CN115483978A - Multi-light-source self-heating modulation module and method and optical fiber coding identification system and method - Google Patents
Multi-light-source self-heating modulation module and method and optical fiber coding identification system and method Download PDFInfo
- Publication number
- CN115483978A CN115483978A CN202211026769.1A CN202211026769A CN115483978A CN 115483978 A CN115483978 A CN 115483978A CN 202211026769 A CN202211026769 A CN 202211026769A CN 115483978 A CN115483978 A CN 115483978A
- Authority
- CN
- China
- Prior art keywords
- light source
- self
- control unit
- pulse
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 93
- 239000013307 optical fiber Substances 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 238000003860 storage Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 7
- 239000000835 fiber Substances 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000005697 Pockels effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/508—Pulse generation, e.g. generation of solitons
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤通讯领域,尤其是涉及一种多光源自热调制模块、方法及光纤编码识别系统、方法。The invention relates to the field of optical fiber communication, in particular to a multi-light source self-heating modulation module and method, and an optical fiber code identification system and method.
背景技术Background technique
在光纤通讯领域,光纤编码作为光纤介质唯一识别的一种技术手段,是由多个不同波长的光纤光栅组成的,光纤编码识别系统是准确识别其光纤光栅波长的光学检测系统。现有光纤编码识别系统主要使用波长探测器(AD采集卡)单次采集时间长,且使用的主要光波为非通信波长,单个激光器所发出的中心波长光波带宽过大,造成识别精度不够。因此,这些问题严重影响光纤编码在PON网络中的应用,影响对PON网络的识别、管理和运行。In the field of optical fiber communication, optical fiber coding, as the only technical means for identifying the optical fiber medium, is composed of multiple fiber gratings with different wavelengths. The optical fiber coding recognition system is an optical detection system that accurately identifies the wavelength of the fiber grating. The existing optical fiber code recognition system mainly uses a wavelength detector (AD acquisition card) for a long time for a single acquisition, and the main light wave used is a non-communication wavelength. The central wavelength light wave bandwidth emitted by a single laser is too large, resulting in insufficient recognition accuracy. Therefore, these problems seriously affect the application of optical fiber coding in the PON network, and affect the identification, management and operation of the PON network.
目前,为提升光纤编码的识别精度,相关技术会利用不同中心波长的多个可调谐激光模块逐个轮巡发光,配合APD光电采集器与AD采集卡组成的快速识别模块,且能一次完成单个中心波长的光源在光纤链路全程的反射信号采集,最终实现光纤编码的快速识别,该技术会结合温度调制装置,来作用于发光芯片以实现单个光源中心波长的多个变化,进而实现单个光源发送不同中心波长的光波,来提高光纤编码识别精度。由于会采用大量的可调谐激光模块作为光源,因此会配备相应数量的温度调制装置,比如半导体制冷器(TEC),导致成本相对过高,并且半导体制冷器尺寸较小,将其安装至光源器件上的工艺制作难度相对较大,因此间接提升了整体装置的制作成本。At present, in order to improve the identification accuracy of optical fiber codes, related technologies will use multiple tunable laser modules with different center wavelengths to patrol one by one to emit light, and cooperate with the rapid identification module composed of APD photoelectric collector and AD acquisition card, and can complete a single center at one time. The wavelength light source collects the reflected signal throughout the fiber link, and finally realizes the rapid identification of the fiber code. This technology will combine the temperature modulation device to act on the light-emitting chip to achieve multiple changes in the center wavelength of a single light source, and then realize the transmission of a single light source. Light waves with different central wavelengths are used to improve the recognition accuracy of optical fiber codes. Since a large number of tunable laser modules will be used as light sources, a corresponding number of temperature modulation devices, such as semiconductor coolers (TECs), will be equipped, resulting in relatively high cost, and the size of the semiconductor coolers is small. The manufacturing process above is relatively difficult, thus indirectly increasing the manufacturing cost of the overall device.
发明内容Contents of the invention
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种多光源自热调制模块,解决了当前光纤编码识别装置中采用的温度调制装置成本过高的问题。The present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention proposes a multi-light source self-heating modulation module, which solves the problem of high cost of the temperature modulation device used in the current optical fiber code identification device.
本发明还提供了一种多光源自热调制方法、一种计算机可读存储介质、一种多光源自热调制的光纤编码识别系统和一种多光源自热调制的光纤编码识别系方法。The invention also provides a multi-light source self-heating modulation method, a computer-readable storage medium, a multi-light source self-heating modulation optical fiber coding identification system and a multi-light source self-heating modulation optical fiber coding identification system method.
根据本发明的第一方面实施例的多光源自热调制模块,包括:The multi-light source self-heating modulation module according to the embodiment of the first aspect of the present invention includes:
多个脉冲光源,每个所述脉冲光源皆随工作时长增加而自升温以改变波长;A plurality of pulsed light sources, each of which is self-heating to change the wavelength as the working time increases;
光源选择单元,其多个输入端分别与多个所述脉冲光源的输出端连接,所述光源选择单元用于从多个所述脉冲光源中选择一个进行光波输出;A light source selection unit, the multiple input terminals of which are respectively connected to the output terminals of multiple pulsed light sources, and the light source selection unit is used to select one of the multiple pulsed light sources for light wave output;
脉冲控制单元,其输入端与所述光源选择单元的输出端连接,输出端用于输出与待识别光纤编码对应波长及时长的脉冲光波;A pulse control unit, the input end of which is connected to the output end of the light source selection unit, and the output end is used to output pulse light waves corresponding to the wavelength and length of the optical fiber code to be identified;
主控制单元,分别与多个所述脉冲光源、所述光源选择单元、所述脉冲控制单元电性连接。The main control unit is electrically connected to the multiple pulse light sources, the light source selection unit, and the pulse control unit respectively.
根据本发明实施例的多光源自热调制模块,至少具有如下有益效果:The multi-light source self-heating modulation module according to the embodiment of the present invention has at least the following beneficial effects:
通过利用光源选择单元来选择多个脉冲光源中的一个,即目标脉冲光源,并开启工作,基于光源升温与波长之间的关系,主控制单元通过精确计算出为达到目标波长脉冲光源所需进行的自升温时长,并依据该自升温时长来确定目标脉冲光源与脉冲控制单元的连通时间,以保证目标波长的脉冲光波的产生,当经过该自升温时长后,脉冲控制单元将进一步调制来最终得到目标波长及时长的脉冲光波。因此,对于本发明实施例的多光源自热调制模块,其依靠脉冲光源的工作自加热来改变发射脉冲光波的波长,通过控制单元精确地计算来实现不同波长的脉冲光波的温度调制,相较于采用温度调制装置进行温度调制,大大降低了装置本身的成本。By using the light source selection unit to select one of the multiple pulse light sources, that is, the target pulse light source, and start the work, based on the relationship between the temperature rise of the light source and the wavelength, the main control unit accurately calculates the pulse light source required to achieve the target wavelength. According to the self-heating time, the communication time between the target pulse light source and the pulse control unit is determined according to the self-heating time, so as to ensure the generation of the pulsed light wave of the target wavelength. Obtain the pulsed light wave of the target wavelength and length. Therefore, for the multi-light source self-heating modulation module of the embodiment of the present invention, it relies on the working self-heating of the pulse light source to change the wavelength of the emitted pulse light wave, and realizes the temperature modulation of pulse light waves with different wavelengths through accurate calculation by the control unit. Because the temperature modulation device is used for temperature modulation, the cost of the device itself is greatly reduced.
根据本发明的一些实施例,所述光源选择单元采用SOA光开关,所述SOA光开关的多个输入端分别与多个所述脉冲光源的输出端连接,所述SOA光开关的输出端与所述脉冲控制单元的输入端连接。According to some embodiments of the present invention, the light source selection unit adopts an SOA optical switch, and multiple input ends of the SOA optical switch are respectively connected to output ends of a plurality of the pulsed light sources, and the output ends of the SOA optical switch are connected to The input end of the pulse control unit is connected.
根据本发明的一些实施例,所述光源选择单元采用波分复用器,所述波分复用器的多个输入端分别与多个所述脉冲光源的输出端连接,所述波分复用器的输出端与所述脉冲控制单元的输入端连接,所述波分复用器与所述主控制单元电性连接。According to some embodiments of the present invention, the light source selection unit adopts a wavelength division multiplexer, and multiple input terminals of the wavelength division multiplexer are respectively connected to output terminals of multiple pulsed light sources, and the wavelength division multiplexer The output end of the controller is connected to the input end of the pulse control unit, and the wavelength division multiplexer is electrically connected to the main control unit.
根据本发明的一些实施例,所述脉冲控制单元采用电光调制器,所述电光调制器的输入端与所述光源选择单元的输出端连接,所述电光调制器的输出端用于输出与待识别光纤编码对应波长及时长的脉冲光波,所述电光调制器与所述主控制单元电性连接。According to some embodiments of the present invention, the pulse control unit uses an electro-optic modulator, the input end of the electro-optic modulator is connected to the output end of the light source selection unit, and the output end of the electro-optic modulator is used for outputting Identifying the pulsed light waves corresponding to the wavelength and duration of the optical fiber code, the electro-optic modulator is electrically connected to the main control unit.
根据本发明的一些实施例,所述脉冲控制单元采用SOA调制器,所述SOA调制器的输入端与所述光源选择单元的输出端连接,所述SOA调制器的输出端用于输出与所述待识别光纤编码对应波长及时长的脉冲光波,所述SOA调制器与所述主控制单元电性连接。According to some embodiments of the present invention, the pulse control unit adopts a SOA modulator, the input end of the SOA modulator is connected to the output end of the light source selection unit, and the output end of the SOA modulator is used for outputting and communicating with the The optical fiber to be identified encodes a pulse light wave corresponding to a wavelength and a length, and the SOA modulator is electrically connected to the main control unit.
根据本发明的第二方面实施例的多光源自热调制方法,应用于如本发明第一方法实施例任一所述的多光源自热调制模块,包括以下步骤:The multi-light source self-heating modulation method according to the second embodiment of the present invention is applied to the multi-light source self-heating modulation module described in any one of the first method embodiments of the present invention, including the following steps:
从多个所述脉冲光源中确定目标脉冲光源,并利用所述光源选择单元将所述脉冲控制模块与所述目标脉冲光源连接;determining a target pulse light source from multiple pulse light sources, and using the light source selection unit to connect the pulse control module to the target pulse light source;
开启所述目标脉冲光源,并根据所述目标脉冲光源升温与波长之间的关系来确定光源自热时长;Turn on the target pulse light source, and determine the self-heating duration of the light source according to the relationship between the temperature rise of the target pulse light source and the wavelength;
对所述目标脉冲光源在所述光源自热时长下进行温度调制,以得到目标波长脉冲光波并由所述光源选择单元输出至所述脉冲控制单元,所述目标波长脉冲光波表示与待识别的光纤编码相对应波长的脉冲光波;Perform temperature modulation on the target pulsed light source under the self-heating time of the light source to obtain the target wavelength pulsed light wave and output it to the pulse control unit by the light source selection unit, and the target wavelength pulsed light wave represents the The optical fiber encodes pulsed light waves of corresponding wavelengths;
开启所述脉冲控制单元,以接收所述目标波长脉冲光波并进行调制,以输出目标时长脉冲光波,所述目标时长脉冲光波表示与待识别光纤编码对应波长及时长的脉冲光波;Turn on the pulse control unit to receive and modulate the target wavelength pulsed light wave to output the target duration pulsed light wave, the target duration pulsed light wave represents the pulsed light wave corresponding to the wavelength and length of the optical fiber code to be identified;
关闭所述脉冲控制单元和所述目标脉冲光源。Turn off the pulse control unit and the target pulse light source.
根据本发明实施例的多光源自热调制方法,至少具有如下有益效果:The multi-light source self-heating modulation method according to the embodiment of the present invention has at least the following beneficial effects:
通过对本发明实施例的多光源自热调制模块执行本发明实施例的多光源自热调制方法,使得通过利用光源选择单元来选择多个脉冲光源中的一个,即目标脉冲光源,并开启工作,基于光源升温与波长之间的关系,主控制单元通过精确计算出为达到目标波长脉冲光源所需进行的自升温时长,并依据该自升温时长来确定目标脉冲光源与脉冲控制单元的连通时间,以保证目标波长的脉冲光波的产生,当经过该自升温时长后,脉冲控制单元将进一步调制来最终得到目标波长及时长的脉冲光波。因此,对于本发明实施例的多光源自热调制模块,其依靠脉冲光源的工作自加热来改变发射脉冲光波的波长,通过控制单元精确地计算来实现不同波长的脉冲光波的温度调制,相较于采用温度调制装置进行温度调制,大大降低了装置本身的成本。By executing the multi-light source self-heating modulation method of the embodiment of the present invention on the multi-light source self-heating modulation module of the embodiment of the present invention, so that by using the light source selection unit to select one of the multiple pulsed light sources, that is, the target pulsed light source, and start the work, Based on the relationship between the temperature rise of the light source and the wavelength, the main control unit accurately calculates the self-heating time required for the pulse light source to reach the target wavelength, and determines the connection time between the target pulse light source and the pulse control unit according to the self-heating time. In order to ensure the generation of the pulsed light wave with the target wavelength, after the self-heating period, the pulse control unit will further modulate to finally obtain the pulsed light wave with the target wavelength and length. Therefore, for the multi-light source self-heating modulation module of the embodiment of the present invention, it relies on the working self-heating of the pulse light source to change the wavelength of the emitted pulse light wave, and realizes the temperature modulation of pulse light waves with different wavelengths through accurate calculation by the control unit. Because the temperature modulation device is used for temperature modulation, the cost of the device itself is greatly reduced.
根据本发明的第三方面实施例的计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如本发明第二方面实施例所述的多光源自热调制方法。According to the computer-readable storage medium of the embodiment of the third aspect of the present invention, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the computer-readable storage medium described in the second aspect of the present invention. The multi-light source self-heating modulation method described above.
可以理解的是,上述第三方面与相关技术相比存在的有益效果与上述第二方面与相关技术相比存在的有益效果相同,可以参见上述第一方面中的相关描述,在此不再赘述。It can be understood that the beneficial effect of the above third aspect compared with the related art is the same as that of the above second aspect compared with the related art, and reference can be made to the relevant description in the above first aspect, and will not be repeated here. .
根据本发明的第四方面实施例的多光源自热调制的光纤编码识别系统,包括:According to the fourth aspect of the present invention, the multi-light source self-thermally modulated optical fiber code identification system includes:
如本发明第一方面实施例任一所述的多光源自热调制模块;The multi-light source self-heating modulation module according to any one of the embodiments of the first aspect of the present invention;
环形器,包括第一端口,第二端口,第三端口,所述第一端口与所述多光源自热调制模块的脉冲控制单元的输出端连接;A circulator includes a first port, a second port, and a third port, the first port is connected to the output end of the pulse control unit of the multi-light source self-heating modulation module;
光纤编码,与所述第二端口连接;Optical fiber coding, connected to the second port;
光电采集单元,其输入端与所述第三端口连接,所述光电采集单元用于对脉冲光波进行处理后输出电信号;A photoelectric collection unit, the input end of which is connected to the third port, and the photoelectric collection unit is used to process the pulse light wave and output an electrical signal;
模数转换单元,其输入端与所述光谱采集单元的输出端电性连接,输出端与所述多光源自热调制模块的主控制单元电性连接。An analog-to-digital conversion unit whose input end is electrically connected to the output end of the spectrum acquisition unit, and whose output end is electrically connected to the main control unit of the multi-light source self-heating modulation module.
根据本发明实施例的多光源自热调制的光纤编码识别系统,至少具有如下有益效果:According to the embodiment of the present invention, the multi-light source self-thermal modulation optical fiber code recognition system has at least the following beneficial effects:
在主控制单元的操作下,使得多光源自热调制模块发送出需要的特定波长的脉冲光波至光纤编码,光纤编码对特定波长的脉冲光波进行反射并传回光电采集单元和模数转换单元,经处理后可实现对光纤编码的快速识别。同时,本发明实施例的多光源自热调制的光纤编码识别系统采用了依靠脉冲光源工作自加热的多光源自热调制模块,从而使得系统整体上的成本得到降低。Under the operation of the main control unit, the multi-light source self-heating modulation module sends the required pulsed light waves of specific wavelengths to the optical fiber code, and the optical fiber codes reflect the pulsed light waves of specific wavelengths and send them back to the photoelectric acquisition unit and the analog-to-digital conversion unit. After processing, the rapid identification of the optical fiber code can be realized. At the same time, the multi-light source self-heating modulation optical fiber code recognition system of the embodiment of the present invention adopts a multi-light source self-heating modulation module that relies on the pulse light source to work and self-heat, thereby reducing the overall cost of the system.
根据本发明的第五方面实施例的多光源自热调制的光纤编码识别方法,应用于如本发明第四方面实施例所述的多光源自热调制的光纤编码识别系统,包括以下步骤:According to the embodiment of the fifth aspect of the present invention, the optical fiber code identification method for self-thermal modulation of multiple light sources is applied to the optical fiber code identification system for self-thermal modulation of multiple light sources as described in the embodiment of the fourth aspect of the present invention, including the following steps:
所述多光源自热调制模块输出与所述光纤编码对应波长及时长的脉冲光波至所述环形器,并继续传输至所述光纤编码;The multi-light source self-thermal modulation module outputs pulsed light waves corresponding to the wavelength and length of the optical fiber code to the circulator, and continue to transmit to the optical fiber code;
所述光电采集单元接收所述光纤编码对所述脉冲光波反射后的反射光波并进行光电转换处理,以得到模拟电信号;The photoelectric acquisition unit receives the reflected light wave after the optical fiber code reflects the pulsed light wave and performs photoelectric conversion processing to obtain an analog electrical signal;
所述模数转换单元接收所述模拟电信号并进行模数转换处理,以得到数字信号;The analog-to-digital conversion unit receives the analog electrical signal and performs analog-to-digital conversion processing to obtain a digital signal;
所述主控制单元接收所述数字信号并进行处理,以完成对所述光纤编码的识别。The main control unit receives and processes the digital signal to complete the identification of the optical fiber code.
根据本发明实施例的多光源自热调制的光纤编码识别方法,至少具有如下有益效果:According to the embodiment of the present invention, the multi-light source self-thermal modulation optical fiber code recognition method has at least the following beneficial effects:
将本发明实施例的多光源自热调制的光纤编码识别方法应用于多光源自热调制的光纤编码识别系统中,在主控制单元的操作下,使得多光源自热调制模块发送出需要的特定波长的脉冲光波至光纤编码,光纤编码对特定波长的脉冲光波进行反射并传回光电采集单元和模数转换单元,经处理后可实现对光纤编码的快速识别。Apply the fiber code recognition method for multi-light source self-thermal modulation of the embodiment of the present invention to the multi-light source self-thermal modulation fiber code recognition system, under the operation of the main control unit, the multi-light source self-thermal modulation module sends out the required specific The pulsed light wave of the wavelength reaches the optical fiber code, and the optical fiber code reflects the pulsed light wave of a specific wavelength and sends it back to the photoelectric acquisition unit and the analog-to-digital conversion unit. After processing, the rapid identification of the optical fiber code can be realized.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1是本发明一实施例的多光源自热调制的光纤编码识别系统的结构示意图;Fig. 1 is a schematic structural diagram of an optical fiber code recognition system for self-thermal modulation of multiple light sources according to an embodiment of the present invention;
图2是本发明一实施例的多光源自热调制模块的时序示意图;Fig. 2 is a timing diagram of a multi-light source self-heating modulation module according to an embodiment of the present invention;
图3是本发明一实施例的多光源自热调制方法的流程图;Fig. 3 is a flowchart of a self-heating modulation method for multiple light sources according to an embodiment of the present invention;
图4是本发明一实施例的多光源自热调制的光纤编码识别方法的流程图。Fig. 4 is a flowchart of an optical fiber code identification method for self-thermal modulation of multiple light sources according to an embodiment of the present invention.
附图标记:Reference signs:
多光源自热调制模块100;脉冲光源110;光源选择单元120;脉冲控制单元130;主控制单元140;Multi-light source self-
环形器210;光纤编码220;光电采集单元230;模数转换单元240。A
具体实施方式detailed description
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
在本发明的描述中,如果有描述到第一、第二等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。In the description of the present invention, if the first, second, etc. are described only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features or implying Indicates the sequence of the indicated technical features.
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that when it comes to orientation descriptions, for example, the orientation or positional relationship indicated by up, down, etc. is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description , rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the invention.
本发明的描述中,需要说明的是,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。In the description of the present invention, it should be noted that, unless otherwise clearly defined, words such as setting, installation, and connection should be understood in a broad sense, and those skilled in the art can reasonably determine that the above words are included in the present invention in combination with the specific content of the technical solution. specific meaning.
下面将结合附图对本发明的技术方案进行清楚、完整的描述,显然,以下所描述的实施例是本发明一部分实施例,并非全部实施例。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the embodiments described below are some, not all, embodiments of the present invention.
参照图1所示,本发明实施例提供的多光源自热调制模块100,包括多个脉冲光源110、光源选择单元120、脉冲控制单元130、主控制单元140。每个脉冲光源110皆随工作时长增加而自升温以改变波长;光源选择单元120的多个输入端分别与多个脉冲光源110的输出端连接,光源选择单元120用于从多个脉冲光源110中选择一个进行光波输出;脉冲控制单元130的输入端与光源选择单元120的输出端连接,输出端用于输出与待识别光纤编码220对应波长及时长的脉冲光波;主控制单元140分别与多个脉冲光源110、光源选择单元120、脉冲控制单元130电性连接。Referring to FIG. 1 , the multi-light source self-
具体地,参考图1所示,图中虚线框内为本发明实施例的多光源自热调制模块100,由主控制单元140来分别控制多个脉冲光源110的开关、光源选择单元120的开关及切换、脉冲控制单元130的开关。对于要获取目标波长及时长的脉冲光波,首先将光源选择单元120连接至多个脉冲光源110中的目标脉冲光源,然后开启目标脉冲光源,使其开始工作进行温度自热调制,当完成需要的调制时长后,输出目标波长的脉冲光波至脉冲控制单元130,通过脉冲控制单元130的调制后,最终得到目标波长及时长的脉冲光波,以输出至对应的待识别光纤编码220。Specifically, as shown in FIG. 1 , the multi-light source self-
进一步地,参考图2,图2为多光源自热调制模块100的时序示意图.对于光源选择单元120,其采用的光开关能实现多光源的选择汇聚,由于当前技术下光开关的开启及关闭过程需要一定时间,同时,对于光开关,比如将16端口切换到1号端口的时间会比将1号端口切换到2号端口长,因此为保障稳定性,需要确定最长稳定时间,实际中一般为100ms。因此,每当将光源选择单元120与多个脉冲光源110进行切换连接时,需要等待其最长稳定时间后才开启对应的目标脉冲光源。Further, referring to FIG. 2 , FIG. 2 is a timing diagram of the multi-light source self-
继续参考图2,目标脉冲光源持续发热,其内部集热会对波长进行调制,其温度和波长的变化规律为0.1nm/度,即温度每升高1度,波长增加0.1nm,进一步地根据计算和实际测试,自热时长和波长对应关系大致为:波长变化4nm需要60ms的集热时间,因此当温度集热完成需要的自热时长后才能将脉冲光波传输出去至待识别光纤编码220。同时,目标脉冲光源工作发热时,实际上脉冲光波在持续向外输出,由于波长不断变换且连续输出的脉冲光波并不是我们需要的,因此利用了脉冲控制单元130,来控制输出的脉冲光波的时长,在实际中一般最大时长为1000ns,即目标脉冲光源在不断自热调制时,脉冲波长便会到达脉冲控制单元130,但脉冲控制单元130并不会开启来输出脉冲光波,当完成需要的温度调制时长后,脉冲控制单元130将开启1000ns的最大时长,以输出目标波长及时长的脉冲光波。需要说明的是,由于1000ns的时间很短,这段时间的目标脉冲光源在自热调制下的波长变化可以忽略不计。Continuing to refer to Figure 2, the target pulsed light source continues to generate heat, and its internal heat collection will modulate the wavelength. The change law of its temperature and wavelength is 0.1nm/degree, that is, every time the temperature rises by 1 degree, the wavelength increases by 0.1nm. Further according to According to the calculation and actual test, the corresponding relationship between the self-heating duration and the wavelength is roughly as follows: a wavelength change of 4nm requires 60ms of heat collection time, so when the temperature collection completes the required self-heating duration, the pulsed light wave can be transmitted to the
还需要说明的是,在目标脉冲光源的温度调制中,其工作自热时长对应的波长变化是非常稳定的,其误差较小,基本可以控制误差小于0.05nm,即在一些实施例中,当进行温度调制时,脉冲光波的波长达至目标脉冲波长减0.05nm时便可以开启脉冲控制单元130来做进一步处理。It should also be noted that in the temperature modulation of the target pulsed light source, the wavelength change corresponding to the working self-heating duration is very stable, and its error is small, and the error can basically be controlled to be less than 0.05nm, that is, in some embodiments, when When performing temperature modulation, when the wavelength of the pulsed light wave reaches the target pulse wavelength minus 0.05 nm, the
在本实施例中,通过利用光源选择单元120来选择多个脉冲光源110中的一个,即目标脉冲光源,并开启工作,基于光源升温与波长之间的关系,主控制单元140通过精确计算出为达到目标波长的脉冲光源所需进行的自升温时长,并依据该自升温时长来确定目标脉冲光源与脉冲控制单元130的连通时间,以保证目标波长的脉冲光波的产生,当经过该自升温时长后,脉冲控制单元130将进一步调制来最终得到目标波长及时长的脉冲光波。因此,对于本发明实施例的多光源自热调制模块100,其依靠脉冲光源110的工作自加热来改变发射脉冲光波的波长,通过控制单元精确地计算来实现不同波长的脉冲光波的温度调制,相较于采用温度调制装置进行温度调制,大大降低了装置本身的成本。In this embodiment, by using the light
在一些实施例中,光源选择单元120采用SOA光开关,SOA光开关的多个输入端分别与多个脉冲光源110的输出端连接,SOA光开关的输出端与脉冲控制单元130的输入端连接。In some embodiments, the light
具体地,SOA光开关利用半导体光放大器,通过改变SOA的偏置电压就可实现开关功能,当偏置减少时,没有粒子数反转,因而吸收光信号,当偏置增加时,放大输入信号,因而当SOA处于吸收和放大态时,通断消光比很大,同时易于集成,开关速度快,但偏振敏感。在一些实施例中,SOA光开关采用N×N型,即具有多个输入端和对应的多个输出端,通过对SOA光开关的端口进行设置,可以实现对一个目标脉冲光源的连通并输出对应的目标脉冲光波。Specifically, the SOA optical switch uses a semiconductor optical amplifier, and the switching function can be realized by changing the bias voltage of the SOA. When the bias decreases, there is no particle population inversion, thus absorbing the optical signal. When the bias increases, the input signal is amplified. , so when the SOA is in the absorbing and amplifying state, the on-off extinction ratio is large, and at the same time it is easy to integrate, the switching speed is fast, but it is polarization sensitive. In some embodiments, the SOA optical switch adopts an N×N type, that is, it has multiple input terminals and corresponding multiple output terminals. By setting the ports of the SOA optical switch, it can realize the connection and output of a target pulse light source. Corresponding target pulse light wave.
在一些实施例中,光源选择单元120采用波分复用器,波分复用器的多个输入端分别与多个脉冲光源110的输出端连接,波分复用器的输出端与脉冲控制单元130的输入端连接,波分复用器与主控制单元140电性连接。In some embodiments, the light
具体地,波分复用器可以将两种或多种不同波长的携带各种信息的光载波信号汇合在一起,并耦合到光线路的同一根光纤中进行传输,传输至接收端时,再通过某种方法将各个不同波长的光信号分开。通过利用波分复用器,可以实现对多个目标脉冲光源的连通并输出耦合的脉冲光波,在接收端进行解波分复用处理,以得到对应的多个目标脉冲光波。Specifically, the wavelength division multiplexer can combine two or more optical carrier signals of different wavelengths carrying various information, and couple them to the same optical fiber of the optical line for transmission. The optical signals of different wavelengths are separated by some method. By using a wavelength division multiplexer, it is possible to realize connection to multiple target pulsed light sources and output coupled pulsed light waves, and perform wavelength division multiplexing processing at the receiving end to obtain corresponding multiple target pulsed light waves.
可以理解的是,采用光开关来单独连通一个目标脉冲光源,其能更好地进行温度调制来获得对应的目标波长的脉冲光波,因此本实施例采用的波分复用器在实际操作时难度相对更大,因此,光源选择单元120优选采用光开关,比如SOA光开关。It can be understood that using an optical switch to connect a target pulsed light source alone can better perform temperature modulation to obtain a pulsed light wave of the corresponding target wavelength, so the wavelength division multiplexer used in this embodiment is difficult in actual operation. Relatively larger, therefore, the light
在一些实施例中,脉冲控制单元130采用电光调制器,电光调制器的输入端与光源选择单元120的输出端连接,电光调制器的输出端用于输出与待识别光纤编码220对应波长及时长的脉冲光波,电光调制器与主控制单元140电性连接。In some embodiments, the
具体地,由于脉冲控制单元130需要将输出的脉冲光波控制在纳秒级别,因此采用的电光调制器实际上是作为一种Q开关来使用。需要说明的是,Q开关可以在对激光光束产生非常小或者非常高损耗之间快速转换。这一器件通常用在激光器谐振腔中,实现对激光器进行有源的Q开关,这是一种产生短的强脉冲的方法,脉冲长度在纳秒范围。Q开关包括声光Q开关、电光Q开关、无源Q开关。具体的,电光Q开关需要采用到电光调制器,电光调制器是通过电子控制信号来控制激光光束的功率、相位和偏振。它通常包含一个或两个普克尔斯盒,有时可能还包含一些其它的光学元件,例如偏振器,其工作原理是线性电光效应(也称为普克尔斯效应),即电场引起非线性晶体中的折射率变化与场的强度成正比。Specifically, since the
进一步地,在一些实施例中,声光Q开关需要采用到声光调制器,声光调制器是利用电子驱动信号可以用来控制激光光束的功率,频率或者其空间方向的器件。它利用声光效应,即通过声波机械振荡压力改变折射率。声光调制器的关键元件是一块透明晶体(或一块玻璃),光在其中传播。与晶体接触的压电转换器用来激发声波,声波的频率在100MHz量级。Further, in some embodiments, the acousto-optic Q-switch needs to be used in an acousto-optic modulator, which is a device that can be used to control the power, frequency or spatial direction of a laser beam by using an electronic driving signal. It utilizes the acousto-optic effect, that is, the change of the refractive index by mechanically oscillating pressure with sound waves. The key element of an AOM is a transparent crystal (or a piece of glass) through which light travels. A piezoelectric transducer in contact with the crystal is used to excite sound waves with frequencies on the order of 100 MHz.
在一些实施例中,脉冲控制单元130采用SOA调制器,SOA调制器的输入端与光源选择单元120的输出端连接,SOA调制器的输出端用于输出与待识别光纤编码220对应波长及时长的脉冲光波,SOA调制器与主控制单元140电性连接。In some embodiments, the
具体地,采用半导体光放大器(SOA)同样可以实现输出纳秒级别的脉冲光波,具体采用纳秒级SOA脉冲驱动器来保证SOA能工作在纳秒以内。Specifically, a semiconductor optical amplifier (SOA) can also be used to output nanosecond-level pulsed light waves, and specifically, a nanosecond-level SOA pulse driver is used to ensure that the SOA can work within nanoseconds.
另外,参考图3,本发明实施例还提供了一种多光源自热调制方法,应用于如本发明实施例任一的多光源自热调制模块100,包括以下步骤:In addition, referring to FIG. 3 , an embodiment of the present invention also provides a multi-light source self-heating modulation method, which is applied to the multi-light source self-
从多个脉冲光源110中确定目标脉冲光源,并利用光源选择单元120将脉冲控制模块与目标脉冲光源连接;Determine the target pulse light source from multiple pulse
开启目标脉冲光源,并根据目标脉冲光源升温与波长之间的关系来确定光源自热时长;Turn on the target pulse light source, and determine the self-heating duration of the light source according to the relationship between the temperature rise of the target pulse light source and the wavelength;
对目标脉冲光源在光源自热时长下进行温度调制,以得到目标波长脉冲光波并由光源选择单元120输出至脉冲控制单元130,目标波长脉冲光波表示与待识别光纤编码220相对应波长的脉冲光波;The temperature of the target pulsed light source is modulated under the self-heating time of the light source to obtain the pulsed light wave of the target wavelength and output to the
开启脉冲控制单元130,以接收目标波长脉冲光波并进行调制,以输出目标时长脉冲光波,目标时长脉冲光波表示与待识别光纤编码220对应波长及时长的脉冲光波;Turn on the
关闭脉冲控制单元130和目标脉冲光源。Turn off the
具体地,参考图3,为本发明实施例的多光源自热调制方法的流程图。需要说明的是,本申请实施例的多光源自热调制模块100用于实现上述多光源自热调制方法,本申请实施例的多光源自热调制方法与前述的多光源自热调制模块100相对应,具体的处理过程请结合参照前述的多光源自热调制模块100,在此不再赘述。Specifically, refer to FIG. 3 , which is a flow chart of a multi-light source self-heating modulation method according to an embodiment of the present invention. It should be noted that the multi-light source self-
可以理解的是,通过对本发明实施例的多光源自热调制模块100执行本发明实施例的多光源自热调制方法,使得通过利用光源选择单元120来选择多个脉冲光源110中的一个,即目标脉冲光源,并开启工作,基于光源升温与波长之间的关系,主控制单元140通过精确计算出为达到目标波长的脉冲光源所需进行的自升温时长,并依据该自升温时长来确定目标脉冲光源与脉冲控制单元130的连通时间,以保证目标波长的脉冲光波的产生,当经过该自升温时长后,脉冲控制单元130将进一步调制来最终得到目标波长及时长的脉冲光波。因此,对于本发明实施例的多光源自热调制模块100,其依靠脉冲光源110的工作自加热来改变发射脉冲光波的波长,通过控制单元精确地计算来实现不同波长的脉冲光波的温度调制,相较于采用温度调制装置进行温度调制,大大降低了装置本身的成本。It can be understood that, by executing the multi-light source self-heating modulation method of the embodiment of the present invention on the multi-light source self-
此外,本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,可使得上述一个或多个控制处理器执行上述方法实施例中的一种多光源自热调制方法,例如,执行以上描述的图3中的方法的功能。In addition, an embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, so that the above-mentioned one or Multiple control processors execute a multi-light source self-heating modulation method in the above method embodiment, for example, execute the function of the method in FIG. 3 described above.
通过以上的实施方式的描述,本领域技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现。本领域技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(ReadOnly Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。Through the above description of the implementation manners, those skilled in the art can clearly understand that each implementation manner can be implemented by means of software plus a general hardware platform. Those skilled in the art can understand that all or part of the process in the method of the above-mentioned embodiments can be completed by instructing related hardware through a computer program, and the program can be stored in a computer-readable storage medium. , it may include the flow of the embodiment of the above method. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (ReadOnly Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
此外,如图1所示,为本发明的实施例所提供的一种多光源自热调制的光纤编码识别系统,包括如本发明实施例任一的多光源自热调制模块100、环形器210、光纤编码220、光电采集单元230。环形器210包括第一端口,第二端口,第三端口,第一端口与多光源自热调制模块100的脉冲控制单元130的输出端连接;光纤编码220与第二端口连接;光电采集单元230的输入端与第三端口连接,光电采集单元230用于对脉冲光波进行处理后输出电信号;模数转换单元240的输入端与光谱采集单元的输出端电性连接,输出端与多光源自热调制模块100的主控制单元140电性连接。In addition, as shown in FIG. 1 , a multi-light source self-heating modulation optical fiber code identification system provided by an embodiment of the present invention includes a multi-light source self-
具体地,参考图1,通过利用主控制单元140来控制多光源自热调制模块100输出目标波长及时长的脉冲光波,经过环形器210传输至待识别光纤编码220,光纤编码220从而对脉冲光波进行反射,以产生反射光波,反射光波将传回至环形器210,并继续传输至光电采集单元230进行光电转而换得到模拟电信号,进一步传输至模数转换单元240进行模数转换,从而将模拟电信号转换为数字信号,并传输至主控制单元140进行处理以完成对光纤编码220的识别。Specifically, referring to FIG. 1 , by using the
可以理解的是,光纤编码220可以设置多个,或采用具有多个光纤编码220的网络结构,利用对多光源自热调制模块100中多个脉冲光源110进行不同的温度调制,可获得多个目标脉冲光波,从而完成对多个光纤编码220的一一识别。It can be understood that multiple
可以理解的是,在主控制单元140的操作下,使得多光源自热调制模块100发送出需要的特定波长的脉冲光波至光纤编码220,光纤编码220对特定波长的脉冲光波进行反射并传回光电采集单元230和模数转换单元240,经处理后可实现对光纤编码220的快速识别。同时,本发明实施例的多光源自热调制的光纤编码识别系统采用了依靠脉冲光源110工作自加热的多光源自热调制模块100,从而使得系统整体上的成本得到降低。It can be understood that, under the operation of the
此外,如图4所示,为本发明的实施例所提供的一种多光源自热调制的光纤编码识别方法,应用于如本发明实施例的多光源自热调制的光纤编码识别系统,包括以下步骤:In addition, as shown in FIG. 4 , an optical fiber code identification method for self-thermal modulation of multiple light sources provided by an embodiment of the present invention is applied to a code identification system for optical fiber self-thermal modulation of multiple light sources as in the embodiment of the present invention, including The following steps:
多光源自热调制模块100输出与光纤编码220对应波长及时长的脉冲光波至环形器210,并继续传输至光纤编码220;The multi-light source self-
光电采集单元230接收光纤编码220对脉冲光波反射后的反射光波并进行光电转换处理,以得到模拟电信号;The
模数转换单元240接收模拟电信号并进行模数转换处理,以得到数字信号;The analog-to-
主控制单元140接收数字信号并进行处理,以完成对光纤编码220的识别。The
具体地,参考图4,为本发明实施例的多光源自热调制的光纤编码识别方法的流程图。需要说明的是,本申请实施例的多光源自热调制的光纤编码识别系统用于实现上述多光源自热调制的光纤编码识别方法,本申请实施例的多光源自热调制的光纤编码识别方法与前述的多光源自热调制的光纤编码识别系统相对应,具体的处理过程请结合参照前述的多光源自热调制的光纤编码识别系统,在此不再赘述。Specifically, refer to FIG. 4 , which is a flowchart of a method for identifying an optical fiber code by self-thermal modulation of multiple light sources according to an embodiment of the present invention. It should be noted that the optical fiber code recognition system for multi-light source self-thermal modulation in the embodiment of the present application is used to realize the above-mentioned fiber code recognition method for multi-light source self-thermal modulation, and the fiber code recognition method for multi-light source self-thermal modulation in the embodiment of the present application Corresponding to the aforementioned optical fiber code identification system self-thermally modulated by multiple light sources, please refer to the above-mentioned optical fiber code identification system self-thermally modulated by multiple light sources for the specific processing process, and will not be repeated here.
可以理解的是,将本发明实施例的多光源自热调制的光纤编码识别方法应用于多光源自热调制的光纤编码识别系统中,在主控制单元140的操作下,使得多光源自热调制模块100发送出需要的特定波长的脉冲光波至光纤编码220,光纤编码220对特定波长的脉冲光波进行反射并传回光电采集单元230和模数转换单元240,经处理后可实现对光纤编码220的快速识别。It can be understood that, if the method for identifying fiber codes by self-thermal modulation of multiple light sources in the embodiment of the present invention is applied to a system for identifying codes of optical fibers by self-thermal modulation of multiple light sources, under the operation of the
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" is intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。Those skilled in the art can understand that all or some of the steps and systems in the methods disclosed above can be implemented as software, firmware, hardware and an appropriate combination thereof. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit . Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media). As known to those of ordinary skill in the art, the term computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer. In addition, as is well known to those of ordinary skill in the art, communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
上面结合附图对本发明实施例作了详细说明,但本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments. Within the scope of knowledge of those of ordinary skill in the art, various modifications can be made without departing from the spirit of the present invention. Variety.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211026769.1A CN115483978A (en) | 2022-08-25 | 2022-08-25 | Multi-light-source self-heating modulation module and method and optical fiber coding identification system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211026769.1A CN115483978A (en) | 2022-08-25 | 2022-08-25 | Multi-light-source self-heating modulation module and method and optical fiber coding identification system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115483978A true CN115483978A (en) | 2022-12-16 |
Family
ID=84422443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211026769.1A Pending CN115483978A (en) | 2022-08-25 | 2022-08-25 | Multi-light-source self-heating modulation module and method and optical fiber coding identification system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115483978A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5742200A (en) * | 1996-05-14 | 1998-04-21 | Alliedsignal Inc. | Environmentally rugged optical sensor with improved noise cancellation |
CN102175641A (en) * | 2010-12-10 | 2011-09-07 | 中国科学院安徽光学精密机械研究所 | Trace gas detection device and method based on intermediate infrared quantum cascade laser direct absorption spectrum method |
CN103370894A (en) * | 2011-02-11 | 2013-10-23 | 阿尔卡特朗讯 | WDM PON with non-tunable legacy ONUs |
US20170146897A1 (en) * | 2014-08-08 | 2017-05-25 | Ushio Denki Kabushiki Kaisha | Light source unit and projector |
CN112702115A (en) * | 2021-01-05 | 2021-04-23 | 中山水木光华电子信息科技有限公司 | Optical fiber coding identification system and method for temperature modulation multi-spectral matrix |
-
2022
- 2022-08-25 CN CN202211026769.1A patent/CN115483978A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5742200A (en) * | 1996-05-14 | 1998-04-21 | Alliedsignal Inc. | Environmentally rugged optical sensor with improved noise cancellation |
CN102175641A (en) * | 2010-12-10 | 2011-09-07 | 中国科学院安徽光学精密机械研究所 | Trace gas detection device and method based on intermediate infrared quantum cascade laser direct absorption spectrum method |
CN103370894A (en) * | 2011-02-11 | 2013-10-23 | 阿尔卡特朗讯 | WDM PON with non-tunable legacy ONUs |
US20170146897A1 (en) * | 2014-08-08 | 2017-05-25 | Ushio Denki Kabushiki Kaisha | Light source unit and projector |
CN112702115A (en) * | 2021-01-05 | 2021-04-23 | 中山水木光华电子信息科技有限公司 | Optical fiber coding identification system and method for temperature modulation multi-spectral matrix |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6263004B1 (en) | Laser | |
US20090232172A1 (en) | Laser frequency stabilizing device, method and program | |
CN109494559B (en) | Soliton optical frequency comb generating device and operation method | |
CN106411399B (en) | The automatic test approach and device of two-in-parallel MZI type electrooptic modulator optical loss | |
CN108551075B (en) | All-fiber transverse mode switchable high-order mode Brillouin laser | |
CN106877121B (en) | Pulse width tunable laser based on optically controlled graphene chirped Bragg grating | |
US20200036155A1 (en) | Passive q-switching of diode-pumped laser | |
CN105356207B (en) | A kind of pulse output optical fibre Raman accidental laser based on Polarization Modulation | |
KR101343461B1 (en) | Optical device, optical signal generating apparatus, and electrical signal generating apparatus | |
Pitris et al. | Monolithically integrated all-optical SOA-based SR Flip-Flop on InP platform | |
CN115483978A (en) | Multi-light-source self-heating modulation module and method and optical fiber coding identification system and method | |
Dingjan et al. | A frequency-doubled laser system producing ns pulses for rubidium manipulation | |
CN103368053B (en) | A kind of pure-tone pulse 1645nm solid state laser of LD pumping | |
CN209448205U (en) | The mode-locked all-fiber laser of short cavity Gao Zhongying | |
CN113014354B (en) | All-optical wavelength conversion method, device, electronic device and storage medium | |
CN111628408A (en) | Frequency stabilization system of semiconductor laser | |
CN113131322B (en) | A mode-locked fiber laser | |
JP5394412B2 (en) | Optical signal output device, electrical signal output device, and test device | |
JP2002158382A (en) | Method and device for deciding appropriate driving temperature of laser source | |
CN112217091B (en) | Tunable ultrafast rate dark pulse generation device and method | |
CN1738221A (en) | Device for generating low-jitter dual-wavelength ultrashort optical pulses | |
CN218770535U (en) | ASE light source | |
CN207515806U (en) | A kind of single-ended brillouin distributed sensing device of the adjustable frequency shifter structure of Brillouin | |
CN114759422B (en) | An Erbium-doped Optical Waveguide-Based On-Chip Quantum Memory for Communication Band | |
CN110784194A (en) | All-optical D trigger based on single micro-ring resonator optical switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |