CN115493925A - Coupling Test Device and Test Method for Tension-Torsion Corrosion Fatigue of Bridge Suspenders - Google Patents
Coupling Test Device and Test Method for Tension-Torsion Corrosion Fatigue of Bridge Suspenders Download PDFInfo
- Publication number
- CN115493925A CN115493925A CN202211355198.6A CN202211355198A CN115493925A CN 115493925 A CN115493925 A CN 115493925A CN 202211355198 A CN202211355198 A CN 202211355198A CN 115493925 A CN115493925 A CN 115493925A
- Authority
- CN
- China
- Prior art keywords
- fatigue
- corrosion
- bearing platform
- bridge
- tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 78
- 238000005260 corrosion Methods 0.000 title claims abstract description 78
- 238000012360 testing method Methods 0.000 title claims abstract description 66
- 230000008878 coupling Effects 0.000 title claims abstract description 18
- 238000010168 coupling process Methods 0.000 title claims abstract description 18
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 18
- 238000010998 test method Methods 0.000 title abstract description 5
- 238000007906 compression Methods 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 230000009471 action Effects 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000000725 suspension Substances 0.000 claims description 11
- 238000009661 fatigue test Methods 0.000 claims description 9
- 230000007613 environmental effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 abstract description 29
- 239000010959 steel Substances 0.000 abstract description 29
- 239000000463 material Substances 0.000 abstract description 9
- 230000001808 coupling effect Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 230000003628 erosive effect Effects 0.000 abstract description 5
- 230000006835 compression Effects 0.000 abstract description 4
- 230000001360 synchronised effect Effects 0.000 abstract description 3
- 125000001309 chloro group Chemical class Cl* 0.000 abstract 1
- 150000003841 chloride salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/006—Investigating resistance of materials to the weather, to corrosion, or to light of metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/04—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/22—Investigating strength properties of solid materials by application of mechanical stress by applying steady torsional forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明属于桥梁结构耐久性领域,尤其涉及一种桥梁吊索拉扭腐蚀疲劳耦合试验装置与试验方法。The invention belongs to the field of bridge structure durability, and in particular relates to a coupling test device and test method for tension-torsion corrosion fatigue of bridge suspension cables.
背景技术Background technique
沿海城市的缆索承重桥梁吊杆、吊索长期处于具有腐蚀介质的服役环境中,在氯盐的侵蚀和外荷载的耦合作用下,吊杆吊索中的钢丝、钢绞线发生锈蚀,其力学性能及疲劳性能劣化,服役寿命大幅降低,严重影响桥梁结构的服役安全可靠性。而研究吊索钢丝、钢绞线在复杂应力及环境腐蚀耦合作用下的疲劳性能是正确评价并延长缆索桥梁结构使用寿命的基本前提。The suspenders and slings of cable-bearing bridges in coastal cities have been in service environments with corrosive media for a long time. Under the coupling action of chloride salt erosion and external loads, the steel wires and steel strands in the suspenders are corroded, and their mechanics The performance and fatigue performance deteriorate, and the service life is greatly reduced, which seriously affects the service safety and reliability of the bridge structure. The study of fatigue performance of sling wires and steel strands under the coupled action of complex stress and environmental corrosion is the basic premise to correctly evaluate and prolong the service life of cable bridge structures.
对于缆索承重体系桥梁,其服役环境具有湿度高、盐度高、温度高等特点,而处于该服役环境中的钢丝、钢绞线因受到腐蚀作用,其表面逐渐产生蚀坑。值得注意的是,吊索钢丝、钢绞线材料,其在服役过程中,由于锚具安装误差、车辆荷载、风荷载的影响,高速、重载、加速特性导致吊索钢丝横向、纵向及其耦合振动,进而引起钢丝、钢绞线的动态拉伸和扭转载荷。而在扭转荷载与轴向拉伸荷载的耦合作用下,蚀坑处截面应力状态更加复杂,已有研究表明,在相同的轴向拉伸荷载作用下,与纯拉伸状态相比,扭转作用的加入会使材料耐久度损失近60%。For bridges with cable bearing systems, the service environment has the characteristics of high humidity, high salinity, and high temperature, and the steel wires and steel strands in this service environment are corroded, and corrosion pits are gradually formed on the surface. It is worth noting that, during the service process, due to the installation error of the anchorage, the influence of the vehicle load and the wind load, the high speed, heavy load and acceleration characteristics of the sling steel wire and steel strand material will cause the horizontal, vertical and Coupled vibrations, which in turn cause dynamic tensile and torsional loads on steel wires and strands. However, under the coupled action of torsional load and axial tensile load, the stress state of the section at the pit is more complex. Studies have shown that under the same axial tensile load, compared with the pure tensile state, the torsional effect The addition of will cause the material durability to lose nearly 60%.
针对缆索承重体系桥梁吊杆钢丝、钢绞线在腐蚀与疲劳耦合作用下的疲劳性能,由于对钢丝、钢绞线在服役过程中的真实受力状态认识不足,以及试验装置的制约,现有研究多忽略了扭转作用对材料疲劳性能的影响。Aiming at the fatigue performance of bridge suspender steel wire and steel strand under the coupling effect of corrosion and fatigue in the cable load-bearing system, due to the lack of understanding of the real stress state of the steel wire and steel strand during service and the constraints of the test equipment, the existing Most studies have neglected the effect of torsion on the fatigue properties of materials.
公开号为CN110044740A的中国发明专利申请公开了一种缆索钢丝腐蚀疲劳损伤律的测定方法、应用、装置及夹具,该装置包括:双层腐蚀腔、盐雾箱、高精度电阻测试仪、恒温箱及疲劳试验机,为研究拉伸疲劳与腐蚀耦合作用提供了试验设备,但该设备采用了MTS疲劳试验机,此设备成本高昂、保养复杂,尤其是无法同步施加扭转荷载,以至于无法真实模拟钢丝、钢绞线的受力状态。The Chinese invention patent application with the publication number CN110044740A discloses a method, application, device and fixture for the determination of the corrosion fatigue damage law of cable steel wire. And fatigue testing machine, which provides test equipment for studying the coupling effect of tensile fatigue and corrosion, but the equipment uses MTS fatigue testing machine, which is expensive and complicated to maintain, especially the torsional load cannot be applied synchronously, so that it cannot be truly simulated Stress state of steel wire and steel strand.
发明内容Contents of the invention
本发明目的在于提供一种桥梁吊索拉扭腐蚀疲劳耦合试验装置与试验方法,以解决现有试验装置无法真实模拟桥梁吊索受力状态的技术问题。The purpose of the present invention is to provide a bridge suspension cable pull-torsion corrosion fatigue coupling test device and test method to solve the technical problem that the existing test device cannot truly simulate the stress state of the bridge suspension cable.
为解决上述技术问题,本发明的具体技术方案如下:In order to solve the problems of the technologies described above, the specific technical solutions of the present invention are as follows:
一种桥梁吊索拉扭腐蚀疲劳耦合试验装置,该装置包括腐蚀试验系统和疲劳试验系统,其特征在于,所述疲劳试验系统包括拉压转换子系统和扭转子系统;A bridge suspension cable tension-torsion corrosion fatigue coupling test device, the device includes a corrosion test system and a fatigue test system, characterized in that the fatigue test system includes a tension-compression conversion subsystem and a torsion subsystem;
所述拉压转换子系统包括疲劳作动器、支撑面和拉压转换装置,所述支撑面上设有一个第一通孔和多个第二通孔;The tension-compression conversion subsystem includes a fatigue actuator, a support surface and a tension-compression conversion device, and the support surface is provided with a first through hole and a plurality of second through holes;
所述拉压转换装置包括顶板和底板,所述疲劳作动器位于顶板上方用于驱动拉压转换装置向下移动,所述底板设置在支撑面的下方,多根导向柱穿过支第二通孔将所述顶板和底板连接,所述底板上设有第三通孔;The tension-compression conversion device includes a top plate and a bottom plate. The fatigue actuator is located above the top plate to drive the tension-compression conversion device to move downward. The through hole connects the top plate and the bottom plate, and the bottom plate is provided with a third through hole;
所述腐蚀试验系统设置在所述支撑面的上端面,且腐蚀试验系统位于所述拉压转换装置的内部,所述腐蚀试验系统的上下两端均设有一个第四通孔,所述第一通孔、第三通孔和两个第四通孔均同轴设置;The corrosion test system is arranged on the upper end surface of the support surface, and the corrosion test system is located inside the tension-compression conversion device. The upper and lower ends of the corrosion test system are provided with a fourth through hole, and the first The first through hole, the third through hole and the two fourth through holes are coaxially arranged;
所述扭转子系统设置在所述腐蚀试验系统和顶板之间,所述扭转子系统包括设置在所述顶板下端面的上承压台以及设置在所述腐蚀试验系统上端面的下承压台,所述下承压台在所述第四通孔对应的位置设有第五通孔,所述下承压台可沿第五通孔的轴线转动,所述上承压台的下端面和下承压台的上端面均周向设有多个相互配合的楔形块;所述下承压台上设有桥梁吊索的上端锚固点,所述底板上设有桥梁吊索的下端锚固点,所述上端锚固点和下端锚固点之间的连线与所述下承压台的转动中心重合。The torsion sub-system is arranged between the corrosion test system and the top plate, and the torsion sub-system includes an upper pressure bearing platform arranged on the lower end surface of the top plate and a lower pressure bearing platform arranged on the upper end surface of the corrosion test system , the lower pressure platform is provided with a fifth through hole at the position corresponding to the fourth through hole, the lower pressure platform can rotate along the axis of the fifth through hole, the lower end surface of the upper pressure platform and The upper end surface of the lower pressure platform is provided with a plurality of wedge-shaped blocks that cooperate with each other in the circumferential direction; the upper anchor point of the bridge sling is arranged on the lower pressure platform, and the lower anchor point of the bridge sling is arranged on the bottom plate. The line connecting the upper anchor point and the lower anchor point coincides with the rotation center of the lower bearing platform.
由此,启动疲劳作动器,设置疲劳作动器的循环次数、应力比、应力水平、加载频率后,疲劳作动器所施加的压力通过顶板传递给底板,底板向下运动,进而对桥梁吊索施加轴向的拉力,达到疲劳加载的目的。与此同时,上承压台上的楔形块挤压下承压台的楔形块,使下承压台沿第五通孔的轴线转动,进而带动锚固于下承压台的桥梁吊索转动,实现拉、扭同步作用的效果,实现了压缩荷载向拉、扭疲劳荷载的转变。Thus, after the fatigue actuator is started, and the cycle times, stress ratio, stress level, and loading frequency of the fatigue actuator are set, the pressure exerted by the fatigue actuator is transmitted to the bottom plate through the top plate, and the bottom plate moves downward, thereby exerting pressure on the bridge. The sling exerts axial tension to achieve the purpose of fatigue loading. At the same time, the wedge-shaped block on the upper pressure-bearing platform squeezes the wedge-shaped block of the lower pressure-bearing platform, so that the lower pressure-bearing platform rotates along the axis of the fifth through hole, and then drives the bridge sling anchored to the lower pressure-bearing platform to rotate, Realize the effect of synchronous effect of tension and torsion, and realize the transformation from compression load to tension and torsion fatigue load.
进一步,所述下承压台与所述腐蚀试验系统的上端面通过推力轴承连接,所述推力轴承一端设置在所述第五通孔内,所述推力轴承的另一端与腐蚀试验系统的上端面连接。上承压台上的楔形块挤压下承压台的楔形块,使推力轴承带动下承压台转动。Further, the lower bearing platform is connected to the upper end surface of the corrosion test system through a thrust bearing, one end of the thrust bearing is arranged in the fifth through hole, and the other end of the thrust bearing is connected to the upper surface of the corrosion test system. End connection. The wedge-shaped block on the upper pressure-bearing table squeezes the wedge-shaped block of the lower pressure-bearing table, so that the thrust bearing drives the lower pressure-bearing table to rotate.
进一步,所述疲劳作动器设置在横梁上,所述横梁两侧通过支撑梁支撑。Further, the fatigue actuator is arranged on a beam, and both sides of the beam are supported by support beams.
再进一步,所述支撑面的下端面设有多根支撑柱。Still further, a plurality of support columns are provided on the lower end surface of the support surface.
更进一步,所述腐蚀试验系统包括设置在所述支撑面上端面的腐蚀箱及设置在腐蚀箱上部的喷淋器,所述腐蚀箱的上端面与所述下承压台连接,所述喷淋器通过水管与桶连接,所述水管上设有水泵,所述水泵和疲劳作动器均与控制器电连接。Furthermore, the corrosion test system includes a corrosion box arranged on the end surface of the support surface and a sprayer arranged on the upper part of the corrosion box, the upper end surface of the corrosion box is connected with the lower bearing platform, and the sprayer is arranged on the upper part of the corrosion box. The shower is connected to the barrel through a water pipe, and a water pump is arranged on the water pipe, and both the water pump and the fatigue actuator are electrically connected to the controller.
此外,所述腐蚀试验系统上部还设有所述下承压台的复位装置,所述复位装置为弹簧,所述弹簧的一端固定在所述腐蚀试验系统上端面,所述弹簧的另一端固定在下承压台外侧。In addition, the upper part of the corrosion test system is also provided with a reset device for the lower bearing table, the reset device is a spring, one end of the spring is fixed on the upper end surface of the corrosion test system, and the other end of the spring is fixed On the outside of the lower bearing platform.
基于同一个发明构思,本发明还提供了一种采用如上所述的桥梁吊索拉扭腐蚀疲劳耦合试验装置对桥梁吊索进行实验的方法,包括如下步骤:Based on the same inventive concept, the present invention also provides a method for carrying out experiments on bridge slings using the above-mentioned bridge sling tension-torsion corrosion fatigue coupling test device, comprising the following steps:
步骤一、将桥梁吊索的一端穿过所述第五通孔并锚固在下承压台上端,将所述桥梁吊索的另一端穿过第三通孔,并锚固在底板底端。Step 1: Pass one end of the bridge sling through the fifth through hole and anchor it to the upper end of the lower bearing platform, pass the other end of the bridge sling through the third through hole and anchor it to the bottom of the bottom plate.
步骤二、针对春、夏、秋、冬四季的环境特点配置不同浓度的腐蚀溶液,通过腐蚀试验系统喷洒在所述桥梁吊索上。
步骤三、启动疲劳作动器,疲劳作动器所施加的压力通过顶板传递给底板,底板向下运动,进而对桥梁吊索施加轴向的拉力;与此同时,上承压台上的楔形块挤压下承压台的楔形块,使下承压台沿第五通孔的轴线转动,进而带动锚固于下承压台的桥梁吊索转动。Step 3: Start the fatigue actuator, the pressure exerted by the fatigue actuator is transmitted to the bottom plate through the top plate, and the bottom plate moves downward, thereby exerting axial tension on the bridge sling; at the same time, the wedge-shaped The block squeezes the wedge-shaped block of the lower bearing platform, so that the lower bearing platform rotates along the axis of the fifth through hole, and then drives the bridge sling anchored in the lower bearing platform to rotate.
步骤四、撤去疲劳作动器对顶板所施加的压力,此时处于弹性阶段的桥梁吊索恢复变形,带动所述拉压转换装置向上运动,所述下承压台在复位装置作用下旋转复位。
步骤五、重复步骤二和步骤四,并记录试验数据,当循环到设定的试验次数时结束。
本发明的桥梁吊索拉扭腐蚀疲劳耦合试验装置与试验方法具有以下优点:The bridge suspension cable pull-torsion corrosion fatigue coupling test device and test method of the present invention have the following advantages:
1、本发明结构简单,便于拆卸和拼装,荷载转换装置的设置实现了压缩疲劳荷载向拉、扭疲劳荷载的转变。1. The structure of the present invention is simple, easy to disassemble and assemble, and the setting of the load conversion device realizes the transformation from compression fatigue load to tension and torsional fatigue load.
2、本发明既可模拟缆索承重桥梁吊索钢丝、钢绞线的氯盐侵蚀与拉、扭疲劳同步加载,也可模拟拉、扭疲劳单独加载,可有效模拟缆索承重桥梁吊索钢丝、钢绞线的真实工作状态;本发明可以模拟有害离子侵蚀与拉、扭复杂应力耦合作用下材料的耐久性试验。2. The present invention can not only simulate the chloride salt erosion of the steel wire and steel strand of the cable load-bearing bridge, and the simultaneous loading of the tension and torsion fatigue, but also simulate the separate loading of the tension and torsion fatigue, and can effectively simulate the steel wire and steel wire of the cable load-bearing bridge. The real working state of the stranded wire; the invention can simulate the durability test of the material under the coupling action of harmful ion erosion and tension and torsion complex stress.
3、可针对春、夏、秋、冬四季的环境特点,模拟吊杆钢丝、钢绞线真实服役环境,可以广泛用于桥梁结构及材料的耐久性研究。此外本发明的各控制操作均在控制系统上进行,具有智能控制程度高,操作简单等优点。3. According to the environmental characteristics of spring, summer, autumn and winter, it can simulate the real service environment of boom steel wire and steel strand, and can be widely used in the durability research of bridge structures and materials. In addition, each control operation of the present invention is carried out on the control system, which has the advantages of high degree of intelligent control and simple operation.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明的俯视图;Fig. 2 is the top view of the present invention;
图3为本发明的扭转子系统结构示意图;Fig. 3 is the structure diagram of torsion subsystem of the present invention;
图4为本发明的腐蚀系统结构示意图;Fig. 4 is the structural representation of corrosion system of the present invention;
图5为桥梁吊索与下承压台锚固示意图;Figure 5 is a schematic diagram of the anchorage of the bridge sling and the lower bearing platform;
图6为桥梁吊索与底板锚固示意图。Figure 6 is a schematic diagram of the anchorage between the bridge sling and the bottom plate.
图中标记说明:1、疲劳作动器;2、上承压台;22、拉压转换装置;3、导向柱;4、楔形块;5、下承压台;51、第五通孔;6、复位装置;7、腐蚀箱;71、第四通孔;8、桥梁吊索;9、支撑面;91、第一通孔;92、第二通孔;10、底板;101、第三通孔;11、支撑柱;12、喷淋器;13、水泵;14、桶;15、控制器;16、横梁;17、支撑梁;18、顶板。Explanation of marks in the figure: 1. Fatigue actuator; 2. Upper pressure platform; 22. Tension-compression conversion device; 3. Guide column; 4. Wedge block; 5. Lower pressure platform; 51. Fifth through hole; 6. Reset device; 7. Corrosion box; 71. Fourth through hole; 8. Bridge sling; 9. Support surface; 91. First through hole; 92. Second through hole; 10. Bottom plate; 101. Third Through hole; 11, support column; 12, sprinkler; 13, water pump; 14, barrel; 15, controller; 16, beam; 17, support beam; 18, top plate.
具体实施方式detailed description
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明做进一步详细的描述。In order to better understand the purpose, structure and function of the present invention, the present invention will be described in further detail below in conjunction with the accompanying drawings.
如图1所示,本实施例的一种桥梁吊索拉扭腐蚀疲劳耦合试验装置包括腐蚀试验系统和疲劳试验系统,所述疲劳试验系统包括拉压转换子系统和扭转子系统;所述拉压转换子系统包括疲劳作动器1、支撑面9和拉压转换装置22,所述疲劳作动器1设置在横梁16上,所述横梁16两侧通过支撑梁17支撑。As shown in Fig. 1, a kind of bridge suspender tension-twist corrosion fatigue coupling test device of the present embodiment includes a corrosion test system and a fatigue test system, and the fatigue test system includes a tension-compression conversion subsystem and a torsion subsystem; The compression conversion subsystem includes a fatigue actuator 1 , a
如图1和图2所示,所述支撑面9上设有一个第一通孔91和多个第二通孔92。所述支撑面9的下端面设有多根支撑柱11。所述拉压转换装置22包括顶板18和底板10,所述疲劳作动器1位于顶板18上方用于驱动拉压转换装置22向下移动,所述底板10设置在支撑面9的下方,多根导向柱3穿过支第二通孔92将所述顶板18和底板10连接。优选地,为了使桥梁吊索8所受的拉应力更加均匀,导向柱3为四根,且四根导向柱3的底端均匀设置在底板10的四周。所述底板10上设有第三通孔101,所述第三通孔101为桥梁吊索8的下端锚固点。所述顶板18和底板10均为钢板,以确保试验时顶板18和底板10不会发生变形。As shown in FIG. 1 and FIG. 2 , a first through
所述腐蚀试验系统设置在所述支撑面9的上端面,且腐蚀试验系统位于所述拉压转换装置22的内部,所述腐蚀试验系统的上下两端均设有一个第四通孔71,所述第一通孔91、第三通孔101和两个第四通孔71均同轴设置。具体地,所述腐蚀试验系统包括设置在所述支撑面9上端面的腐蚀箱7及设置在腐蚀箱7上部的喷淋器12,所述腐蚀箱7为一个密封空间,两个所述第四通孔71分别设置在所述腐蚀箱7的上下两端,两个所述第四通孔71处均设有密封件以确保安装桥梁吊索8后腐蚀箱7仍处于密封环境。所述密封件包括可滑动钢圈、紧密连接在钢圈内外侧的弹性橡胶,以及连接在弹性橡胶上的弹簧。所述腐蚀箱7的上端面与所述下承压台5连接,所述喷淋器12通过水管与桶14连接,所述水管上设有水泵13,所述水泵13和疲劳作动器1均与控制器15电连接,所述控制器15可以为计时装置。The corrosion test system is arranged on the upper end surface of the
如图1、图3和图4所示,所述扭转子系统设置在所述腐蚀试验系统和顶板18之间,所述扭转子系统包括设置在所述顶板18下端面的上承压台2以及设置在所述腐蚀试验系统上端面的下承压台5,所述下承压台5在所述第四通孔71对应的位置设有第五通孔51,所述第五通孔51为桥梁吊索8的上端锚固点。所述下承压台5可沿第五通孔51的轴线转动。优选地,所述下承压台5与所述腐蚀试验系统的上端面通过推力轴承连接,所述推力轴承一端设置在所述第五通孔51内,所述推力轴承的另一端与腐蚀试验系统的上端面连接,所述推力轴承与第四通孔71同轴设置,所述上承压台2的下端面和下承压台5的上端面均周向设有多个相互配合的楔形块4。所述楔形块4为钢部件,其斜面均作抛光处理,所述楔形块4的斜面角度可以根据扭矩要求确定,且斜面角度变化范围为30°~60°。具体地,所述疲劳作动器1向下压缩上承压台2,上承压台2向下运动,通过导向柱3将压力传递到底板10,由底板10将向下的压力转化为对桥梁吊索8向下的拉力。同时,上、下配合的楔形块4接触,上承压台2向下运动时驱动下承压台5转动,进而带动桥梁吊索8扭转,进而实现模拟对桥梁吊索8的拉、扭、腐蚀的耦合作用。As shown in Fig. 1, Fig. 3 and Fig. 4, the torsion sub-system is arranged between the corrosion test system and the
为了更加真实模拟现实场景,下承压台5需要在上承压台2离开后复位。因此,所述腐蚀试验系统上部还设有所述下承压台5的复位装置6,所述复位装置6为弹簧,所述弹簧的一端固定在所述腐蚀试验系统上端面,所述弹簧的另一端固定在下承压台5外侧。当上承压台2向下运动时所述弹簧拉伸,下承压台5转动,当上承压台2向上运动时所述弹簧收缩,下承压台5复位。所述复位装置6也可以为液压油缸,所述液压油缸的缸体安装在所述腐蚀试验系统上端面,所述液压油缸的伸出端安装在下承压台5外侧。当上承压台2向下运动时所述液压油缸的一端伸出,下承压台5转动,当上承压台2向上运动时所述液压油缸的伸出端回收,使下承压台5复位。In order to more realistically simulate the real scene, the
采用上述实施例的桥梁吊索拉扭腐蚀疲劳耦合试验装置对桥梁吊索进行实验的方法包括如下步骤:The method for carrying out the experiment on the bridge sling by adopting the bridge sling tensile torsion corrosion fatigue coupling test device of the above-mentioned embodiment comprises the following steps:
步骤一、如图5所示,将桥梁吊索8的一端穿过所述推力轴承并锚固在下承压台5上端;如图1、图3、图4和图6所示,将所述桥梁吊索8的另一端依次穿过第四通孔71、第一通孔91、第三通孔101,并锚固在底板10底端。Step 1, as shown in Figure 5, one end of the
步骤二、固定好第四通孔71处的密封件。
步骤二、针对春、夏、秋、冬四季的环境特点配置不同浓度的腐蚀溶液,通过控制器15控制水泵13将腐蚀溶液喷洒在所述桥梁吊索8上。针对春、夏、秋、冬四季的环境特点分别开展纯水喷雾、纯水环境、低浓度氯盐溶液环境和高浓度氯盐环境的腐蚀模拟。
步骤三、设置疲劳试验系统的循环次数、应力比、应力水平、加载频率后启动疲劳作动器1,疲劳作动器1所施加的压力通过顶板18传递给底板10,底板10向下运动,进而对桥梁吊索8施加轴向的拉力。与此同时,上承压台上2的楔形块挤压下承压台5的楔形块,使下承压台沿第五通孔51的轴线转动,进而带动锚固于下承压台的桥梁吊索8转动。Step 3: Start the fatigue actuator 1 after setting the number of cycles, stress ratio, stress level, and loading frequency of the fatigue test system. The pressure applied by the fatigue actuator 1 is transmitted to the
步骤四、撤去疲劳作动器1对顶板18所施加的压力,此时处于弹性阶段的桥梁吊索8恢复变形,带动所述拉压转换装置22向上运动。并且在复位装置6的配合所述下桥梁吊索8带动所述下承压台5旋转复位。Step 4: Remove the pressure exerted by the fatigue actuator 1 on the
步骤五、重复步骤二和步骤三,并记录试验数据,当循环到设定的试验次数时结束。
本发明的桥梁吊索拉扭腐蚀疲劳耦合试验装置既可模拟材料的拉、扭单一应力疲劳加载,又可同步模拟材料的拉、扭复合应力疲劳加载试验。The tension-torsion corrosion fatigue coupling test device of the bridge suspender of the present invention can not only simulate the tension and torsion single stress fatigue loading of the material, but also can simultaneously simulate the tension and torsion composite stress fatigue loading test of the material.
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。It can be understood that the present invention is described through some embodiments, and those skilled in the art know that various changes or equivalent substitutions can be made to these features and embodiments without departing from the spirit and scope of the present invention. In addition, the features and examples may be modified to adapt a particular situation and material to the teachings of the invention without departing from the spirit and scope of the invention. Therefore, the present invention is not limited by the specific embodiments disclosed here, and all embodiments falling within the scope of the claims of the present application belong to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211355198.6A CN115493925B (en) | 2022-11-01 | 2022-11-01 | Bridge suspension cable tension-torsion corrosion fatigue coupling test device and test method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211355198.6A CN115493925B (en) | 2022-11-01 | 2022-11-01 | Bridge suspension cable tension-torsion corrosion fatigue coupling test device and test method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115493925A true CN115493925A (en) | 2022-12-20 |
CN115493925B CN115493925B (en) | 2024-04-09 |
Family
ID=85115682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211355198.6A Active CN115493925B (en) | 2022-11-01 | 2022-11-01 | Bridge suspension cable tension-torsion corrosion fatigue coupling test device and test method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115493925B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116380774A (en) * | 2023-06-05 | 2023-07-04 | 泰州市强达不锈钢丝绳有限公司 | Stainless steel wire rope detection device |
CN117517103A (en) * | 2023-09-25 | 2024-02-06 | 广东省公路建设有限公司湾区特大桥养护技术中心 | A suspension bridge sling corrosion-fatigue coupling durability test system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102889368A (en) * | 2012-09-24 | 2013-01-23 | 中北大学 | Twisting driving device used for transmitting pull pressure |
WO2015043137A1 (en) * | 2013-09-26 | 2015-04-02 | 吉林大学 | Micromechanical performance in-situ test instrument for multi-load and multi-physical field coupling material |
CN105588751A (en) * | 2016-03-07 | 2016-05-18 | 长沙理工大学 | Reinforced concrete bonding section drawing fatigue and corrosion coupling test device and test method |
CN109001060A (en) * | 2018-07-18 | 2018-12-14 | 西南交通大学 | A kind of drawing hoist cable pulling force width and the two-way index fatigue experimental device of anchored end corner and method |
US20200386661A1 (en) * | 2019-06-04 | 2020-12-10 | Zhejiang University | Corrosion-fatigue-coupled test method and device for steel bridge deck |
-
2022
- 2022-11-01 CN CN202211355198.6A patent/CN115493925B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102889368A (en) * | 2012-09-24 | 2013-01-23 | 中北大学 | Twisting driving device used for transmitting pull pressure |
WO2015043137A1 (en) * | 2013-09-26 | 2015-04-02 | 吉林大学 | Micromechanical performance in-situ test instrument for multi-load and multi-physical field coupling material |
CN105588751A (en) * | 2016-03-07 | 2016-05-18 | 长沙理工大学 | Reinforced concrete bonding section drawing fatigue and corrosion coupling test device and test method |
CN109001060A (en) * | 2018-07-18 | 2018-12-14 | 西南交通大学 | A kind of drawing hoist cable pulling force width and the two-way index fatigue experimental device of anchored end corner and method |
US20200386661A1 (en) * | 2019-06-04 | 2020-12-10 | Zhejiang University | Corrosion-fatigue-coupled test method and device for steel bridge deck |
Non-Patent Citations (4)
Title |
---|
LIU YANG 等: "sEMG-Based Dynamic Muscle Fatigue Classification Using SVM With Improved Whale Optimization Algorithm", IEEE INTERNET OF THINGS JOURNAL, 31 December 2021 (2021-12-31) * |
于峰: "FRP约束钢管混凝土柱应力-应变关系研究", 第21届全国结构工程学术会议论文集第Ⅱ册, 12 October 2012 (2012-10-12) * |
姚晓鹏: "拉扭循环加载下缺口件应力应变分析与寿命预测", CNKI硕士学位论文电子期刊, 15 April 2011 (2011-04-15) * |
马如进;徐世桥;王达磊;陈艾荣;: "基于大数据的大跨悬索桥钢箱梁疲劳寿命分析", 华南理工大学学报(自然科学版), no. 06, 15 June 2017 (2017-06-15) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116380774A (en) * | 2023-06-05 | 2023-07-04 | 泰州市强达不锈钢丝绳有限公司 | Stainless steel wire rope detection device |
CN116380774B (en) * | 2023-06-05 | 2023-08-04 | 泰州市强达不锈钢丝绳有限公司 | Stainless steel wire rope detection device |
CN117517103A (en) * | 2023-09-25 | 2024-02-06 | 广东省公路建设有限公司湾区特大桥养护技术中心 | A suspension bridge sling corrosion-fatigue coupling durability test system and method |
Also Published As
Publication number | Publication date |
---|---|
CN115493925B (en) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115493925A (en) | Coupling Test Device and Test Method for Tension-Torsion Corrosion Fatigue of Bridge Suspenders | |
CN106680096B (en) | Multi-test-piece bonding joint bidirectional loading fatigue experiment device | |
CN103499490B (en) | A kind of test unit of effect of stress lower opening solution corrosion steel bar/steel wire and test method | |
CN203365299U (en) | Expansion joint testing system | |
CN109374325B (en) | Pulley block vertical shaft hoist joint debugging test device and method | |
CN103033385A (en) | Device and method of self-balancing portable automatic control shear wall horizontal vertical load common effect performance test | |
CN106168558A (en) | A device and method for repeated bending testing of flexible umbilical cables in marine engineering | |
CN208568499U (en) | Underwater connector bending square experimental rig | |
CN110020474A (en) | A kind of hard and soft contact large deflection disk-shaped structure Bolt load Accurate Prediction method | |
CN203037475U (en) | Self-balancing portable automatic control shear wall horizontal vertical load interaction performance test device | |
CN113514223A (en) | A kind of floating platform pilot test motion simulation device and control method | |
CN118758792A (en) | A device and method for detecting fatigue strength of corrugated steel web beam | |
CN105158092A (en) | Fatigue life testing device and method for bridge deck | |
CN205981875U (en) | A repeated bending test device for flexible umbilical cables in marine engineering | |
CN111413228A (en) | Test device and method for determining fatigue life of steel wire under different corrosion solvents | |
CN107167376A (en) | Ocean engineering corrosive pipeline experimental facilities | |
CN112729800B (en) | Swinging fatigue test system and method for gas swinging device | |
CN113465964B (en) | Swinging test device for offshore high-rise tower | |
CN116290148A (en) | Horizontal load testing device and method for super long diameter pile foundation | |
CN205506596U (en) | Small diameter large deflection friction -type saddle anchor rope system abrasion - tired universal test bench | |
CN108490863B (en) | Device and method for dynamic loading test of sea wind and waves | |
CN206627367U (en) | Multispecimen bonded joint biaxial loadings fatigue test device | |
CN212432460U (en) | An experimental device for realizing the coupling effect of bending force and carbonization of concrete box girder | |
CN1793518A (en) | Automatic sampling apparatus for suspanded mud and sand field | |
CN116296836A (en) | An equivalent pipe-soil interaction simulation device and method in a high-pressure water environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |