CN115458715A - Silicon carbon negative electrode material and its preparation method and lithium ion battery - Google Patents
Silicon carbon negative electrode material and its preparation method and lithium ion battery Download PDFInfo
- Publication number
- CN115458715A CN115458715A CN202110637574.XA CN202110637574A CN115458715A CN 115458715 A CN115458715 A CN 115458715A CN 202110637574 A CN202110637574 A CN 202110637574A CN 115458715 A CN115458715 A CN 115458715A
- Authority
- CN
- China
- Prior art keywords
- silicon
- carbon
- negative electrode
- particles
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于锂离子电池领域,具体涉及一种硅碳负极材料及其制备方法和锂离子电池。The invention belongs to the field of lithium-ion batteries, and in particular relates to a silicon-carbon negative electrode material, a preparation method thereof, and a lithium-ion battery.
背景技术Background technique
开发高能量密度、长循环寿命和具有一定倍率特性的锂离子电池是3C电池和动力及储能电池的技术发展趋向,作为纯石墨负极材料的下一代负极材料,硅材料具有4200mAh/g的超过理论比容量和较适宜的充放电平台(0.4~0.5V);但其缺点在于进行合金化反应时最高可产生300%的体积膨胀以及导电性差,将会导致负极材料的粉化、负极材料与集流体分离、容量快速衰减等,从而严重限制在锂离子电池中的使用。The development of lithium-ion batteries with high energy density, long cycle life and certain rate characteristics is the technical development trend of 3C batteries and power and energy storage batteries. As the next-generation negative electrode material of pure graphite negative electrode materials, silicon materials have a capacity of more than 4200mAh/g Theoretical specific capacity and a more suitable charge-discharge platform (0.4-0.5V); but its disadvantages are that it can produce a maximum volume expansion of 300% and poor conductivity during the alloying reaction, which will lead to powdering of the negative electrode material, negative electrode material and Current collector separation, rapid capacity decay, etc., which severely limit the use in lithium-ion batteries.
鉴于此,针对硅材料的纳米化可有效缓解充放电过程中极大的体积变化,通过碳包覆等手段有效提升其电导率,通过制备硅氧材料牺牲理论比容量来降低体积膨胀率等手段来改善硅基负极材料的性能是当前研究的热点。虽然目前有公开报道改性硅材料的报道,但是目前公开的改性硅材料存在能量密度、充放电效率、倍率性能或/或循环性能受到不利影响,而且很多制备方法均无法达到产业化的可行性,比如公开报道的多孔核硅及其制备方法中,其是采用HF蚀刻方式在Si/SiO2混合物上形成多孔核硅,但该方法不能保证所有SiO2均蚀刻去除;在公开的一份硅碳材料中,其通过一系列处理将纳米硅颗粒变成纳米硅球再进行碳包覆,极大增加了材料的生产成本;在公开的另一份硅碳材料中,其是将SiC在2200~2400℃下高温热解为硅材料,并要求真空环境,使其成本较高。在公开的一份纳米硅合金材料中,其负极材料中包括40%~60%wt的纳米硅合金材料,极大增加了材料的成本。In view of this, the nanonization of silicon materials can effectively alleviate the huge volume change during charging and discharging, effectively improve its electrical conductivity by carbon coating and other means, and reduce the volume expansion rate by sacrificing theoretical specific capacity by preparing silicon-oxygen materials. To improve the performance of silicon-based anode materials is a current research hotspot. Although there are currently public reports on modified silicon materials, the energy density, charge and discharge efficiency, rate performance or/or cycle performance of the currently disclosed modified silicon materials are adversely affected, and many preparation methods cannot achieve industrialization. For example, in the publicly reported porous core silicon and its preparation method, it uses HF etching to form porous core silicon on the Si/SiO 2 mixture, but this method cannot guarantee that all SiO 2 is etched away; In the silicon carbon material, it turns nano-silicon particles into nano-silicon spheres through a series of treatments before carbon coating, which greatly increases the production cost of the material; in another silicon-carbon material disclosed, it uses SiC in High-temperature pyrolysis at 2200-2400 ° C into silicon materials, and requires a vacuum environment, making the cost higher. In a disclosed nano-silicon alloy material, the negative electrode material includes 40%-60% wt of nano-silicon alloy material, which greatly increases the cost of the material.
因此,如果提高硅碳材料在保证能量密度的前提下兼顾充放电效率、循环寿命和充放电倍率和降低其经济成本是本领域一直努力克服的难题。Therefore, it is a difficult problem that this field has been trying to overcome if improving the silicon carbon material, taking into account the charge and discharge efficiency, cycle life and charge and discharge rate and reducing its economic cost under the premise of ensuring energy density.
发明内容Contents of the invention
本发明的目的在于克服现有技术的上述不足,提供一种硅碳负极材料及其制备方法,以解决现有硅碳材料充放电效率和快速充电能力以及循环性能不理想或不能兼顾且成本高的技术问题。The purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art, and provide a silicon-carbon negative electrode material and its preparation method to solve the problem of unsatisfactory or unsuitable cycle performance and high cost of existing silicon-carbon materials in terms of charging and discharging efficiency, fast charging ability and cycle performance technical issues.
本发明的另一目的在于提供一种锂离子电池,以解决现有含硅碳材料的锂离子电池存在首效、快速充电能力和循环性能不理想和成本高的技术问题。Another object of the present invention is to provide a lithium-ion battery to solve the technical problems of the existing lithium-ion batteries containing silicon and carbon materials, such as unsatisfactory first effect, fast charging ability and cycle performance, and high cost.
为了实现上述发明目的,本发明的一方面,提供了一种硅碳负极材料。本发明硅碳负极材料包括碳、复合硅颗粒和导电剂,且碳、复合硅颗粒和导电剂形成混合物颗粒,其中,复合硅颗粒包括硅基核体和包覆硅基核体的碳包覆层,且碳包覆层中掺杂有陶瓷。这样,本发明实施例硅碳负极材料的混合物颗粒中,复合硅颗粒以硅基材料为核体,赋予硅碳负极材料高比容量特性,以含有陶瓷的碳材料作为包覆层,赋予包覆层优异的力学性能,构建具有良好力学性能的抗膨胀功能层,从而能够有效抗硅基核体在充放电过程中发生的体积膨胀效应,赋予复合硅颗粒优异的体积和结构稳定性能,从而赋予复合硅颗粒具有优异的循环性能。混合物颗粒所含的碳和导电剂以及与复合硅颗粒所含的碳包覆层构建了一个良好的导电体系,赋予硅碳负极材料低电阻高导电性能,从而赋予硅碳负极材料高的充放电效率和充放电倍率。因此,本发明实施例硅碳负极材料通过将包括碳、复合硅颗粒和导电剂形成混合物颗粒,使得碳、复合硅颗粒和导电剂起到增效作用,赋予硅碳负极材料高的充放电效率、充放电倍率、比容量和循环性能。In order to achieve the purpose of the above invention, one aspect of the present invention provides a silicon carbon negative electrode material. The silicon-carbon negative electrode material of the present invention includes carbon, composite silicon particles and conductive agent, and carbon, composite silicon particles and conductive agent form mixture particles, wherein the composite silicon particles include silicon-based nuclei and carbon-coated silicon-based nuclei layer, and the carbon coating layer is doped with ceramics. In this way, in the mixture particles of the silicon-carbon anode material in the embodiment of the present invention, the composite silicon particles use the silicon-based material as the nucleus to endow the silicon-carbon anode material with high specific capacity characteristics, and use the carbon material containing ceramics as the coating layer to impart the coating Excellent mechanical properties of the layer, constructing an anti-swelling functional layer with good mechanical properties, which can effectively resist the volume expansion effect of the silicon-based nuclei during charge and discharge, and endow the composite silicon particles with excellent volume and structural stability, thus endowing Composite silicon particles have excellent cycle performance. The carbon and conductive agent contained in the mixture particles and the carbon coating layer contained in the composite silicon particles build a good conductive system, endowing the silicon-carbon anode material with low resistance and high conductivity, thus endowing the silicon-carbon anode material with high charge and discharge efficiency and charge-discharge rate. Therefore, the silicon-carbon negative electrode material of the embodiment of the present invention forms mixture particles including carbon, composite silicon particles and conductive agent, so that carbon, composite silicon particles and conductive agent play a synergistic effect, endowing the silicon-carbon negative electrode material with high charge and discharge efficiency , charge-discharge rate, specific capacity and cycle performance.
进一步地,硅碳负极材料所含的碳、复合硅颗粒和导电剂的质量比为85-70:(10):(5-20)。通过控制和调节碳、复合硅颗粒和导电剂的比例,提高硅碳负极材料的导电性和比容量,从而硅碳负极材料高的充放电效率、充放电倍率、比容量等性能。Further, the mass ratio of carbon, composite silicon particles and conductive agent contained in the silicon-carbon negative electrode material is 85-70:(10):(5-20). By controlling and adjusting the ratio of carbon, composite silicon particles and conductive agent, the conductivity and specific capacity of silicon carbon negative electrode materials are improved, so that silicon carbon negative electrode materials have high charge and discharge efficiency, charge and discharge rate, specific capacity and other properties.
进一步地,碳为载体,复合硅颗粒和导电剂是分散在载体中。将复合硅颗粒和导电剂分散在碳载体中,复合硅颗粒和导电剂能够分散更加均匀,而且能够增加复合硅颗粒与碳接触的面积,从而提高硅碳负极材料的导电性能。Further, carbon is used as a carrier, and the composite silicon particles and the conductive agent are dispersed in the carrier. The composite silicon particles and the conductive agent are dispersed in the carbon carrier, the composite silicon particles and the conductive agent can be dispersed more uniformly, and the contact area between the composite silicon particles and carbon can be increased, thereby improving the conductivity of the silicon-carbon negative electrode material.
进一步地,碳为裂解碳。这样,能够提高包括碳、复合硅颗粒和导电剂形成混合物颗粒的结构稳定性。Further, carbon is cracked carbon. In this way, the structural stability of the particles of the mixture comprising carbon, composite silicon particles, and conductive agent can be improved.
进一步地,复合硅颗粒的粒径为纳米范围。通过控制复合硅颗粒的粒径,能够提高其在混合物颗粒中的分散性和控制硅碳负极材料的粒径。Further, the particle size of the composite silicon particles is in the nanometer range. By controlling the particle size of the composite silicon particles, its dispersibility in the mixture particles can be improved and the particle size of the silicon-carbon negative electrode material can be controlled.
进一步地,导电剂包括碳纳米管、super p、石墨烯、石墨微粉中的至少一种。该些导电剂具有优异的导电性能,而且当为碳纳米管时,其一位结构能够在混合颗粒中或由混合颗粒构建的二次颗粒中形成三维导电网络结构,一方面提高了导电性能,另一方面提高了硅碳负极材料颗粒的结构稳定性能,提高了硅碳负极材料的循环性能。Further, the conductive agent includes at least one of carbon nanotubes, super p, graphene, and graphite fine powder. These conductive agents have excellent electrical conductivity, and when they are carbon nanotubes, their one-bit structure can form a three-dimensional conductive network structure in the mixed particles or in the secondary particles constructed by the mixed particles, which improves the electrical conductivity on the one hand, On the other hand, the structural stability of the silicon-carbon negative electrode material particles is improved, and the cycle performance of the silicon-carbon negative electrode material is improved.
进一步地,硅基核体为单质硅。该单质硅作为核体,提高首效,体积膨胀低,能够提高硅碳负极材料的首效性能和循环性能。Further, the silicon-based core body is elemental silicon. The elemental silicon is used as a nucleus to improve the first effect and have low volume expansion, and can improve the first effect performance and cycle performance of the silicon-carbon negative electrode material.
进一步地,陶瓷包括氧化铝、碳化硅、二氧化钛中的至少一种。该些陶瓷具有良好的力学性能,提高碳包覆层的抗硅基核体体积膨胀效果,而且能够提高碳包覆层隔绝电解液的作用,避免电解液直接与硅基核体接触,提高硅碳负极材料的电化学性能。Further, the ceramics include at least one of alumina, silicon carbide, and titanium dioxide. These ceramics have good mechanical properties, improve the anti-silicon-based nuclei volume expansion effect of the carbon coating, and can improve the role of the carbon coating in isolating the electrolyte, avoiding the direct contact of the electrolyte with the silicon-based nuclei, and improving the silicon-based nuclei. Electrochemical properties of carbon anode materials.
进一步地,碳包覆层的厚度为5-8nm。该厚度的碳包覆层具有相对优异的力学性能和阻隔电解液与硅基核体接触的性能。Further, the thickness of the carbon coating layer is 5-8nm. The carbon coating layer with this thickness has relatively excellent mechanical properties and the performance of blocking the contact between the electrolyte and the silicon-based nuclei.
进一步地,硅碳负极材料还包括容量补充剂,容量补充剂与碳、复合硅颗粒和导电剂混合。该容量补充剂的存在,其能够有效填补碳中可能存在的微孔,从而协助硅基核体提高硅碳负极材料的容量,提高硅碳负极材料的比容量,同时协助碳和导电剂构建三维导电体系,提高硅碳负极材料的导电性能,提高其快速充电能力。Further, the silicon-carbon negative electrode material also includes a capacity extender, which is mixed with carbon, composite silicon particles, and a conductive agent. The presence of the capacity supplement can effectively fill the micropores that may exist in the carbon, thereby assisting the silicon-based nuclei to increase the capacity of the silicon-carbon anode material, increase the specific capacity of the silicon-carbon anode material, and assist carbon and the conductive agent to build a three-dimensional The conductive system improves the conductivity of silicon-carbon anode materials and improves their fast charging capabilities.
更进一步地,容量补充剂在硅碳负极材料中的含量为5%-10%。Furthermore, the content of the capacity extender in the silicon-carbon negative electrode material is 5%-10%.
更进一步地,容量补充剂包括石墨。Still further, the capacity extender includes graphite.
通过对容量补充剂的含量和种类控制,提高容量补充剂的上述作用,从而提高硅碳负极材料的导电性能,提高其快速充电能力。By controlling the content and type of the capacity supplement, the above-mentioned function of the capacity supplement is improved, thereby improving the conductivity of the silicon-carbon negative electrode material and improving its fast charging ability.
本发明的另一方面,提供了硅碳负极材料的制备方法。硅碳负极材料的制备方法包括如下步骤:Another aspect of the present invention provides a method for preparing a silicon-carbon negative electrode material. The preparation method of silicon carbon negative electrode material comprises the following steps:
提供复合硅颗粒;复合硅颗粒包括硅基核体和包覆硅基核体的碳包覆层,且碳包覆层中掺杂有陶瓷;Composite silicon particles are provided; the composite silicon particles include a silicon-based core body and a carbon coating layer covering the silicon-based core body, and the carbon coating layer is doped with ceramics;
将复合硅颗粒与导电剂和第一碳源进行混合处理,获得混合物料;Mixing the composite silicon particles with the conductive agent and the first carbon source to obtain the mixed material;
将混合物料进行第一碳化处理。The mixed material is subjected to the first carbonization treatment.
这样,本发明硅碳负极材料的制备方法能够有效保证复合硅颗粒和导电剂和碳化生成的碳均匀分散,从而保证制备的硅碳负极材料所含的碳、复合硅颗粒和导电剂起到增效作用,赋予制备的硅碳负极材料高的充放电效率、充放电倍率、比容量和循环性能,同时材料颗粒结构力学性能好。另外,硅碳负极材料的制备方法能够保证制备的硅碳负极材料结构和电化学性能稳定,而且效率高,节约生产成本。In this way, the preparation method of the silicon-carbon negative electrode material of the present invention can effectively ensure that the composite silicon particles, the conductive agent, and the carbon generated by carbonization are evenly dispersed, thereby ensuring that the carbon contained in the prepared silicon-carbon negative electrode material, the composite silicon particles, and the conductive agent play an enhanced role The effect can endow the prepared silicon carbon negative electrode material with high charge and discharge efficiency, charge and discharge rate, specific capacity and cycle performance, and at the same time, the particle structure of the material has good mechanical properties. In addition, the preparation method of the silicon-carbon negative electrode material can ensure that the prepared silicon-carbon negative electrode material has a stable structure and electrochemical performance, and has high efficiency and saves production costs.
进一步地,复合硅颗粒、导电剂和第一碳源是按照质量比为10:(5-20):(85-70)进行混合处理。通过控制和优化三者的混合比例,从而控制生成硅碳负极材料所含的复合硅颗粒、导电剂和碳的质量比例,从而提高制备的硅碳负极材料的充放电效率、充放电倍率、比容量等性能。Further, the composite silicon particles, the conductive agent and the first carbon source are mixed according to a mass ratio of 10:(5-20):(85-70). By controlling and optimizing the mixing ratio of the three, the mass ratio of composite silicon particles, conductive agent and carbon contained in the silicon-carbon negative electrode material can be controlled, thereby improving the charge-discharge efficiency, charge-discharge rate, and ratio of the prepared silicon-carbon negative electrode material. performance such as capacity.
进一步地,在将混合物料进行第一碳化处理的步骤之前,先将混合物料配制成混合物分散液;再将混合物分散液进行喷雾干燥造粒,获得混合物颗粒;然后将混合物颗粒进行第一碳化处理。通过将混合物料进行喷雾造粒,一方面能够使得各组分原料混合均匀,而且形成的前驱体颗粒粒径完整和粒径均匀。Further, before the step of subjecting the mixed material to the first carbonization treatment, the mixed material is formulated into a mixture dispersion; then the mixture dispersion is spray-dried and granulated to obtain mixture particles; then the mixture particles are subjected to the first carbonization treatment . By spraying and granulating the mixed materials, on the one hand, the raw materials of each component can be mixed evenly, and the particle size of the formed precursor particles is complete and uniform.
进一步地,复合硅颗粒按照包括如下步骤的方法制备获得:Further, the composite silicon particles are prepared according to a method comprising the following steps:
将硅基颗粒与含陶瓷前驱体的第二碳源进行混合处理,使得含陶瓷前驱体的第二碳源在硅基颗粒表面形成包覆层,得到复合硅颗粒前驱体;Mixing the silicon-based particles with a second carbon source containing a ceramic precursor, so that the second carbon source containing a ceramic precursor forms a coating layer on the surface of the silicon-based particles to obtain a composite silicon particle precursor;
将复合硅颗粒前驱体进行第二碳化处理,得到复合硅颗粒。The composite silicon particle precursor is subjected to the second carbonization treatment to obtain the composite silicon particle.
采用该方法制备的复合硅颗粒所含的碳包覆层完整,而且力学性能强,颗粒均匀。The carbon coating layer contained in the composite silicon particles prepared by the method is complete, and has strong mechanical properties and uniform particles.
更进一步地,硅基颗粒包括单质硅、碳化硅、氧化亚硅中的至少一种。Furthermore, the silicon-based particles include at least one of elemental silicon, silicon carbide, and silicon oxide.
更进一步地,第二碳源包括有机铝源、有机钛源中的至少一种。Furthermore, the second carbon source includes at least one of an organic aluminum source and an organic titanium source.
更进一步地,第二碳化处理的温度为600-900℃。Furthermore, the temperature of the second carbonization treatment is 600-900°C.
通过对复合硅颗粒的原料选用和碳化温度的控制,生成的碳包覆层中均匀分散有陶瓷成分,赋予生成的碳包覆层良好的力学性能和隔绝电解液性能,使得制备的复合硅颗粒具有高的比容量、颗粒力学性能好。Through the selection of raw materials for the composite silicon particles and the control of the carbonization temperature, ceramic components are uniformly dispersed in the generated carbon coating layer, which endows the generated carbon coating layer with good mechanical properties and electrolyte isolation properties, so that the prepared composite silicon particles It has high specific capacity and good particle mechanical properties.
进一步地,第一碳源包括沥青、生物质炭、聚乙二醇、PVP、柠檬酸、酚醛树脂中的至少一种;和/或Further, the first carbon source includes at least one of pitch, biochar, polyethylene glycol, PVP, citric acid, and phenolic resin; and/or
进一步地,第一碳化处理的温度为600-900℃。Further, the temperature of the first carbonization treatment is 600-900°C.
通过对第一碳源种类和碳化处理温度控制,提高硅碳负极材料相关电化学性能。By controlling the type of the first carbon source and the carbonization treatment temperature, the related electrochemical performance of the silicon-carbon negative electrode material is improved.
本发明的又一方面,提供了一种锂离子电池,包括负极,负极包括集流体和结合在集流体表面的负极活性层,负极活性层中含有上述本发明硅碳负极材料或由上述本发明硅碳负极材料制备方法制备的硅碳负极材料。这样,本发明锂离子电池由于含有本发明硅碳负极材料,因此,负极循环性能好,内阻低,从而赋予本发明锂离子电池优异的倍率性能和循环性能,寿命长,且快速充电能力强,电化学性能稳定。Another aspect of the present invention provides a lithium ion battery, including a negative electrode, the negative electrode includes a current collector and a negative electrode active layer bonded to the surface of the current collector, the negative electrode active layer contains the above-mentioned silicon carbon negative electrode material of the present invention or by the above-mentioned present invention The silicon carbon negative electrode material prepared by the silicon carbon negative electrode material preparation method. In this way, since the lithium-ion battery of the present invention contains the silicon-carbon negative electrode material of the present invention, the negative electrode cycle performance is good and the internal resistance is low, thereby endowing the lithium-ion battery of the present invention with excellent rate performance and cycle performance, long life, and strong fast charging ability , stable electrochemical performance.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1为本发明实施例硅碳负极材料的结构示意图;Fig. 1 is the structural representation of silicon carbon negative electrode material of the embodiment of the present invention;
图2为本发明实施例硅碳负极材料所含复合硅颗粒的结构示意图;Fig. 2 is a schematic structural view of the composite silicon particles contained in the silicon-carbon negative electrode material of the embodiment of the present invention;
图3为本发明实施例硅碳负极材料制备方法的流程示意图。Fig. 3 is a schematic flowchart of a method for preparing a silicon-carbon anode material according to an embodiment of the present invention.
具体实施方式detailed description
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved in the present application clearer, the present application will be further described in detail below in conjunction with the embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。In this application, the term "and/or" describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone Condition. Among them, A and B can be singular or plural. The character "/" generally indicates that the contextual objects are an "or" relationship.
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。In this application, "at least one" means one or more, and "multiple" means two or more. "At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items. For example, "at least one item (unit) of a, b, or c", or "at least one item (unit) of a, b, and c" can mean: a, b, c, a-b( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that in various embodiments of the present application, the sequence numbers of the above-mentioned processes do not mean the order of execution, and some or all steps may be executed in parallel or sequentially, and the execution order of each process shall be based on its functions and The internal logic is determined and should not constitute any limitation to the implementation process of the embodiment of the present application.
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。Terms used in the embodiments of the present application are only for the purpose of describing specific embodiments, and are not intended to limit the present application. The singular forms "a", "said" and "the" used in the embodiments of this application and the appended claims are also intended to include plural forms unless the context clearly indicates otherwise.
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中所述的质量可以是μg、mg、g、kg等化工领域公知的质量单位。The weight of the relevant components mentioned in the description of the embodiments of the present application can not only refer to the specific content of each component, but also represent the proportional relationship between the weights of the various components. The scaling up or down of the content of the fraction is within the scope disclosed in the description of the embodiments of the present application. Specifically, the mass described in the description of the embodiments of the present application may be μg, mg, g, kg and other well-known mass units in the chemical industry.
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。The terms "first" and "second" are only used for descriptive purposes to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. For example, without departing from the scope of the embodiments of the present application, the first XX can also be called the second XX, and similarly, the second XX can also be called the first XX. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features.
一方面,本发明实施例提供了一种硅碳负极材料。如图1和图2所示,本发明实施例硅碳负极材料包括碳10、复合硅颗粒20和导电剂30,且碳10、复合硅颗粒20和导电剂30形成混合物颗粒。On the one hand, the embodiment of the present invention provides a silicon carbon negative electrode material. As shown in FIG. 1 and FIG. 2 , the silicon-carbon anode material of the embodiment of the present invention includes
其中,本发明实施例硅碳负极材料所含的碳10和导电剂30沟通构建了一良好的导电体系,该复合硅颗粒20分散在该导电体系中,有效提高了复合硅颗粒20的导电性能,赋予硅碳负极材料低电阻高导电性能,从而赋予硅碳负极材料高的充放电效率和充放电倍率。Among them, the
实施例中,碳10为载体,也即是通过控制碳10的含量,使得其构成上述混合物颗粒的载体成分,使得复合硅颗粒20和导电剂30是分散在载体中。将碳10作为载体,复合硅颗粒20和导电剂30分散在碳10载体中,一方面能够使得复合硅颗粒20和导电剂30的更加均匀分散,而且能够增加复合硅颗粒20与碳接触的面积,从而提高硅碳负极材料的导电性能,而且碳载体还能够提高上述混合物颗粒的力学性能。In the embodiment,
实施例中,碳10为裂解碳。这样,裂解碳能够充分填充在复合硅颗粒20和导电剂30之间起到载体和导电粘结作用,从而提高硅碳负极材料的导电性能,并提高混合物颗粒的结构稳定性。In an embodiment,
实施例中,导电剂30包括碳纳米管、super p、石墨烯、石墨微粉中的至少一种。该些导电剂具有优异的导电性能。而且当导电剂30为碳纳米管时,其一维结构能够在混合颗粒中或由混合颗粒构建的二次颗粒中形成三维导电网络结构,一方面提高了导电性能,另一方面提高了硅碳负极材料颗粒的结构稳定性能,提高了硅碳负极材料的循环性能。In an embodiment, the
本发明实施例硅碳负极材料所含的复合硅颗粒20的结构如图2所示,复合硅颗粒20包括硅基核体21和包覆硅基核体21的碳包覆层22,且碳包覆层22中掺杂有陶瓷。这样,复合硅颗粒20以硅基材料为核体,赋予硅碳负极材料高比容量特性,以含有陶瓷的碳材料作为包覆层,赋予包覆层22优异的力学性能,构建具有良好力学性能的抗膨胀功能层,从而能够有效抗硅基核体21在充放电过程中发生的体积膨胀效应,赋予复合硅颗粒优异的体积和结构稳定性能,从而赋予复合硅颗粒具有优异的循环性能。而且该碳包覆层22所含的碳赋予碳包覆层22优异的导电性能。而且其与硅碳负极材料所含的碳10和导电剂30构建了一个良好的导电体系,起到导电增效作用,赋予硅碳负极材料低电阻高导电性能,从而赋予硅碳负极材料高的充放电效率和充放电倍率。因此,本发明实施例硅碳负极材料通过将包括碳10、复合硅颗粒20和导电剂30形成混合物颗粒,使得碳10、复合硅颗粒20和导电剂30起到增效作用,赋予硅碳负极材料高的充放电效率、充放电倍率、比容量和循环性能。The structure of the
硅基核体21作为硅碳负极材料主要比容量的主要材料,赋予硅碳负极材料高比容量特性,硅基核体21的材料可以是常规的硅基材料,如可以是氧化亚硅、碳化硅、单质硅中的至少一种,在本发明实施例中,理想的选用单质硅。该些硅基材料具有高的比容量,其中单质硅除了具有高比容量,还能够提高首效,体积膨胀低,能够提高硅碳负极材料的首效性能和循环性能。The silicon-based
实施例中,硅基核体21的粒径为微米范围,D90≤100nm。另外,硅基核体21可以是一次颗粒也可以是由一次颗粒形成的二次颗粒。In an embodiment, the particle size of the silicon-based
实施例中,碳包覆层22的厚度为5-8nm,具体实施例中,碳包覆层22的厚度为5nm、5.5nm、6nm、6.5nm、7nm、7.5nm、8nm等典型且非限制性的厚度。该厚度的碳包覆层22具有相对优异的力学性能和阻隔电解液与硅基核体接触的性能。In an embodiment, the thickness of the
其中,在一些实施例中,分布在碳包覆层22中陶瓷包括氧化铝、碳化硅、二氧化钛中的至少一种,进一步选用氧化硅。该些陶瓷具有良好的力学性能,提高碳包覆层22的抗硅基核体21体积膨胀效果,而且能够提高碳包覆层22隔绝电解液的作用,避免电解液直接与硅基核体21接触,提高硅碳负极材料的电化学性能。Wherein, in some embodiments, the ceramic distributed in the
实施例中,复合硅颗粒20的粒径为纳米范围,如D50为80-300nm,具体实施例中,D50为80nm、100nm、120nm、140nm、160nm、180nm、200nm、220nm、240nm、260nm、280nm、300nm等典型且非限制性的粒径尺寸。通过控制复合硅颗粒20的粒径,能够提高其在混合物颗粒中的分散性和控制硅碳负极材料的粒径。In an embodiment, the particle size of the
另外,复合硅颗粒20可以是一次颗粒也可以是由一次颗粒形成的二次颗粒。In addition, the
基于硅碳负极材料所含的碳10、复合硅颗粒20和导电剂30的互相作用关系和作用,实施例中,碳10、复合硅颗粒20和导电剂30的质量比为由复合硅颗粒、导电剂和第一碳源按照质量比为10:(5-20):(85-70)的比例混合后进行碳化处理生成的比例,具体如下文硅碳负极材料制备方法中的混合比例。通过控制和调节碳10、复合硅颗粒20和导电剂30的比例,提高硅碳负极材料的导电性和比容量,从而硅碳负极材料高的充放电效率、充放电倍率、比容量等性能。Based on the interaction relationship and effect of the
基于上述各实施例中硅碳负极材料,实施例中,硅碳负极材料还包括容量补充剂,如图1中所示,容量补充剂40与碳10、复合硅颗粒20和导电剂30混合,也即是容量补充剂40与碳10、复合硅颗粒20和导电剂30形成混合物。该容量补充剂40的存在,其能够有效填补碳10中可能存在的微孔,特别是当碳10为烧结炭时,该容量补充剂40能够有效填补烧结炭中存在的微孔,从而协助硅基核体21提高硅碳负极材料的容量,提高硅碳负极材料的比容量,同时协助碳10和导电剂30构建三维导电体系,提高硅碳负极材料的导电性能,提高其快速充电能力。Based on the silicon-carbon negative electrode material in each of the above embodiments, in the embodiment, the silicon-carbon negative electrode material also includes a capacity supplement, as shown in Figure 1, the
实施例中,容量补充剂40在硅碳负极材料中的含量为5-10%,具体实施例中,容量补充剂40在硅碳负极材料中的含量5%、6%、7%、8%、9%、10%等典型且非限制性的含量。另些实施例中,容量补充剂40包括石墨。通过对容量补充剂40的含量和种类控制,提高容量补充剂的上述作用,从而提高硅碳负极材料的导电性能,提高其快速充电能力。In an embodiment, the content of the
基于上述,本发明实施例硅碳负极材料通过将包括碳10、复合硅颗粒20和导电剂30形成混合物颗粒,起到增效作用,赋予硅碳负极材料高的充放电效率、充放电倍率、比容量和循环性能。Based on the above, the silicon-carbon negative electrode material of the embodiment of the present invention forms a mixture
另一方面,本发明实施例提供了上文本发明实施例硅碳负极材料的制备方法。本发明实施例硅碳负极材料的制备方法工艺流程如图3所示,其包括如下步骤:On the other hand, the embodiment of the present invention provides the preparation method of the silicon-carbon negative electrode material in the above embodiment of the present invention. The process flow of the preparation method of the silicon carbon negative electrode material of the embodiment of the present invention is shown in Figure 3, which includes the following steps:
S01:提供复合硅颗粒;S01: Provide composite silicon particles;
S02:将复合硅颗粒与导电剂和第一碳源进行混合处理,获得混合物料;S02: Mixing the composite silicon particles with the conductive agent and the first carbon source to obtain a mixed material;
S03:将混合物料进行第一碳化处理。S03: performing the first carbonization treatment on the mixed material.
其中,步骤S01中,复合硅颗粒为上文和如图2所示的复合硅颗粒20。因此,步骤S01中的复合硅颗粒包括硅基核体21和包覆硅基核体21的碳包覆层22,且碳包覆层22中掺杂有陶瓷。为了节约篇幅,在此不再对步骤S01中的复合硅颗粒的结构和成分做赘述。Wherein, in step S01 , the composite silicon particles are the
实施例中,复合硅颗粒按照包括如下步骤的方法制备获得:In the embodiment, the composite silicon particles are prepared according to a method comprising the following steps:
S011:将硅基颗粒与含陶瓷前驱体的第二碳源进行混合处理,使得含陶瓷前驱体的第二碳源在硅基颗粒表面形成包覆层,得到复合硅颗粒前驱体;S011: Mixing silicon-based particles with a second carbon source containing a ceramic precursor, so that the second carbon source containing a ceramic precursor forms a coating layer on the surface of the silicon-based particles to obtain a composite silicon particle precursor;
S012:将复合硅颗粒前驱体进行第二碳化处理,得到复合硅颗粒。S012: performing a second carbonization treatment on the composite silicon particle precursor to obtain composite silicon particles.
其中,步骤S011中,硅基颗粒可以是上文复合硅颗粒20所含的硅基核体21,实施例中,其可以是纳米粒径范围的常规硅基材料,如单质硅、碳化硅、氧化亚硅中的至少一种,进一步为单质硅颗粒。Wherein, in step S011, the silicon-based particles may be the silicon-based
含陶瓷前驱体的第二碳源可以是陶瓷前驱体与碳源的混合物,也可以是含碳的陶瓷前驱体,实施例中,当含陶瓷前驱体的第二碳源为陶瓷前驱体与碳源的混合物时,陶瓷前驱体包括氧化铝、碳化硅、二氧化钛中的至少一种陶瓷的前驱体。第二碳源包括有机铝源、有机钛源中的至少一种。The second carbon source containing the ceramic precursor can be a mixture of the ceramic precursor and the carbon source, and can also be a carbon-containing ceramic precursor. In an embodiment, when the second carbon source containing the ceramic precursor is a ceramic precursor and carbon In the case of a mixture of sources, the ceramic precursor includes at least one ceramic precursor among alumina, silicon carbide, and titanium dioxide. The second carbon source includes at least one of an organic aluminum source and an organic titanium source.
当含陶瓷前驱体的第二碳源为含碳的陶瓷前驱体时,该含碳的陶瓷前驱体包括有机铝源、有机钛源中的至少一种。其中,有机铝源包括但不仅仅乙醇铝、异丙醇铝、烷醇铝等中的至少一种。When the second carbon source containing the ceramic precursor is a carbon-containing ceramic precursor, the carbon-containing ceramic precursor includes at least one of an organic aluminum source and an organic titanium source. Wherein, the organic aluminum source includes but not only at least one of aluminum ethoxide, aluminum isopropoxide, aluminum alkoxide and the like.
步骤S011中的混合处理可以是只要是能够实现将含陶瓷前驱体的第二碳源包覆在硅基颗粒表面上的任何混合方式均在本说明书公开的范围,如将含陶瓷前驱体的第二碳源、硅基颗粒配制成分散液,对分散液进行混合处理,如球磨或砂磨等方式混合处理,使得含陶瓷前驱体的第二碳源在硅基颗粒表面形成包覆层,得到复合硅颗粒前驱体。The mixing treatment in step S011 can be any mixing method that can realize the coating of the second carbon source containing the ceramic precursor on the surface of the silicon-based particles, which is within the scope disclosed in this specification, such as mixing the second carbon source containing the ceramic precursor Two carbon sources and silicon-based particles are prepared into a dispersion, and the dispersion is mixed, such as by ball milling or sand milling, so that the second carbon source containing the ceramic precursor forms a coating layer on the surface of the silicon-based particles to obtain Composite silicon particle precursor.
另外,硅基颗粒与含陶瓷前驱体的第二碳源的混合比例,可以控制生成复合硅颗粒所含碳包覆层厚度,如通过两者混合比例,控制碳包覆层的厚度为上文复合硅颗粒20所含碳包覆层22的厚度。In addition, the mixing ratio of the silicon-based particles and the second carbon source containing the ceramic precursor can control the thickness of the carbon coating layer contained in the composite silicon particles. For example, through the mixing ratio of the two, the thickness of the carbon coating layer can be controlled as above The thickness of the
步骤S012中的第二碳化处理是为了将步骤S011中制备的复合硅颗粒前驱体进行碳化处理,使得第二碳源被碳化和陶瓷前驱体形成陶瓷,从而形成上文复合硅颗粒20。实施例中,第二碳化处理的温度为600-900℃,具体实施例中,第二碳化处理的温度为600℃、650℃、700℃、750℃、800℃、850℃、900℃等典型且非限制性的温度。该第二碳化处理的温度可以根据第二碳源和陶瓷前驱体的种类进行灵活调节和控制。另外,第二碳化处理应该是充分的,至少是保证第二碳源全部碳化,陶瓷前驱体充分形成陶瓷。因此,在步骤S011中成分种类的基础上,对碳化温度的控制,生成的碳包覆层(也即是上文复合硅颗粒20所含碳包覆层22)中均匀分散有陶瓷成分,赋予生成的碳包覆层良好的力学性能和隔绝电解液性能,使得制备的复合硅颗粒具有高的比容量,碳包覆层完整,颗粒力学性能好。The second carbonization treatment in step S012 is to carbonize the composite silicon particle precursor prepared in step S011, so that the second carbon source is carbonized and the ceramic precursor forms ceramics, thereby forming the
步骤S02中,将步骤S01中复合硅颗粒与导电剂和第一碳源进行混合处理后获得的混合物料为上文硅碳负极材料的前驱体。实施例中,复合硅颗粒、导电剂和第一碳源是按照质量比为10:(5-20):(85-70)进行混合处理。具体实施例中,复合硅颗粒、导电剂和第一碳源的质量比为10:20:85、10:15:80、10:5:70等典型且非限制性的比例。通过控制和优化三者的混合比例,从而控制生成硅碳负极材料所含的复合硅颗粒、导电剂和碳的质量比例,从而提高制备的硅碳负极材料的充放电效率、充放电倍率、比容量等性能。In step S02, the mixed material obtained after mixing the composite silicon particles with the conductive agent and the first carbon source in step S01 is the precursor of the above-mentioned silicon-carbon negative electrode material. In an embodiment, the composite silicon particles, the conductive agent and the first carbon source are mixed according to a mass ratio of 10:(5-20):(85-70). In a specific embodiment, the mass ratio of the composite silicon particles, the conductive agent, and the first carbon source is typical and non-limiting ratios such as 10:20:85, 10:15:80, 10:5:70, and the like. By controlling and optimizing the mixing ratio of the three, the mass ratio of composite silicon particles, conductive agent and carbon contained in the silicon-carbon negative electrode material can be controlled, thereby improving the charge-discharge efficiency, charge-discharge rate, and ratio of the prepared silicon-carbon negative electrode material. performance such as capacity.
进一步地,在将混合物料进行第一碳化处理的步骤之前,先将混合物料配制成混合物分散液;再将混合物分散液进行喷雾干燥造粒,获得混合物颗粒;然后将混合物颗粒进行第一碳化处理。通过将混合物料进行喷雾造粒,一方面能够使得各组分原料混合均匀,而且形成的前驱体颗粒粒径完整和粒径均匀。Further, before the step of subjecting the mixed material to the first carbonization treatment, the mixed material is formulated into a mixture dispersion; then the mixture dispersion is spray-dried and granulated to obtain mixture particles; then the mixture particles are subjected to the first carbonization treatment . By spraying and granulating the mixed materials, on the one hand, the raw materials of each component can be mixed evenly, and the particle size of the formed precursor particles is complete and uniform.
由于步骤S02中获得的混合物料为上文硅碳负极材料的前驱体。因此,那么导电剂为形成上文硅碳负极材料所含的导电剂30。实施例中,步骤S02中第一碳源为形成上文硅碳负极材料所含碳10的前驱体,其包括沥青、生物质炭、聚乙二醇、PVP、柠檬酸、酚醛树脂中的至少一种。Since the mixed material obtained in step S02 is the precursor of the silicon-carbon anode material mentioned above. Therefore, the conductive agent is the
步骤S03中,步骤S02获得的混合物料经第一碳化处理后,混合物料中的第一碳源被裂解形成碳,也即是上文硅碳负极材料所含的碳10,裂解后生成的材料为上文硅碳负极材料。实施例中,第一碳化处理的温度为600-900℃,具体实施例中,第一碳化处理的温度为600℃、650℃、700℃、750℃、800℃、850℃、900℃等典型且非限制性的温度。该第一碳化处理的温度可以根据第一碳源的种类进行灵活调节和控制。另外,第一碳化处理应该是充分的,至少是保证第一碳源全部碳化,该碳化处理温度控制,提高硅碳负极材料相关电化学性能。In step S03, after the mixed material obtained in step S02 is subjected to the first carbonization treatment, the first carbon source in the mixed material is cracked to form carbon, which is the
由上述各实施例硅碳负极材料制备方法,本发明实施例硅碳负极材料的制备方法能够有效保证复合硅颗粒、导电剂和碳化生成的碳均匀分散,从而保证制备的硅碳负极材料所含的碳、复合硅颗粒和导电剂起到增效作用,赋予制备的硅碳负极材料高的充放电效率、充放电倍率、比容量和循环性能,同时材料颗粒结构力学性能好。另外,硅碳负极材料的制备方法能够保证制备的硅碳负极材料结构和电化学性能稳定,而且效率高,节约生产成本。According to the preparation methods of silicon-carbon negative electrode materials in the above-mentioned embodiments, the preparation methods of silicon-carbon negative electrode materials in the embodiments of the present invention can effectively ensure that the composite silicon particles, conductive agents and carbon generated by carbonization are evenly dispersed, thereby ensuring that the prepared silicon-carbon negative electrode materials contain The carbon, composite silicon particles and conductive agent play a synergistic role, endowing the prepared silicon-carbon anode material with high charge and discharge efficiency, charge and discharge rate, specific capacity and cycle performance, and at the same time, the particle structure of the material has good mechanical properties. In addition, the preparation method of the silicon-carbon negative electrode material can ensure that the prepared silicon-carbon negative electrode material has a stable structure and electrochemical performance, and has high efficiency and saves production costs.
再一方面,本发明实施例还提供了一种负极和含有该负极的锂离子电池。In yet another aspect, the embodiments of the present invention also provide a negative electrode and a lithium ion battery containing the negative electrode.
负极可以是锂离子电池常规的负极,如包括集流体和结合在集流体表面的负极活性层。其中,负极活性层中含有上文本发明实施例硅碳负极材料。The negative electrode can be a conventional negative electrode of a lithium ion battery, such as a current collector and a negative active layer combined on the surface of the current collector. Wherein, the negative electrode active layer contains the silicon-carbon negative electrode material of the above-mentioned embodiment of the invention.
本发明实施例锂离子电池含有该负极。当然,本发明实施例锂离子电池还有锂离子电池所必须的正极、隔膜和电解质等必要的部件。The lithium ion battery of the embodiment of the present invention contains the negative electrode. Certainly, the lithium-ion battery of the embodiment of the present invention also has necessary components such as a positive electrode, a diaphragm, and an electrolyte necessary for the lithium-ion battery.
由于本发明实施例锂离子电池含有上文硅碳负极材料,因此,负极循环性能好,内阻低,从而赋予本发明实施例锂离子电池优异的倍率性能和循环性能,寿命长,且快速充电能力强,电化学性能稳定。Since the lithium-ion battery of the embodiment of the present invention contains the above-mentioned silicon-carbon negative electrode material, the negative electrode cycle performance is good and the internal resistance is low, thereby endowing the lithium-ion battery of the embodiment of the present invention with excellent rate performance and cycle performance, long life, and fast charging Strong ability and stable electrochemical performance.
以下通过多个具体实施例来举例说明本发明实施例硅碳负极材料及其制备方法和应用等。A number of specific examples are used to illustrate the silicon-carbon negative electrode material of the present invention and its preparation method and application.
1.硅碳负极材料及其制备方法:1. Silicon carbon negative electrode material and its preparation method:
实施例1Example 1
本实施例提供一种硅碳负极材料及其制备方法。硅碳负极材料为图1和图2所示的颗粒材料,包括烧结碳、石墨、复合硅颗粒和CNT导电剂形成的混合物颗粒,且烧结碳、复合硅颗粒和CNT导电剂的质量比为由复合硅颗粒、导电剂和沥青按照质量比为10:10:80的比例混合后进行碳化处理生成的比例,石墨的含为硅碳负极材料总重量的含量为8%。其中,复合硅颗粒包括D90≤100nm纳米硅核体和包覆于该纳米硅核体含氧化铝的碳包覆层,在碳包覆层中氧化铝与碳的含量由乙醇铝碳化形成的含量。This embodiment provides a silicon carbon negative electrode material and a preparation method thereof. The silicon carbon negative electrode material is the granular material shown in Figure 1 and Figure 2, including the mixture particles formed by sintered carbon, graphite, composite silicon particles and CNT conductive agent, and the mass ratio of sintered carbon, composite silicon particles and CNT conductive agent is given by Composite silicon particles, conductive agent and pitch are mixed according to the mass ratio of 10:10:80 and then carbonized. The content of graphite is 8% of the total weight of the silicon-carbon negative electrode material. Among them, the composite silicon particles include a D90≤100nm nano-silicon core body and a carbon coating layer containing aluminum oxide coated on the nano-silicon core body. The content of aluminum oxide and carbon in the carbon coating layer is the content formed by the carbonization of aluminum ethoxide. .
经检测,硅碳负极材料的D90≤25μm,复合硅颗粒的D90≤300nm。After testing, the D90 of the silicon-carbon negative electrode material is ≤ 25 μm, and the D90 of the composite silicon particles is ≤ 300 nm.
本实施例硅碳负极材料的制备方法包括如下步骤:The preparation method of the silicon carbon negative electrode material in this embodiment comprises the following steps:
S1.复合硅颗粒的制备:将D90≤100μm微米硅通过砂磨方式在无水乙醇溶剂中研磨,在砂磨过程中加入乙醇铝,即可实现在纳米微粉尺寸在D90≤100nm纳米硅粉表面包覆一层含氧化铝的碳包覆层,再经500℃高温碳化,获得纳米复合硅颗粒;S1. Preparation of composite silicon particles: D90≤100μm micro-silicon is ground in anhydrous ethanol solvent by sand milling, and aluminum ethylate is added during the sand milling process to achieve nano-fine powder size on the surface of nano-silica powder with D90≤100nm Coated with a carbon coating layer containing alumina, and then carbonized at a high temperature of 500°C to obtain nanocomposite silicon particles;
S2.硅碳二次颗粒的制备:将制备的复合硅颗粒、D90≤20μm石墨微粉和沥青、CNT导电剂按比例在无水乙醇中混匀(复合硅颗粒、CNT导电剂和沥青按照质量比为10:10:80,石墨按照其占硅碳负极材料总重量的含量为8%的比例添加),采用喷雾干燥方式在300℃下进行喷雾造粒,并在500℃高温碳化后获取D90≤25μm构建有三维导电网络的硅碳二次颗粒,也即是硅碳负极材料。S2. Preparation of silicon-carbon secondary particles: mix the prepared composite silicon particles, D90≤20 μm graphite powder and pitch, and CNT conductive agent in absolute ethanol in proportion (composite silicon particles, CNT conductive agent and pitch are mixed according to the mass ratio 10:10:80, graphite is added according to the proportion of 8% of the total weight of the silicon-carbon anode material), spray granulation is carried out at 300°C by spray drying, and after high-temperature carbonization at 500°C, D90≤ 25μm silicon carbon secondary particles with a three-dimensional conductive network, that is, silicon carbon negative electrode material.
实施例2Example 2
本实施例提供一种硅碳负极材料及其制备方法。硅碳负极材料的结构如实施例1中硅碳负极材料。石墨的含为硅碳负极材料总重量的含量为5%。其中,复合硅颗粒包括D90≤100nm纳米硅核体和包覆于该纳米硅核体含氧化铝的碳包覆层,在碳包覆层中氧化铝与碳的含量由异丙醇铝碳化形成的含量。This embodiment provides a silicon carbon negative electrode material and a preparation method thereof. The structure of the silicon-carbon negative electrode material is the same as that of the silicon-carbon negative electrode material in Example 1. The content of graphite is 5% of the total weight of the silicon-carbon negative electrode material. Among them, the composite silicon particles include a D90≤100nm nano-silicon core body and a carbon coating layer containing aluminum oxide coated on the nano-silicon core body. The content of aluminum oxide and carbon in the carbon coating layer is formed by carbonization of aluminum isopropoxide content.
经检测,硅碳负极材料的D90≤25μm,复合硅颗粒的D90≤300nm。After testing, the D90 of the silicon-carbon negative electrode material is ≤ 25 μm, and the D90 of the composite silicon particles is ≤ 300 nm.
本实施例硅碳负极材料的制备方法包括如下步骤:The preparation method of the silicon carbon negative electrode material in this embodiment comprises the following steps:
S1.复合硅颗粒的制备:将D90≤100μm微米硅通过砂磨方式在异丙醇溶剂中研磨,在砂磨过程中加入异丙醇铝,即可实现在纳米微粉尺寸在D90≤100nm纳米硅粉表面包覆一层含碳和铝材料,再经800℃高温碳化,获得碳包覆和氧化铝陶瓷包覆的纳米硅颗粒;S1. Preparation of composite silicon particles: D90≤100μm micron silicon is ground in isopropanol solvent by sand milling, and aluminum isopropoxide is added during the sand milling process to achieve nano-silicon with a size of D90≤100nm The surface of the powder is coated with a layer of carbon and aluminum materials, and then carbonized at a high temperature of 800°C to obtain carbon-coated and alumina ceramic-coated nano-silicon particles;
S2.硅碳二次颗粒的制备:将制备的复合硅颗粒的制备、D90≤300nm石墨微粉和生物质炭、CNT导电剂按比例在无水乙醇中混匀(复合硅颗粒、CNT导电剂和沥青按照质量比为10:15:75,石墨按照其占硅碳负极材料总重量的含量为5%的比例添加),采用喷雾干燥方式在500℃下进行喷雾造粒,并在800℃高温碳化后获取D90≤25μm构建有三维导电网络的硅碳二次颗粒。S2. Preparation of silicon-carbon secondary particles: the preparation of the prepared composite silicon particles, D90≤300nm graphite powder and biochar, CNT conductive agent are mixed in absolute ethanol in proportion (composite silicon particles, CNT conductive agent and The asphalt is added according to the mass ratio of 10:15:75, and the graphite is added according to the proportion of 5% of the total weight of the silicon-carbon negative electrode material), and the spray granulation is carried out at 500°C by spray drying, and carbonized at 800°C Finally, silicon-carbon secondary particles with a D90≤25 μm and a three-dimensional conductive network are obtained.
实施例3Example 3
本实施例提供一种硅碳负极材料及其制备方法。硅碳负极材料的结构如实施例1中硅碳负极材料。石墨的含为硅碳负极材料总重量的含量为10%。其中,复合硅颗粒包括D90≤100nm纳米硅核体和包覆于该纳米硅核体含氧化铝的碳包覆层,在碳包覆层中氧化铝与碳的含量由烷醇铝碳化形成的含量。This embodiment provides a silicon carbon negative electrode material and a preparation method thereof. The structure of the silicon-carbon negative electrode material is the same as that of the silicon-carbon negative electrode material in Example 1. The content of graphite is 10% of the total weight of the silicon-carbon negative electrode material. Among them, the composite silicon particles include D90≤100nm nano-silicon core body and a carbon coating layer containing aluminum oxide coated on the nano-silicon core body. The content of aluminum oxide and carbon in the carbon coating layer is formed by carbonization of aluminum alkoxide content.
经检测,硅碳负极材料的D90≤25μm,复合硅颗粒的D90≤300nm。After testing, the D90 of the silicon-carbon negative electrode material is ≤ 25 μm, and the D90 of the composite silicon particles is ≤ 300 nm.
本实施例硅碳负极材料的制备方法包括如下步骤:The preparation method of the silicon carbon negative electrode material in this embodiment comprises the following steps:
S1.复合硅颗粒的制备:将D90≤100μm微米硅通过砂磨方式在乙醇溶剂中研磨,在砂磨过程中加入烷醇铝,即可实现在纳米微粉尺寸在D90≤100nm纳米硅粉表面包覆一层含碳和铝材料,再经600℃高温碳化,获得碳包覆和氧化铝陶瓷包覆的纳米硅颗粒。S1. Preparation of composite silicon particles: D90≤100μm micron silicon is ground in an ethanol solvent by sand milling, and aluminum alkoxide is added during the sand milling process to realize the coating of nano-fine powder on the surface of D90≤100nm nano-silica powder. A layer of carbon and aluminum-containing materials is coated, and then carbonized at a high temperature of 600°C to obtain nano-silicon particles coated with carbon and alumina ceramics.
S2.硅碳二次颗粒的制备:将制备的复合硅颗粒的制备、D90≤20μm石墨微粉和聚乙二醇、CNT导电剂按比例在无水乙醇中混匀(复合硅颗粒、CNT导电剂和沥青按照质量比为10:5:85,石墨按照其占硅碳负极材料总重量的含量为10%的比例添加),采用喷雾干燥方式在400℃下进行喷雾造粒,并在600℃高温碳化后获取D90≤25μm构建有三维导电网络的硅碳二次颗粒。S2. Preparation of silicon-carbon secondary particles: the preparation of the prepared composite silicon particles, D90≤20 μm graphite powder and polyethylene glycol, and CNT conductive agent are mixed in absolute ethanol in proportion (composite silicon particles, CNT conductive agent and asphalt according to the mass ratio of 10:5:85, and the graphite is added according to the proportion of 10% of the total weight of the silicon carbon negative electrode material), spray granulation is carried out at 400°C by spray drying method, and the high temperature is 600°C After carbonization, silicon-carbon secondary particles with a D90≤25 μm and a three-dimensional conductive network are obtained.
实施例4Example 4
本实施例提供一种硅碳负极材料及其制备方法。硅碳负极材料的结构如实施例1中硅碳负极材料。与实施例1相比,不含石墨。This embodiment provides a silicon carbon negative electrode material and a preparation method thereof. The structure of the silicon-carbon negative electrode material is the same as that of the silicon-carbon negative electrode material in Example 1. Compared with Example 1, no graphite is contained.
本实施例硅碳负极材料的制备方法按照实施例1中的方法制备。The preparation method of the silicon-carbon negative electrode material in this example was prepared according to the method in Example 1.
2.锂离子电池实施例:2. Lithium-ion battery embodiment:
将上述实施例1至实施例4提供的硅碳负极材料和对比例提供的硅碳负极材料分别按照如下方法组装成负极电极和锂离子电池:The silicon carbon negative electrode material provided by the above-mentioned embodiment 1 to embodiment 4 and the silicon carbon negative electrode material provided by the comparative example were respectively assembled into a negative electrode electrode and a lithium ion battery according to the following methods:
负极:分别将上述实施例1至实施例4提供的硅碳负极材料和对比例提供的硅碳负极材料作为负极,按照如下方法分别制备负极;Negative electrode: The silicon-carbon negative electrode materials provided in the above-mentioned examples 1 to 4 and the silicon-carbon negative electrode materials provided in the comparative example were respectively used as negative electrodes, and the negative electrodes were respectively prepared according to the following methods;
负极:将上述实施例提供的硅基负极材料和对比例提供的硅基负极材料作为负极活性物质,将96wt%的硅基负极活性物质、1wt%的Super P导电材料和1wt%的羧甲基纤维素增稠剂和2wt%的苯乙烯-丁二烯橡胶粘结剂在纯水溶剂中混合,以纸杯负极活性物质浆料并将胶料涂布在Cu箔集电器上,然后干燥、辊压和裁切,以制造负极电极。Negative electrode: the silicon-based negative electrode material provided by the above examples and the silicon-based negative electrode material provided by the comparative example are used as the negative electrode active material, and 96wt% of the silicon-based negative electrode active material, 1wt% of the Super P conductive material and 1wt% of carboxymethyl Cellulose thickener and 2wt% styrene-butadiene rubber binding agent are mixed in pure water solvent, with paper cup negative electrode active material slurry and sizing material is coated on Cu foil current collector, then dry, roll Pressed and cut to make negative electrodes.
正极:将96wt%的LiCoO2正极活性物质、2wt%的Super P导电材料和2wt%的PVDF粘结剂在N-甲基吡咯烷酮溶剂中混合,以制备正极活性物质浆料,并且在浆料涂布在Al箔集电器上,然后干燥、辊压和裁切,以制造正极电极。Positive electrode: 96wt% LiCoO 2 positive electrode active material, 2wt% Super P conductive material and 2wt% PVDF binder were mixed in N-methylpyrrolidone solvent to prepare positive electrode active material slurry, and coated on the slurry cloth on Al foil current collectors, followed by drying, rolling and cutting to fabricate positive electrodes.
使用一般工艺,将正极电极、负极电极和非水性电解液用于制造可再充电的锂电池。作为非水性电解液,使用其中溶解1.1MLiPF6的碳酸乙二酯和碳酸二乙酯的混合溶剂(含不同种类添加剂)。Using a general process, a positive electrode, a negative electrode, and a non-aqueous electrolyte are used to fabricate a rechargeable lithium battery. As the non-aqueous electrolytic solution, a mixed solvent (containing different kinds of additives) of ethylene carbonate and diethyl carbonate in which 1.1 M LiPF 6 was dissolved was used.
锂离子电池组装:按照锂离子电池结构组装顺序在惰性气氛手套箱内组装电池。Lithium-ion battery assembly: Assemble the battery in an inert atmosphere glove box according to the assembly sequence of the lithium-ion battery structure.
3.相关特性测试3. Related characteristic test
锂离子电池电化学性能测试Lithium-ion battery electrochemical performance test
将上述第2节中的负极进行三次电化学嵌锂(充放电倍率为0.05C,充放电截止电压为0.05~1.5V)后,组装成锂离子电池,测试各锂离子电池首次充放电效率、倍率、循环寿命。测得结果如下述表1中所示:The negative electrode in Section 2 above was electrochemically intercalated lithium three times (the charge-discharge rate is 0.05C, and the charge-discharge cut-off voltage is 0.05-1.5V), and then assembled into a lithium-ion battery, and tested the first-time charge-discharge efficiency of each lithium-ion battery, rate, and cycle life. The measured results are shown in Table 1 below:
表1Table 1
由表1可知,含有本发明实施例提供硅碳负极材料的锂离子电池的首次充放电效率高于90%以上,最高充电倍率可达2C,0.5C循环寿命可达955次以上,具有优异的首效、倍率性能和循环性能,且具有良好的快速充电性能。因此,本发明实施例硅碳负极材料具有低电阻高导电性能,充电电过程中颗粒结构稳定,比容量高,具有高的充放电效率和充放电倍率性能。It can be seen from Table 1 that the first charge and discharge efficiency of the lithium-ion battery containing the silicon-carbon negative electrode material provided by the embodiment of the present invention is higher than 90%, the highest charge rate can reach 2C, and the 0.5C cycle life can reach more than 955 times, which has excellent First effect, rate performance and cycle performance, and has good fast charging performance. Therefore, the silicon-carbon anode material of the embodiment of the present invention has low resistance and high conductivity, stable particle structure during charging, high specific capacity, high charge-discharge efficiency and charge-discharge rate performance.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110637574.XA CN115458715A (en) | 2021-06-08 | 2021-06-08 | Silicon carbon negative electrode material and its preparation method and lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110637574.XA CN115458715A (en) | 2021-06-08 | 2021-06-08 | Silicon carbon negative electrode material and its preparation method and lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115458715A true CN115458715A (en) | 2022-12-09 |
Family
ID=84294506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110637574.XA Pending CN115458715A (en) | 2021-06-08 | 2021-06-08 | Silicon carbon negative electrode material and its preparation method and lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115458715A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116854094A (en) * | 2023-09-04 | 2023-10-10 | 琥崧智能装备(太仓)有限公司 | Carbon-silicon negative electrode active material, and preparation method and application thereof |
CN117594779A (en) * | 2024-01-19 | 2024-02-23 | 湖南镕锂新材料科技有限公司 | Carbon-silicon composite material and application thereof in lithium battery |
WO2025026117A1 (en) * | 2023-08-01 | 2025-02-06 | 武汉新碳科技有限公司 | Silicon-carbon material, and preparation method therefor and use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107819116A (en) * | 2017-10-17 | 2018-03-20 | 成都新柯力化工科技有限公司 | A kind of Si conductivity ceramics composite negative pole material and preparation method for lithium battery |
CN111653738A (en) * | 2020-04-20 | 2020-09-11 | 万向一二三股份公司 | Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof |
-
2021
- 2021-06-08 CN CN202110637574.XA patent/CN115458715A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107819116A (en) * | 2017-10-17 | 2018-03-20 | 成都新柯力化工科技有限公司 | A kind of Si conductivity ceramics composite negative pole material and preparation method for lithium battery |
CN111653738A (en) * | 2020-04-20 | 2020-09-11 | 万向一二三股份公司 | Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025026117A1 (en) * | 2023-08-01 | 2025-02-06 | 武汉新碳科技有限公司 | Silicon-carbon material, and preparation method therefor and use thereof |
CN116854094A (en) * | 2023-09-04 | 2023-10-10 | 琥崧智能装备(太仓)有限公司 | Carbon-silicon negative electrode active material, and preparation method and application thereof |
CN116854094B (en) * | 2023-09-04 | 2023-12-05 | 琥崧智能装备(太仓)有限公司 | Carbon-silicon negative electrode active material, and preparation method and application thereof |
CN117594779A (en) * | 2024-01-19 | 2024-02-23 | 湖南镕锂新材料科技有限公司 | Carbon-silicon composite material and application thereof in lithium battery |
CN117594779B (en) * | 2024-01-19 | 2024-03-29 | 湖南镕锂新材料科技有限公司 | Carbon-silicon composite material and application thereof in lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103311522B (en) | A kind of silicon/carbon composite microsphere negative electrode material and its production and use | |
CN103346293B (en) | Lithium ion battery cathode material and its preparation method, lithium ion battery | |
CN103633295B (en) | A kind of Si-C composite material, lithium ion battery and its preparation method and application | |
CN103346324B (en) | Lithium ion battery cathode material and its preparation method | |
CN108630920A (en) | A kind of nano-metal-oxide/MXene heterojunction structure composite material and preparation methods | |
CN106684389A (en) | Sulfur-nitrogen dual-doped graphene nano material and preparation method and application thereof | |
CN106415898A (en) | Graphene-coated porous silicon-carbon composite and preparation method therefor | |
CN113659125B (en) | Silicon-carbon composite material and preparation method thereof | |
CN103346302A (en) | Lithium battery silicon-carbon nanotube composite cathode material as well as preparation method and application thereof | |
WO2019019410A1 (en) | Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same | |
CN113871575A (en) | Lithium metal negative plate, preparation method thereof and secondary battery | |
CN105789594A (en) | Silicon/silicic oxide/carbon composite material as well as preparation method and application thereof | |
CN115458715A (en) | Silicon carbon negative electrode material and its preparation method and lithium ion battery | |
CN107204438A (en) | A kind of carbon-silicon composite material and its production and use | |
CN111916743A (en) | Negative electrode composite conductive agent and preparation method thereof, lithium ion battery comprising the negative electrode composite conductive agent and preparation method thereof | |
CN108711625A (en) | A kind of preparation method of graphene composite conductive agent for anode material for lithium-ion batteries | |
WO2016202168A1 (en) | Lithium-ion battery positive-electrode slurry and preparation method therefor | |
CN110323440A (en) | A kind of preparation method of graphene/carbon-silicon nano composite anode material | |
WO2023005987A1 (en) | Two-element lithium supplementing additive, preparation method therefor, and use thereof | |
WO2019047713A1 (en) | Composite negative electrode active material, preparation method therefor and lithium battery | |
CN114551836A (en) | A kind of negative electrode material and preparation method thereof, negative electrode sheet and battery | |
CN110556528A (en) | Porous silicon/carbon shell composite material and preparation method and application thereof | |
CN108390046A (en) | A kind of preparation method of rodlike α-di-iron trioxide/GN lithium cell negative pole materials | |
CN108630917A (en) | Si @ C @ fibrous carbon @ C composite material and preparation method and application thereof | |
CN108598343A (en) | A kind of composite diaphragm and its preparation method and application of red phosphorus modification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |