CN115433258A - Antibacterial polypeptide and application thereof - Google Patents
Antibacterial polypeptide and application thereof Download PDFInfo
- Publication number
- CN115433258A CN115433258A CN202211084537.1A CN202211084537A CN115433258A CN 115433258 A CN115433258 A CN 115433258A CN 202211084537 A CN202211084537 A CN 202211084537A CN 115433258 A CN115433258 A CN 115433258A
- Authority
- CN
- China
- Prior art keywords
- yvvpw
- antibacterial
- antibacterial activity
- victoriae
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000844 anti-bacterial effect Effects 0.000 title claims abstract description 103
- 108090000765 processed proteins & peptides Proteins 0.000 title abstract description 76
- 102000004196 processed proteins & peptides Human genes 0.000 title abstract description 60
- 229920001184 polypeptide Polymers 0.000 title abstract description 30
- 235000000640 Rosa roxburghii Nutrition 0.000 claims abstract description 7
- 240000002547 Rosa roxburghii Species 0.000 claims abstract description 7
- 238000009920 food preservation Methods 0.000 claims abstract description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 136
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 68
- 229960004889 salicylic acid Drugs 0.000 claims description 68
- 239000003910 polypeptide antibiotic agent Substances 0.000 claims description 38
- 102000044503 Antimicrobial Peptides Human genes 0.000 claims description 31
- 108700042778 Antimicrobial Peptides Proteins 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 28
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 3
- 235000013399 edible fruits Nutrition 0.000 claims 1
- 235000013311 vegetables Nutrition 0.000 claims 1
- 241000758789 Juglans Species 0.000 abstract description 90
- 235000009496 Juglans regia Nutrition 0.000 abstract description 90
- 235000020234 walnut Nutrition 0.000 abstract description 90
- 241000638858 Paecilomyces victoriae Species 0.000 abstract description 55
- 230000003993 interaction Effects 0.000 abstract description 29
- 150000002989 phenols Chemical class 0.000 abstract description 20
- 230000002195 synergetic effect Effects 0.000 abstract description 11
- 241000894006 Bacteria Species 0.000 abstract description 8
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 4
- 239000006041 probiotic Substances 0.000 abstract description 3
- 235000018291 probiotics Nutrition 0.000 abstract description 3
- 235000012054 meals Nutrition 0.000 description 67
- 239000000843 powder Substances 0.000 description 26
- 238000003032 molecular docking Methods 0.000 description 25
- 101000755496 Canis lupus familiaris Transforming protein RhoA Proteins 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- 230000005764 inhibitory process Effects 0.000 description 17
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 16
- 238000000855 fermentation Methods 0.000 description 15
- 230000004151 fermentation Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 11
- 235000014469 Bacillus subtilis Nutrition 0.000 description 9
- 239000008223 sterile water Substances 0.000 description 9
- FVQOMEDMFUMIMO-UHFFFAOYSA-N Hyperosid Natural products OC1C(O)C(O)C(CO)OC1OC1C(=O)C2=C(O)C=C(O)C=C2OC1C1=CC=C(O)C(O)=C1 FVQOMEDMFUMIMO-UHFFFAOYSA-N 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- 235000004515 gallic acid Nutrition 0.000 description 8
- 229940074391 gallic acid Drugs 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 244000063299 Bacillus subtilis Species 0.000 description 7
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 235000012055 fruits and vegetables Nutrition 0.000 description 7
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 150000008442 polyphenolic compounds Chemical class 0.000 description 7
- 235000013824 polyphenols Nutrition 0.000 description 7
- 238000000108 ultra-filtration Methods 0.000 description 7
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 description 6
- YQUVCSBJEUQKSH-UHFFFAOYSA-N 3,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 description 6
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 description 6
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 description 6
- 235000004883 caffeic acid Nutrition 0.000 description 6
- 229940074360 caffeic acid Drugs 0.000 description 6
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 description 6
- 235000001368 chlorogenic acid Nutrition 0.000 description 6
- 229940074393 chlorogenic acid Drugs 0.000 description 6
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 description 6
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 description 6
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 description 6
- 239000008176 lyophilized powder Substances 0.000 description 6
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 5
- FTVWIRXFELQLPI-ZDUSSCGKSA-N (S)-naringenin Chemical compound C1=CC(O)=CC=C1[C@H]1OC2=CC(O)=CC(O)=C2C(=O)C1 FTVWIRXFELQLPI-ZDUSSCGKSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 5
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 5
- 238000001506 fluorescence spectroscopy Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000004949 mass spectrometry Methods 0.000 description 5
- 235000007625 naringenin Nutrition 0.000 description 5
- WGEYAGZBLYNDFV-UHFFFAOYSA-N naringenin Natural products C1(=O)C2=C(O)C=C(O)C=C2OC(C1)C1=CC=C(CC1)O WGEYAGZBLYNDFV-UHFFFAOYSA-N 0.000 description 5
- 229940117954 naringenin Drugs 0.000 description 5
- 239000004311 natamycin Substances 0.000 description 5
- 235000010298 natamycin Nutrition 0.000 description 5
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 description 5
- 229960003255 natamycin Drugs 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- OVSQVDMCBVZWGM-IDRAQACASA-N Hirsutrin Natural products O([C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1)C1=C(c2cc(O)c(O)cc2)Oc2c(c(O)cc(O)c2)C1=O OVSQVDMCBVZWGM-IDRAQACASA-N 0.000 description 4
- OVSQVDMCBVZWGM-SJWGPRHPSA-N Hyperin Natural products O[C@H]1[C@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=C(C=2C=C(O)C(O)=CC=2)OC2=CC(O)=CC(O)=C2C1=O OVSQVDMCBVZWGM-SJWGPRHPSA-N 0.000 description 4
- 240000006024 Lactobacillus plantarum Species 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- GXMWXESSGGEWEM-UHFFFAOYSA-N isoquercitrin Natural products OCC(O)C1OC(OC2C(Oc3cc(O)cc(O)c3C2=O)c4ccc(O)c(O)c4)C(O)C1O GXMWXESSGGEWEM-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- DLIKSSGEMUFQOK-SFTVRKLSSA-N naringenin 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C(C(=O)C[C@H](O2)C=3C=CC(O)=CC=3)C2=C1 DLIKSSGEMUFQOK-SFTVRKLSSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- RXVLWCCRHSJBJV-UHFFFAOYSA-N prunin Natural products OCC1OC(O)C(Oc2cc(O)c3C(=O)CC(Oc3c2)c4ccc(O)cc4)C(O)C1O RXVLWCCRHSJBJV-UHFFFAOYSA-N 0.000 description 4
- OVSQVDMCBVZWGM-DTGCRPNFSA-N quercetin 3-O-beta-D-galactopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=C(C=2C=C(O)C(O)=CC=2)OC2=CC(O)=CC(O)=C2C1=O OVSQVDMCBVZWGM-DTGCRPNFSA-N 0.000 description 4
- OVSQVDMCBVZWGM-QSOFNFLRSA-N quercetin 3-O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C(C=2C=C(O)C(O)=CC=2)OC2=CC(O)=CC(O)=C2C1=O OVSQVDMCBVZWGM-QSOFNFLRSA-N 0.000 description 4
- BBFYUPYFXSSMNV-UHFFFAOYSA-N quercetin-7-o-galactoside Natural products OC1C(O)C(O)C(CO)OC1OC1=CC(O)=C2C(=O)C(O)=C(C=3C=C(O)C(O)=CC=3)OC2=C1 BBFYUPYFXSSMNV-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000003041 virtual screening Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002498 Beta-glucan Polymers 0.000 description 3
- AFSDNFLWKVMVRB-UHFFFAOYSA-N Ellagic acid Chemical compound OC1=C(O)C(OC2=O)=C3C4=C2C=C(O)C(O)=C4OC(=O)C3=C1 AFSDNFLWKVMVRB-UHFFFAOYSA-N 0.000 description 3
- ATJXMQHAMYVHRX-CPCISQLKSA-N Ellagic acid Natural products OC1=C(O)[C@H]2OC(=O)c3cc(O)c(O)c4OC(=O)C(=C1)[C@H]2c34 ATJXMQHAMYVHRX-CPCISQLKSA-N 0.000 description 3
- 229920002079 Ellagic acid Polymers 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 3
- NGFMICBWJRZIBI-JZRPKSSGSA-N Salicin Natural products O([C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O1)c1c(CO)cccc1 NGFMICBWJRZIBI-JZRPKSSGSA-N 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- NGFMICBWJRZIBI-UHFFFAOYSA-N alpha-salicin Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UHFFFAOYSA-N 0.000 description 3
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000132 electrospray ionisation Methods 0.000 description 3
- 235000004132 ellagic acid Nutrition 0.000 description 3
- 229960002852 ellagic acid Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229940072205 lactobacillus plantarum Drugs 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- FAARLWTXUUQFSN-UHFFFAOYSA-N methylellagic acid Natural products O1C(=O)C2=CC(O)=C(O)C3=C2C2=C1C(OC)=C(O)C=C2C(=O)O3 FAARLWTXUUQFSN-UHFFFAOYSA-N 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- NGFMICBWJRZIBI-UJPOAAIJSA-N salicin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UJPOAAIJSA-N 0.000 description 3
- 229940120668 salicin Drugs 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-3',4',5,7-Tetrahydroxy-2,3-trans-flavan-3-ol Natural products C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 2
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 description 2
- 229930013783 (-)-epicatechin Natural products 0.000 description 2
- 235000007355 (-)-epicatechin Nutrition 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- CWEZAWNPTYBADX-UHFFFAOYSA-N Procyanidin Natural products OC1C(OC2C(O)C(Oc3c2c(O)cc(O)c3C4C(O)C(Oc5cc(O)cc(O)c45)c6ccc(O)c(O)c6)c7ccc(O)c(O)c7)c8c(O)cc(O)cc8OC1c9ccc(O)c(O)c9 CWEZAWNPTYBADX-UHFFFAOYSA-N 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003113 dilution method Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 235000001785 ferulic acid Nutrition 0.000 description 2
- 229940114124 ferulic acid Drugs 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000010200 folin Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- NQYPTLKGQJDGTI-FCVRJVSHSA-N hyperoside Natural products OC[C@H]1O[C@@H](OC2=C(Oc3cc(O)cc(O)c3[C@H]2O)c4ccc(O)c(O)c4)[C@H](O)[C@@H](O)[C@H]1O NQYPTLKGQJDGTI-FCVRJVSHSA-N 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 235000021180 meal component Nutrition 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- -1 phenolic acids compounds Chemical class 0.000 description 2
- 229930182487 phenolic glycoside Natural products 0.000 description 2
- 150000007950 phenolic glycosides Chemical class 0.000 description 2
- 229920002414 procyanidin Polymers 0.000 description 2
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004885 tandem mass spectrometry Methods 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 2
- FJPHHBGPPJXISY-KBPBESRZSA-N (2s)-2-[[(2s)-2-[[2-[(2-aminoacetyl)amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CNC(=O)CN)CC1=CC=C(O)C=C1 FJPHHBGPPJXISY-KBPBESRZSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 238000004483 ATR-FTIR spectroscopy Methods 0.000 description 1
- 108010062877 Bacteriocins Proteins 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 102100033468 Lysozyme C Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108010053775 Nisin Proteins 0.000 description 1
- NVNLLIYOARQCIX-MSHCCFNRSA-N Nisin Chemical compound N1C(=O)[C@@H](CC(C)C)NC(=O)C(=C)NC(=O)[C@@H]([C@H](C)CC)NC(=O)[C@@H](NC(=O)C(=C/C)/NC(=O)[C@H](N)[C@H](C)CC)CSC[C@@H]1C(=O)N[C@@H]1C(=O)N2CCC[C@@H]2C(=O)NCC(=O)N[C@@H](C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(NCC(=O)N[C@H](C)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCSC)C(=O)NCC(=O)N[C@H](CS[C@@H]2C)C(=O)N[C@H](CC(N)=O)C(=O)N[C@H](CCSC)C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(N[C@H](C)C(=O)N[C@@H]3C(=O)N[C@@H](C(N[C@H](CC=4NC=NC=4)C(=O)N[C@H](CS[C@@H]3C)C(=O)N[C@H](CO)C(=O)N[C@H]([C@H](C)CC)C(=O)N[C@H](CC=3NC=NC=3)C(=O)N[C@H](C(C)C)C(=O)NC(=C)C(=O)N[C@H](CCCCN)C(O)=O)=O)CS[C@@H]2C)=O)=O)CS[C@@H]1C NVNLLIYOARQCIX-MSHCCFNRSA-N 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- 241000781608 Scolopia zeyheri Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 108020004729 UniProt protein families Proteins 0.000 description 1
- 102000006668 UniProt protein families Human genes 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 108010065713 glycyl-glycyl-tyrosyl-arginine Proteins 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 239000004309 nisin Substances 0.000 description 1
- 235000010297 nisin Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000009048 phenolic acids Nutrition 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 238000001121 post-column derivatisation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000005932 reductive alkylation reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B7/00—Preservation of fruit or vegetables; Chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10
- A23B7/153—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10 in the form of liquids or solids
- A23B7/154—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明属于食品保鲜技术领域,特别涉及一种筛选自发酵核桃粕的抗菌多肽及其应用。本发明采用复合益生菌发酵核桃粕以提高对刺梨腐败优势菌的抗菌活性,探究发酵核桃粕中具有抗菌活性的多肽的变化,并从中筛选具有抗菌活性的多肽FGGDSTHP,ALGGGY,YVVPW,PLLRW。进一步分析抗菌多肽与酚类化合物之间的互作机理,并获得最优的抗菌组合YVVPW‑SA,提高二者对P.victoriae的协同抗菌活性。
The invention belongs to the technical field of food preservation, and in particular relates to an antibacterial polypeptide screened from fermented walnut dregs and its application. The present invention uses compound probiotics to ferment walnut dregs to improve the antibacterial activity against dominant bacteria of Rosa roxburghii, explores the changes of polypeptides with antibacterial activity in fermented walnut dregs, and screens the polypeptides FGGDSTHP, ALGGGY, YVVPW, PLLRW with antibacterial activity. The interaction mechanism between antibacterial peptides and phenolic compounds was further analyzed, and the optimal antibacterial combination YVVPW‑SA was obtained to improve the synergistic antibacterial activity of the two against P.victoriae.
Description
技术领域:Technical field:
本发明属于食品保鲜技术领域,特别涉及一种筛选自发酵核桃粕的抗菌多肽及其应用。The invention belongs to the technical field of food preservation, and in particular relates to an antibacterial polypeptide screened from fermented walnut dregs and an application thereof.
背景技术:Background technique:
研究报道果蔬在供应链中采后部分的损失和浪费高达13%~38%,因此,亟待进行相关研究以延长果蔬的货架期,从而减少采后损失。目前关于果蔬采后保鲜的研究侧重于加入一些抗菌剂如有机酸(苯甲酸和山梨酸等)、酶(溶菌酶)、细菌素(nisin)和多酚(姜黄素和槲皮素等)等,但现有的天然抗菌剂存在成本高和作用靶向不明确等问题。Studies have reported that the loss and waste of fruits and vegetables in the postharvest part of the supply chain is as high as 13% to 38%. Therefore, relevant research is urgently needed to extend the shelf life of fruits and vegetables, thereby reducing postharvest losses. The current research on postharvest preservation of fruits and vegetables focuses on adding some antibacterial agents such as organic acids (benzoic acid and sorbic acid, etc.), enzymes (lysozyme), bacteriocin (nisin) and polyphenols (curcumin and quercetin, etc.) , but the existing natural antibacterial agents have problems such as high cost and unclear targeting.
基于实验室前期研究,核桃粕发酵可以通过微生物和酶产生代谢产物如有机酸、挥发物、多肽和游离氨基酸等,这些代谢物可以穿过微生物的细胞膜,在细胞质中积累以发挥抗菌活性。另外,通常植物提取物发挥生物活性并不是因为单一成分的存在,而是由多种活性成分相互作用而产生的效果。Based on previous research in the laboratory, the fermentation of walnut meal can produce metabolites such as organic acids, volatiles, polypeptides and free amino acids through microorganisms and enzymes. These metabolites can pass through the cell membrane of microorganisms and accumulate in the cytoplasm to exert antibacterial activity. In addition, the biological activity of plant extracts is usually not due to the existence of a single component, but the effect produced by the interaction of multiple active components.
因此,本申请将制备对刺梨腐败优势菌具有抗菌活性的发酵物,并利用其开发天然且低成本的抗菌产品,以期延长食品特别是果蔬的贮藏期,为发酵核桃粕在采后果蔬保鲜中的应用提供理论基础。Therefore, the present application will prepare a fermented product with antibacterial activity to the dominant bacteria of Rosa roxburghii, and use it to develop natural and low-cost antibacterial products, in order to prolong the storage period of food, especially fruits and vegetables, and to preserve the freshness of fruits and vegetables for fermented walnut meal. The application in provides a theoretical basis.
发明内容:Invention content:
本研究采用复合益生菌发酵核桃粕以提高对刺梨腐败优势菌的抗菌活性,探究发酵核桃粕中具有抗菌活性的多肽的变化,并从中筛选具有抗菌活性的多肽,分析抗菌多肽与酚类化合物之间的互作机理,并获得最优的抗菌组合。In this study, compound probiotics were used to ferment walnut meal to improve the antibacterial activity against the dominant bacteria of Rosa roxburghii, explore the changes of polypeptides with antibacterial activity in fermented walnut meal, and screen the peptides with antibacterial activity, and analyze the antibacterial peptides and phenolic compounds. The interaction mechanism between them, and obtain the optimal antibacterial combination.
为解决上述技术问题,本发明以对刺梨腐败优势菌维多利亚青霉(Penicillium.victoriae)的抑菌效果为指标,采用枯草芽孢杆菌(Bacillus Subtilis)与植物乳杆菌(Lactiplantibacillus plantarum)复合发酵核桃粕。探究发酵前后酚类化合物的变化,筛选发酵核桃粕中对P.victoriae抗菌活性最强的酚类化合物。比较不同分子量发酵核桃粕的抗菌活性,采用LC-MS/MS对抗菌活性最强的发酵核桃粕组分鉴定多肽序列,PyRx软件虚拟筛选,人工合成肽段并验证抗菌活性。通过Maestro软件分子对接探究抗菌肽与Rho1GTPase晶体结构(PDB ID:3A58)的结合方式。采用二倍稀释法复配抗菌肽与酚类化合物,测定复合物对P.victoriae的抗菌活性,并通过傅里叶红外光谱(FTIR)、荧光光谱、分子对接探究抗菌多肽与酚类化合物之间的互作机理。In order to solve the above-mentioned technical problems, the present invention takes the bacteriostasis effect on Penicillium victoriae (Penicillium.victoriae), the dominant bacterium of thorn pear spoilage, as an index, and adopts Bacillus subtilis (Bacillus Subtilis) and plant lactobacillus (Lactiplantibacillus plantarum) to compound ferment walnut dregs . The changes of phenolic compounds before and after fermentation were explored, and the phenolic compounds with the strongest antibacterial activity against P.victoriae in fermented walnut meal were screened. The antibacterial activity of fermented walnut meal with different molecular weights was compared, the peptide sequence of the fermented walnut meal with the strongest antibacterial activity was identified by LC-MS/MS, and the antibacterial activity was verified by virtual screening with PyRx software. pass Molecular docking using Maestro software to explore the binding mode of antimicrobial peptides and the crystal structure of Rho1GTPase (PDB ID: 3A58). Antibacterial peptides and phenolic compounds were compounded by double dilution method, and the antibacterial activity of the compound against P.victoriae was determined, and the relationship between antibacterial peptides and phenolic compounds was explored by Fourier transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and molecular docking interaction mechanism.
本发明提供的技术方案之一,是提取自发酵核桃粕的抗菌肽,所述抗菌肽自N端至C端的氨基酸序列分别为Phe-Gly-Gly-Asp-Ser-Thr-His-Pro(FGGDSTHP),Ala-Leu-Gly-Gly-Gly-Tyr(ALGGGY),Tyr-Val-Val-Pro-Trp(YVVPW)和Pro-Leu-Leu-Arg-Trp(PLLRW);One of the technical solutions provided by the present invention is an antimicrobial peptide extracted from fermented walnut dregs, the amino acid sequences of the antimicrobial peptide from the N terminal to the C terminal are respectively Phe-Gly-Gly-Asp-Ser-Thr-His-Pro (FGGDSTHP ), Ala-Leu-Gly-Gly-Gly-Tyr (ALGGGY), Tyr-Val-Val-Pro-Trp (YVVPW) and Pro-Leu-Leu-Arg-Trp (PLLRW);
进一步地,抗菌肽YVVPW对P.victoriae的抗菌活性最强,MIC为16.0mg/mL;同时对S.aureus具有抗菌活性;Furthermore, the antimicrobial peptide YVVPW has the strongest antibacterial activity against P.victoriae, with an MIC of 16.0mg/mL; at the same time, it has antibacterial activity against S.aureus;
进一步地,抗菌肽FGGDSTHP,对P.victoriae具有抗菌活性;Further, the antibacterial peptide FGGDSTHP has antibacterial activity against P.victoriae;
进一步地,抗菌肽ALGGGY,对P.victoriae和S.aureus均具有抗菌活性;Further, the antibacterial peptide ALGGGY has antibacterial activity against both P.victoriae and S.aureus;
进一步地,抗菌肽PLLRW,对S.aureus具有抗菌活性。Furthermore, the antimicrobial peptide PLLRW has antibacterial activity against S.aureus.
本发明提供的技术方案之二,是一种抗菌组合物,所述抗菌组合物包括抗菌肽YVVPW和水杨酸(SA);The second technical solution provided by the present invention is an antibacterial composition comprising antibacterial peptide YVVPW and salicylic acid (SA);
进一步地,组合物中抗菌肽YVVPW的浓度为1.0mg/mL~4.0mg/mL,SA的浓度为0.27mg/mL~1.10mg/mL;Further, the concentration of the antimicrobial peptide YVVPW in the composition is 1.0 mg/mL-4.0 mg/mL, and the concentration of SA is 0.27 mg/mL-1.10 mg/mL;
优选地,组合物中抗菌肽YVVPW的浓度为1.0mg/mL,SA的浓度为0.27mg/mL,此时二者组合的协同效果最好,分级抑菌浓度指数为0.07,对P.victoriae的抑菌圈达到7.35±0.20mm。Preferably, the concentration of the antimicrobial peptide YVVPW in the composition is 1.0mg/mL, and the concentration of SA is 0.27mg/mL. At this time, the synergistic effect of the combination of the two is the best, and the graded inhibitory concentration index is 0.07, which is 0.07 for P. victoriae. The inhibition zone reached 7.35±0.20mm.
优选地,组合物中抗菌肽YVVPW的浓度为2.0mg/mL,SA的浓度为0.55mg/mL,分级抑菌浓度指数FIC为0.25,此时二者组合对P.victoriae的抗菌活性最高,对P.victoriae的抑菌圈达到11.50±0.41mm。Preferably, the concentration of the antimicrobial peptide YVVPW in the composition is 2.0mg/mL, the concentration of SA is 0.55mg/mL, and the graded inhibitory concentration index FIC is 0.25. At this time, the combination of the two has the highest antibacterial activity against P. victoriae, and the antibacterial activity against The inhibition zone of P.victoriae reached 11.50±0.41mm.
本发明提供的技术方案之三,是技术方案一所述抗菌肽或技术方案二所述抗菌组合物的应用,特别是在食品保鲜,更特别地是蔬果保鲜中的应用,更进一步地,是在刺梨保鲜中的应用。The third technical solution provided by the present invention is the application of the antimicrobial peptide described in the first technical solution or the antibacterial composition described in the second technical solution, especially in food preservation, more particularly in the preservation of fruits and vegetables, and further, is Application in Rosa roxburghii preservation.
有益效果:Beneficial effect:
本发明提供了一组对刺梨腐败优势菌有抑制效果的发酵核桃粕抗菌肽,抗菌作用明显,且采用核桃粕为原料,生产成本低,经济效益高。The invention provides a group of fermented walnut dregs antibacterial peptides which have an inhibitory effect on dominant roxburghii spoilage bacteria. The antibacterial peptides have obvious antibacterial effects, and walnut dregs are used as raw materials, so the production cost is low and the economic benefit is high.
基于试验结果,发酵核桃粕中的酚类化合物中SA对P.victoriae抗菌活性最高(MIC为4.40mg/mL)。超滤发酵核桃粕,对P.victoriae抗菌活性测定结果为分子量在0~3kDa的发酵核桃粕的抗菌活性最高(冻干粉MIC为10μg/mL),FGGDSTHP、ALGGGY和YVVPW等多肽均对P.victoriae具有抗菌活性,PLLRW对S.aureus具有抗菌活性。其中合成的短肽序列YVVPW被证明对P.victoriae有较高的抗菌活性(MIC为16.0mg/mL)。YVVPW与SA联合发挥协同抑菌作用时的浓度分别为1.0~4.0mg/mL的YVVPW与0.27~1.10mg/mL的SA,二者对P.victoriae有协同抗菌活性。SA的加入使YVVPW的Trp和Tyr残基发生荧光猝灭,氢键、疏水相互作用、π-π堆积是二者之间的主要相互作用力。Based on the test results, among the phenolic compounds in fermented walnut meal, SA had the highest antibacterial activity against P. victoriae (MIC was 4.40 mg/mL). The antibacterial activity of fermented walnut meal by ultrafiltration was measured against P. victoriae. The results showed that the fermented walnut meal with a molecular weight of 0-3 kDa had the highest antibacterial activity (the MIC of the freeze-dried powder was 10 μg/mL), and peptides such as FGGDSTHP, ALGGGY and YVVPW all had the highest antibacterial activity against P. victoriae. victoriae has antibacterial activity, and PLLRW has antibacterial activity against S.aureus. The synthetic short peptide sequence YVVPW has been proved to have high antibacterial activity against P.victoriae (MIC is 16.0mg/mL). The concentrations of YVVPW and SA combined to exert synergistic antibacterial effect were 1.0-4.0 mg/mL YVVPW and 0.27-1.10 mg/mL SA, respectively, and the two had synergistic antibacterial activity against P.victoriae. The addition of SA quenched the fluorescence of the Trp and Tyr residues of YVVPW, and hydrogen bonds, hydrophobic interactions, and π-π stacking were the main interaction forces between them.
附图说明:Description of drawings:
图1未发酵核桃粕冻干粉负离子(A)和正离子(B)色谱图;Fig. 1 unfermented walnut meal lyophilized powder negative ion (A) and positive ion (B) chromatogram;
其中,1.没食子酸;2.水杨酸;3.原儿茶酸;4.水杨苷;5.绿原酸;6.原花青素;7.(-)-表儿茶素;8.异槲皮苷;9.金丝桃苷;10.咖啡酸;11.鞣花酸;12.反式阿魏酸;13.根皮苷;14.柚皮素-7-O-葡萄糖苷;15.柚皮素。Among them, 1. gallic acid; 2. salicylic acid; 3. protocatechin; 4. salicin; 5. chlorogenic acid; 6. procyanidins; 7. (-)-epicatechin; 8. iso Quercitrin; 9. Hyperin; 10. Caffeic acid; 11. Ellagic acid; 12. Trans-ferulic acid; 13. Phloridin; 14. Naringenin-7-O-glucoside; 15 . Naringenin.
图2发酵核桃粕冻干粉负离子(A)和正离子(B)色谱图;Fig. 2 fermented walnut meal lyophilized powder negative ion (A) and positive ion (B) chromatogram;
其中,1.没食子酸;2.水杨酸;3.原儿茶酸;4.水杨苷;5.绿原酸;6.原花青素;7.(-)-表儿茶素;8.异槲皮苷;9.金丝桃苷;10.咖啡酸;11.鞣花酸;12.反式阿魏酸;13.根皮苷;14.柚皮素-7-O-葡萄糖苷;15.柚皮素。Among them, 1. gallic acid; 2. salicylic acid; 3. protocatechin; 4. salicin; 5. chlorogenic acid; 6. procyanidins; 7. (-)-epicatechin; 8. iso Quercitrin; 9. Hyperin; 10. Caffeic acid; 11. Ellagic acid; 12. Trans-ferulic acid; 13. Phloridin; 14. Naringenin-7-O-glucoside; 15 . Naringenin.
图3 0~3kDa发酵核桃粕冻干粉的液质分析基峰图。Fig. 3 LC-MS analysis base peaks of 0-3kDa fermented walnut meal freeze-dried powder.
图4肽段YVVPW的二级质谱图(A)和化学结构(B)。Fig. 4 MS/MS spectrum (A) and chemical structure (B) of peptide YVVPW.
图5肽段YVVPW与Rho1 GTPase结合的三维结构(A),活性位点的结合方式(B)和最佳构象相互作用示意平面图(C)。Figure 5. The three-dimensional structure (A) of peptide YVVPW binding to Rho1 GTPase, the binding mode of the active site (B) and the schematic plan view of the best conformational interaction (C).
图6不同浓度SA存在时多肽YVVPW的荧光光谱图;The fluorescence spectrum of polypeptide YVVPW in the presence of different concentrations of SA in Fig. 6;
图7YVVPW、SA及YVVPW-SA的傅里叶红外光谱。Figure 7 Fourier transform infrared spectra of YVVPW, SA and YVVPW-SA.
图8YVVPW与SA的结合方式,(A)复合体的静电表面;(B)活性位点的结合方式。Figure 8 The binding mode of YVVPW and SA, (A) the electrostatic surface of the complex; (B) the binding mode of the active site.
具体实施方式:detailed description:
为了使本专利的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本专利进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of this patent more clear, the following will further describe this patent in detail in combination with specific embodiments. It should be understood that the specific embodiments described here are only used to explain the patent, not to limit the present invention.
本发明所述的多肽,本领域技术人员可通过人工合成的方式获得,也可通过对核桃粕发酵筛选获得。The polypeptide of the present invention can be obtained by those skilled in the art through artificial synthesis, and can also be obtained by fermenting and screening walnut dregs.
本发明发酵核桃粕所使用的植物乳杆菌为植物乳杆菌(Lactiplantibacillusplantarum)CICC 23121,本发明所使用的枯草芽孢杆菌为枯草芽孢杆菌(BacillusSubtilis)CICC 10002。The plant Lactobacillus used for fermenting the walnut meal in the present invention is Lactobacillus plantarum (Lactiplantibacillus plantarum) CICC 23121, and the Bacillus subtilis used in the present invention is Bacillus subtilis (Bacillus Subtilis) CICC 10002.
本发明以B.Subtilis与L.plantarum在发酵温度35℃的条件下发酵核桃粕26h,定性与定量分析发酵核桃粕酚类化合物结构,检测其对维多利亚青霉(Penicilliumvictoriae),金黄色葡萄球菌(Staphylococcus aureus)和大肠杆菌(Escherichia coli)的抗菌活性,得到抗真菌活性最高的SA;发酵核桃粕经过超滤分离,得到不同分子量范围(0~3kDa、3~5kDa、5~10kDa、>10kDa)的发酵核桃粕组分,检测其对P.victoriae,S.aureus和E.coli的抗菌活性,得到超滤后抗菌活性最高的0~3kDa发酵核桃粕;测定发酵核桃粕冻干粉多肽的结构,通过分子对接技术从143条多肽中筛选出与Rho1 GTPase晶体结构(PDBID:3A58)对接时对接能较低的多肽序列,继而对相应的多肽进行人工合成,检测其对P.victoriae,S.aureus和E.coli的抗菌活性,得到发酵核桃粕中高抗菌短肽序列FGGDSTHP、ALGGGY、YVVPW和PLLRW。采用分子对接技术将抗菌活性最高的多肽YVVPW与Rho1GTPase进行分子对接,结果表明二者紧密结合,相互作用力主要包括氢键、疏水相互作用和π-π堆积。The present invention uses B.Subtilis and L.plantarum to ferment walnut dregs for 26 hours at a fermentation temperature of 35° C., qualitatively and quantitatively analyze the structure of phenolic compounds in fermented walnut dregs, and detect their effects on Penicillium victoriae, Staphylococcus aureus ( Staphylococcus aureus) and Escherichia coli (Escherichia coli), the highest antifungal activity of SA was obtained; fermented walnut meal was separated by ultrafiltration to obtain different molecular weight ranges (0~3kDa, 3~5kDa, 5~10kDa, >10kDa) The components of fermented walnut meal were tested for their antibacterial activity against P.victoriae, S.aureus and E.coli, and the 0-3kDa fermented walnut meal with the highest antibacterial activity after ultrafiltration was obtained; the structure of the polypeptide of the lyophilized powder of fermented walnut meal was determined 143 peptides were selected by molecular docking technology to screen out the peptide sequences with low docking energy when docking with the Rho1 GTPase crystal structure (PDBID: 3A58), and then the corresponding peptides were artificially synthesized to detect their effect on P. victoriae, S. Antibacterial activity of aureus and E.coli, high antibacterial short peptide sequences FGGDSTHP, ALGGGY, YVVPW and PLLRW in fermented walnut meal. Molecular docking of the polypeptide YVVPW with the highest antibacterial activity and Rho1GTPase was carried out by molecular docking technology, and the results showed that the two were closely combined, and the interaction forces mainly included hydrogen bonds, hydrophobic interactions and π-π stacking.
本发明涉及的部分试验方法如下:The part test method that the present invention relates to is as follows:
(1)抑菌圈试验:(1) Inhibition zone test:
刺梨腐败优势菌为维多利亚青霉(Penicillium victoriae),以对维多利亚青霉(P.victoriae)、大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcusaureus)的抑菌效果为筛选指标,测定不同组分的抑菌活性。吸取100μL浓度105CFU/mL的P.victoriae孢子悬液于PDA培养基涂布,100μL浓度105CFU/mL的S.aureus与E.coli孢子悬液于LB培养基涂布。利用无菌牛津杯打孔并加入100μL发酵核桃粕(测定其他成分的抑菌圈时进行替换即可),以无菌水作阴性对照和纳他霉素作为阳性对照。将PDA和LB平板置于28℃培养箱分别培养5d和24h后,测量抑菌圈直径。Penicillium victoriae was the dominant rot bacterium of Rosa roxburghii, and the antibacterial effect on P. victoriae, Escherichia coli and Staphylococcus aureus was used as the screening index to determine the antibacterial effect of different groups. bacteriostatic activity.
(2)发酵核桃粕的多酚含量测定(2) Determination of polyphenol content of fermented walnut meal
参考Folin和Ciocalteu(1927)方法,精密称取没食子酸10mg,用超纯水溶解并定容至100mL容量瓶中,摇匀备用,即为没食子酸标准溶液。准确吸取标准溶液0、0.5、1.0、1.5、2.0和2.5mL于10mL比色管中,依次加入1.0mL(50%)福林酚试剂和2mL(15%)NaCO3溶液,定容至10mL,充分混匀后,室温放置1h,于760nm波长下测定吸光度值,建立标准曲线。吸取1.0mL发酵核桃粕按照标准曲线测定方法测定多酚含量,以不加反应液的发酵核桃粕为空白样品。Referring to the method of Folin and Ciocalteu (1927), accurately weigh 10 mg of gallic acid, dissolve it in ultrapure water and dilute it into a 100 mL volumetric flask, shake it up for later use, and obtain the gallic acid standard solution. Accurately draw
(3)发酵核桃粕的多肽含量测定(3) Determination of polypeptide content of fermented walnut meal
参考鲁伟等(2005),采用双缩脲法测定多肽得率。取1mL不同浓度Gly-Gly-Tyr-Arg四肽与4mL双缩脲试剂混合,静置60min,于540nm波长下测定吸光度值,建立标准曲线。取1mL发酵核桃粕,加入1mL 10%(w/v)的三氯乙酸溶液,摇匀后室温静置10min,6000r/min离心10min得上清液。取1mL上清液与4mL双缩脲试剂混合,静置60min,于540nm波长下测定吸光度值。由标准曲线方程求得发酵核桃粕的多肽浓度并计算多肽含量。With reference to Lu Wei et al. (2005), the yield of the polypeptide was determined by the biuret method. Mix 1 mL of Gly-Gly-Tyr-Arg tetrapeptide with different concentrations and 4 mL of biuret reagent, let it stand for 60 min, measure the absorbance value at a wavelength of 540 nm, and establish a standard curve. Take 1 mL of fermented walnut meal, add 1 mL of 10% (w/v) trichloroacetic acid solution, shake well, let stand at room temperature for 10 min, and centrifuge at 6000 r/min for 10 min to obtain supernatant. Take 1 mL of supernatant and mix with 4 mL of biuret reagent, let it stand for 60 min, and measure the absorbance value at 540 nm wavelength. The polypeptide concentration of fermented walnut meal was obtained from the standard curve equation and the polypeptide content was calculated.
(4)发酵前后游离氨基酸的组成与变化(4) Composition and changes of free amino acids before and after fermentation
核桃粕发酵前后游离氨基酸的组成与变化测定依据为《食品中氨基酸的测定》(GB5009.124-2016),使用的仪器为氨基酸分析仪(茚三酮柱后衍生离子交换色谱仪)。The composition and change of free amino acids before and after walnut meal fermentation were determined according to "Determination of Amino Acids in Food" (GB5009.124-2016), and the instrument used was an amino acid analyzer (ninhydrin post-column derivatization ion exchange chromatography).
(5)发酵前后酚类化合物的组成与变化(5) Composition and changes of phenolic compounds before and after fermentation
代谢物提取:Metabolite extraction:
取100mg发酵核桃粕冻干粉,加入900μL去离子水,冰浴条件下超声15min后,12000r/min转速下离心10min,取上清液0.45μm膜过滤后进样检测。取0.1g未发酵核桃粕冻干粉,加入1mL去离子水,冰浴条件下超声15min,12000r/min转速下离心10min,取上清液0.45μm膜过滤后进样检测。Take 100 mg of fermented walnut dregs freeze-dried powder, add 900 μL of deionized water, sonicate for 15 minutes in an ice bath, centrifuge at 12000 r/min for 10 minutes, take the supernatant and filter it with a 0.45 μm membrane before injecting samples for detection. Take 0.1 g of unfermented walnut meal freeze-dried powder, add 1 mL of deionized water, sonicate for 15 min in an ice bath, centrifuge at 12000 r/min for 10 min, take the supernatant and filter it with a 0.45 μm membrane before injecting samples for detection.
液相色谱-质谱分析条件:Liquid chromatography-mass spectrometry analysis conditions:
本试验所用的仪器为岛津超高效液相色谱仪(LC-30)连接SCIEX 5600+质谱仪。具体参数如下:色谱柱SHIMADZU InerSustain C 18(100×2.1mm,2μm),柱温35℃,流速0.300mL/min。流动相A为乙腈,流动相B为0.1%乙酸溶液。洗脱梯度为:0~2min,5%A;2~4min,5~20%A;4~12min,20~25%A;12~14min,25~46%A;14~26min,46~100%A;26~28min,100%A;28~30min,5%A。质谱分别采用电喷雾电离(ESI)正离子和负离子模式进行检测。电喷雾离子源(ESI)条件:离子源温度500℃(正离子)和450℃(负离子),离子喷雾电压(ISVF)5500V(正离子)和4400V(负离子),TOF MS扫描范围100~1200Da,子离子扫描范围50~1000Da,TOF MS扫描累积时间0.2s,子离子扫描累积时间0.01s。二级质谱去簇电压±60V,碰撞能量35±15eV。The instrument used in this experiment is a Shimadzu ultra-high performance liquid chromatography (LC-30) connected to a SCIEX 5600+ mass spectrometer. The specific parameters are as follows: chromatographic column SHIMADZU InerSustain C 18 (100×2.1 mm, 2 μm),
以下通过具体实施例对本发明作进一步地解释说明。The present invention will be further explained by specific examples below.
实施例1发酵核桃粕Embodiment 1 fermented walnut meal
(1)菌种活化:挑取植物乳杆菌CICC 23121转接于100mL MRS液体培养基中,37℃培养箱内培养24h。挑取枯草芽孢杆菌CICC 10002转接于100mL LB液体培养基中,28℃培养箱内培养24h。(1) Strain activation: Lactobacillus plantarum CICC 23121 was picked and transferred to 100 mL of MRS liquid medium, and cultured in a 37°C incubator for 24 hours. Bacillus subtilis CICC 10002 was picked and transferred to 100mL LB liquid medium, and cultured in a 28°C incubator for 24h.
(2)核桃粕发酵基质:取已过60目筛并紫外线杀菌的核桃粕粉与无菌水混合(8.0%,w/v),反复冻融后,与经115℃灭菌15min的葡萄糖溶液于无菌操作下混合,使得葡萄糖终浓度为2.0%(w/v)。(2) Fermentation substrate of walnut dregs: Take walnut dregs powder that has passed through a 60-mesh sieve and sterilized by ultraviolet light, mix with sterile water (8.0%, w/v), after repeated freezing and thawing, mix with glucose solution sterilized at 115°C for 15 minutes Mix aseptically so that the final concentration of glucose is 2.0% (w/v).
(3)发酵核桃粕:(3) Fermented walnut meal:
①经活化的菌种植物乳杆菌、枯草芽孢杆菌在种子培养基中培养18h;① The activated strains Lactobacillus plantarum and Bacillus subtilis were cultured in the seed medium for 18 hours;
②按各自6.5%(v/v)的接种量量取以上2种菌液,于4000rpm/min离心10min,弃上清,将沉淀的菌体重悬于等体积的0.9%(w/v)的生理盐水中;②According to the inoculation amount of 6.5% (v/v) respectively, take the above two kinds of bacterial solutions, centrifuge at 4000rpm/min for 10min, discard the supernatant, and resuspend the precipitated bacteria in an equal volume of 0.9% (w/v) in saline;
③将以上菌悬液混合接种于核桃粕发酵基质中,置于35℃的培养箱内摇菌发酵(180r/min)培养26h。③The above bacterial suspensions were mixed and inoculated in the walnut meal fermentation substrate, and placed in an incubator at 35°C for fermentation by shaking (180r/min) for 26 hours.
④取摇匀后的核桃粕发酵液进行冰浴超声破碎,设置超声破碎条件为工作频率20kHz、功率375W、时间30min、时间间隔(工作时间:间隔时间)5:5(s/s)。超声完成后,8000r/min离心20min(4℃),所得上清液即为发酵核桃粕,上清液冻干粉即为发酵核桃粕冻干粉。也即,在本发明中核桃粕发酵液超声破碎后的上清液即发酵核桃粕。将发酵核桃粕置于真空冷冻干燥得到发酵核桃粕冻干粉,并保存于-80℃。④ Take the shaken walnut meal fermentation broth and perform ultrasonic crushing in an ice bath. Set the ultrasonic crushing conditions as operating frequency 20kHz, power 375W, time 30min, and time interval (working time: interval time) 5:5 (s/s). After the ultrasonication is completed, centrifuge at 8000r/min for 20min (4°C), the obtained supernatant is the fermented walnut meal, and the freeze-dried powder of the supernatant is the fermented walnut meal freeze-dried powder. That is, in the present invention, the supernatant after the ultrasonic crushing of the walnut meal fermentation liquid is the fermented walnut meal. The fermented walnut meal is vacuum freeze-dried to obtain a freeze-dried powder of the fermented walnut meal, which is stored at -80°C.
(4)抑菌性能测定(4) Determination of antibacterial performance
取核桃粕发酵液超声破碎后的上清液进行抑菌圈试验,其对P.victoria的抑菌圈为13.70±0.10mm,对S.aureus的抑菌圈为25.25±0.50mm。The supernatant of the walnut meal fermented liquid was ultrasonically crushed for the zone of inhibition test. The zone of inhibition for P.victoria was 13.70±0.10mm, and the zone of inhibition for S.aureus was 25.25±0.50mm.
(5)发酵核桃粕中多酚和多肽的测定(5) Determination of polyphenols and polypeptides in fermented walnut meal
核桃粕发酵0h的超声破碎上清液中多酚和多肽含量分别为50.53±0.22mg/100mL和7.64±0.15mg/mL,发酵结束后的超声破碎上清液中多酚和多肽含量分别为74.25±0.09mg/100mL和15.27±0.15mg/mL。The contents of polyphenols and polypeptides in the ultrasonic crushing supernatant of walnut meal fermentation 0h were 50.53±0.22mg/100mL and 7.64±0.15mg/mL, respectively, and the polyphenols and polypeptides in the ultrasonic crushing supernatant after fermentation were 74.25 ±0.09mg/100mL and 15.27±0.15mg/mL.
实施例2多酚鉴定Example 2 polyphenol identification
(1)酚类测定(1) Determination of phenols
采用LC-MS/MS对未发酵核桃粕粉和发酵核桃粕冻干粉中酚类化合物进行检测,共鉴定出15种酚类化合物(表1,图1和2),包括7种酚酸类化合物、7种黄酮类化合物和1种酚苷类化合物。其中酚酸类化合物包括没食子酸、水杨酸(SA)、绿原酸、原儿茶酸、咖啡酸、鞣花酸、反式阿魏酸,黄酮类化合物包括原花青素、(-)-表儿茶素、异槲皮苷、金丝桃苷、根皮苷、柚皮素-7-O-葡萄糖苷和柚皮素,酚苷类化合物水杨苷,而这些化合物的结构之间存在一定的联系。LC-MS/MS was used to detect phenolic compounds in unfermented walnut meal powder and fermented walnut meal freeze-dried powder, and a total of 15 phenolic compounds were identified (Table 1, Figures 1 and 2), including 7 phenolic acids compounds, 7 flavonoids and 1 phenolic glycoside. Among them, phenolic compounds include gallic acid, salicylic acid (SA), chlorogenic acid, protocatechuic acid, caffeic acid, ellagic acid, and trans-ferulic acid; Theophylline, isoquercitrin, hyperoside, phloridin, naringenin-7-O-glucoside and naringenin, phenolic glycoside compound salicin, and there is a certain structure between these compounds connect.
其中,益生菌复合发酵核桃粕后,没食子酸、咖啡酸、SA和绿原酸增加最多,是发酵前的125倍、119倍、117倍和112倍,但异槲皮苷含量降低了约50%,金丝桃苷含量降低了90%,柚皮素-7-O-葡萄糖苷消失。Among them, gallic acid, caffeic acid, SA and chlorogenic acid increased the most after walnut meal was fermented with probiotics, which were 125 times, 119 times, 117 times and 112 times that of before fermentation, but the content of isoquercitrin decreased by about 50 %, the content of hyperoside was reduced by 90%, and naringenin-7-O-glucoside disappeared.
表1 LC-MS/MS分析未发酵和发酵核桃粕冻干粉中的酚类化合物Table 1 LC-MS/MS analysis of phenolic compounds in unfermented and fermented walnut meal freeze-dried powder
(2)不同酚类化合物的抗菌水平(2) Antibacterial levels of different phenolic compounds
文献查阅发酵核桃粕中15种酚类化合物的抗菌活性,发现没食子酸、SA、柚皮素、咖啡酸、阿魏酸、原儿茶酸和绿原酸可能有抗菌效果。将以上7种酚类化合物对E.coli、S.aureus和P.victoriae处理(表2),发现没食子酸在浓度为5.0mg/mL时,对S.aureus有抗菌效果,抑菌圈达到15.0±0.50mm,但对E.coli和P.victoriae没有抗菌效果。SA在浓度为5.0mg/mL时,对S.aureus有抗菌效果,抑菌圈达到13.0±0.58mm,对P.victoriae也有抗菌效果,抑菌圈达到10.0±0.29mm,但对E.coli没有抑制效果。其余5种酚类化合物包括柚皮素、咖啡酸、阿魏酸、原儿茶酸和绿原酸在浓度为5.0mg/mL时,对S.aureus、E.coli和P.victoriae均无抗菌效果。对SA进行最小抑菌浓度(MIC)测定,发现SA对P.victoriae的MIC为4.40mg/mL。Literature review on the antibacterial activity of 15 phenolic compounds in fermented walnut meal found that gallic acid, SA, naringenin, caffeic acid, ferulic acid, protocatechuic acid and chlorogenic acid may have antibacterial effects. The above seven phenolic compounds were treated with E.coli, S.aureus and P.victoriae (Table 2), and it was found that gallic acid had an antibacterial effect on S.aureus at a concentration of 5.0 mg/mL, and the inhibition zone reached 15.0 ±0.50mm, but no antibacterial effect on E.coli and P.victoriae. When the concentration of SA was 5.0mg/mL, SA had antibacterial effect on S.aureus, the inhibition zone reached 13.0±0.58mm, and it also had antibacterial effect on P.victoriae, the inhibition zone reached 10.0±0.29mm, but it had no effect on E.coli Inhibitory effect. The remaining 5 phenolic compounds including naringenin, caffeic acid, ferulic acid, protocatechuic acid and chlorogenic acid had no antibacterial effect on S.aureus, E.coli and P. victoriae at a concentration of 5.0 mg/mL Effect. The minimum inhibitory concentration (MIC) of SA was determined, and it was found that the MIC of SA to P. victoriae was 4.40 mg/mL.
表2发酵核桃粕冻干粉中酚类化合物的抗菌水平Table 2 Antibacterial levels of phenolic compounds in fermented walnut meal freeze-dried powder
注:不同小写字母(a~c)和大写字母(A~B)分别表示5.0mg/mL的不同酚类化合物对S.aureus和P.victoriae的抗菌活性显著性差异(p<0.05)。采用无菌水和纳他霉素分别作为阴性和阳性对照。Note: Different lowercase letters (a~c) and capital letters (A~B) respectively indicate the significant difference (p<0.05) in the antibacterial activity of different phenolic compounds at 5.0 mg/mL against S.aureus and P.victoriae. Sterile water and natamycin were used as negative and positive controls, respectively.
实施例3多肽鉴定Embodiment 3 polypeptide identification
本实施例利用超滤和LC-MS/MS纯化鉴定多肽序列,PyRx虚拟筛选抗菌活性特征肽段,人工合成验证其抗菌活性,并采用分子对接技术分析其与受体蛋白的相互作用力。In this example, ultrafiltration and LC-MS/MS were used to purify and identify the peptide sequence, PyRx virtually screened the characteristic peptides for antibacterial activity, artificially synthesized to verify its antibacterial activity, and molecular docking technology was used to analyze its interaction with receptor proteins.
(1)不同分子量发酵核桃粕冻干粉的抗菌活性(1) Antibacterial activity of fermented walnut meal freeze-dried powder with different molecular weight
取未发酵核桃粕和发酵核桃粕冻干粉紫外杀菌并转移至离心管,无菌水溶解,备用。Unfermented walnut meal and fermented walnut meal freeze-dried powder were sterilized by ultraviolet light, transferred to a centrifuge tube, dissolved in sterile water, and set aside.
采用截留分子量分别为3kDa、5kDa、10kDa的超滤膜对发酵核桃粕进行超滤处理,以纯化和富集制备分子量分别为0~3kDa、3~5kDa、5~10kDa和大于10kDa的发酵核桃粕。结束后,将各分子量发酵核桃粕冷冻干燥,紫外灭菌后,转移至离心管并无菌水溶解,备用。Use ultrafiltration membranes with molecular weight cut-offs of 3kDa, 5kDa, and 10kDa to carry out ultrafiltration treatment on fermented walnut meal to purify and enrich to prepare fermented walnut meal with molecular weights of 0-3kDa, 3-5kDa, 5-10kDa and greater than 10kDa . After the end, the fermented walnut meal of each molecular weight was freeze-dried, sterilized by ultraviolet light, transferred to a centrifuge tube and dissolved in sterile water, and set aside.
测定上述不同成分与不同分子量发酵核桃粕冻干粉的抑菌活性。The antibacterial activity of the above-mentioned different components and the freeze-dried powder of fermented walnut meal with different molecular weights was determined.
结果如下:对比不同成分与分子量发酵核桃粕冻干粉对P.victoriae的抗菌效果,如表3所示。结果表明,未发酵核桃粕对P.victoriae没有抗菌活性,发酵核桃粕冻干粉对P.victoriae的MIC为40μg/mL,抑菌圈达到12.23±0.25mm。The results are as follows: compare the antibacterial effect of fermented walnut meal freeze-dried powder with different components and molecular weights on P.victoriae, as shown in Table 3. The results showed that unfermented walnut meal had no antibacterial activity against P.victoriae, and the MIC of fermented walnut meal freeze-dried powder against P.victoriae was 40μg/mL, and the inhibition zone reached 12.23±0.25mm.
发酵核桃粕经过10kDa、5kDa和3kDa膜包超滤和冻干后,得到大于10kDa、5~10kDa、3~5kDa和0~3kD发酵核桃粕冻干粉。对比4组不同分子量发酵核桃粕冻干粉对P.victoriae的抗菌活性,发现5~10kDa和3~5kDa发酵核桃粕冻干粉对P.victoriae没有抗菌活性。大于10kDa发酵核桃粕冻干粉对P.victoriae的MIC为20μg/mL,抑菌圈达到10.33±0.26mm。0~3kDa发酵核桃粕冻干粉对P.victoriae的MIC为10μg/mL,抑菌圈达到13.18±0.28mm,低于发酵核桃粕冻干粉对P.victoriae的MIC,这说明发酵核桃粕冻干粉对P.victoriae的抗菌活性主要来源于0~3kDa的组分。后续将对0~3kDa冻干粉组分进行多肽的鉴定分析。After the fermented walnut meal is subjected to ultrafiltration and freeze-drying with 10kDa, 5kDa and 3kDa membranes, the freeze-dried powder of the fermented walnut meal larger than 10kDa, 5-10kDa, 3-5kDa and 0-3kD is obtained. Comparing the antibacterial activity of 4 groups of lyophilized fermented walnut meal with different molecular weights against P.victoriae, it was found that 5-10kDa and 3-5kDa fermented walnut meal lyophilized powder had no antibacterial activity against P.victoriae. The MIC of freeze-dried powder of fermented walnut meal greater than 10kDa to P.victoriae was 20μg/mL, and the inhibition zone reached 10.33±0.26mm. The MIC of 0~3kDa fermented walnut meal freeze-dried powder to P.victoriae is 10μg/mL, and the inhibition zone reaches 13.18±0.28mm, which is lower than the MIC of fermented walnut meal freeze-dried powder to P.victoriae, which shows that the fermented walnut meal frozen The antibacterial activity of dry powder against P.victoriae mainly comes from the components of 0~3kDa. Subsequently, the identification and analysis of the peptide will be carried out on the 0-3kDa lyophilized powder fraction.
表3不同发酵核桃粕组分冻干粉对P.victoriae的抗菌水平Table 3 The antibacterial level of different fermented walnut meal components freeze-dried powder to P. victoriae
注:同一列不同大写字母(A~B)表示不同发酵核桃粕组分冻干粉在同一浓度下对P.victoriae的抗菌活性显著性差异(p<0.05)。采用无菌水和纳他霉素分别作为阴性和阳性对照。Note: Different capital letters (A~B) in the same column indicate significant differences in the antibacterial activity of different fermented walnut meal components freeze-dried powders against P.victoriae at the same concentration (p<0.05). Sterile water and natamycin were used as negative and positive controls, respectively.
(2)LC-MS/MS多肽组成鉴定(2) LC-MS/MS peptide composition identification
将0~3kDa的发酵核桃粕冻干粉进行还原烷基化预处理,过预柱(Acclaim PepMapRPLC C 18,300μm×5mm,5μm)后以600nL/min的流速注入分析柱(Acclaim PepMap RPLC C18,150μm×150mm,1.9μm)。流动相A为0.1%甲酸,流动相B为0.1%甲酸和80%乙腈。洗脱梯度为:0~2min,4~8%B;2~45min,8~28%B;45~55min,28~40%B;55~56min,40~95%B;56~66min,95~95%B。一级质谱参数:一级质谱分辨率为70000,AGC目标为3e6,MaximumIT为40ms,扫描范围为100~1500m/z。二级质谱参数:二级质谱分辨率为17500,AGC目标为1e5,Maximum IT为60ms,TopN为20,NCE/stepped NCE为27。使用软件PEAKS Studio8.5 Denovo对多肽序列解析。The freeze-dried powder of fermented walnut dregs of 0~3kDa was subjected to reductive alkylation pretreatment, passed through the pre-column (Acclaim PepMap RPLC C 18, 300μm×5mm, 5μm), and then injected into the analytical column (Acclaim PepMap RPLC C18, 150μm×150mm, 1.9μm). Mobile phase A was 0.1% formic acid and mobile phase B was 0.1% formic acid and 80% acetonitrile. The elution gradient is: 0~2min, 4~8%B; 2~45min, 8~28%B; 45~55min, 28~40%B; 55~56min, 40~95%B; 56~66min, 95%B ~95%B. Primary mass spectrometry parameters: primary mass spectrometry resolution is 70000, AGC target is 3e6, MaximumIT is 40ms, and scanning range is 100-1500m/z. Secondary mass spectrometry parameters: Secondary mass spectrometry resolution is 17500, AGC target is 1e5, Maximum IT is 60ms, TopN is 20, NCE/stepped NCE is 27. Use the software PEAKS Studio8.5 Denovo to analyze the peptide sequence.
结果:将0~3kDa的发酵核桃粕冻干粉进行LC-MS/MS(图3)并数据库搜索比对,共得到143个多肽序列,其中氨基酸数量≤10的多肽序列122个。Results: LC-MS/MS (Fig. 3) was performed on the freeze-dried powder of fermented walnut meal of 0-3 kDa (Fig. 3) and compared with the database. A total of 143 polypeptide sequences were obtained, including 122 polypeptide sequences with the number of amino acids ≤ 10.
(3)虚拟筛选肽段(3) Virtual screening of peptides
利用Chem3D Ultra 14.0软件绘制肽段的3D结构图,格式转化以及能量最小化。Rho1 GTPase晶体结构(PDB ID:3A58)来自RCSB数据库(https://www.rcsb.org)。蛋白结构用AutodockTools 1.5.6软件进行加氢预处理,并保存为pdbqt格式。使用PyRx软件将所有肽段设为配体,与酶依次进行对接打分和虚拟筛选,通过对接能大小判断其相互作用力的强弱以筛选肽段。在Uniprot蛋白质数据库(https://www.uniprot.org/proteomes)下载核桃蛋白序列,通过Geneious软件对比肽段是否属于核桃蛋白。Use Chem3D Ultra 14.0 software to draw the 3D structure of the peptide, format conversion and energy minimization. The crystal structure of Rho1 GTPase (PDB ID: 3A58) was obtained from the RCSB database (https://www.rcsb.org). The protein structure was pretreated by hydrogenation with AutodockTools 1.5.6 software, and saved in pdbqt format. Use the PyRx software to set all the peptides as ligands, perform docking scoring and virtual screening with the enzyme in sequence, and judge the strength of the interaction by the docking energy to screen the peptides. Download the walnut protein sequence from the Uniprot protein database (https://www.uniprot.org/proteomes), and use the Geneious software to compare whether the peptides belong to the walnut protein.
结果:β-1,3-葡聚糖合成酶负责合成真菌细胞壁组成成分β-1,3-葡聚糖,其由至少两个亚基组成。其中调节亚基Rho1 GTPase具有两个开关,这两个开关都参与了β-1,3-葡聚糖合成酶的激活。因此,Rho1 GTPase对真菌细胞壁生物合成至关重要,且该亚基通常是抗真菌新药开发的靶点。Results: β-1,3-glucan synthase is responsible for the synthesis of fungal cell wall component β-1,3-glucan, which consists of at least two subunits. The regulatory subunit Rho1 GTPase has two switches, both of which are involved in the activation of β-1,3-glucan synthase. Therefore, the Rho1 GTPase is critical for fungal cell wall biosynthesis, and this subunit is often a target for the development of new antifungal drugs.
将LC-MS/MS后得到的122个氨基酸数量≤10的多肽序列与Rho1 GTPase进行虚拟筛选,并根据对接能高低对小分子多肽进行排序。对接能通常为负数,其值越小,表明肽段与Rho1 GTPase之间的结合越稳定,即越可能具有抗菌活性。因为B.subtilis自身的发酵产物含有具有一定抗菌作用的环脂肽,包括伊枯草菌素和丰原素等。因此,需要通过Geneious软件对比多肽和核桃蛋白序列以确定多肽是否属于核桃蛋白序列。经过序列对比,发现对接能排名前10的多肽中有4个肽段属于核桃蛋白序列,分别是FGGDSTHP、ALGGGY、YVVPW和PLLRW(表4)。The 122 polypeptide sequences with ≤10 amino acids obtained after LC-MS/MS were subjected to virtual screening with Rho1 GTPase, and the small molecular polypeptides were sorted according to the docking energy. The docking energy is usually a negative number, and the smaller the value, the more stable the binding between the peptide and Rho1 GTPase, that is, the more likely it has antibacterial activity. Because the fermentation product of B. subtilis itself contains cyclolipopeptides with certain antibacterial effects, including iturin and Fengyuansu. Therefore, it is necessary to compare the polypeptide and walnut protein sequences by Geneious software to determine whether the polypeptide belongs to the walnut protein sequence. After sequence comparison, it was found that among the top 10 peptides in docking ability, 4 peptides belonged to the walnut protein sequence, namely FGGDSTHP, ALGGGY, YVVPW and PLLRW (Table 4).
表4对接能排名前10且属于核桃蛋白序列的肽段Table 4 The top 10 peptides that can be docked and belong to the walnut protein sequence
(4)人工合成肽段(4) Artificially synthesized peptides
对FGGDSTHP、ALGGGY、YVVPW和PLLRW肽段进行人工合成。肽段的合成采用Fmoc固相合成法,根据氨基酸序列合成肽段,经切割、析出、纯化后得到粉末状多肽。合成过程委托南京源肽生物科技有限公司,纯度均大于95%。FGGDSTHP, ALGGGY, YVVPW and PLLRW peptides were artificially synthesized. The synthesis of peptides adopts the Fmoc solid-phase synthesis method, and peptides are synthesized according to the amino acid sequence, and powdered peptides are obtained after cleavage, precipitation, and purification. The synthesis process was entrusted to Nanjing Yuanpeptide Biotechnology Co., Ltd., and the purity was greater than 95%.
(5)合成肽段的抗菌活性(5) Antibacterial activity of synthetic peptides
结果:通过抑菌圈的直径大小评价合成肽段的抗菌活性(表5)。研究发现4种肽段对E.coli都没有抗菌活性,这与前述发酵核桃粕及其冻干粉对E.coli无抗菌活性的结果一致。对于P.victoriae,采用16.0mg/mL的4种多肽对其依次处理,发现多肽YVVPW的抗菌活性最好,而且YVVPW对P.victoriae的MIC为16.0mg/mL。ALGGGY和FGGDSTHP抗菌活性次之,PLLRW对P.victoriae没有抗菌活性。对于S.aureus,采用16.0mg/mL的4种多肽对其依次处理,发现没有抗菌活性。增加多肽浓度,采用20.0mg/mL多肽对S.aureus依次处理,发现ALGGGY的抗菌活性大于YVVPW和PLLRW,FGGDSTHP没有抗菌活性。由于导致果蔬腐败的微生物主要为真菌,且刺梨的致腐优势菌为P.victoriae,因此后续实验将对多肽YVVPW展开研究。YVVPW的二级质谱图与化学结构如图4所示。Results: The antibacterial activity of the synthetic peptide was evaluated by the diameter of the inhibition zone (Table 5). The study found that the four peptides had no antibacterial activity against E.coli, which was consistent with the aforementioned results that fermented walnut meal and its lyophilized powder had no antibacterial activity against E.coli. For P.victoriae, 16.0mg/mL of 4 kinds of polypeptides were used to treat it sequentially. It was found that the antibacterial activity of polypeptide YVVPW was the best, and the MIC of YVVPW on P.victoriae was 16.0mg/mL. The antibacterial activity of ALGGGY and FGGDSTHP was next, and PLLRW had no antibacterial activity against P.victoriae. For S.aureus, it was treated sequentially with 16.0 mg/mL of 4 peptides, and no antibacterial activity was found. Increase the concentration of peptides, and use 20.0mg/mL peptides to treat S.aureus sequentially. It is found that the antibacterial activity of ALGGGY is greater than that of YVVPW and PLLRW, and FGGDSTHP has no antibacterial activity. Since the microorganisms that cause fruit and vegetable spoilage are mainly fungi, and the dominant rot-causing bacteria of Rosa roxburghii is P.victoriae, the follow-up experiments will study the polypeptide YVVPW. The secondary mass spectrum and chemical structure of YVVPW are shown in Figure 4.
表5不同肽段的抗菌活性Antibacterial activity of different peptides in table 5
注:不同小写字母表示16.0mg/mL的不同多肽对P.victoriae的抗菌活性显著性差异(p<0.05),不同大写字母表示20.0mg/mL的不同多肽对S.aureus的抗菌活性显著性差异(p<0.05)。采用无菌水和纳他霉素分别作为阴性和阳性对照。Note: Different lowercase letters indicate a significant difference in the antibacterial activity of different polypeptides at 16.0mg/mL against P. victoriae (p<0.05), and different uppercase letters indicate a significant difference in the antibacterial activity of different polypeptides at 20.0mg/mL against S.aureus (p<0.05). Sterile water and natamycin were used as negative and positive controls, respectively.
(6)分子对接肽段YVVPW与Rho1 GTPase(6) Molecular docking peptide YVVPW and Rho1 GTPase
将肽段作为配体,导入Schrodinger软件,加氢、结构优化、能量最小化。将Rho1GTPase作为受体,在Maestro11.9平台处理,Schrodinger软件去除结晶水,加氢,能量最小化。采用Maestro软件的Glide模块分子对接Rho1GTPase和肽段。利用ProteinPreparation Wizard模块对Rho1 GTPase进行预处理、优化和最小化。导入Rho1 GTPase,确定坐标和盒子大小,选取Rho1 GTPase的预测活性位点作为盒子的质心,使用SP方法分子对接。The peptide was used as a ligand and imported into Schrodinger software for hydrogenation, structure optimization, and energy minimization. Rho1GTPase was used as the acceptor, processed on the Maestro11.9 platform, and Schrodinger software was used to remove crystal water, add hydrogen, and minimize energy. use Molecular docking of Rho1GTPase and peptides in the Glide module of Maestro software. Rho1 GTPase was preconditioned, optimized and minimized using the ProteinPreparation Wizard module. Import Rho1 GTPase, determine the coordinates and box size, and select the predicted active site of Rho1 GTPase as The centroid of the box, molecular docking using the SP method.
结果:采用分子对接模拟构象YVVPW与Rho1 GTPase的相互作用,对接结果如图5所示。抗菌肽YVVPW与Rho1 GTPase紧密结合且匹配度高,氢键、疏水相互作用和π-π堆积是抗菌肽YVVPW与Rho1 GTPase之间的主要相互作用力。将对接后抗菌肽YVVPW与Rho1 GTPase形成的复合物利用Pymol2.1软件进行可视化,得到抗菌肽YVVPW与Rho1 GTPase的结合模式。根据结合模式可以清晰的看到YVVPW与Rho1 GTPase活性位点相互作用的氨基酸残基有PRO-36、CYS-25、VAL-38、TYR-39、ALA-20、LYS-123、PHE-35、LYS-167、LEU-126等。抗菌肽YVVPW与Rho1 GTPase活性位点氨基酸形成4个氢键,包括抗菌肽的Tyr残基与LYS-167、Pro残基与LYS-123、Trp残基与PRO-36、Trp残基与VAL-38。氢键距离较短,结合力较强,氢键对锚定蛋白Rho1 GTPase空腔中的YVVPW有着重要作用。另外,抗菌肽YVVPW的苯环可以与TYR-39、CYS-25和PHE-35形成π-π共轭相互作用,与LYS-167、LYS-123、ALA-20、TYR-39、PRO-36和CYS-25形成疏水相互作用力(烷基键和π-烷基键两种),对稳定复合物也有着重要贡献。综上,分子对接模拟构象从分子水平和理论角度阐明了二者的结合模式,抗菌肽YVVPW与Rho1GTPase紧密结合且匹配度高。Results: Molecular docking was used to simulate the interaction between conformation YVVPW and Rho1 GTPase, and the docking results are shown in Figure 5. The antimicrobial peptide YVVPW was tightly combined with Rho1 GTPase and had a high degree of matching. Hydrogen bonds, hydrophobic interactions and π-π stacking were the main interaction forces between the antimicrobial peptide YVVPW and Rho1 GTPase. The complex formed by antibacterial peptide YVVPW and Rho1 GTPase after docking was visualized using Pymol2.1 software to obtain the binding mode of antimicrobial peptide YVVPW and Rho1 GTPase. According to the binding mode, it can be clearly seen that the amino acid residues interacting between YVVPW and Rho1 GTPase active site are PRO-36, CYS-25, VAL-38, TYR-39, ALA-20, LYS-123, PHE-35, LYS-167, LEU-126, etc. The antimicrobial peptide YVVPW forms four hydrogen bonds with the active site amino acids of Rho1 GTPase, including Tyr residues and LYS-167, Pro residues and LYS-123, Trp residues and PRO-36, Trp residues and VAL- 38. The hydrogen bond distance is shorter and the binding force is stronger, and the hydrogen bond plays an important role in the YVVPW in the cavity of the anchor protein Rho1 GTPase. In addition, the phenyl ring of the antimicrobial peptide YVVPW can form π-π conjugate interactions with TYR-39, CYS-25 and PHE-35, and interact with LYS-167, LYS-123, ALA-20, TYR-39, PRO-36 It forms a hydrophobic interaction force (two kinds of alkyl bond and π-alkyl bond) with CYS-25, which also plays an important role in stabilizing the complex. In summary, the molecular docking simulation conformation clarifies the binding mode of the two from the molecular level and theoretical point of view, and the antibacterial peptide YVVPW binds closely to Rho1GTPase with a high degree of matching.
实施例4YVVPW和SA联合抗菌活性Embodiment 4YVVPW and SA joint antibacterial activity
本实施例将抗菌肽与SA联合,测定其混合物对P.victoriae的抗菌活性,并利用荧光光谱、傅里叶红外光谱、分子对接探究两者在结构上的相互作用。In this example, the antimicrobial peptide was combined with SA, and the antibacterial activity of the mixture against P. victoriae was determined, and the structural interaction between the two was explored by using fluorescence spectroscopy, Fourier transform infrared spectroscopy, and molecular docking.
(1)采用二倍稀释法测定SA和YVVPW对P.victoriae的最小抑菌浓度(MIC)。在吸取100μL浓度约为105CFU/mL的P.victoriae孢子悬液涂布于PDA培养基利用无菌牛津杯打孔,第一组加入100μL一定浓度的SA,第二组加入1/2第一组浓度的SA,第三组加入1/2第二组浓度的SA,依次,一共测定5组。以无菌水为阴性对照,以添加纳他霉素为阳性对照。将平板置于28℃培养箱中培养5d,观察结果,以不出现肉眼可见菌落的浓度为SA对P.victoriae的MIC。YVVPW的MIC依同样方法测定。(1) The minimum inhibitory concentration (MIC) of SA and YVVPW against P. victoriae was determined by double dilution method. After drawing 100 μL of P. victoriae spore suspension with a concentration of about 10 5 CFU/mL and spreading it on the PDA medium, punch holes with a sterile Oxford cup, add 100 μL of a certain concentration of SA to the first group, and add 1/2 of the second group to the second group. One concentration of SA, the third group was added with 1/2 of the concentration of SA in the second group, and in turn, a total of 5 groups were measured. Sterile water was used as a negative control, and natamycin was used as a positive control. Place the plate in a 28°C incubator and incubate for 5 days, observe the results, and take the concentration at which no visible colonies appear as the MIC of SA for P.victoriae. The MIC of YVVPW was determined in the same way.
根据SA和YVVPW单独的MIC确定抗菌剂稀释浓度,抗菌剂最高浓度为MIC,依次用无菌水倍比稀释成1/2、1/4、1/8、1/16MIC进行5×5联合。将平板置于28℃培养箱中培养5d,观察结果,以不出现肉眼可见菌落的浓度为SA和YVVPW对P.victoriae的联合MIC。联合抗菌实验采用分级抑菌浓度指数(FIC)作为判定依据:The dilution concentration of antibacterial agent was determined according to the MIC of SA and YVVPW alone. The highest concentration of antibacterial agent was MIC, which was sequentially diluted with sterile water to 1/2, 1/4, 1/8, and 1/16 MIC for 5×5 combination. Place the plate in a 28°C incubator and incubate for 5 days, observe the results, and take the concentration at which no visible colonies appear as the combined MIC of SA and YVVPW for P.victoriae. The joint antibacterial experiment uses the graded inhibitory concentration index (FIC) as the judgment basis:
FIC≤0.5,协同作用,FIC越小,协同效果越好;0.5<FIC≤1,相加作用;1<FIC≤2,无关作用;FIC>2,拮抗作用。FIC≤0.5, synergistic effect, the smaller the FIC, the better the synergistic effect; 0.5<FIC≤1, additive effect; 1<FIC≤2, irrelevant effect; FIC>2, antagonistic effect.
结果:抗菌肽YVVPW对P.victoriae单独的MIC为16.0mg/mL,SA对P.victoriae单独的MIC为4.40mg/mL。组合物中抗菌肽YVVPW的浓度范围为1.0mg/mL~4.0mg/mL,SA的浓度范围为0.27mg/mL~1.10mg/mL时二者具有协同抑菌活性(表6)。当组合物中抗菌肽YVVPW的浓度为2.0mg/mL,SA的浓度为0.55mg/mL时,FIC值为0.25,对P.victoriae的抗菌活性最高,抑菌圈达到11.50±0.41mm。当组合物中抗菌肽YVVPW的浓度为1.0mg/mL,SA的浓度为0.27mg/mL时,对P.victoriae的抑菌圈达到7.35±0.20mm,FIC值最低,协同效果最好。Results: The MIC of antimicrobial peptide YVVPW to P. victoriae alone was 16.0 mg/mL, and the MIC of SA to P. victoriae alone was 4.40 mg/mL. The concentration range of the antimicrobial peptide YVVPW in the composition is 1.0 mg/mL-4.0 mg/mL, and the concentration range of SA is 0.27 mg/mL-1.10 mg/mL, when the two have synergistic antibacterial activity (Table 6). When the concentration of antimicrobial peptide YVVPW in the composition is 2.0 mg/mL, and the concentration of SA is 0.55 mg/mL, the FIC value is 0.25, and the antibacterial activity against P. victoriae is the highest, and the inhibition zone reaches 11.50±0.41mm. When the concentration of antibacterial peptide YVVPW in the composition is 1.0 mg/mL, and the concentration of SA is 0.27 mg/mL, the inhibition zone against P. victoriae reaches 7.35±0.20 mm, the FIC value is the lowest, and the synergistic effect is the best.
表6 SA与YVVPW对P.victoriae的协同抑菌活性Table 6 Synergistic antibacterial activity of SA and YVVPW against P. victoriae
注:不同小写字母(a~h)表示不同协同工作浓度的SA与YVVPW对P.victoriae的抗菌活性显著性差异(p<0.05)。不同大写字母(A~G)表示不同协同工作浓度SA与YVVPW的分级抑菌浓度指数显著性差异(p<0.05)。Note: Different lowercase letters (a~h) indicate significant differences in the antibacterial activity of SA and YVVPW at different concentrations of synergistic work against P.victoriae (p<0.05). Different capital letters (A~G) indicate significant differences in graded inhibitory concentration indices of different synergistic working concentrations SA and YVVPW (p<0.05).
(2)荧光光谱探究YVVPW与SA相互作用(2) Fluorescence spectroscopy to explore the interaction between YVVPW and SA
选择一定浓度的肽段YVVPW与SA混合,通过激发加发射稳态谱测定激发波长。再将1.0mg/mL的YVVPW与不同浓度(0、0.27、0.55、1.10、2.20、4.40mg/mL)的SA混合,记录270nm至500nm的发射光谱。A certain concentration of peptide YVVPW was selected to be mixed with SA, and the excitation wavelength was determined by excitation and emission steady-state spectroscopy. Then 1.0mg/mL of YVVPW was mixed with different concentrations (0, 0.27, 0.55, 1.10, 2.20, 4.40mg/mL) of SA, and the emission spectrum from 270nm to 500nm was recorded.
结果:荧光光谱可以用来探索活性物质之间的猝灭行为和结合常数,已被广泛应用于研究小分子与蛋白质的相互作用。抗菌肽YVVPW因含有Trp和Tyr残基而具有内在荧光,因此可以通过内在荧光猝灭研究YVVPW与SA的相互作用。将一定浓度的YVVPW与SA混合,通过激发加发射稳态谱确定激发波长为261nm。测定不同浓度SA(0、0.27、0.55、1.10、2.20、4.40mg/mL)存在时YVVPW荧光光谱的变化,如图6所示。未添加SA时,YVVPW在368nm处出现最大吸收波长,随着SA添加浓度的增大,YVVPW的荧光强度逐渐降低,表明荧光猝灭发生,且YVVPW的最大吸收波长发生红移。当SA添加浓度为4.40mg/mL时,最大波长红移至397nm。这些结果证实了与SA的相互作用可能改变了抗菌肽YVVPW的分子构象,YVVPW的Trp和Tyr残基参与了相互作用。Results: Fluorescence spectroscopy can be used to explore the quenching behavior and binding constants between active substances, and has been widely used to study the interaction between small molecules and proteins. The antimicrobial peptide YVVPW has intrinsic fluorescence because it contains Trp and Tyr residues, so the interaction between YVVPW and SA can be studied through intrinsic fluorescence quenching. A certain concentration of YVVPW was mixed with SA, and the excitation wavelength was determined to be 261nm by excitation plus emission steady-state spectrum. The changes in the fluorescence spectrum of YVVPW in the presence of different concentrations of SA (0, 0.27, 0.55, 1.10, 2.20, 4.40 mg/mL) were measured, as shown in FIG. 6 . When no SA was added, the maximum absorption wavelength of YVVPW appeared at 368nm. With the increase of SA concentration, the fluorescence intensity of YVVPW gradually decreased, indicating that the fluorescence quenching occurred, and the maximum absorption wavelength of YVVPW was red-shifted. When the added concentration of SA was 4.40mg/mL, the maximum wavelength red shifted to 397nm. These results confirmed that the interaction with SA may change the molecular conformation of the antimicrobial peptide YVVPW, and the Trp and Tyr residues of YVVPW are involved in the interaction.
(3)傅立叶红外光谱探究YVVPW与SA相互作用(3) Fourier transform infrared spectroscopy to explore the interaction between YVVPW and SA
为了对YVVPW、SA及YVVPW-SA混合物进行官能团鉴定,采用FTIR-ATR测量模式进行分析。光谱以400~4000cm-1的透射率模式记录,扫描次数为32次,分辨率为4cm-1。In order to identify the functional groups of YVVPW, SA and YVVPW-SA mixture, the FTIR-ATR measurement mode was used for analysis. The spectra were recorded in the transmittance mode of 400-4000 cm -1 , the number of scans was 32, and the resolution was 4 cm -1 .
结果:为进一步探究抗菌肽YVVPW与SA的相互作用,YVVPW、SA和YVVPW-SA的FTIR结果如图7所示。YVVPW在3294.57cm-1处的吸收峰归属为-OH伸缩振动峰,在2968.92cm-1处的吸收峰对应饱和碳上的C-H伸缩振动,在1658.18cm-1处的吸收峰对应酰胺I带,主要由C=O伸缩振动引起,在1518.26cm-1处的吸收峰对应酰胺酰胺Ⅱ带结构,主要由N-H弯曲振动引起。SA在3231.97cm-1处的吸收峰主要与-OH的伸缩振动有关,2851.82cm-1处的吸收峰主要与饱和碳上的C-H的伸缩振动有关,1657.04cm-1处的吸收峰主要由C=O的伸缩振动引起,1609.05cm-1和1557.0cm-1处的吸收峰主要由苯环的骨架振动引起,755.54cm-1和690.77cm-1处的吸收峰主要与苯环的C-H面外弯曲振动有关。与YVVPW相比,YVVPW-SA在3403.26cm-1处出现一个窄峰,表明二者之间存在氢键。复合物酰胺I带和酰胺Ⅱ带的吸收峰发生了轻微的红移,且随着SA的加入相对强度增大。与SA相比,YVVPW-SA在1609.05cm-1,755.54cm-1和690.77cm-1处的吸收峰分别红移至1613.02cm-1,756.44cm-1和698.59cm-1,且相对强度随着YVVPW的加入减小,说明YVVPW-SA之间存在分子间相互作用。因此,FTIR的结果表明,YVVPW与SA之间存在氢键和分子间作用力。Results: In order to further explore the interaction between the antimicrobial peptide YVVPW and SA, the FTIR results of YVVPW, SA and YVVPW-SA are shown in Figure 7. The absorption peak of YVVPW at 3294.57cm -1 is attributed to the -OH stretching vibration peak, the absorption peak at 2968.92cm -1 corresponds to the CH stretching vibration on saturated carbon, and the absorption peak at 1658.18cm -1 corresponds to the amide I band, It is mainly caused by C=O stretching vibration, and the absorption peak at 1518.26cm -1 corresponds to the amide Ⅱ band structure, which is mainly caused by NH bending vibration. The absorption peak of SA at 3231.97 cm -1 is mainly related to the stretching vibration of -OH, the absorption peak at 2851.82 cm- 1 is mainly related to the stretching vibration of CH on saturated carbon, and the absorption peak at 1657.04 cm -1 is mainly caused by C = O caused by the stretching vibration, the absorption peaks at 1609.05cm -1 and 1557.0cm -1 are mainly caused by the skeleton vibration of the benzene ring, and the absorption peaks at 755.54cm -1 and 690.77cm -1 are mainly related to the CH out-of-plane of the benzene ring related to bending vibration. Compared with YVVPW, YVVPW-SA has a narrow peak at 3403.26cm -1 , indicating that there is a hydrogen bond between the two. The absorption peaks of the amide I band and amide II band of the complex were slightly red-shifted, and the relative intensity increased with the addition of SA. Compared with SA, the absorption peaks of YVVPW-SA at 1609.05cm -1 , 755.54cm -1 and 690.77cm -1 were red-shifted to 1613.02cm -1 , 756.44cm -1 and 698.59cm -1 , respectively, and the relative intensities varied with The addition of YVVPW decreased, indicating that there was an intermolecular interaction between YVVPW-SA. Therefore, the results of FTIR indicated that there were hydrogen bonds and intermolecular forces between YVVPW and SA.
(4)分子对接探究YVVPW与SA相互作用(4) Molecular docking to explore the interaction between YVVPW and SA
利用分子对接进一步验证YVVPW与SA的互作机理,对接结果如图8所示,氢键、疏水相互作用、π-π堆积是抗菌肽YVVPW与SA之间的主要相互作用力。抗菌肽YVVPW与SA紧密结合且匹配度高,结合能为-5.27kcal/mol。利用Pymol2.1软件将对接后抗菌肽YVVPW与SA形成的复合物进行可视化,发现SA与YVVPW形成3个强氢键,包括与Tyr残基形成键长为的氢键,与抗菌肽N端的第2个和第3个Val残基形成键长都为的氢键。氢键距离短,远小于传统氢键的表明SA与YVVPW之间的氢键结合力强,氢键对抗菌肽YVVPW锚定SA有着重要作用。另外,SA的苯环可以与YVVPW的Trp残基的五元环形成很强的π-π共轭相互作用,对稳定复合物也有着重要贡献。综上,SA与YVVPW靶点结合紧密,能够形成稳定的复合物,这与本研究的荧光光谱和FTIR结果一致。Molecular docking was used to further verify the interaction mechanism between YVVPW and SA. The docking results are shown in Figure 8. Hydrogen bonds, hydrophobic interactions, and π-π stacking are the main interaction forces between the antimicrobial peptide YVVPW and SA. The antimicrobial peptide YVVPW binds closely to SA with a high matching degree, and the binding energy is -5.27kcal/mol. Using Pymol2.1 software to visualize the complex formed by antimicrobial peptide YVVPW and SA after docking, it was found that SA formed three strong hydrogen bonds with YVVPW, including the bonds with Tyr residues with a length of The hydrogen bond with the 2nd and 3rd Val residues at the N-terminus of the antimicrobial peptide is both long of hydrogen bonds. The hydrogen bond distance is short, much smaller than that of traditional hydrogen bonds It shows that the hydrogen bond between SA and YVVPW is strong, and hydrogen bond plays an important role in the anchoring of antibacterial peptide YVVPW to SA. In addition, the benzene ring of SA can form a strong π-π conjugated interaction with the five-membered ring of Trp residue of YVVPW, which also makes an important contribution to the stability of the complex. In summary, SA binds tightly to the YVVPW target and can form a stable complex, which is consistent with the results of fluorescence spectroscopy and FTIR in this study.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本专利构思的前提下,上述各实施方式还可以做出若干变形、组合和改进,这些都属于本专利的保护范围。因此,本专利的保护范围应以权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the scope of the patent. It should be noted that, for those skilled in the art, without departing from the concept of the patent, several modifications, combinations and improvements can be made to the above-mentioned embodiments, all of which belong to the protection scope of the patent. Therefore, the scope of protection of this patent should be determined by the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211084537.1A CN115433258B (en) | 2022-09-06 | 2022-09-06 | Antibacterial polypeptide and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211084537.1A CN115433258B (en) | 2022-09-06 | 2022-09-06 | Antibacterial polypeptide and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115433258A true CN115433258A (en) | 2022-12-06 |
CN115433258B CN115433258B (en) | 2023-09-26 |
Family
ID=84246867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211084537.1A Active CN115433258B (en) | 2022-09-06 | 2022-09-06 | Antibacterial polypeptide and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115433258B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116496357A (en) * | 2023-06-26 | 2023-07-28 | 南京益纤生物科技有限公司 | Iturin A antibacterial lipopeptide and preparation method thereof |
CN119285699A (en) * | 2024-11-13 | 2025-01-10 | 盐城工学院 | Walnut meal-derived antibacterial polypeptide and its application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080004997A (en) * | 2006-07-07 | 2008-01-10 | 조선대학교산학협력단 | Novel Antibacterial Peptide Pepsi 1 Designed from Cell Permeable Peptide Pei 1 and Uses thereof |
EP2551279A1 (en) * | 2011-07-27 | 2013-01-30 | University College Cork | Antimicrobial peptide produced by intestinal Lactobacillus salivarius |
CN108403582A (en) * | 2018-04-08 | 2018-08-17 | 北京皓尔生物科技有限公司 | A kind of anti-acne, acne-removing composition and its application containing antibacterial peptide |
CN112094323A (en) * | 2020-09-29 | 2020-12-18 | 福州大学 | Lactobacillus plantarum-derived broad-spectrum antibacterial peptide and application thereof |
CN114773435A (en) * | 2022-04-06 | 2022-07-22 | 上海交通大学 | A kind of earthworm antibacterial peptide and its application in broad-spectrum antibacterial |
-
2022
- 2022-09-06 CN CN202211084537.1A patent/CN115433258B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080004997A (en) * | 2006-07-07 | 2008-01-10 | 조선대학교산학협력단 | Novel Antibacterial Peptide Pepsi 1 Designed from Cell Permeable Peptide Pei 1 and Uses thereof |
EP2551279A1 (en) * | 2011-07-27 | 2013-01-30 | University College Cork | Antimicrobial peptide produced by intestinal Lactobacillus salivarius |
CN108403582A (en) * | 2018-04-08 | 2018-08-17 | 北京皓尔生物科技有限公司 | A kind of anti-acne, acne-removing composition and its application containing antibacterial peptide |
CN112094323A (en) * | 2020-09-29 | 2020-12-18 | 福州大学 | Lactobacillus plantarum-derived broad-spectrum antibacterial peptide and application thereof |
CN114773435A (en) * | 2022-04-06 | 2022-07-22 | 上海交通大学 | A kind of earthworm antibacterial peptide and its application in broad-spectrum antibacterial |
Non-Patent Citations (1)
Title |
---|
TAKEHIRO CHIBA ET AL.: "Inhibition of recombinant dipeptidyl peptidase III by synthetic hemorphin-like peptides", PEPTIDES, vol. 24, pages 773 - 778, XP002342483, DOI: 10.1016/S0196-9781(03)00119-0 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116496357A (en) * | 2023-06-26 | 2023-07-28 | 南京益纤生物科技有限公司 | Iturin A antibacterial lipopeptide and preparation method thereof |
CN116496357B (en) * | 2023-06-26 | 2023-09-22 | 南京益纤生物科技有限公司 | Iturin A antibacterial lipopeptide and preparation method thereof |
CN119285699A (en) * | 2024-11-13 | 2025-01-10 | 盐城工学院 | Walnut meal-derived antibacterial polypeptide and its application |
Also Published As
Publication number | Publication date |
---|---|
CN115433258B (en) | 2023-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Verrillo et al. | Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses | |
Paraszkiewicz et al. | Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources | |
CN115433258B (en) | Antibacterial polypeptide and application thereof | |
Iorizzo et al. | Selection and technological potential of Lactobacillus plantarum bacteria suitable for wine malolactic fermentation and grape aroma release | |
Liu et al. | Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4 | |
Cui et al. | Purification and partial characterization of a novel hemagglutinating glycoprotein from the cultured mycelia of Hericium erinaceus | |
Michlmayr et al. | Isolation and basic characterization of a β‐glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture | |
Romano et al. | Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7 | |
Ren et al. | Purification and characterization of high antioxidant peptides from duck egg white protein hydrolysates | |
Rodríguez-Chávez et al. | Identification of lipopeptides from Bacillus strain Q11 with ability to inhibit the germination of Penicillium expansum, the etiological agent of postharvest blue mold disease | |
Guo et al. | Purification and characterization of hydrolysable tannins extracted from Coriaria nepalensis bark using macroporous resin and their application in gallic acid production | |
Gordillo et al. | Purification of peptides from Bacillus strains with biological activity | |
US20070202570A1 (en) | Enzyme composition, low molecular weight hyaluronan and process for preparing the same | |
Sebastiana et al. | Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus | |
Seydel et al. | Formation of cyclotides and variations in cyclotide expression in Oldenlandia affinis suspension cultures | |
Zainuddin et al. | Lyngbyazothrins A− D, Antimicrobial Cyclic Undecapeptides from the Cultured Cyanobacterium Lyngbya sp. | |
Hu et al. | Isolation, identification, and synergistic mechanism of a novel antimicrobial peptide and phenolic compound from fermented walnut meal and their application in Rosa roxbughii Tratt spoilage fungus | |
Zhang et al. | Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes | |
Röhrich et al. | Screening the biosphere: the fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17‐, 18‐, 19‐, and 20‐residue peptaibiotics | |
Leclerc et al. | Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma l ongibrachiatum | |
Sica et al. | In situ mass spectrometry monitoring of fungal cultures led to the identification of four peptaibols with a rare threonine residue | |
Li et al. | Identification, characterization and in vitro activity of hypoglycemic peptides in whey hydrolysates from rubing cheese by-product | |
Dhanarajan et al. | Development and scale-up of an efficient and green process for HPLC purification of antimicrobial homologues of commercially important microbial lipopeptides | |
Oda et al. | A novel proteinase inhibitor, tyrostatin, inhibiting some pepstatin-insensitive carboxyl proteinases | |
Imada et al. | Purification and characterization of subtilisin inhibitors ‘Marinostatin’produced by marine Alteromonas sp. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |