CN115494302A - Resolution bandwidth intelligent setting method and system for spectrum testing of aerospace products - Google Patents
Resolution bandwidth intelligent setting method and system for spectrum testing of aerospace products Download PDFInfo
- Publication number
- CN115494302A CN115494302A CN202210964917.8A CN202210964917A CN115494302A CN 115494302 A CN115494302 A CN 115494302A CN 202210964917 A CN202210964917 A CN 202210964917A CN 115494302 A CN115494302 A CN 115494302A
- Authority
- CN
- China
- Prior art keywords
- resolution bandwidth
- bandwidth
- resolution
- setting
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 141
- 238000001228 spectrum Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000013598 vector Substances 0.000 claims abstract description 43
- 238000003062 neural network model Methods 0.000 claims abstract description 41
- 238000012549 training Methods 0.000 claims abstract description 33
- 238000013528 artificial neural network Methods 0.000 claims abstract description 9
- 238000005457 optimization Methods 0.000 claims abstract description 5
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000010801 machine learning Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种宇航产品频谱测试的分辨率带宽智能化设置方法,属于电性能自动测试技术领域。The invention relates to an intelligent setting method of resolution bandwidth for spectrum testing of aerospace products, and belongs to the technical field of automatic testing of electrical properties.
背景技术Background technique
随着数字化、智能化技术日益成熟,宇航产品测试系统升级换代,在宇航产品地面测试验证阶段,大多数频谱测试项目能够实现自动化测试,测试效率得到了大幅提高。With the increasing maturity of digital and intelligent technologies and the upgrading of aerospace product test systems, most of the spectrum test items can be automated in the ground test verification stage of aerospace products, and the test efficiency has been greatly improved.
现有的测试系统在测试频谱项目时,需要测试工程师根据单机的实际情况和仪器性能,先手动测试一遍,选择合适的参数,再将参数输入测试系统。然而宇航产品种类多、数量少,不同的产品都需要手动设置频谱项目测试参数,不利于测试效率的进一步提升。再者宇航产品测试试验环节多、项目多,仪器设备资源有限,在不同试验环节更换仪器设备后进行参数复用可能会出现参数不匹配,造成测试试验数据不准确,不能真实反应单机性能指标,导致二次试验,造成时间和资源的浪费,不利于进度控制和成本控制。When the existing test system tests spectrum items, the test engineer needs to manually test once according to the actual situation of the stand-alone machine and the performance of the instrument, select the appropriate parameters, and then input the parameters into the test system. However, there are many types and few quantities of aerospace products, and different products need to manually set the test parameters of spectrum items, which is not conducive to the further improvement of test efficiency. In addition, there are many test procedures and projects for aerospace products, and the resources of instruments and equipment are limited. After the replacement of instruments and equipment in different test procedures, parameter reuse may cause parameter mismatch, resulting in inaccurate test data and unable to truly reflect the stand-alone performance indicators. It leads to a second test, resulting in a waste of time and resources, which is not conducive to schedule control and cost control.
发明内容Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供了一种宇航产品频谱测试的分辨率带宽智能化设置方法,运用机器学习技术,建立符合宇航产品频谱测试的分辨率带宽设置的神经网络模型。根据测试试验累计的数据对模型进行训练,拟合分辨率带宽与被测信号特点及仪器其他参数的非线性关系,寻找分辨率带宽的最优设置,从而实现频谱项目的全自动测试,进一步提高产品测试效率。The technical solution problem of the present invention is: to overcome the deficiencies of the prior art, to provide a resolution bandwidth intelligent setting method for the spectrum test of aerospace products, and to use machine learning technology to establish a neural network that conforms to the resolution bandwidth setting of the spectrum test of aerospace products network model. Train the model according to the accumulated data of the test, fit the nonlinear relationship between the resolution bandwidth and the characteristics of the measured signal and other parameters of the instrument, and find the optimal setting of the resolution bandwidth, so as to realize the automatic testing of spectrum items and further improve Product testing efficiency.
本发明的技术解决方案是:Technical solution of the present invention is:
一种宇航产品频谱测试的分辨率带宽智能化设置方法,包括:An intelligent resolution bandwidth setting method for spectrum testing of aerospace products, comprising:
根据产品频谱测试项目测试需要配置的常用参数,确定频谱项目自动配置的主要因素;Determine the main factors for the automatic configuration of spectrum items according to the common parameters that need to be configured for product spectrum test items;
根据产品频谱测试项目历史测试数据特点,提取分辨率带宽设置的影响因素,构建特征向量;According to the characteristics of the historical test data of the product spectrum test project, extract the influencing factors of the resolution bandwidth setting, and construct the feature vector;
建立分辨率带宽设置的神经网络模型,利用训练样本集训练神经网络模型,获得分辨率带宽预测模型;Establish a neural network model with resolution and bandwidth settings, use the training sample set to train the neural network model, and obtain a resolution and bandwidth prediction model;
使用所述分辨率带宽预测模型对频谱测试项目的分辨率带宽进行设置。The resolution bandwidth of the spectrum test item is set by using the resolution bandwidth prediction model.
进一步的,所述产品频谱测试项目测试需要配置的常用参数包括:载波频率、带宽、内置衰减、参考电平、幅度分辨率、分辨率带宽、视频带宽;Further, the common parameters that need to be configured for the product spectrum test item test include: carrier frequency, bandwidth, built-in attenuation, reference level, amplitude resolution, resolution bandwidth, and video bandwidth;
载波频率、带宽是测试的输入条件;Carrier frequency and bandwidth are the input conditions of the test;
内置衰减、参考电平、幅度分辨率的设置受被测信号输出功率的直接影响,其参数取值和被测信号输出功率是线性的函数关系;The settings of built-in attenuation, reference level, and amplitude resolution are directly affected by the output power of the measured signal, and the parameter values and the output power of the measured signal are linear functions;
内置衰减用于保护频谱仪内部的混频器,内置衰减最小值等于被测信号最大输出功率减去混频器最大输入功率值;The built-in attenuation is used to protect the mixer inside the spectrum analyzer, and the minimum value of the built-in attenuation is equal to the maximum output power of the signal under test minus the maximum input power value of the mixer;
参考电平等于被测信号最大输出功率加上b,b>0;The reference level is equal to the maximum output power of the signal under test plus b, b>0;
幅度分辨率等于被测信号最大输出功率减去被测信号最小输出功率,然后除以10;The amplitude resolution is equal to the maximum output power of the signal under test minus the minimum output power of the signal under test, and then divided by 10;
视频带宽和分辨率带宽设置固定的倍数关系。Video bandwidth and resolution bandwidth are set in a fixed multiple relationship.
进一步的,频谱测试项目自动配置的主要因素为分辨率带宽。Further, the main factor of the automatic configuration of the spectrum test items is the resolution bandwidth.
进一步的,提取的分辨率带宽设置的影响因素包括:被测信号中心频率fc、带宽s、参考电平l、衰减a、扫描时间t和指标要求。Further, the extracted influencing factors of resolution bandwidth setting include: center frequency f c of the signal under test, bandwidth s, reference level l, attenuation a, sweep time t and index requirements.
进一步的,将分辨率带宽的影响因素作为设置分辨率带宽神经网络模型的输入向量因素,则输入特征向量表示为:Further, taking the influencing factors of the resolution bandwidth as the input vector factor of the neural network model for setting the resolution bandwidth, the input feature vector is expressed as:
X=[fc s l a t i]X = [f c slati]
对特征向量进行归一化处理,得到归一化特征向量;收集历史测试数据,制定数据特征向量Xk,k=1,2,…,m,其中m为最大样本数;并对样本进行标记,设置标签值,则向量Xk及其对应的标签作为神经网络模型的样本集,抽取样本集的70%作为训练样本集,其余30%作为测试样本集。Normalize the eigenvectors to obtain normalized eigenvectors; collect historical test data and formulate data eigenvectors X k , k=1,2,...,m, where m is the maximum number of samples; and mark the samples , set the label value, then the vector X k and its corresponding label are used as the sample set of the neural network model, 70% of the sample set is taken as the training sample set, and the remaining 30% is used as the test sample set.
进一步的,归一化特征向量,计算公式为:Further, the normalized feature vector, the calculation formula is:
其中,fmin和fmax为频谱仪测试频率,smin和smax为频谱仪测试带宽,lmin和lmax为频谱仪参考电平,amin和amax为频谱仪内部衰减,tmin和tmax为频谱仪扫描时间,imin和imax为行波管放大器常用指标要求。Among them, f min and f max are the test frequency of the spectrum analyzer, s min and s max are the test bandwidth of the spectrum analyzer, l min and l max are the reference levels of the spectrum analyzer, a min and a max are the internal attenuation of the spectrum analyzer, t min and t max is the scanning time of the spectrum analyzer, and i min and i max are the common index requirements of the traveling wave tube amplifier.
进一步的,建立分辨率带宽设置的神经网络模型,利用训练样本集训练神经网络模型,获得分辨率带宽预测模型,具体为:Further, establish a neural network model with resolution bandwidth setting, use the training sample set to train the neural network model, and obtain a resolution bandwidth prediction model, specifically:
构建全连接神经网络,即分辨率带宽设置的神经网络模型,网络模型结构包括一个输入层,3个隐藏层,一个输出层;根据所述构建的特征向量,输入层向量维数是6,输出层采用softmax分类,输出为10类分辨率带宽的设置概率;将训练样本集输入到神经网络模型中,设置训练迭代次数,批处理样本数量和学习率,不断训练优化网络模型,获得分辨率带宽预测模型。Construct a fully connected neural network, that is, a neural network model with resolution and bandwidth settings. The network model structure includes an input layer, 3 hidden layers, and an output layer; according to the constructed feature vector, the dimension of the input layer vector is 6, and the output The layer uses softmax classification, and the output is the setting probability of 10 types of resolution bandwidth; input the training sample set into the neural network model, set the number of training iterations, the number of batch samples and the learning rate, and continuously train and optimize the network model to obtain the resolution bandwidth predictive model.
进一步的,所述使用分辨率带宽预测模型对频谱测试项目的分辨率带宽进行设置,具体为:将得到的分辨率带宽预测模型嵌入产品测试系统,读取参数被测信号中心频率fc、带宽s,自动识别参数参考电平l、衰减a、扫描时间t和指标要求i,生成实时特征向量,获得预设10类分辨率带宽的设置概率,取概率最大值。Further, the use of the resolution bandwidth prediction model to set the resolution bandwidth of the spectrum test item is specifically: embedding the obtained resolution bandwidth prediction model into the product test system, and reading the parameters of the measured signal center frequency f c , bandwidth s, automatically identify the parameters reference level l, attenuation a, scan time t and index requirement i, generate real-time feature vectors, obtain the setting probabilities of 10 preset resolution bandwidths, and take the maximum value of the probabilities.
进一步的,本发明还提出一种宇航产品频谱测试的分辨率带宽智能化设置系统,包括:Further, the present invention also proposes an intelligent resolution bandwidth setting system for spectrum testing of aerospace products, including:
主要因素确定模块:根据产品频谱测试项目测试需要配置的常用参数,确定频谱项目自动配置的主要因素;所述产品频谱测试项目测试需要配置的常用参数包括:载波频率、带宽、内置衰减、参考电平、幅度分辨率、分辨率带宽、视频带宽;载波频率、带宽是测试的输入条件;内置衰减、参考电平、幅度分辨率设置受被测信号输出功率的直接影响,其参数取值和被测信号输出功率是线性的函数关系;内置衰减用于保护频谱仪内部的混频器,内置衰减最小值等于被测信号最大输出功率减去混频器最大输入功率值;参考电平等于被测信号最大输出功率加上b,b>0;幅度分辨率等于被测信号最大输出功率减去被测信号最小输出功率,然后除以10;视频带宽和分辨率带宽设置固定的倍数关系;频谱测试项目自动配置的主要因素为分辨率带宽;The main factor determination module: according to the common parameters that need to be configured for the product spectrum test item test, determine the main factors for the automatic configuration of the spectrum item; the common parameters that need to be configured for the product spectrum test item test include: carrier frequency, bandwidth, built-in attenuation, reference voltage level, amplitude resolution, resolution bandwidth, video bandwidth; carrier frequency and bandwidth are the input conditions of the test; the settings of built-in attenuation, reference level, and amplitude resolution are directly affected by the output power of the signal under test. The output power of the measured signal is a linear function; the built-in attenuation is used to protect the mixer inside the spectrum analyzer, and the minimum value of the built-in attenuation is equal to the maximum output power of the signal under test minus the maximum input power value of the mixer; the reference level is equal to the The maximum output power of the signal plus b, b>0; the amplitude resolution is equal to the maximum output power of the signal under test minus the minimum output power of the signal under test, and then divided by 10; the video bandwidth and resolution bandwidth set a fixed multiple relationship; spectrum test The main factor of project automatic configuration is resolution bandwidth;
特征向量构建模块:根据产品频谱测试项目历史测试数据特点,提取分辨率带宽设置的影响因素,构建特征向量;提取的分辨率带宽设置的影响因素包括:被测信号中心频率fc、带宽s、参考电平l、衰减a、扫描时间t和指标要求;Eigenvector construction module: according to the characteristics of historical test data of product spectrum test items, extract the influencing factors of resolution bandwidth setting, and construct the eigenvector; the extracted influencing factors of resolution bandwidth setting include: the center frequency f c of the signal under test, the bandwidth s, Reference level l, attenuation a, scan time t and index requirements;
将分辨率带宽的影响因素作为设置分辨率带宽神经网络模型的输入向量因素,则输入特征向量表示为:Taking the influencing factors of resolution bandwidth as the input vector factor of setting the resolution bandwidth neural network model, the input feature vector is expressed as:
X=[fc s l a t i]X = [f c slati]
神经网络模型建立与训练模块:建立分辨率带宽设置的神经网络模型,利用训练样本集训练神经网络模型,获得分辨率带宽预测模型;Neural network model establishment and training module: establish a neural network model with resolution and bandwidth settings, use the training sample set to train the neural network model, and obtain a resolution and bandwidth prediction model;
分辨率带宽设置模块:使用所述分辨率带宽预测模型对频谱测试项目的分辨率带宽进行设置。Resolution bandwidth setting module: use the resolution bandwidth prediction model to set the resolution bandwidth of the spectrum test item.
本发明与现有技术相比的有益效果是:The beneficial effect of the present invention compared with prior art is:
(1)本发明运用机器学习技术,建立符合宇航产品频谱测试的分辨率带宽设置的神经网络模型。根据测试试验累计的数据对模型进行训练,拟合分辨率带宽与被测信号特点及仪器其他参数的非线性关系,寻找分辨率带宽的最优设置,从而实现频谱项目的全自动测试,进一步提高产品测试效率。(1) The present invention uses machine learning technology to establish a neural network model that meets the resolution bandwidth setting of aerospace product spectrum testing. Train the model according to the accumulated data of the test, fit the nonlinear relationship between the resolution bandwidth and the characteristics of the measured signal and other parameters of the instrument, and find the optimal setting of the resolution bandwidth, so as to realize the automatic testing of spectrum items and further improve Product testing efficiency.
(2)本发明根据宇航产品频谱项目历史测试数据特点和工程实践,创新性的利用机器学习方法在参数寻优上的优势,使用神经网络技术拟合分辨率带宽与其影响因素的非线性模型,实现了频谱项目测试分辨率带宽的智能化设置。(2) According to the characteristics of historical test data and engineering practice of aerospace product spectrum items, the present invention innovatively utilizes the advantages of machine learning methods in parameter optimization, and uses neural network technology to fit the nonlinear model of resolution bandwidth and its influencing factors, Realized the intelligent setting of spectrum project test resolution bandwidth.
(3)本发明将训练完成的神经网络模型嵌入宇航产品测试系统测试系统,对宇航产品频谱项目分辨率带宽进行智能化设置,免去繁琐的人工设置频谱测试参数,避免在不用频谱仪因参数复用引入的测试错误,确保测试基线一致,进一步提高测试效率。(3) The present invention embeds the trained neural network model into the aerospace product testing system testing system, intelligently sets the resolution bandwidth of the aerospace product spectrum item, eliminates the cumbersome manual setting of spectrum test parameters, and avoids parameter failures when the spectrum analyzer is not used. Reuse the introduced test errors to ensure consistent test baselines and further improve test efficiency.
附图说明Description of drawings
图1为本发明方法流程图;Fig. 1 is a flow chart of the method of the present invention;
图2为神经网络模型结构图。Figure 2 is a structural diagram of the neural network model.
具体实施方式detailed description
下面结合附图对本发明的具体实施方式进行进一步的详细描述。Specific embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明开展了对频谱测试项目参数设置的研究,通过一系列试验,对频谱测试需要配置的常用参数,包括内置衰减、参考电平和幅度分辨率、分辨率带宽、视频带宽等进行分析,找到了频谱项目自动配置的主要因素分辨率带宽。The present invention has carried out research on parameter setting of spectrum test items. Through a series of experiments, the commonly used parameters that need to be configured for spectrum testing, including built-in attenuation, reference level and amplitude resolution, resolution bandwidth, video bandwidth, etc., are analyzed and found Spectrum projects automatically configure the main factor resolution bandwidth.
本发明将以宇航产品行波管放大器测试为例,结合图1阐述本发明的具体过程。The present invention will take the test of an aerospace product traveling wave tube amplifier as an example, and illustrate the specific process of the present invention in conjunction with FIG. 1 .
步骤一:确定频谱项目自动配置的主要因素Step 1: Determine the main factors for the automatic configuration of the spectrum project
波管放大器频谱项目测试需要配置的常用参数如表1所示:Common parameters that need to be configured for wave tube amplifier spectrum project testing are shown in Table 1:
表1频谱项目测试常用配置参数Table 1 Commonly used configuration parameters for spectrum project testing
包括载波频率、带宽、内置衰减、参考电平和幅度分辨率、分辨率带宽、视频带宽等。其中载波频率、带宽是测试的输入条件;内置衰减、参考电平和幅度分辨率等参数受被测信号输出功率的直接影响,他们之间是线性的函数关系,可以通过测试系统自动识别计算设置;视频带宽可以和分辨率带宽设置固定的倍数关系;而分辨率带宽需要综合考虑被测信号的特征、测试参数、仪器底噪、扫描时间和仪器自身的性能,与上述因素存在非线性函数关系,是频谱测试项目自动配置的主要因素。Including carrier frequency, bandwidth, built-in attenuation, reference level and amplitude resolution, resolution bandwidth, video bandwidth, etc. Among them, carrier frequency and bandwidth are the input conditions of the test; parameters such as built-in attenuation, reference level and amplitude resolution are directly affected by the output power of the measured signal, and there is a linear functional relationship between them, which can be automatically identified and calculated by the test system; The video bandwidth can be set to a fixed multiple relationship with the resolution bandwidth; while the resolution bandwidth needs to comprehensively consider the characteristics of the measured signal, test parameters, instrument noise floor, scan time and the performance of the instrument itself, and there is a nonlinear functional relationship with the above factors. It is the main factor for automatic configuration of spectrum test items.
步骤二:提取分辨率带宽设置的影响因素,构建特征向量Step 2: Extract the influencing factors of the resolution bandwidth setting and construct the feature vector
根据行波管放大器频谱项目历史测试数据特点,选用Keysight的9030B-50G作为测试仪器,提取分辨率带宽设置的影响因素包括:被测信号中心频率fc、带宽s、参考电平l,衰减a,扫描时间t和指标要求i。下表2是影响因素数据统计示例图。According to the historical test data characteristics of the traveling wave tube amplifier spectrum project, Keysight's 9030B-50G is selected as the test instrument, and the factors affecting the resolution bandwidth setting include: the center frequency f c of the tested signal, the bandwidth s, the reference level l, and the attenuation a , scan time t and index requirement i. Table 2 below is an example diagram of the data statistics of the influencing factors.
表2分辨率带宽设置影响因素数据统计示例Table 2 Statistical example of factors affecting resolution bandwidth setting
分辨率带宽的影响因素作为设置分辨率带宽神经网络模型的输入向量因素,则输入特征向量表示为:The influencing factors of the resolution bandwidth are used as the input vector factors for setting the resolution bandwidth neural network model, then the input feature vector is expressed as:
X=[fc s l a t i] (1)X=[f c slati] (1)
为了弱化不同特征单位和尺度的影响,对特征进行归一化处理,得到归一化特征向量,计算公式为:In order to weaken the influence of different feature units and scales, the features are normalized to obtain a normalized feature vector. The calculation formula is:
其中,fmin和fmax为频谱仪测试频率,分别取最小值3Hz和最大值50GHz,smin和smax为频谱仪测试带宽,分别取最小值1Hz和最大值25GHz,lmin和lmax为频谱仪参考电平,分别取最小值-25dBm和最大值25dBm,amin和amax为频谱仪内部衰减,分别取最小值-80dBm和最大值0dBm,tmin和tmax为频谱仪扫描时间,分别取最小值0.1ms和最大值60s,imin和imax为行波管放大器常用指标要求,分别取最小值-80dBc和最大值-35dBc。Among them, f min and f max are the test frequencies of the spectrum analyzer, taking the minimum value of 3Hz and the maximum value of 50GHz respectively; s min and s max are the test bandwidth of the spectrum analyzer, taking the minimum value of 1Hz and the maximum value of 25GHz respectively; l min and l max are Spectrum analyzer reference level, take the minimum value -25dBm and maximum value 25dBm respectively, a min and a max are the internal attenuation of the spectrum analyzer, respectively take the minimum value -80dBm and maximum value 0dBm, t min and t max are the scan time of the spectrum analyzer, Take the minimum value of 0.1ms and the maximum value of 60s, respectively, i min and i max are common index requirements for traveling wave tube amplifiers, and take the minimum value of -80dBc and maximum value of -35dBc respectively.
收集行波管放大器历史测试数据,制定数据特征向量Xk(k=1,2,…,m),其中m为最大样本数。并对样本进行标记,设置标签值,则向量Xk及其对应的标签作为神经网络模型的样本集,抽取样本集的70%作为训练样本集,其余30%作为测试样本集。Collect the historical test data of the TWT amplifier, and formulate the data feature vector X k (k=1,2,...,m), where m is the maximum number of samples. And mark the sample, set the label value, then the vector X k and its corresponding label are used as the sample set of the neural network model, 70% of the sample set is taken as the training sample set, and the remaining 30% is used as the test sample set.
步骤三:利用训练样本集训练神经网络模型,获得分辨率带宽预测模型Step 3: Use the training sample set to train the neural network model to obtain the resolution bandwidth prediction model
构建全连接神经网络,网络模型结构如图2所示,包括一个输入层,3个隐藏层,一个输出层。网络训练参数设置如表3所示。Construct a fully connected neural network. The network model structure is shown in Figure 2, including an input layer, 3 hidden layers, and an output layer. The network training parameter settings are shown in Table 3.
根据步骤二构建的特征向量可知,输入层向量维数是6,输出层采用softmax分类,输出为10类分辨率带宽(3Hz、10Hz、30Hz、100Hz、300Hz、1kHz、3kHz、10kHz、30kHz、100kHz)的设置概率。计算公式为:According to the feature vector constructed in step 2, the input layer vector dimension is 6, the output layer uses softmax classification, and the output is 10 types of resolution bandwidth (3Hz, 10Hz, 30Hz, 100Hz, 300Hz, 1kHz, 3kHz, 10kHz, 30kHz, 100kHz ) setting probability. The calculation formula is:
其中,X为输入向量,W10×6为权重,b为偏置项,为softmax输出的概率。Among them, X is the input vector, W 10×6 is the weight, b is the bias item, Probability for softmax output.
则每类分辨率带宽的概率为:Then the probability of each type of resolution bandwidth is:
神经网络的输出和真实数据Y一定会存在差异,所以建立分辨率带宽设置的神经网络模型的关键是找到合适的权重值W,使模型能准确反应分辨率带宽设置值与分辨率带宽影响因素之间的非线性关系。将影响因素的信息输入到神经网络模型中,设置训练迭代次数,批处理样本数量和学习率,得到神经网络的输出在损失函数上采取交叉熵损失去函数评估Y与之间分布的差异,不断训练优化网络模型,对权重值W进行调节,使无限逼近Y。当它们之间的误差达到10-3时,停止训练。The output of the neural network There must be differences with the real data Y, so the key to establishing a neural network model with resolution bandwidth setting is to find an appropriate weight value W, so that the model can accurately reflect the nonlinearity between the resolution bandwidth setting value and the resolution bandwidth influencing factors relation. Input the information of influencing factors into the neural network model, set the number of training iterations, the number of batch samples and the learning rate, and get the output of the neural network Take the cross-entropy loss on the loss function to evaluate the function Y and The distribution difference between them, continuously train and optimize the network model, adjust the weight value W, so that infinitely close to Y. When the error between them reaches 10 -3 , the training is stopped.
表3网络训练参数设置表Table 3 Network training parameter setting table
步骤四:使用预测模型对频谱测试项目的分辨率带宽进行设置Step 4: Use the prediction model to set the resolution bandwidth of the spectrum test item
将步骤三得到的预测模型嵌入行波管放大器测试系统,读取被测产品参数表,得到中心频率f、带宽s,自动识别参数参考电平l,衰减a,扫描时间t和指标要求i,生成实时特征向量x,获得预设10类分辨率带宽的设置概率y=softmax(WTx+b),取概率最大的分辨率带宽作为测试系统的输入。Embed the prediction model obtained in step 3 into the TWT amplifier test system, read the parameter table of the tested product, obtain the center frequency f, bandwidth s, automatically identify the parameter reference level l, attenuation a, scan time t and index requirement i, Generate the real-time feature vector x, obtain the set probability y=softmax(W T x+b) of the preset 10 types of resolution bandwidth, and take the resolution bandwidth with the highest probability as the input of the test system.
本实施例运行嵌入模型的测试系统,测量覆盖L、S、X、Ka频段总计100余台次的行波管放大器,与人工预设频谱参数方式进行对比,以每台单机测试10张不同频谱图对比。In this embodiment, the test system embedded in the model is run, and a total of more than 100 traveling wave tube amplifiers covering the L, S, X, and Ka frequency bands are measured, compared with the manual preset spectrum parameter method, and 10 different spectrums are tested with each single machine Figure comparison.
表4不同频谱对比Table 4 Comparison of different spectrums
从表4中可以看到,嵌入神经网络模型的测试系统节省了90%左右的预设时间,避免了不用频谱仪因参数复用引入的测试错误,达到了方法的优化目的,同时实现了频谱项目的智能化测试。It can be seen from Table 4 that the test system embedded with the neural network model saves about 90% of the preset time, avoids the test error caused by parameter multiplexing without using the spectrum analyzer, achieves the optimization purpose of the method, and realizes the frequency spectrum at the same time. Intelligent testing of the project.
本发明利用机器学习建立合适的分辨率带宽神经网络模型预测模型,快速准确的预估宇航产品频谱测试分辨率带宽,解决了分辨率带宽手动设置的问题,实现频谱项目的全自动测试,是测试系统智能化的技术进步。The present invention uses machine learning to establish a suitable prediction model of the neural network model of resolution bandwidth, quickly and accurately predicts the resolution bandwidth of aerospace product spectrum testing, solves the problem of manual setting of resolution bandwidth, and realizes fully automatic testing of spectrum items. Technological progress in system intelligence.
以上所述,为本发明最佳具体实施方式之一,还可以有其他多种实施例。本发明的保护范围并不局限于此,任何熟悉本技术领域的人员在本发明揭露的技术范围内,可轻易想到变化或者替换,都应属于本发明所附的权力要求的保护范围。The above is one of the best specific implementation modes of the present invention, and there may also be other various embodiments. The scope of protection of the present invention is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present invention, and all should belong to the scope of protection of the appended claims of the present invention.
本发明未详细说明部分属本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210964917.8A CN115494302A (en) | 2022-08-12 | 2022-08-12 | Resolution bandwidth intelligent setting method and system for spectrum testing of aerospace products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210964917.8A CN115494302A (en) | 2022-08-12 | 2022-08-12 | Resolution bandwidth intelligent setting method and system for spectrum testing of aerospace products |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115494302A true CN115494302A (en) | 2022-12-20 |
Family
ID=84465893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210964917.8A Pending CN115494302A (en) | 2022-08-12 | 2022-08-12 | Resolution bandwidth intelligent setting method and system for spectrum testing of aerospace products |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115494302A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102938742A (en) * | 2012-11-08 | 2013-02-20 | 广东电网公司电力调度控制中心 | Communication bandwidth forecasting method and device based on power business requirements |
CN103218674A (en) * | 2013-04-07 | 2013-07-24 | 国家电网公司 | Method for predicating output power of photovoltaic power generation system based on BP (Back Propagation) neural network model |
CN104254981A (en) * | 2013-04-25 | 2014-12-31 | 英特尔公司 | Millimeter-wave communication device and method for intelligent control of transmit power and power density |
CN104330625A (en) * | 2014-09-22 | 2015-02-04 | 中国科学院云南天文台 | Automatic radio environment test platform based on Labview and third-party driving program |
CN108957125A (en) * | 2018-03-20 | 2018-12-07 | 北京邮电大学 | Smart frequency spectrum figure analysis method based on machine learning |
-
2022
- 2022-08-12 CN CN202210964917.8A patent/CN115494302A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102938742A (en) * | 2012-11-08 | 2013-02-20 | 广东电网公司电力调度控制中心 | Communication bandwidth forecasting method and device based on power business requirements |
CN103218674A (en) * | 2013-04-07 | 2013-07-24 | 国家电网公司 | Method for predicating output power of photovoltaic power generation system based on BP (Back Propagation) neural network model |
CN104254981A (en) * | 2013-04-25 | 2014-12-31 | 英特尔公司 | Millimeter-wave communication device and method for intelligent control of transmit power and power density |
CN104330625A (en) * | 2014-09-22 | 2015-02-04 | 中国科学院云南天文台 | Automatic radio environment test platform based on Labview and third-party driving program |
CN108957125A (en) * | 2018-03-20 | 2018-12-07 | 北京邮电大学 | Smart frequency spectrum figure analysis method based on machine learning |
Non-Patent Citations (1)
Title |
---|
鲍景富: "《高频电路设计与制作》", 30 April 2012, 电子科技大学出版社, pages: 166 - 167 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110533007B (en) | Intelligent identification and extraction method for bridge vehicle-mounted strain influence line features | |
CN110389290A (en) | The system and method and device of a kind of electronic component noise testing and life appraisal | |
CN102778358A (en) | Failure prediction model establishing method and system as well as fan monitoring pre-warning system and method | |
CN116380445A (en) | Equipment state diagnosis method and related device based on vibration waveform | |
CN108037081A (en) | A kind of vinifera maturity monitoring method and system | |
CN116230013A (en) | Transformer fault voiceprint detection method based on x-vector | |
CN110632484A (en) | ELM-based GIS partial discharge defect diagnosis and classification system and method | |
US20230014095A1 (en) | Method and system for recognizing environmental protection equipment based on deep hierarchical fuzzy algorithm | |
CN114354654A (en) | Rapid non-destructive detection method of coal moisture content based on DW-KNN | |
CN111678991A (en) | Method for nondestructive testing damage identification of concrete structure | |
CN117786538A (en) | CsAdaBoost integrated learning algorithm based on cost sensitivity improvement | |
CN115215215A (en) | An intelligent early warning and fault diagnosis method for a large gantry shipbuilding crane | |
CN118091522A (en) | Testing and checking system and method for transformer substation | |
CN115077685B (en) | Device status detection method, device and system | |
CN115494302A (en) | Resolution bandwidth intelligent setting method and system for spectrum testing of aerospace products | |
CN119066568A (en) | Cable vibration signal feature extraction and pattern recognition method, cable maintenance method | |
CN110726676B (en) | Online operation and maintenance system of smart substation based on photoacoustic spectroscopy technology | |
CN117782198B (en) | Highway electromechanical equipment operation monitoring method and system based on cloud edge architecture | |
CN118041255A (en) | Signal noise reduction method and system for double-channel adjustable analog signal amplifier | |
CN109029697B (en) | Online diagnosis method for air leakage fault of circular cooler based on single-side detection method of frequency spectrum characteristics | |
CN117559937A (en) | Impedance matching network adjusting method | |
Li et al. | A robust classification method for power transformer status recognition based on sound signals | |
CN114595733B (en) | Bridge cable broken wire signal recognition method and system based on long short-term memory network | |
CN114676724B (en) | Partial discharge type identification method considering corresponding relation between discharge amplitude and apparent discharge quantity | |
CN117169440A (en) | Duck down peculiar smell detection method and detection equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |