[go: up one dir, main page]

CN115432957A - 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法 - Google Patents

一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法 Download PDF

Info

Publication number
CN115432957A
CN115432957A CN202211052960.3A CN202211052960A CN115432957A CN 115432957 A CN115432957 A CN 115432957A CN 202211052960 A CN202211052960 A CN 202211052960A CN 115432957 A CN115432957 A CN 115432957A
Authority
CN
China
Prior art keywords
zno
ptfe
powder
zinc acetate
cold sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211052960.3A
Other languages
English (en)
Other versions
CN115432957B (zh
Inventor
赵学童
杨洋
肖永健
梁杰
康晟淋
杨丽君
成立
郝建
廖瑞金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202211052960.3A priority Critical patent/CN115432957B/zh
Publication of CN115432957A publication Critical patent/CN115432957A/zh
Application granted granted Critical
Publication of CN115432957B publication Critical patent/CN115432957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing halogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种冷烧结制备ZnO‑PTFE超疏水复合陶瓷的方法,包括将ZnO粉末和PTFE粉料进行球磨混料,获得ZnO‑PTFE复合粉体;将冷烧结助剂加入ZnO‑PTFE复合粉体中,充分研磨均匀,获得待烧结粉末;将待烧结粉末倒入模具,施加压力,采用普通冷烧结或等离子体烧结自然冷却即得ZnO‑PTFE复合陶瓷。本发明采用冷烧结的方式,得到高致密度的ZnO‑聚四氟乙烯复合陶瓷片,相对致密度高于98%,具有超疏水特性,其疏水角度可达160°。

Description

一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法
技术领域
本发明涉及ZnO复合陶瓷的制备方法,特别涉及一种基于冷烧结制备具有超疏水特性 ZnO-聚四氟乙烯(PTFE)复合陶瓷的方法。
背景技术
ZnO由于禁带宽度窄,约为3.37eV,且具有大量的点缺陷如锌填隙、氧空位等,是一种典型的N型半导体,常用作压敏、气敏、热电以及光学等器件的基础材料而被广泛研究。通常,为了使ZnO陶瓷具有高的致密度和一定的机械性能,烧结温度需要在1000℃以上,所以聚合物与陶瓷的温度特性相差很大,如何使陶瓷和聚合物材料共烧一直是工业上的难点,而冷烧结可以很好的解决这个问题。采用冷烧结,以聚合物相调控陶瓷晶界,有望提高陶瓷的机械韧性,还可以发现陶瓷与有机聚合物共烧的其他优异性能,比如超疏水特性。
超疏水材料是一种对水具有排斥性的材料,水滴在其表面无法滑动铺展而保持球型滚动状,从而达到滚动自清洁的效果。润湿性是固体材料表面的重要性质之一,决定材料表面润湿性能的关键因素包括材料表面的化学组成和表面的微观几何结构。因此,学者们将静态水接触角大于150°,滚动角小于10°的表面称为超疏水表面。超疏水材料通常是具有微纳米复合粗糙结构和低表面能的化学物质,这也是成为超疏水材料的前提。
超疏水表面因其具备自清洁、油水分离、抗腐蚀、防结冰以及防雾等优良特性,近几年是国内研究的热点。目前,制备超疏水材料的方法优缺点如下:(1)模板法的优点在于易于操作,过程简单,但是表面的耐久性往往较差;(2)粉末喷涂法方便快捷、易操作,但耐磨性差,界面不稳定,易被腐蚀;(3)化学沉积法制取速度较快,但是化学试剂容易造成环境污染,且沉积表面耐磨性往往较差;(4)电化学沉积法工艺简单、成本低、效率高、易于控制,但电解抛光容易引起的环境污染问题,且制备的涂层强度与耐磨性较差;(5)通过激光刻蚀,可精确控制间距等参数,表面稳定性好,但是造价高昂,且冷却时间过长。(6)化学刻蚀法成本低、可控制、耐腐蚀,但环境污染和强度差的问题难以解决。虽然以上制备超疏水材料技术较为完备,但还存在有很多不足和问题急需解决。本发明提出一种冷烧结制备陶瓷-聚合物复合超疏水材料,具有制备工艺简单、经济快速等特点。
发明内容
针对现有技术存在的上述问题,本发明要解决的技术问题是:提供一种耐磨性好,工艺简单、成本低、效率高、低碳,快速制备出具有超疏水性能的ZnO-PTFE复合材料。
为解决上述技术问题,本发明采用如下技术方案:一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,包括如下步骤:
S1:将ZnO粉末和PTFE粉料进行球磨混料,获得ZnO-PTFE复合粉体,其中PTFE粉料的添加量为体积比0-80vol%;具体的,球磨混料时采用无水乙醇作为介质,球磨12h,然后在70℃进行烘干;其中无水乙醇添加的质量比ZnO粉末和PTFE粉料质量之和为1.5,ZnO 粉末和PTFE粉料采用分析纯99.5%。
S2:将冷烧结助剂加入S1中的ZnO-PTFE复合粉体中,在玛瑙研钵中将其充分研磨均匀,获得待烧结粉末;
S3:将待烧结粉末倒入钢制模具,施加50MPa-500MPa压力,采用普通冷烧结或等离子体烧结自然冷却即得ZnO-PTFE复合陶瓷;
所述普通冷烧结的烧结温度为120℃-300℃,升温速率为5℃/min-20℃/min,保温时间为 1h-10h;
所述等离子体烧结的烧结温度为100℃-300℃,升温速率为10℃/min-100℃/min,保温时间为5min-30min。
作为优选,所述S1中ZnO粉末的颗粒尺寸为10纳米-20微米,PTFE粉料的颗粒尺寸0.1-100微米。
作为优选,所述S2中的冷烧结助剂为醋酸溶液或二水醋酸锌粉末或醋酸锌溶液中一种或多种;
当冷烧结助剂为醋酸溶液或二水醋酸锌粉末或醋酸锌溶液中一种时:
所述醋酸溶液的浓度为0.5-5mol/L,所述醋酸溶液与ZnO-PTFE复合粉体的质量比为 1wt%-25wt%;所述二水醋酸锌粉末与ZnO-PTFE复合粉体的质量比为0.5-20wt%;所述醋酸锌溶液的浓度为0.2-3mol/L,所述醋酸锌溶液与ZnO-PTFE复合粉体的质量比为1wt%-20wt%。
当冷烧结助剂为醋酸溶液或二水醋酸锌粉末或醋酸锌溶液中多种时:
所述冷烧结助剂的添加量为2wt%-20wt%,所述醋酸溶液、二水醋酸锌粉末和醋酸锌溶液三者的用量比是1:0.5:1,其中,所述醋酸溶液的浓度为0.5-5mol/L,所述醋酸锌溶液的浓度为0.2-3mol/L。
作为优选,所述S2中醋酸锌粉末与ZnO-PTFE复合粉体的质量比为3-6wt%。
作为优选,所述S2中醋酸锌溶液的浓度为0.5-2mol%。
作为优选,所述S1中PTFE粉料与ZnO粉末的体积比为0-70%。
作为优选,所述S3得到ZnO-PTFE复合陶瓷疏水角可达160°以上。
相对于现有技术,本发明至少具有如下优点:
本发明采用冷烧结的方式,对本发明方法产生了如下巨大的影响:
1)与传统的高温烧结制备超疏水陶瓷或玻璃表面相比,通过冷烧结制备陶瓷-聚合物超疏水材料耗能大幅降低,,约为传统烧结法的1/100,具有低碳优势。
2)发现采用冷烧结ZnO-PTFE复合陶瓷,利用PTFE低表面能性质与纯ZnO陶瓷表面粗糙的性质,制备出具有超疏水性能的复合陶瓷,制备工艺简单,经济成本低廉。
3)采用冷烧结,所制备ZnO-PTFE复合陶瓷整体都具备超疏水性能(疏水角可达160°),且样品材料的耐磨性好。
附图说明
图1为冷烧结ZnO-PTFE复合陶瓷疏水角测试结果。
图2(a)、(b)分别为ZnO-PTFE陶瓷断面和表面的显微结构。
图3为ZnO-PTFE的表面粗糙度测试结果。
图4为ZnO-PTFE复合陶瓷样品耐磨性测试结果。
图5为冷烧结和传统烧结工艺的能耗对比结果。
具体实施方式
下面对本发明作进一步详细说明。
本专利采用冷烧结共烧ZnO-PTFE,发现ZnO-PTFE陶瓷具有疏水性能。
采用的冷烧结,实现了ZnO-PTFE复合陶瓷的低温烧结,该烧结技术可在极低温度下 (≤300℃),几分钟至几十分钟内实现ZnO-PTFE陶瓷致密化,烧结耗能不到传统固相烧结的 1/100。该烧结技术的主要机理是在配制ZnO-PTFE复合粉体的过程中添加适量的液相对 ZnO-PTFE粉料进行局部润湿溶解,使ZnO-PTFE粉体处于过饱和状态,然后再结合冷烧结升温并加压烧结,为试样的成瓷提供化学驱动力,即可在极低温、短时间内烧结出致密的ZnO-PTFE复合陶瓷。ZnO-PTFE复合陶瓷随着PTFE体积分数的增加,样品表面疏水角呈一个先上升后下降的规律,疏水角最高达161°,达到了超疏水的定义即疏水角大于150°。通过样品断面形貌图分析,随着PTFE体积分数的增加,ZnO晶粒尺寸逐渐减小,同时复合陶瓷内部形成了类似蜘蛛网状结构,且随着PTFE含量的增加而增加,逐渐出现ZnO-PTFE颗粒团聚现象。同时通过样品表面形貌图,通过结果显示分析,在PTFE含量0~56vol%之间, PTFE与ZnO颗粒分布越来越均匀,在56~100vol%,PTFE含量过高后,样品ZnO颗粒几乎被PTFE覆盖。随着PTFE体积分数的增加,ZnO-PTFE复合材料表面的粗糙度Rq值先增大后减小。
ZnO-PTFE复合粉体接触角测试结果如图1所示,其静态接触角最大可达161°,这是由于PTFE的表面能偏低,添加一定含量的PTFE,制备的ZnO-PTFE复合陶瓷,具有微纳级粗糙度的晶粒晶界结构,有效降低ZnO-PTFE复合材料的表面能,使其具备疏水性能。
实施例1:基于冷烧结制备ZnO陶瓷方法:采用制备好的ZnO-PTFE(0%)复合粉体,采用分析纯99.5%的颗粒尺寸为10纳米的ZnO粉末;添加冷烧结助剂醋酸(1mol/L、20wt%)溶液,将粉料充分研磨均匀,倒入钢制模具;施加50MPa压力,保压5min后开始以5℃/min 的速率升温,加热至120℃,并保温1h,得到ZnO陶瓷,即试样1。
实施例2:冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法:采用制备好的ZnO-PTFE(24%) 复合粉体采用分析纯99.5%的颗粒尺寸为100纳米的ZnO粉末和0.1微米的PTFE粉末;添加冷烧结助剂醋酸(0.5mol/L、10wt%)溶液,将粉料充分研磨均匀,倒入钢制模具;施加300MPa 压力,保压5min后开始以10℃/min的速率升温,加热至200℃,并保温3h,得到ZnO-PTFE 复合陶瓷,即试样2。
实施例3-42与实施例1、2均采用冷烧结制备,步骤相同,不同之处在于冷烧结助剂、 ZnO粒径、PTFE粉料粒径、原料配比、烧结温度、升温速率、保温时间与烧结压强工艺参数的选择,其中,实施例3-18采用普通冷烧结,实施例19-42采用等离子体冷烧结的方式制备,具体如表1。
表1
Figure RE-GDA0003863361510000041
Figure RE-GDA0003863361510000051
Figure RE-GDA0003863361510000061
对部分所得实施例的ZnO陶瓷试样进行性能测试:
1.疏水角测试
图1即为我们测量的PTFE体积分数为56%含量疏水角的结果,测量水滴大小为6μL。可以从图中得知,样品的疏水角可达161°,达到了超疏水的定义即疏水角大于150°。
现在已报道的超疏水材料的制备技术制备的样品普遍存在耐磨性差的特点,而本专利采用的是冷烧结共烧陶瓷-聚合物的方法,所以材料整体都具备超疏水的特性,如图4所示,把ZnO-PTFE复合陶瓷整体在400目砂纸上进行打磨,打磨到不同厚度后,疏水角还是能够到达150°以上。表明冷烧结制备的ZnO-PTFE复合陶瓷具有良好的耐磨特性。
通过图5可知,纯ZnO陶瓷冷烧结耗能仅为传统固相烧结耗能的1%左右,可见采用冷烧结很大程度上能够达到节能环保的目的。
2.ZnO-PTFE复合陶瓷微观结构分析通过环境扫描电子显微镜(SEM)观察了样品断面形貌如图2(a)和2(b)所示,发现复合陶瓷内部形成了类似蜘蛛网状结构,为样品超疏水提供了微观条件。样品表面粗糙度如图2(b) 所示,通过结果显示分析,在PTFE含量56vol%,PTFE与ZnO颗粒分布均匀,同时最优样品表面形貌图搭配原子力显微镜(AFM)如图3所示,其粗糙度为Rq=70.47nm。
综上,决定材料表面润湿性能的关键因素包括材料表面的化学组成和表面的微观几何结构。
研究表明冷烧结能够把陶瓷-聚合物进行共烧,且可以综合各自的特性探讨出新的性能。决定材料表面润湿性能的关键因素包括材料表面的化学组成和表面的微观几何结构。虽然 PTFE含量越多,ZnO-PTFE复合材料表面能就越低,但是仅通过降低表面能来获得疏水性是有限的,由此可见表面形貌对样品表面静态水接触角能够达到超疏水接触角要求(>150°) 起到至关重要的作用。

Claims (7)

1.一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于,包括如下步骤:
S1:将ZnO粉末和PTFE粉料进行球磨混料,获得ZnO-PTFE复合粉体,其中PTFE粉料的添加量为体积比0-80vol%;
S2:将冷烧结助剂加入S1中的ZnO-PTFE复合粉体中,充分研磨均匀,获得待烧结粉末;
S3:将待烧结粉末倒入模具,施加50MPa-500MPa压力,采用普通冷烧结或等离子体烧结自然冷却即得ZnO-PTFE复合陶瓷;
所述普通冷烧结的烧结温度为120℃-300℃,升温速率为5℃/min-20℃/min,保温时间为1h-10h;
所述等离子体烧结的烧结温度为100℃-300℃,升温速率为10℃/min-100℃/min,保温时间为5min-30min。
2.如权利要求1所述的冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于:所述S1中ZnO粉末的颗粒尺寸为10纳米-20微米,PTFE粉料的颗粒尺寸0.1-100微米。
3.如权利要求1所述的冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于:所述S2中的冷烧结助剂为醋酸溶液或二水醋酸锌粉末或醋酸锌溶液中一种或多种;
当冷烧结助剂为醋酸溶液或二水醋酸锌粉末或醋酸锌溶液中一种时:
所述醋酸溶液的浓度为0.5-5mol/L,所述醋酸溶液与ZnO-PTFE复合粉体的质量比为1wt%-25wt%;所述二水醋酸锌粉末与ZnO-PTFE复合粉体的质量比为0.5-20wt%;所述醋酸锌溶液的浓度为0.2-3mol/L,所述醋酸锌溶液与ZnO-PTFE复合粉体的质量比为1wt%-20wt%。
当冷烧结助剂为醋酸溶液或二水醋酸锌粉末或醋酸锌溶液中多种时:
所述冷烧结助剂的添加量为2wt%-20wt%,所述醋酸溶液、二水醋酸锌粉末和醋酸锌溶液三者的用量比是1:0.5:1,其中,所述醋酸溶液的浓度为0.5-5mol/L,所述醋酸锌溶液的浓度为0.2-3mol/L。
4.如权利要求3所述的冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于:所述S2中醋酸锌粉末与ZnO-PTFE复合粉体的质量比为3-6wt%。
5.如权利要求3所述的冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于:所述S2中醋酸锌溶液的浓度为0.5-2mol%。
6.如权利要求3所述的冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于:所述S1中PTFE粉料与ZnO粉末的体积比为0-70%。
7.如权利要求1所述的冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法,其特征在于:所述S3得到ZnO-PTFE复合陶瓷疏水角可达160°以上。
CN202211052960.3A 2022-08-30 2022-08-30 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法 Active CN115432957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211052960.3A CN115432957B (zh) 2022-08-30 2022-08-30 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211052960.3A CN115432957B (zh) 2022-08-30 2022-08-30 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法

Publications (2)

Publication Number Publication Date
CN115432957A true CN115432957A (zh) 2022-12-06
CN115432957B CN115432957B (zh) 2023-09-08

Family

ID=84244135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211052960.3A Active CN115432957B (zh) 2022-08-30 2022-08-30 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法

Country Status (1)

Country Link
CN (1) CN115432957B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607322A (zh) * 2016-11-28 2017-05-03 东北石油大学 一种长效超疏水耐磨陶瓷涂层
CN107555963A (zh) * 2016-06-30 2018-01-09 南京理工大学 一种超疏水陶瓷的制备方法
WO2018039634A1 (en) * 2016-08-26 2018-03-01 Sabic-Gapt Ceramic-polymer composites obtained by a cold sintering process
WO2018045782A1 (zh) * 2016-09-09 2018-03-15 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
WO2018103481A1 (zh) * 2016-12-09 2018-06-14 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
CN111417611A (zh) * 2016-08-26 2020-07-14 沙特基础工业全球技术有限公司 通过冷烧结制备陶瓷复合材料的方法
CN114503226A (zh) * 2019-10-17 2022-05-13 罗杰斯公司 纳米晶的钴掺杂的镍铁氧体颗粒、其制造方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107555963A (zh) * 2016-06-30 2018-01-09 南京理工大学 一种超疏水陶瓷的制备方法
WO2018039634A1 (en) * 2016-08-26 2018-03-01 Sabic-Gapt Ceramic-polymer composites obtained by a cold sintering process
CN111417610A (zh) * 2016-08-26 2020-07-14 沙特基础工业全球技术有限公司 通过冷烧结方法获得的陶瓷-聚合物复合材料
CN111417611A (zh) * 2016-08-26 2020-07-14 沙特基础工业全球技术有限公司 通过冷烧结制备陶瓷复合材料的方法
WO2018045782A1 (zh) * 2016-09-09 2018-03-15 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN106607322A (zh) * 2016-11-28 2017-05-03 东北石油大学 一种长效超疏水耐磨陶瓷涂层
WO2018103481A1 (zh) * 2016-12-09 2018-06-14 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
CN114503226A (zh) * 2019-10-17 2022-05-13 罗杰斯公司 纳米晶的钴掺杂的镍铁氧体颗粒、其制造方法和用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOYER, Q: "Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol-gel matrix", JOURNAL OF MATERIALS SCIENCE, pages 12677 - 12688 *
ZHAO, XUETONG: "Introducing a ZnO-PTFE (Polymer) Nanocomposite Varistor via the Cold Sintering Process", vol. 20, no. 7, pages 1700902, XP055520975, DOI: 10.1002/adem.201700902 *
刘玮: "锌基底表面超疏水薄膜的制备和表征", 第十六届全国分子光谱学学术会议论文集, pages 55 - 56 *
陈翰林;郭玉海;王峰;朱海霖;: "陶瓷膜超疏水改性及其膜蒸馏性能研究", 水处理技术, no. 03, pages 35 - 38 *

Also Published As

Publication number Publication date
CN115432957B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
Bai et al. Influence of original powders on the microstructure and properties of thermal barrier coatings deposited by supersonic atmospheric plasma spraying, part II: properties
CN112225558B (zh) 用于玻璃窑炉领域的梯度渐变复合技术陶瓷砖及其制备方法
JP5367080B2 (ja) 大型セラミック転がり要素
CN101982490B (zh) 一种超疏水自清洁材料的制备方法
CN104402411A (zh) 一种高温烟气过滤用定向贯通多孔陶瓷及其制备方法
WO2014015751A1 (zh) 高切削力金刚石微粉及其制备方法
Zhang et al. Evaluation on the microstructure and thermal infrared emissivity of Ca2+-doped ytterbium chromate coating deposited by saucer-shaped porous feedstocks for high-temperature thermal protection
CN113564512A (zh) 一种制备晶须增韧等离子喷涂陶瓷基封严涂层的方法
Hoffmann et al. Impact of sintering temperature on permeation and long-term development of support structure and stability for asymmetric oxygen transporting BSCF membranes
CN101234897A (zh) 多组元氧化锆基热障氧化物陶瓷材料的制备方法
CN115057704A (zh) 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用
Chai et al. Strengthening mechanism of porous aluminum foam by micro-arc discharge
CN111575636A (zh) 一种改善热喷涂陶瓷涂层自润滑性能的方法
CN115432957A (zh) 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法
CN103803973B (zh) 低热导率、高强度致密纯相锆酸镧陶瓷及其制备方法
CN107244920A (zh) 碳化硅注浆成型烧结方法
Deng et al. A facile preparation of durable superhydrophobic PFA coatings with superior anti-icing, anti-corrosion and self-cleaning performance
CN113862497A (zh) 一种AgZn靶材及其制备方法
Brinkiene et al. Effect of alumina addition on the microstructure of plasma sprayed YSZ
Zhou et al. Thermal barrier coatings manufactured by suspension and solution precursor plasma spray—State of the art and recent progress
CN102167586A (zh) 一种低温活化烧结8ysz基陶瓷及制备方法
CN113969385A (zh) 一种具有“砖-泥”层状结构的陶瓷基封严涂层制备方法
Gencer et al. The effect of sodium silicate concentration on the properties of the coating formed on pure zirconium by microarc oxidation coating technique
Liu et al. Oxidation resistance of CrN and CrAlN coating tools
Milani et al. Influence of electrophoretic deposition parameters on pore size distribution of doped nano alumina plates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant