CN115493685A - A Method for Measuring the Amplitude of Metal Droplets Under the Condition of Electromagnetic Levitation - Google Patents
A Method for Measuring the Amplitude of Metal Droplets Under the Condition of Electromagnetic Levitation Download PDFInfo
- Publication number
- CN115493685A CN115493685A CN202211076796.XA CN202211076796A CN115493685A CN 115493685 A CN115493685 A CN 115493685A CN 202211076796 A CN202211076796 A CN 202211076796A CN 115493685 A CN115493685 A CN 115493685A
- Authority
- CN
- China
- Prior art keywords
- oscillation
- amplitude
- sample
- suspended
- electromagnetic suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 28
- 239000002184 metal Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005339 levitation Methods 0.000 title description 38
- 230000010355 oscillation Effects 0.000 claims abstract description 71
- 239000000725 suspension Substances 0.000 claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 20
- 230000011218 segmentation Effects 0.000 claims abstract description 6
- 238000005070 sampling Methods 0.000 claims abstract 2
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 12
- 229910001092 metal group alloy Inorganic materials 0.000 abstract description 6
- 238000004590 computer program Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 229910001338 liquidmetal Inorganic materials 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 2
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001304 sample melting Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0037—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
- G01J5/004—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种测量电磁悬浮条件下金属熔滴振幅的方法,属于振幅测量技术领域。The invention relates to a method for measuring the amplitude of metal droplets under the condition of electromagnetic levitation, and belongs to the technical field of amplitude measurement.
背景技术Background technique
电磁悬浮条件下液态金属振幅会直接影响熔滴的悬浮稳定性,并且振幅的大小与合金组分密切相关,也与金属合金粘度和表面张力等热力学性质有关。测量液态金属熔滴的振幅有利于探索熔滴的稳定悬浮条件和提高其热力学参数的测量精度。Under the condition of electromagnetic levitation, the vibration amplitude of liquid metal will directly affect the suspension stability of droplet, and the size of the amplitude is closely related to the alloy composition, and also related to the thermodynamic properties of the metal alloy such as viscosity and surface tension. Measuring the amplitude of liquid metal droplet is beneficial to explore the stable suspension condition of droplet and improve the measurement accuracy of its thermodynamic parameters.
目前常用的振幅位移测量主要有接触式与非接触式两类:非接触式以传统的激光双光束干涉仪、多普勒测振仪、激光自混合干涉仪、超声波测距、高速摄影为代表;接触式有直接测量振动位移的绳索式位移传感器,也有测量加速度进而积分求得振动位移趋势的加速度传感器。但是由于悬浮过程中金属熔滴处于石英管内,且高温金属熔滴无法与检测仪器直接接触,所以非接触式更适用测量金属熔滴的振幅。根据文献调查可知,关于电磁悬浮条件下金属熔滴振幅测量的专利没有报道,现有的关于电磁悬浮条件下金属熔滴的专利有:“空间快速凝固地面模拟方法与实验装置,专利号:CN1158916A”、“一种对电磁悬浮液态金属的形态进行调控的方法,专利号:CN108183632B”、“一种具有加速度检测功能的电磁悬浮球系统及其控制方法,专利号:CN110320385A”、“金属液滴快速凝固方法,专利号:CN111230130A”、“一种测量电磁悬浮条件下金属熔滴振荡频率的方法,专利号:CN113432700A”等。At present, there are mainly two types of amplitude displacement measurement: contact type and non-contact type: non-contact type is represented by traditional laser double-beam interferometer, Doppler vibrometer, laser self-mixing interferometer, ultrasonic ranging, and high-speed photography. ; The contact type has a rope-type displacement sensor that directly measures the vibration displacement, and there is also an acceleration sensor that measures the acceleration and then integrates it to obtain the vibration displacement trend. However, since the metal droplet is in the quartz tube during the suspension process, and the high-temperature metal droplet cannot directly contact the detection instrument, the non-contact method is more suitable for measuring the amplitude of the metal droplet. According to the literature survey, there is no report on the patent on the measurement of the amplitude of metal droplets under the condition of electromagnetic levitation. The existing patents on the metal droplet under the condition of electromagnetic levitation include: "Space rapid solidification ground simulation method and experimental device, patent number: CN1158916A ", "A method for regulating the shape of electromagnetic levitation liquid metal, patent number: CN108183632B", "An electromagnetic levitation ball system with acceleration detection function and its control method, patent number: CN110320385A", "Metal droplet Rapid solidification method, patent number: CN111230130A", "a method for measuring the oscillation frequency of metal droplets under the condition of electromagnetic levitation, patent number: CN113432700A", etc.
金属熔滴在电磁悬浮精炼过程中存在振荡的现象,由于该现象对金属熔滴的悬浮稳定性和部分热力学性质测量结果有较大影响,所以很有必要设计一种可以检测悬浮熔滴振幅的方法,有利于探索熔滴的稳定悬浮条件和提高部分热力学性质测量结果的精度与可靠性。The metal droplet oscillates during the electromagnetic levitation refining process. Since this phenomenon has a great influence on the suspension stability of the metal droplet and the measurement results of some thermodynamic properties, it is necessary to design a method that can detect the amplitude of the suspended droplet. This method is conducive to exploring the stable suspension conditions of molten droplets and improving the accuracy and reliability of the measurement results of some thermodynamic properties.
发明内容Contents of the invention
针对上述现有技术存在的问题及不足,本发明提供一种测量电磁悬浮条件下金属熔滴振幅的方法。本发明金属样品在电磁悬浮条件下迅速悬浮和熔化,非接触式的悬浮条件避免了容器壁对振幅测量的干扰,能够在高温振荡条件下进行高熔点的金属熔滴振幅的测量。本发明通过以下技术方案实现。Aiming at the problems and deficiencies in the above-mentioned prior art, the present invention provides a method for measuring the amplitude of metal droplets under the condition of electromagnetic levitation. The metal sample of the invention suspends and melts rapidly under the condition of electromagnetic levitation, and the non-contact levitation condition avoids the interference of the container wall to the amplitude measurement, and can measure the amplitude of the metal droplet with high melting point under the condition of high temperature oscillation. The present invention is realized through the following technical solutions.
本发明使用电磁悬浮无容器技术和高速相机进行金属液滴振幅测量的方法,设计一种新的悬浮金属液滴振幅测量方法,实现对高熔点金属合金材料的电磁悬浮条件下熔滴振幅测量。为了避免现有技术的不足之处,本发明提出一种电磁悬浮液态金属的振幅进行测量的方法,经过特定设计的电磁悬浮线圈进行悬浮、加热和熔化,然后通过图像采集和数据处理分析,测定表面其熔滴振幅。The invention uses electromagnetic levitation containerless technology and a method for measuring the amplitude of metal droplets with a high-speed camera, designs a new method for measuring the amplitude of suspended metal droplets, and realizes the measurement of the amplitude of molten droplets under the condition of electromagnetic levitation of high melting point metal alloy materials. In order to avoid the deficiencies of the prior art, the present invention proposes a method for measuring the amplitude of electromagnetic levitation liquid metal, which is levitated, heated and melted through a specially designed electromagnetic levitation coil, and then image acquisition and data processing analysis are performed to determine The droplet amplitude on the surface.
一种测量电磁悬浮条件下金属熔滴振幅的方法,其具体步骤包括:A method for measuring the amplitude of metal droplets under electromagnetic levitation conditions, the specific steps comprising:
步骤1、将待测量的试样放置在电磁悬浮设备中,通过控制电磁悬浮条件将待测量的试样悬浮得到悬浮熔滴2,并通过电磁悬浮设备的高速摄像仪6拍摄得到连续多张振荡图片;电磁悬浮设备中悬浮线圈3连接着电源控制系统7,红外测温仪4对悬浮熔滴2的温度进行测量、高速摄像仪6对悬浮熔滴进行拍摄,红外测温仪4和高速摄像仪6均连接计算机系统5进行数据记录与处理。Step 1. Place the sample to be measured in the electromagnetic levitation equipment, suspend the sample to be measured by controlling the electromagnetic levitation conditions to obtain suspended
具体为:Specifically:
步骤1.1、将待测量的试样放置在悬浮线圈3中,调节红外测温仪4使其焦点对准试样位置,调节高速摄像仪6的焦距使其能清晰拍摄试样,打开气体处理系统1对试样喷吹3-5min以提供保护性气氛;Step 1.1, place the sample to be measured in the
步骤1.2、打开电源控制系统7,试样在高频交变磁场的作用下悬浮在悬浮线圈3中心位置并逐渐升温,提高电源控制系统7的输出功率直至红外测温仪4的读数大于试样的熔点,且能通过高速摄像仪6观察到试样由不规则形状转变为椭球形,得到悬浮熔滴2;Step 1.2, turn on the
步骤2、将步骤1拍摄得到的连续多张振荡图片主动存入计算机指定的文件内,然后利用计算机MATLAB软件对震荡图片进行编程处理,具体而言就是:程序从对应文件中读取图片信息、对图像中的对象(溶滴)进行定位,通过降采样生成缩略图并标记和显示出对象的轮廓,根据目标图像和背景占据不同灰度级来进行阈值分割,对图像进行降噪处理以去除图像干扰,提取二值图像的连通分量,确定并显示处理后的图像信息;
步骤3、将经步骤2处理后的连续多张振荡图片通过统计和记录悬浮熔滴2的n个振荡周期内振荡位置得到振荡位置变化情况图,振荡位置变化情况图中上部的振荡波峰和底部的波谷采用三角标记,本次振荡的振幅值为相邻的波峰减去波谷,通过公式(1)进行计算,并通过公式(2)求得振幅最大值和公式(3)求得振幅平均值:
Ai=Ai∧-Ai∨ (1);A i = A i ∧ -A i ∨ (1);
Amax=max(Ai) (2);A max = max(A i ) (2);
其中Ai为悬浮熔滴2第i个周期振幅值,Ai∧为悬浮熔滴2第i个周期震荡波峰值,Ai∨为悬浮熔滴2第i个周期震荡波谷值;Amax为振幅最大值;Aave为悬浮熔滴平均振幅值,单位:像素;n为悬浮熔滴振荡周期数。Among them, A i is the amplitude value of the i-th cycle of the suspended
所述步骤1待测量的试样为导体或半导体,其熔点温度可为800-3000K,制得的颗粒状样品的质量为0.5-3g。The sample to be measured in the step 1 is a conductor or a semiconductor, its melting temperature may be 800-3000K, and the mass of the prepared granular sample is 0.5-3g.
所述高速摄像仪6延迟设置为5-30ms,曝光度为50ns-40ms,镜头光圈为1.5F。The delay of the high-
上述步骤1.1中气体处理系统1通入的保护性气体为氩气、氦气中一种或者两者任意体积混合的保护性气体,气体流量可为0.1L/min-5.0L/min。The protective gas fed into the gas treatment system 1 in the above step 1.1 is one of argon, helium or a mixture of the two in any volume, and the gas flow rate can be 0.1L/min-5.0L/min.
上述步骤1.2中电源控制系统7输出的高频电流为200-600A、电流频率200kHz-400kHz、功率1-15kW。In the above step 1.2, the high-frequency current output by the
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明提供一种电磁悬浮下高温液态金属合金振幅测量方法,可针对不同类型的金属合金得到悬浮振荡条件下准确、快速和可靠的振幅数据。1. The present invention provides a method for measuring the amplitude of high-temperature liquid metal alloys under electromagnetic suspension, which can obtain accurate, fast and reliable amplitude data under suspension oscillation conditions for different types of metal alloys.
2、本发明使用电磁悬浮无容器技术、高速相机图像采集和计算机数据处理可以同时具有采集悬浮熔滴上下方向和左右方向高温金属熔滴振幅测量的功能,可实现对两个方向上悬浮熔滴振幅的在线测量。2. The present invention uses electromagnetic levitation containerless technology, high-speed camera image acquisition and computer data processing, which can simultaneously collect and measure the amplitude of high-temperature metal droplets in the upper and lower directions and left and right directions of suspended molten droplets, and can realize the measurement of suspended molten droplets in two directions. Online measurement of amplitude.
3、该装置不仅能在高温条件下测量熔滴振幅而且分辨力较高,无接触的测量方式使得其不受容器壁的影响,有利于研究高温熔滴悬浮稳定性。同时该装置还具备结构简单、测量迅速等优点,有较好的应用前景。3. The device can not only measure the droplet amplitude under high temperature conditions but also has high resolution. The non-contact measurement method makes it not affected by the container wall, which is conducive to the study of the suspension stability of high-temperature droplets. At the same time, the device also has the advantages of simple structure, rapid measurement, etc., and has a good application prospect.
附图说明Description of drawings
图1是本发明测量电磁悬浮条件下高温金属合金振幅的装置结构示意图;Fig. 1 is a schematic diagram of the device structure of the present invention to measure the amplitude of the high temperature metal alloy under the condition of electromagnetic levitation;
图中:1-气体处理系统、2-悬浮熔滴、3-悬浮线圈、4-红外测温仪、5-计算机系统、6-高速摄像仪、7电源控制系统。In the figure: 1-gas processing system, 2-suspension droplet, 3-suspension coil, 4-infrared thermometer, 5-computer system, 6-high-speed camera, 7 power control system.
图2是本发明实施例1具体试验实物图;图中(a)为金属熔滴悬浮图片处理后得到的3个代表性图;(b)为带标尺的摄像图;(c)为左右和上下两个方向的震荡波形图。Fig. 2 is the actual figure of concrete experiment of embodiment 1 of the present invention; Among the figure (a) is 3 representative figures that obtain after the picture processing of metal molten droplet suspension; (b) is the camera picture with scale; (c) is left and right and Oscillating waveforms in up and down directions.
图3是本发明实施例2具体试验实物图;图中(a)为金属熔滴悬浮图片处理后得到的3个代表性图;(b)为带标尺的摄像图;(c)为左右和上下两个方向的震荡波形图。Fig. 3 is the actual figure of concrete experiment of
图4是本发明实施例3具体试验实物图;图中(a)为金属熔滴悬浮图片处理后得到的3个代表性图;(b)为带标尺的摄像图;(c)为左右和上下两个方向的震荡波形图。Fig. 4 is the actual figure of concrete experiment of
具体实施方式detailed description
下面结合附图和具体实施方式,对本发明作进一步说明。The present invention will be further described below in combination with the accompanying drawings and specific embodiments.
实施例1Example 1
如图1所示,该测量电磁悬浮条件下金属熔滴振幅的方法,其具体步骤包括:As shown in Figure 1, the method for measuring the amplitude of metal droplets under the condition of electromagnetic levitation, its specific steps include:
步骤1、将待测量的试样放置在电磁悬浮设备中,通过控制电磁悬浮条件将待测量的试样悬浮得到悬浮熔滴2,并通过电磁悬浮设备的高速摄像仪6拍摄得到连续多张振荡图片;电磁悬浮设备中悬浮线圈3连接着电源控制系统7,红外测温仪4对悬浮熔滴2的温度进行测量、高速摄像仪6对悬浮熔滴进行拍摄,红外测温仪4和高速摄像仪6均连接计算机系统5进行数据记录与处理。Step 1. Place the sample to be measured in the electromagnetic levitation equipment, suspend the sample to be measured by controlling the electromagnetic levitation conditions to obtain suspended
具体为:Specifically:
步骤1.1、将待测量的试样(钛铝合金颗粒,1.8g)放置在悬浮线圈3中,调节红外测温仪4使其焦点对准试样位置,调节高速摄像仪6的焦距使其能清晰拍摄试样,打开气体处理系统1对试样喷吹5min以提供保护性气氛(气体氛围为30%氩气和70%He,气体流量为1.5L/min);Step 1.1, place the sample to be measured (titanium aluminum alloy particles, 1.8g) in the
步骤1.2、在悬浮线圈3中通入冷却水,打开电源控制系统7(电流为374A、电源频率297kHz、功率5.6kW),试样在高频交变磁场的作用下悬浮在悬浮线圈3中心位置并逐渐升温,提高电源控制系统7的输出功率直至红外测温仪4的读数大于试样的熔点,且能通过高速摄像仪6观察到试样由不规则形状转变为椭球形,得到悬浮熔滴2;Step 1.2, pour cooling water into the
步骤2、将步骤1拍摄得到的连续多张振荡图片主动存入计算机指定的文件内,然后利用计算机MATLAB软件对震荡图片进行编程处理,具体而言就是:程序从对应文件中读取图片信息、对图像中的对象(溶滴)进行定位,通过降采样生成缩略图并标记和显示出对象的轮廓,根据目标图像和背景占据不同灰度级来进行阈值分割,对图像进行降噪处理以去除图像干扰,提取二值图像的连通分量,确定并显示处理后的图像信息,图片处理后得到几个代表性图片如图2(a)所示;
步骤3、将经步骤2处理后的连续多张振荡图片通过统计和记录悬浮熔滴2的n个振荡周期内振荡位置得到振荡位置变化情况图,振荡位置变化情况图中上部的振荡波峰和底部的波谷采用三角标记,本次振荡的振幅值为相邻的波峰减去波谷,通过公式(1)进行计算,并通过公式(2)求得振幅最大值和公式(3)求得振幅平均值:
Ai=Ai∧-Ai∨ (1);A i = A i ∧ -A i ∨ (1);
Amax=max(Ai) (2);A max = max(A i ) (2);
其中Ai为悬浮熔滴2第i个周期振幅值,Ai∧为悬浮熔滴2第i个周期震荡波峰值,Ai∨为悬浮熔滴2第i个周期震荡波谷值;Amax为振幅最大值;Aave为悬浮熔滴平均振幅值,单位:像素;n为悬浮熔滴振荡周期数。Among them, A i is the amplitude value of the i-th cycle of the suspended
本实施例根据带标尺的摄像图片如图2(b)所示,其分辨率为1920*1080像素,标尺上1cm对应的像素差值为493-291=202个像素,可计算得每个像素为0.050mm。如图2(c)所示,根据公式(1)计算出左右方向(即X方向)振幅值和上下方向(即Y方向)振幅值,根据公式(2)和(3)可得:钛铝合金悬浮熔滴在1950℃时,左右方向振荡的振幅最大值33.03像素即1.65mm,平均振幅为9.75像素即0.49mm,上下方向振荡的振幅最大值9.32像素即0.47mm,平均振幅为3.78像素即0.19mm。In this embodiment, according to the camera picture with a scale as shown in Figure 2 (b), its resolution is 1920*1080 pixels, and the pixel difference corresponding to 1 cm on the scale is 493-291=202 pixels, and each pixel can be calculated 0.050mm. As shown in Figure 2(c), according to the formula (1), the amplitude value in the left and right directions (ie, the X direction) and the amplitude value in the up and down direction (ie, the Y direction) are calculated. According to the formulas (2) and (3), it can be obtained: titanium aluminum When the alloy suspended droplet is at 1950°C, the maximum amplitude of oscillation in the left and right direction is 33.03 pixels or 1.65mm, the average amplitude is 9.75 pixels or 0.49mm, the maximum amplitude of the oscillation in the up and down direction is 9.32 pixels or 0.47mm, and the average amplitude is 3.78 pixels or 0.19mm.
实施例2Example 2
如图1所示,该测量电磁悬浮条件下金属熔滴振幅的方法,其具体步骤包括:As shown in Figure 1, the method for measuring the amplitude of metal droplets under the condition of electromagnetic levitation, its specific steps include:
步骤1、将待测量的试样放置在电磁悬浮设备中,通过控制电磁悬浮条件将待测量的试样悬浮得到悬浮熔滴2,并通过电磁悬浮设备的高速摄像仪6拍摄得到连续多张振荡图片;电磁悬浮设备中悬浮线圈3连接着电源控制系统7,红外测温仪4对悬浮熔滴2的温度进行测量、高速摄像仪6对悬浮熔滴进行拍摄,红外测温仪4和高速摄像仪6均连接计算机系统5进行数据记录与处理。Step 1. Place the sample to be measured in the electromagnetic levitation equipment, suspend the sample to be measured by controlling the electromagnetic levitation conditions to obtain suspended
具体为:Specifically:
步骤1.1、将待测量的试样(硅铁合金颗粒,1.3g)放置在悬浮线圈3中,调节红外测温仪4使其焦点对准试样位置,调节高速摄像仪6的焦距使其能清晰拍摄试样,打开气体处理系统1对试样喷吹5min以提供保护性气氛(气体氛围为30%氩气和70%He,气体流量为1.5L/min);Step 1.1, place the sample to be measured (ferrosilicon alloy particles, 1.3g) in the
步骤1.2、在悬浮线圈3中通入冷却水,打开电源控制系统7(电流为374A、电源频率297kHz、功率5.6kW),试样在高频交变磁场的作用下悬浮在悬浮线圈3中心位置并逐渐升温,提高电源控制系统7的输出功率直至红外测温仪4的读数大于试样的熔点,且能通过高速摄像仪6观察到试样由不规则形状转变为椭球形,得到悬浮熔滴2;Step 1.2, pour cooling water into the
步骤2、将步骤1拍摄得到的连续多张振荡图片主动存入计算机指定的文件内,然后利用计算机MATLAB软件对震荡图片进行编程处理,具体而言就是:程序从对应文件中读取图片信息、对图像中的对象(溶滴)进行定位,通过降采样生成缩略图并标记和显示出对象的轮廓,根据目标图像和背景占据不同灰度级来进行阈值分割,对图像进行降噪处理以去除图像干扰,提取二值图像的连通分量,确定并显示处理后的图像信息,图片处理后得到几个代表性图片如图3(a)所示;
步骤3、将经步骤2处理后的连续多张振荡图片通过统计和记录悬浮熔滴2的n个振荡周期内振荡位置得到振荡位置变化情况图,振荡位置变化情况图中上部的振荡波峰和底部的波谷采用三角标记,本次振荡的振幅值为相邻的波峰减去波谷,通过公式(1)进行计算,并通过公式(2)求得振幅最大值和公式(3)求得振幅平均值:
Ai=Ai∧-Ai∨ (1);A i = A i ∧ -A i ∨ (1);
Amax=max(Ai) (2);A max = max(A i ) (2);
其中Ai为悬浮熔滴2第i个周期振幅值,Ai∧为悬浮熔滴2第i个周期震荡波峰值,Ai∨为悬浮熔滴2第i个周期震荡波谷值;Amax为振幅最大值;Aave为悬浮熔滴平均振幅值,单位:像素;n为悬浮熔滴振荡周期数。Among them, A i is the amplitude value of the i-th cycle of the suspended
本实施例根据带标尺的摄像图片如图3(b)所示,其分辨率为1920*1080像素,标尺上1cm对应的像素差值为423-299=224个像素,可计算得每个像素为0.045mm。如图3(c)所示,根据公式(1)计算出左右方向(即X方向)振幅值和上下方向(即Y方向)振幅值,根据公式(2)和(3)可得:硅铁合金悬浮熔滴在1900℃时,左右方向振荡的振幅最大值22.65像素即1.02mm,平均振幅为4.35像素即0.196mm;上下方向振荡的振幅最大值4.47像素即0.20mm,平均振幅为1.38像素即0.06mm。In this embodiment, according to the camera picture with a scale as shown in Figure 3 (b), its resolution is 1920*1080 pixels, and the pixel difference corresponding to 1 cm on the scale is 423-299=224 pixels, and each pixel can be calculated is 0.045mm. As shown in Figure 3(c), according to the formula (1), the amplitude value in the left and right directions (ie, the X direction) and the amplitude value in the up and down direction (ie, the Y direction) are calculated. According to the formulas (2) and (3), it can be obtained: ferrosilicon alloy When the suspended droplet is at 1900°C, the maximum amplitude of oscillation in the left and right direction is 22.65 pixels or 1.02mm, and the average amplitude is 4.35 pixels or 0.196mm; the maximum amplitude of oscillation in the up and down direction is 4.47 pixels or 0.20mm, and the average amplitude is 1.38 pixels or 0.06 mm.
实施例3Example 3
如图1所示,该测量电磁悬浮条件下金属熔滴振幅的方法,其具体步骤包括:As shown in Figure 1, the method for measuring the amplitude of metal droplets under the condition of electromagnetic levitation, its specific steps include:
步骤1、将待测量的试样放置在电磁悬浮设备中,通过控制电磁悬浮条件将待测量的试样悬浮得到悬浮熔滴2,并通过电磁悬浮设备的高速摄像仪6拍摄得到连续多张振荡图片;电磁悬浮设备中悬浮线圈3连接着电源控制系统7,红外测温仪4对悬浮熔滴2的温度进行测量、高速摄像仪6对悬浮熔滴进行拍摄,红外测温仪4和高速摄像仪6均连接计算机系统5进行数据记录与处理。Step 1. Place the sample to be measured in the electromagnetic levitation equipment, suspend the sample to be measured by controlling the electromagnetic levitation conditions to obtain suspended
具体为:Specifically:
步骤1.1、将待测量的试样(纯铁颗粒,1.9g)放置在悬浮线圈3中,调节红外测温仪4使其焦点对准试样位置,调节高速摄像仪6的焦距使其能清晰拍摄试样,打开气体处理系统1对试样喷吹5min以提供保护性气氛(气体氛围为30%氩气和70%He,气体流量为1.5L/min);Step 1.1, place the sample to be measured (pure iron particles, 1.9g) in the
步骤1.2、在悬浮线圈3中通入冷却水,打开电源控制系统7(电流为374A、电源频率297kHz、功率5.6kW),试样在高频交变磁场的作用下悬浮在悬浮线圈3中心位置并逐渐升温,提高电源控制系统7的输出功率直至红外测温仪4的读数大于试样的熔点,且能通过高速摄像仪6观察到试样由不规则形状转变为椭球形,得到悬浮熔滴2;Step 1.2, pour cooling water into the
步骤2、将步骤1拍摄得到的连续多张振荡图片主动存入计算机指定的文件内,然后利用计算机MATLAB软件对震荡图片进行编程处理,具体而言就是:程序从对应文件中读取图片信息、对图像中的对象(溶滴)进行定位,通过降采样生成缩略图并标记和显示出对象的轮廓,根据目标图像和背景占据不同灰度级来进行阈值分割,对图像进行降噪处理以去除图像干扰,提取二值图像的连通分量,确定并显示处理后的图像信息,图片处理后得到几个代表性图片如图4(a)所示;
步骤3、将经步骤2处理后的连续多张振荡图片通过统计和记录悬浮熔滴2的n个振荡周期内振荡位置得到振荡位置变化情况图,振荡位置变化情况图中上部的振荡波峰和底部的波谷采用三角标记,本次振荡的振幅值为相邻的波峰减去波谷,通过公式(1)进行计算,并通过公式(2)求得振幅最大值和公式(3)求得振幅平均值:
Ai=Ai∧-Ai∨ (1);A i = A i ∧ -A i ∨ (1);
Amax=max(Ai) (2);A max = max(A i ) (2);
其中Ai为悬浮熔滴2第i个周期振幅值,Ai∧为悬浮熔滴2第i个周期震荡波峰值,Aiv为悬浮熔滴2第i个周期震荡波谷值;Amax为振幅最大值;Aave为悬浮熔滴平均振幅值,单位:像素;n为悬浮熔滴振荡周期数。Among them, A i is the amplitude value of the i-th cycle of the suspended
本实施例根据带标尺的摄像图片如图4(b)所示,其分辨率为1920*1080像素,标尺上1cm对应的像素差值为495-378=117个像素,可计算得每个像素为0.085mm。如图2(c)所示,根据公式(1)计算出左右方向(即X方向)振幅值和上下方向(即Y方向)振幅值,根据公式(2)和(3)可得:纯铁悬浮熔滴在1850℃时,左右方向振荡的振幅最大值24.21像素即2.06mm,平均振幅为5.80像素即0.49mm,上下方向振荡的振幅最大值12.18像素即1.04mm,平均振幅为2.15像素即0.18mm。In this embodiment, according to the camera picture with a scale as shown in Figure 4 (b), its resolution is 1920*1080 pixels, and the pixel difference corresponding to 1 cm on the scale is 495-378=117 pixels, and each pixel can be calculated is 0.085mm. As shown in Figure 2(c), according to the formula (1), the amplitude value in the left and right direction (ie, the X direction) and the amplitude value in the up and down direction (ie, the Y direction) are calculated. According to the formulas (2) and (3), it can be obtained: pure iron When the suspended droplet is at 1850°C, the maximum amplitude of oscillation in the left and right direction is 24.21 pixels or 2.06mm, the average amplitude is 5.80 pixels or 0.49mm, the maximum amplitude of the oscillation in the up and down direction is 12.18 pixels or 1.04mm, and the average amplitude is 2.15 pixels or 0.18 mm.
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The specific embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments. Variations.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211076796.XA CN115493685B (en) | 2022-09-05 | 2022-09-05 | A method for measuring the amplitude of a metal droplet under electromagnetic suspension conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211076796.XA CN115493685B (en) | 2022-09-05 | 2022-09-05 | A method for measuring the amplitude of a metal droplet under electromagnetic suspension conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115493685A true CN115493685A (en) | 2022-12-20 |
CN115493685B CN115493685B (en) | 2025-04-22 |
Family
ID=84469116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211076796.XA Active CN115493685B (en) | 2022-09-05 | 2022-09-05 | A method for measuring the amplitude of a metal droplet under electromagnetic suspension conditions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115493685B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3908444A (en) * | 1972-08-23 | 1975-09-30 | Udo Peter | Apparatus and method of clearance and vibration measurement in rotary machines |
JP2001272327A (en) * | 2000-03-27 | 2001-10-05 | Toshiba Corp | Magnetic field characteristic evaluation apparatus and measurement method |
CN202854011U (en) * | 2012-06-19 | 2013-04-03 | 上海大学 | Device for measuring physical parameters of high-frequency amplitude-modulated magnetic field hanging drop |
US9508478B1 (en) * | 2013-11-13 | 2016-11-29 | Philip Honein | Diamagnetic levitation system for sport field use in a stadium |
CN107014476A (en) * | 2017-03-07 | 2017-08-04 | 中国石油大学(华东) | A kind of method of sound pressure amplitudes in utilization acoustic levitation drop measurement liquid |
CN108029186A (en) * | 2015-08-12 | 2018-05-11 | Asml荷兰有限公司 | Carry out the system and method for stable droplet-Plasma Interaction via laser energy modulation |
CN110702795A (en) * | 2019-10-21 | 2020-01-17 | 肇庆学院 | An electromagnetic levitation micro-mass measurement system |
CN113432700A (en) * | 2021-06-23 | 2021-09-24 | 昆明理工大学 | Method for measuring oscillation frequency of metal molten drop under electromagnetic suspension condition |
CN114965176A (en) * | 2021-12-20 | 2022-08-30 | 昆明理工大学 | A method for measuring the surface tension of high temperature liquid metal alloys under electromagnetic levitation conditions |
-
2022
- 2022-09-05 CN CN202211076796.XA patent/CN115493685B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3908444A (en) * | 1972-08-23 | 1975-09-30 | Udo Peter | Apparatus and method of clearance and vibration measurement in rotary machines |
JP2001272327A (en) * | 2000-03-27 | 2001-10-05 | Toshiba Corp | Magnetic field characteristic evaluation apparatus and measurement method |
CN202854011U (en) * | 2012-06-19 | 2013-04-03 | 上海大学 | Device for measuring physical parameters of high-frequency amplitude-modulated magnetic field hanging drop |
US9508478B1 (en) * | 2013-11-13 | 2016-11-29 | Philip Honein | Diamagnetic levitation system for sport field use in a stadium |
CN108029186A (en) * | 2015-08-12 | 2018-05-11 | Asml荷兰有限公司 | Carry out the system and method for stable droplet-Plasma Interaction via laser energy modulation |
CN107014476A (en) * | 2017-03-07 | 2017-08-04 | 中国石油大学(华东) | A kind of method of sound pressure amplitudes in utilization acoustic levitation drop measurement liquid |
CN110702795A (en) * | 2019-10-21 | 2020-01-17 | 肇庆学院 | An electromagnetic levitation micro-mass measurement system |
CN113432700A (en) * | 2021-06-23 | 2021-09-24 | 昆明理工大学 | Method for measuring oscillation frequency of metal molten drop under electromagnetic suspension condition |
CN114965176A (en) * | 2021-12-20 | 2022-08-30 | 昆明理工大学 | A method for measuring the surface tension of high temperature liquid metal alloys under electromagnetic levitation conditions |
Non-Patent Citations (1)
Title |
---|
黄泽湃等: "超声-MIG焊熔滴过渡的数值模拟", 焊接, 31 December 2021 (2021-12-31) * |
Also Published As
Publication number | Publication date |
---|---|
CN115493685B (en) | 2025-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113432700A (en) | Method for measuring oscillation frequency of metal molten drop under electromagnetic suspension condition | |
CN206557138U (en) | A kind of device tested the behavior of metal material rapid solidification and solidify hot-fluid | |
JP4714607B2 (en) | Blast furnace outflow measurement system, blast furnace outflow measurement method, and computer program | |
CN106872512A (en) | A method for testing rapid solidification behavior and solidification heat flow of metal materials | |
CN104569033A (en) | Device and method of material sample solidification test for simulating microgravity environment | |
CN103983203B (en) | A kind of laser melting coating molten bath defocus measuring device and its measuring method | |
CN107014476A (en) | A kind of method of sound pressure amplitudes in utilization acoustic levitation drop measurement liquid | |
Kim et al. | Three-dimensional particle tracking velocimetry for turbulence applications: Case of a jet flow | |
CN115344961A (en) | Method for predicting alloy solidification microstructure morphology based on multi-scale model of phase field-lattice wave-Zehnder method | |
CN202854011U (en) | Device for measuring physical parameters of high-frequency amplitude-modulated magnetic field hanging drop | |
CN114965176A (en) | A method for measuring the surface tension of high temperature liquid metal alloys under electromagnetic levitation conditions | |
CN115493685A (en) | A Method for Measuring the Amplitude of Metal Droplets Under the Condition of Electromagnetic Levitation | |
Wilde et al. | Experimental investigation of the planar flow casting process: development and free surface characteristics of the solidification puddle | |
CN113252863A (en) | Electromagnetic suspension device and method for detecting evolution of metal alloy solidification structure | |
CN117517702A (en) | Method, device, equipment and medium for testing scanning speed of laser galvanometer | |
He et al. | Velocity measurement of blast furnace molten iron based on local multi-feature correction using multi-stage filtered high-speed camera | |
Dougherty | Surface tension anisotropy and the dendritic growth of pivalic acid | |
Britt et al. | Investigation into the temperature of metallic high-temperature confocal scanning laser microscope samples | |
CN110749619A (en) | A method for testing the volume change of alloy melt during solidification | |
Bai et al. | Numerical Analysis of Slag Viscosity Effects Mechanism in Submerged Arc Welding Pool | |
CN113029872A (en) | Method and system for measuring surface tension of liquid metal of welding pool in real time | |
JP2500323B2 (en) | Droplet property measuring device | |
Sun et al. | Validating ground-based aerodynamic levitation surface tension measurements through a study on Al2O3 | |
Estrada-Pérez et al. | Time-resolved measurements of liquid–vapor thermal interactions throughout the full life-cycle of sliding bubbles at subcooled flow boiling conditions | |
Zhou et al. | Investigation of the spreading of a liquid metal droplet under a vertical magnetic field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |