is adjusted according to the material of the dielectric layer. For example: when the material of the dielectric layer is SiO 2 , the process gas can include: SiH 4 , N 2 O, N 2 ; when the material of the dielectric layer is Si 3 N 4 , the process gas can include: SiH 4 , NH 3. N 2 .
在一些实施例中,当在介质层的沉积工艺为CVD和/或ALD时,沉积所采用的设备的极板间距为250~500 mils;其中mil为长度单位,mils为mils的复数形式,10mils=百分之一英寸。In some embodiments, when the deposition process of the dielectric layer is CVD and/or ALD, the electrode plate spacing of the equipment used for deposition is 250~500 mils; wherein mil is the unit of length, mils is the plural form of mils, 10mils = hundredths of an inch.
在一些实施例中,当介质层的材料为SiO2时,所采用的设备的工艺腔室内的压力为1.0~2.0Torr;当介质层的材料为Si时,所采用的设备的工艺腔室内的压力为0.5~1.0Torr;当介质层的材料为Si3N4时,所采用的设备的工艺腔室内的压力为1.0~2.0Torr。In some embodiments, when the material of the dielectric layer is SiO2 , the pressure in the process chamber of the equipment used is 1.0 ~ 2.0 Torr; when the material of the dielectric layer is Si, the pressure in the process chamber of the equipment used is The pressure is 0.5-1.0 Torr; when the material of the dielectric layer is Si 3 N 4 , the pressure in the process chamber of the equipment used is 1.0-2.0 Torr.
在一些实施例中,当介质层的材料为SiO2时,所采用的设备的极板间距为350~500mils;当介质层的材料为Si3N4时,所采用的设备的极板间距为350~500 mils。In some embodiments, when the material of the dielectric layer is SiO 2 , the distance between the pole plates of the equipment used is 350 ~ 500 mils; when the material of the medium layer is Si 3 N 4 , the distance between the pole plates of the equipment used is 350~500mils.
在一些实施例中,介质层的厚度的值与中心厚度的值的比为1:100~2000,介质层的厚度优选为30~600nm;进一步优选为50~500nm;其具体厚度也可以根据应用波长λ设置,介质层的厚度可以选择为λ/4或λ/4的奇数倍,以实现反射光束之间达到λ/2光程差而达到反射光束相互抵消而减少反射、增加微透镜透射。In some embodiments, the ratio of the value of the thickness of the dielectric layer to the value of the center thickness is 1:100~2000, the thickness of the dielectric layer is preferably 30~600nm; more preferably 50~500nm; the specific thickness can also be based on the application The wavelength λ is set, and the thickness of the medium layer can be selected as λ/4 or an odd multiple of λ/4, so as to achieve a λ/2 optical path difference between the reflected beams and achieve the mutual cancellation of the reflected beams to reduce reflection and increase microlens transmission.
需要说明的是,介质层的厚度的范围是指介质层的厚度可以根据微透镜阵列所应用的器件的焦距在这一范围进行调整,对于不同的微透镜阵列所应用的器件,介质层厚度的最优解并不相同。It should be noted that the range of the thickness of the dielectric layer means that the thickness of the dielectric layer can be adjusted in this range according to the focal length of the device used by the microlens array. For different devices used in the microlens array, the thickness of the dielectric layer Optimal solutions are not the same.
在一些实施例中,第一压印胶层的厚度可以根据中心厚度d进行调整,以能将微透镜阵列图案完整显示为准;但第一压印胶层的厚度也不宜过高,避免过多的压印胶残留,影响后续的刻蚀工艺所需时间。In some embodiments, the thickness of the first embossed adhesive layer can be adjusted according to the central thickness d, so as to completely display the microlens array pattern; however, the thickness of the first embossed adhesive layer should not be too high to avoid excessive Too much imprinting glue residue will affect the time required for the subsequent etching process.
同理的,第二压印胶层的厚度也可以根据中心厚度d进行调整。Similarly, the thickness of the second embossed adhesive layer can also be adjusted according to the central thickness d.
进一步地,第一压印胶层的厚度为与中心厚度d的1.1~1.5倍;Further, the thickness of the first embossed rubber layer is 1.1 to 1.5 times the central thickness d;
第二压印胶层的厚度为中心厚度d的1.1~2倍。The thickness of the second embossed rubber layer is 1.1 to 2 times of the central thickness d.
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本实施例提供一种微透镜阵列的制备方法,其包括:This embodiment provides a method for preparing a microlens array, which includes:
S1:通过有限元电磁仿真软件进行模拟得到所需的微透镜阵列的参数,该参数包括微透镜阵列的微透镜单元的球面曲率半径R0、微透镜单元的中心厚度d、微透镜单元的表面的切面与底面的夹角θ;微透镜单元的底面直径D与微透镜单元的中心厚度d的比值(D/d);本实施例中D/d≈15;根据参数制备纳米压印模板;S1: The required microlens array parameters are obtained by simulating with finite element electromagnetic simulation software, which includes the spherical curvature radius R 0 of the microlens unit of the microlens array, the central thickness d of the microlens unit, and the surface of the microlens unit The angle θ between the tangent plane and the bottom surface; the ratio (D/d) of the diameter D of the bottom surface of the microlens unit to the central thickness d of the microlens unit (D/d); in this embodiment, D/d≈15; prepare a nanoimprint template according to the parameters;
选择玻璃基板10,利用氟化氢水溶液、去离子水溶液清洗玻璃基板10,去除其表面的杂质;Select the
准备一衬板,在衬板上旋涂第二压印胶层,在60℃下热处理1min,再在90℃下热处理1min,得到转移版;Prepare a liner, spin-coat the second embossed rubber layer on the liner, heat-treat at 60°C for 1min, and then heat-treat at 90°C for 1min to obtain a transfer plate;
S2:利用压印技术将纳米压印模板上的图案转移到转移版上,得到反向转移版;S2: Using imprinting technology to transfer the pattern on the nanoimprint template to the transfer plate to obtain a reverse transfer plate;
S3:在玻璃基板10上旋涂第一压印胶层,在60℃下热处理1min,再在90℃下热处理1min,再以反向转移版为模板利用压印技术将反向转移版上的图案转移到第一压印胶层,得到半成品器件;S3: Spin-coat the first embossing adhesive layer on the
S4:通过施加ESC电压及控制氦气流量使得半成品器件被静电吸附在刻蚀设备的工艺腔室内;利用电感耦合等离子刻蚀(ICP)刻蚀技术对半成品器件进行干法刻蚀100s,其中,腔室温度为60℃、腔室压力为8mTorr、HBr/(HBr+SF4)的体积比为1:5;刻蚀的源功率为500W、偏压功率为100W;S4: By applying ESC voltage and controlling the flow rate of helium, the semi-finished device is electrostatically adsorbed in the process chamber of the etching equipment; the semi-finished device is dry-etched for 100s using inductively coupled plasma etching (ICP) etching technology, among which, The chamber temperature is 60°C, the chamber pressure is 8mTorr, and the volume ratio of HBr/(HBr+SF 4 ) is 1:5; the etching source power is 500W, and the bias power is 100W;
S5:用去离子水和有机溶剂清洁刻蚀后的半成品器件表面的杂质,其中,用去离子水先超声清洗1min;再用丙酮和乙醇的混合溶液清洗3min;再用去离子水超声清洗1min,得到清洁的半成品器件;S5: Use deionized water and an organic solvent to clean the impurities on the surface of the semi-finished device after etching, wherein, first use deionized water to ultrasonically clean for 1 min; then use a mixed solution of acetone and ethanol to clean for 3 min; then use deionized water to ultrasonically clean for 1 min, Get clean semi-finished devices;
S6:再次根据器件的光学需求和半成品器件上微透镜单元20的焦距、折射率等参数,计算获得半成品器件上微透镜单元20的参数与器件的光学需求对应的参数之间的差值,获得介质层30的材料和厚度;S6: According to the optical requirements of the device and parameters such as the focal length and refractive index of the
S7:利用CVD技术在半成品器件的微透镜单元表面沉积一层SiO2,在CVD技术的设备的工艺腔室内;温度为350℃、极板间距400mils,压力1.2Torr,的体积比:SiH4:N2O:N2为1:7:30。S7: Use CVD technology to deposit a layer of SiO 2 on the surface of the microlens unit of the semi-finished device, in the process chamber of the CVD technology equipment; the temperature is 350 ° C, the distance between the plates is 400 mils, and the pressure is 1.2 Torr. The volume ratio: SiH 4 : N 2 O:N 2 is 1:7:30.
S8:沉积结束后,得到微透镜中心厚度d约为37μm,微透镜底面直径D约为560μm,D/d约为15,介质层厚度约为60nm的产品1,产品示意图参阅图6,产品扫描透镜图片参与图7、图8。S8: After the deposition is completed, the product 1 with a microlens center thickness d of about 37 μm, a microlens bottom diameter D of about 560 μm, a D/d of about 15, and a dielectric layer thickness of about 60 nm is obtained. The product schematic diagram is shown in Figure 6, product scan Lens pictures refer to Figure 7 and Figure 8.
实施例2Example 2
本实施例相较于实施例1,在S7中,以SiH4、NH3、N2为工艺气体在半成品器件的微透镜单元表面沉积一层氮化硅膜层,其中SiH4、NH3、N2为体积比为5:1:90,其余步骤与实施例1相同,得到微透镜中心厚度d=41μm,微透镜底面直径D约为585μm,介质层厚度为100nm的产品2。Compared with Example 1, in this embodiment, in S7, SiH 4 , NH 3 , N 2 are used as process gases to deposit a layer of silicon nitride film on the surface of the microlens unit of the semi-finished device, wherein SiH 4 , NH 3 , N 2 is a volume ratio of 5:1:90, and the rest of the steps are the same as in Example 1 to obtain product 2 with a microlens center thickness d=41 μm, a microlens bottom diameter D of about 585 μm, and a dielectric layer thickness of 100 nm.
实施例3Example 3
本实施例相较于实施例1,在S1中微透镜单元的底面直径D与微透镜单元的中心厚度d的比值(D/d):D/d≈25;在S4中,刻蚀时间为120s,其中,腔室温度为60℃、腔室压力为10mTorr、HBr/(HBr+SF4)的体积比为1:6;刻蚀的源功率为650W、偏压功率为200W。Compared with Embodiment 1 in this embodiment, the ratio (D/d) of the bottom surface diameter D of the microlens unit to the central thickness d of the microlens unit in S1: D/d≈25; in S4, the etching time is 120s, wherein the chamber temperature is 60°C, the chamber pressure is 10mTorr, the volume ratio of HBr/(HBr+SF 4 ) is 1:6; the etching source power is 650W, and the bias power is 200W.
其余步骤与实施例1相同,得到焦距为微透镜中心厚度d=24.5μm,微透镜底面直径D约为600μm,介质层厚度为80nm的产品3,参阅图9。The rest of the steps are the same as in Example 1 to obtain product 3 with a focal length of the microlens center thickness d=24.5 μm, a microlens bottom diameter D of about 600 μm, and a dielectric layer thickness of 80 nm, see FIG. 9 .
实施例4Example 4
本实施例相较于实施例1,在S1中微透镜单元的底面直径D与微透镜单元的中心厚度d的比值(D/d):D/d≈6;在S4中,刻蚀时间为80s,其中,腔室温度为70℃、腔室压力为8mTorr、HBr/(HBr+SF4) 的体积比为1:4;刻蚀的源功率为550W、偏压功率为65W。Compared with Embodiment 1 in this embodiment, the ratio (D/d) of the bottom surface diameter D of the microlens unit to the central thickness d of the microlens unit in S1: D/d≈6; in S4, the etching time is 80s, wherein the chamber temperature is 70°C, the chamber pressure is 8mTorr, the volume ratio of HBr/(HBr+SF 4 ) is 1:4; the etching source power is 550W, and the bias power is 65W.
其余步骤与实施例1相同,得到焦距为微透镜中心厚度d=67μm,微透镜底面直径D约为400μm,介质层厚度为100nm的产品4,参阅图10。The rest of the steps are the same as in Example 1 to obtain product 4 with a focal length of the center thickness of the microlens d=67 μm, a diameter D of the bottom surface of the microlens of about 400 μm, and a thickness of the dielectric layer of 100 nm, see FIG. 10 .
对比例1Comparative example 1
本对比例相较于实施例1,在S4中的HBr/(HBr+SF4) 的体积比为1:7其余步骤与实施例1相同,得到焦距为微透镜中心厚度d=530μm,微透镜底面直径D约为20μm,介质层厚度为100nm的对比产品1,参阅图11。Compared with Example 1 in this comparative example, the volume ratio of HBr/(HBr+SF 4 ) in S4 is 1:7 and the rest of the steps are the same as in Example 1 to obtain a focal length of microlens center thickness d=530 μm, microlens The bottom surface diameter D is about 20 μm, and the comparison product 1 with a dielectric layer thickness of 100 nm, see FIG. 11 .
从图11可以看出,在相同的刻蚀时间下,HBr的含量过低,造成微透镜单元在刻蚀过程中侧壁保护不足,刻蚀出来的透镜不能达到较好的圆滑过渡状态,甚至在微透镜表面呈现为不平整的阶梯状。It can be seen from Figure 11 that under the same etching time, the content of HBr is too low, resulting in insufficient protection of the sidewall of the microlens unit during the etching process, and the etched lens cannot achieve a better smooth transition state, or even The surface of the microlens is uneven and stepped.
从实施例1~实施例4得到的微透镜的D/d值可以知道,采用此方法得到的微透镜中心厚度、底面直径以及D/d的值与模拟得到的微透镜单元的中心厚度、底面直径以及D/d的值相差无几,由此可见,采用本申请提供的微透镜阵列的制备方法制备得到的微透镜单元与预设的微透镜单元的参数相吻合,其精确度较高,且其微透镜单元的参数可以根据需要进行调整,有利于针对不同的器件调整微透镜单元的参数,使其适用性更好。Can know from the D/d value of the microlens that embodiment 1~embodiment 4 obtains, the microlens central thickness that adopts this method to obtain, bottom surface diameter and the value of D/d and the central thickness of the microlens unit obtained by simulation, bottom surface The diameter and the value of D/d are almost the same. It can be seen that the microlens unit prepared by the preparation method of the microlens array provided by the present application is consistent with the parameters of the preset microlens unit, and its accuracy is high, and The parameters of the micro-lens unit can be adjusted according to needs, which is beneficial to adjust the parameters of the micro-lens unit for different devices and make it more applicable.
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present application, and are not intended to limit it; although the application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present application. scope.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211461501.0A CN115494568B (en) | 2022-11-17 | 2022-11-17 | Preparation method of micro-lens array, micro-lens array and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211461501.0A CN115494568B (en) | 2022-11-17 | 2022-11-17 | Preparation method of micro-lens array, micro-lens array and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115494568A true CN115494568A (en) | 2022-12-20 |
CN115494568B CN115494568B (en) | 2023-04-25 |
Family
ID=85114741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211461501.0A Active CN115494568B (en) | 2022-11-17 | 2022-11-17 | Preparation method of micro-lens array, micro-lens array and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115494568B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116774327A (en) * | 2023-08-17 | 2023-09-19 | 江苏鲁汶仪器股份有限公司 | Manufacturing method and manufacturing system of micro lens and micro lens |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102362201A (en) * | 2009-03-25 | 2012-02-22 | 东京毅力科创株式会社 | Manufacturing method of microlens array and microlens array |
CN209765087U (en) * | 2019-04-09 | 2019-12-10 | 苏州苏大维格科技集团股份有限公司 | Multilayer dynamic anti-counterfeiting film |
CN112630872A (en) * | 2020-12-24 | 2021-04-09 | 华中科技大学 | Preparation method of three-dimensional micro-lens array |
CN114114477A (en) * | 2020-08-31 | 2022-03-01 | 苏州苏大维格科技集团股份有限公司 | Micro-lens array light uniformizing structure and manufacturing method thereof, TOF lens and equipment |
-
2022
- 2022-11-17 CN CN202211461501.0A patent/CN115494568B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102362201A (en) * | 2009-03-25 | 2012-02-22 | 东京毅力科创株式会社 | Manufacturing method of microlens array and microlens array |
CN209765087U (en) * | 2019-04-09 | 2019-12-10 | 苏州苏大维格科技集团股份有限公司 | Multilayer dynamic anti-counterfeiting film |
CN114114477A (en) * | 2020-08-31 | 2022-03-01 | 苏州苏大维格科技集团股份有限公司 | Micro-lens array light uniformizing structure and manufacturing method thereof, TOF lens and equipment |
CN112630872A (en) * | 2020-12-24 | 2021-04-09 | 华中科技大学 | Preparation method of three-dimensional micro-lens array |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116774327A (en) * | 2023-08-17 | 2023-09-19 | 江苏鲁汶仪器股份有限公司 | Manufacturing method and manufacturing system of micro lens and micro lens |
Also Published As
Publication number | Publication date |
---|---|
CN115494568B (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7179063B6 (en) | Method for Direct Etching Fabrication of Waveguide Couplers | |
CN115494567B (en) | Composite structure of microlens array nanometer grating, preparation method and application | |
US7709282B2 (en) | Method for producing a light emitting device | |
KR101485889B1 (en) | Lens with broadband anti-reflective structures formed by nano islands mask and method of making the same | |
CN103765603B (en) | The manufacture method of the glass substrate, solaode and the solaode that use the manufacture method of dry-etching, band concaveconvex structure film of the glass substrate with concaveconvex structure film | |
CN108254811A (en) | A kind of infrared optical window with three step anti-reflection structures and preparation method thereof | |
CN114994817A (en) | Preparation method of micro-nano grating | |
CN110824590A (en) | Preparation method of micro-lens array, preparation method of display device and display device | |
CN106501884A (en) | A kind of processing technology of sub-wavelength structure plano-convex microlens array | |
JP2004012856A (en) | Optical element, mold for optical element, and method for manufacturing optical element | |
CN111366996A (en) | Method for preparing micro-lens array | |
CN115494568A (en) | A kind of preparation method of microlens array and its microlens array, application | |
CN115685598B (en) | Waveguide structure with core-coated electro-optic material layer, preparation method and application | |
WO2001069316A1 (en) | Exposure controlling photomask and production method therefor | |
US20030190803A1 (en) | System and method for analog replication of microdevices having a desired surface contour | |
TW201119069A (en) | Nanostructured thin film inorganic solar cells | |
CN109782383B (en) | Device manufacturing method suitable for low-heat-conductivity and electric-conductivity material substrate | |
JP2004317827A (en) | Liquid crystal display element formed of inorganic material having different refractive index, liquid crystal projector using same, and method for manufacturing microlens substrate | |
CN100521219C (en) | Single chip integrated CMOS imaging sensor with dual-focus microlens array | |
JPH06194502A (en) | Microlens and microlens array and their production | |
WO2022193107A1 (en) | Lens array and manufacturing method therefor | |
CN115308828B (en) | Preparation method of titanium dioxide grating and titanium dioxide grating | |
CN104698514A (en) | Method for large-area preparation of micro-nano convex ball lens array | |
JP2007328128A (en) | Optical element and its manufacturing method | |
CN113387318B (en) | Near-infrared band-pass filter based on nano annular array and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 226400 No.1 Jinshan Road, zuegang street, Rudong County, Nantong City, Jiangsu Province Patentee after: Jiangsu Yiwen Microelectronics Technology Co.,Ltd. Patentee after: Wuxi Yiwen Microelectronics Technology Co.,Ltd. Address before: 226400 No.1 Jinshan Road, zuegang street, Rudong County, Nantong City, Jiangsu Province Patentee before: Jiangsu Yiwen Microelectronics Technology Co.,Ltd. Patentee before: WUXI YIWEN ELECTRONIC TECHNOLOGY Co.,Ltd. |