[go: up one dir, main page]

CN115428064B - Dot matrix display device and timer - Google Patents

Dot matrix display device and timer Download PDF

Info

Publication number
CN115428064B
CN115428064B CN202180029097.7A CN202180029097A CN115428064B CN 115428064 B CN115428064 B CN 115428064B CN 202180029097 A CN202180029097 A CN 202180029097A CN 115428064 B CN115428064 B CN 115428064B
Authority
CN
China
Prior art keywords
signal
circuit
display device
dot matrix
matrix display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202180029097.7A
Other languages
Chinese (zh)
Other versions
CN115428064A (en
Inventor
铃木隆信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of CN115428064A publication Critical patent/CN115428064A/en
Application granted granted Critical
Publication of CN115428064B publication Critical patent/CN115428064B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本公开的点矩阵型显示装置(1)具备显示部(3)、变换电路(5)以及控制电路(6)。显示部具有多条栅极信号线(31)、多条源极信号线(32)以及与多条栅极信号线和多条源极信号线的交叉部对应地配置的多个像素电路(33)。变换电路将从外部输入至串行的串行信号(SI)与从外部输入的第一时钟信号(SCK)同步地获取,并将获取到的串行信号变换为并行信号,该串行信号包括用于确定进行图像数据的改写的像素电路的地址数据和向像素电路供给的图像数据。控制电路基于频率比第一时钟信号低的第二时钟信号(ENB_V),生成对变换电路的串行并行变换的定时进行控制的控制信号。

The dot matrix display device (1) disclosed in the present invention comprises a display unit (3), a conversion circuit (5) and a control circuit (6). The display unit comprises a plurality of gate signal lines (31), a plurality of source signal lines (32) and a plurality of pixel circuits (33) arranged corresponding to the intersections of the plurality of gate signal lines and the plurality of source signal lines. The conversion circuit synchronously acquires a serial signal (SI) inputted from the outside to a serial state and a first clock signal (SCK) inputted from the outside, and converts the acquired serial signal into a parallel signal, the serial signal comprising address data for determining a pixel circuit for rewriting image data and image data supplied to the pixel circuit. The control circuit generates a control signal for controlling the timing of the serial-parallel conversion of the conversion circuit based on a second clock signal (ENB_V) having a frequency lower than that of the first clock signal.

Description

点矩阵型显示装置以及计时装置Dot matrix display device and timing device

技术领域Technical Field

本公开涉及点矩阵型显示装置以及使用了该点矩阵型显示装置的计时装置。The present disclosure relates to a dot matrix display device and a timing device using the dot matrix display device.

背景技术Background Art

以往,例如已知有专利文献1所记载的点矩阵型显示装置。Conventionally, for example, a dot matrix display device described in Patent Document 1 is known.

在先技术文献Prior Art Literature

专利文献Patent Literature

专利文献1:日本特开2015-87437号公报Patent Document 1: Japanese Patent Application Publication No. 2015-87437

发明内容Summary of the invention

本公开的点矩阵型显示装置,具备:The dot matrix display device disclosed in the present invention comprises:

显示部,具有:多条栅极信号线,在第一方向上延伸;多条源极信号线,在与所述第一方向交叉的第二方向上延伸;以及多个像素电路,与所述多条栅极信号线和所述多条源极信号线的交叉部对应地配置;A display unit having: a plurality of gate signal lines extending in a first direction; a plurality of source signal lines extending in a second direction intersecting the first direction; and a plurality of pixel circuits arranged corresponding to intersections of the plurality of gate signal lines and the plurality of source signal lines;

变换电路,将经由串行接口从外部输入的串行信号与从外部输入的第一时钟信号同步地获取,并将获取到的所述串行信号变换为并行信号,该串行信号包括用于确定进行图像数据的改写的像素电路的地址数据和向所述像素电路供给的所述图像数据;以及a conversion circuit that acquires a serial signal input from the outside via a serial interface in synchronization with a first clock signal input from the outside, and converts the acquired serial signal into a parallel signal, the serial signal including address data for specifying a pixel circuit for rewriting image data and the image data supplied to the pixel circuit; and

控制电路,基于频率比所述第一时钟信号的频率低的第二时钟信号,生成对所述变换电路的串行并行变换的定时进行控制的控制信号。The control circuit generates a control signal for controlling the timing of serial-to-parallel conversion of the conversion circuit based on a second clock signal having a frequency lower than that of the first clock signal.

本公开的计时装置是具备本公开的点矩阵型显示装置的计时装置,是具备控制经过时间的最小单位的经时控制部的结构。The timekeeping device of the present disclosure is a timekeeping device including the dot matrix display device of the present disclosure, and has a configuration including an elapsed time control unit that controls the minimum unit of elapsed time.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

根据下述的详细的说明和附图,本发明的目的、特色以及优点将变得更加明确。The objects, features and advantages of the present invention will become more apparent from the following detailed description and accompanying drawings.

图1是表示本公开所涉及的点矩阵型显示装置的结构的一例的电路框图。FIG. 1 is a circuit block diagram showing an example of the structure of a dot matrix display device according to the present disclosure.

图2是用于说明图1的点矩阵型显示装置的整体动作的时序图的一部分。FIG. 2 is a part of a timing chart for explaining the overall operation of the dot matrix display device of FIG. 1 .

图3是表示图1的点矩阵型显示装置中的像素电路的结构的一例的电路图。FIG. 3 is a circuit diagram showing an example of the configuration of a pixel circuit in the dot matrix display device of FIG. 1 .

图4是表示图1的点矩阵型显示装置中的分频电路的结构的一例的电路图。FIG. 4 is a circuit diagram showing an example of the configuration of a frequency dividing circuit in the dot matrix display device of FIG. 1 .

图5A是表示图1的点矩阵型显示装置中的控制电路的结构的一例的电路图。FIG. 5A is a circuit diagram showing an example of a configuration of a control circuit in the dot matrix display device of FIG. 1 .

图5B是表示图1的点矩阵型显示装置中的控制电路的结构的一例的电路图。FIG. 5B is a circuit diagram showing an example of a configuration of a control circuit in the dot matrix display device of FIG. 1 .

图5C是表示图1的点矩阵型显示装置中的控制电路的结构的一例的电路图。FIG. 5C is a circuit diagram showing an example of a configuration of a control circuit in the dot matrix display device of FIG. 1 .

图6A是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图。FIG. 6A is a circuit diagram showing an example of the configuration of a conversion circuit in the dot matrix display device of FIG. 1 .

图6B是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图。FIG. 6B is a circuit diagram showing an example of the configuration of a conversion circuit in the dot matrix display device of FIG. 1 .

图6C是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图。FIG. 6C is a circuit diagram showing an example of the configuration of a conversion circuit in the dot matrix display device of FIG. 1 .

图7A是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图。FIG. 7A is a circuit diagram showing an example of the configuration of a conversion circuit in the dot matrix display device of FIG. 1 .

图7B是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图。FIG. 7B is a circuit diagram showing an example of the configuration of a conversion circuit in the dot matrix display device of FIG. 1 .

图7C是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图。FIG. 7C is a circuit diagram showing an example of the configuration of a conversion circuit in the dot matrix display device of FIG. 1 .

图8是表示图1的点矩阵型显示装置中的解码器电路的结构的一例的电路图。FIG. 8 is a circuit diagram showing an example of the configuration of a decoder circuit in the dot matrix display device of FIG. 1 .

图9A是表示图1的点矩阵型显示装置中的驱动器电路的结构的一例的电路图。FIG. 9A is a circuit diagram showing an example of a configuration of a driver circuit in the dot matrix display device of FIG. 1 .

图9B是表示图1的点矩阵型显示装置中的驱动器电路的结构的一例的电路图。FIG. 9B is a circuit diagram showing an example of the configuration of a driver circuit in the dot matrix display device of FIG. 1 .

图10是用于说明图1的点矩阵型显示装置中的计数器电路的动作的时序图的一部分。FIG. 10 is a part of a timing chart for explaining the operation of a counter circuit in the dot matrix display device of FIG. 1 .

图11是具备图1的点矩阵型显示装置的计时装置的示意性的主视图。FIG. 11 is a schematic front view of a timepiece device including the dot matrix display device of FIG. 1 .

具体实施方式DETAILED DESCRIPTION

对本公开的实施方式所涉及的点矩阵型显示装置为基础的结构进行说明。专利文献1所记载的点矩阵型显示装置具备多个像素部,该多个像素部与多条栅极信号线、多条源极信号线、以及多条栅极信号线和多条源极信号线的交叉部对应地配置,且各自具有存储电路。这样的点矩阵型显示装置针对基于栅极信号线和源极信号线而选择的像素部,执行改写图像数据的改写驱动,针对非选择的像素部,执行使用保持于存储电路的图像数据的静止图像驱动。The structure based on the dot matrix display device involved in the embodiment of the present disclosure is described. The dot matrix display device described in Patent Document 1 includes a plurality of pixel units, which are arranged corresponding to a plurality of gate signal lines, a plurality of source signal lines, and a plurality of intersections of the gate signal lines and the source signal lines, and each has a storage circuit. Such a dot matrix display device performs a rewrite drive for rewriting image data for a pixel unit selected based on the gate signal lines and the source signal lines, and performs a still image drive using the image data stored in the storage circuit for a non-selected pixel unit.

在以往的点矩阵型显示装置中,用于选择执行改写驱动的像素部的地址数据以及供给到所选择的像素部的图像数据被串联(串行)地输入。因此,地址数据以及图像数据的传输时间变长,有时动作变慢。此外,在以往的点矩阵型显示装置中,在为了缩短传输时间而提高了时钟频率的情况下,控制改写驱动的控制电路难以追随高速化后的时钟频率,因此有时无法正常地动作。In the conventional dot matrix display device, the address data for selecting the pixel unit to perform the rewrite drive and the image data supplied to the selected pixel unit are input in series. Therefore, the transmission time of the address data and the image data becomes longer, and sometimes the operation becomes slower. In addition, in the conventional dot matrix display device, when the clock frequency is increased in order to shorten the transmission time, the control circuit controlling the rewrite drive is difficult to follow the high-speed clock frequency, and therefore sometimes cannot operate normally.

以下,参照附图,本公开的点矩阵型显示装置的实施方式进行说明。以下参照的各图表示本公开的实施方式所涉及的点矩阵型显示装置的主要的构成构件等。因此,本公开的实施方式所涉及的点矩阵型显示装置也可以具备未图示的电路基板、布线导体、控制IC、LSI等公知的结构。Hereinafter, the embodiment of the dot matrix display device of the present disclosure will be described with reference to the accompanying drawings. The figures referred to below show the main components of the dot matrix display device involved in the embodiment of the present disclosure. Therefore, the dot matrix display device involved in the embodiment of the present disclosure may also have known structures such as a circuit substrate, wiring conductors, control IC, LSI, etc. which are not shown in the figure.

图1是表示本公开所涉及的点矩阵型显示装置的结构的一例的电路框图,图2是用于说明图1的点矩阵型显示装置的整体动作的时序图的一部分。图3是表示图1的点矩阵型显示装置中的像素电路的结构的一例的电路图,图4是表示图1的点矩阵型显示装置中的分频电路的结构的一例的电路图。图5A~5C是表示图1的点矩阵型显示装置中的控制电路的结构的一例的电路图,图6A~6C、7A~7C是表示图1的点矩阵型显示装置中的变换电路的结构的一例的电路图,图8是表示图1的点矩阵型显示装置中的解码器电路的结构的一例的电路图,图9A、9B是表示图1的点矩阵型显示装置中的驱动器电路的结构的一例的电路图。图10是用于说明图1的点矩阵型显示装置中的计数器电路的动作的时序图的一部分。以下,对点矩阵型显示装置具有65536点(256×256点)的像素数的情况进行说明,但点矩阵型显示装置的像素数是任意的。此外,以下,对构成为进行白黑显示的像素电路进行说明,但像素电路能够构成为进行灰度显示或者全彩显示。FIG. 1 is a circuit block diagram showing an example of the structure of a dot matrix display device involved in the present disclosure, and FIG. 2 is a part of a timing diagram for explaining the overall operation of the dot matrix display device of FIG. 1 . FIG. 3 is a circuit diagram showing an example of the structure of a pixel circuit in the dot matrix display device of FIG. 1 , and FIG. 4 is a circuit diagram showing an example of the structure of a frequency division circuit in the dot matrix display device of FIG. 1 . FIG. 5A to 5C are circuit diagrams showing an example of the structure of a control circuit in the dot matrix display device of FIG. 1 , and FIG. 6A to 6C and FIG. 7A to 7C are circuit diagrams showing an example of the structure of a conversion circuit in the dot matrix display device of FIG. 1 , and FIG. 8 is a circuit diagram showing an example of the structure of a decoder circuit in the dot matrix display device of FIG. 1 , and FIG. 9A and FIG. 9B are circuit diagrams showing an example of the structure of a driver circuit in the dot matrix display device of FIG. 10 is a part of a timing diagram for explaining the operation of a counter circuit in the dot matrix display device of FIG. 1 . Hereinafter, a case where a dot matrix display device has 65536 dots (256×256 dots) of pixels will be described, but the number of pixels of the dot matrix display device is arbitrary. In addition, hereinafter, a pixel circuit configured to perform black and white display will be described, but the pixel circuit can be configured to perform grayscale display or full color display.

本实施方式的点矩阵型显示装置1也可以具备显示部3、分频电路4、变换电路5以及控制电路6。The dot matrix display device 1 of the present embodiment may include a display unit 3 , a frequency division circuit 4 , a conversion circuit 5 , and a control circuit 6 .

显示部3配置在基板2的一个主面上。基板2例如是透明或者不透明的玻璃基板、塑料基板、陶瓷基板等。基板2例如可以具有矩形板状等多边形板状、圆形板状、椭圆形板状等形状,也可以具有其他形状。The display unit 3 is disposed on one main surface of the substrate 2. The substrate 2 is, for example, a transparent or opaque glass substrate, a plastic substrate, a ceramic substrate, etc. The substrate 2 may have a shape such as a polygonal plate such as a rectangular plate, a circular plate, an elliptical plate, or other shapes.

显示部3具有多条栅极信号线31、多条源极信号线32以及多个像素电路33。多条栅极信号线31配置于第一方向(例如,行方向),多条源极信号线32配置于与第一方向交叉的第二方向(例如,列方向)。多个像素电路33与多条栅极信号线31和多条源极信号线32的交叉部对应地配置成矩阵状。The display unit 3 includes a plurality of gate signal lines 31, a plurality of source signal lines 32, and a plurality of pixel circuits 33. The plurality of gate signal lines 31 are arranged in a first direction (e.g., a row direction), and the plurality of source signal lines 32 are arranged in a second direction (e.g., a column direction) intersecting the first direction. The plurality of pixel circuits 33 are arranged in a matrix corresponding to the intersections of the plurality of gate signal lines 31 and the plurality of source signal lines 32.

进行多个像素电路33中的图像数据的改写、即被改写驱动的一个以上的像素电路33基于从外部的信号供给装置(未图示)输入的地址数据而被选择。对所选择的一个以上的像素电路33进行图像数据的改写。改写所使用的新的图像数据从信号供给装置输入。对于未被选择的像素电路33,执行使用保持在该像素电路33中的图像数据的静止图像驱动。The image data in the plurality of pixel circuits 33 is rewritten, i.e., one or more pixel circuits 33 to be rewritten and driven are selected based on address data input from an external signal supply device (not shown). The image data is rewritten for the selected one or more pixel circuits 33. New image data used for rewriting is input from the signal supply device. For the pixel circuits 33 that are not selected, still image driving using the image data held in the pixel circuits 33 is performed.

各像素电路33例如如图3所示,具有写入开关电路331、锁存电路332、像素电位生成电路333以及液晶元件334。液晶元件334具有像素电极334a、液晶334b以及对置电极334c。3, each pixel circuit 33 includes a write switch circuit 331, a latch circuit 332, a pixel potential generating circuit 333, and a liquid crystal element 334. The liquid crystal element 334 includes a pixel electrode 334a, a liquid crystal 334b, and a counter electrode 334c.

写入开关电路331具有薄膜晶体管(Thin Film Transistor:TFT)元件。TFT元件例如具有由非晶硅(a-Si)、低温多晶硅(Low-TemperaturePoly Silicon:LTPS)等构成的半导体膜、栅电极、源电极以及漏电极。栅电极与多条栅极信号线31中的1条连接,源电极与多条源极信号线32中的1条连接。漏电极与锁存电路332的输入端子连接。The write switch circuit 331 has a thin film transistor (TFT) element. The TFT element has a semiconductor film composed of, for example, amorphous silicon (a-Si), low-temperature polysilicon (LTPS), a gate electrode, a source electrode, and a drain electrode. The gate electrode is connected to one of the plurality of gate signal lines 31, and the source electrode is connected to one of the plurality of source signal lines 32. The drain electrode is connected to the input terminal of the latch circuit 332.

锁存电路332例如如图3所示,由将第一CMOS(Complementary Metal OxideSemiconductor,互补金属氧化物半导体)反相器332a以及第二CMOS反相器332b连接成环状而成的静态随机存取存储器(StaticRandom Access Memory:SRAM)等构成。锁存电路332将第一CMOS反相器332a和第二CMOS反相器332b串联连接,使来自第二CMOS反相器332b的漏极公共连接点的输出反馈输入到第一CMOS反相器332a的栅极公共连接点。由此,当向第一CMOS反相器332a的栅极公共连接点输入高电平的信号(以下,也简称为H信号)时,从第一CMOS反相器332a的漏极公共连接点输出低电平的信号(以下,也简称为L信号)。当来自第一CMOS反相器332a的L信号被输入到第二CMOS反相器332b的栅极公共连接点时,从第二CMOS反相器332b的漏极公共连接点输出H信号,该H信号被反馈输入到第一CMOS反相器332a的栅极公共连接点。其结果,“H、L、H”的信号始终在环状的传输线上被保持。The latch circuit 332 is, for example, as shown in FIG3 , composed of a static random access memory (SRAM) formed by connecting a first CMOS (Complementary Metal Oxide Semiconductor) inverter 332a and a second CMOS inverter 332b in a ring shape. The latch circuit 332 connects the first CMOS inverter 332a and the second CMOS inverter 332b in series, so that the output from the drain common connection point of the second CMOS inverter 332b is fed back to the gate common connection point of the first CMOS inverter 332a. Thus, when a high-level signal (hereinafter, also referred to as an H signal) is input to the gate common connection point of the first CMOS inverter 332a, a low-level signal (hereinafter, also referred to as an L signal) is output from the drain common connection point of the first CMOS inverter 332a. When the L signal from the first CMOS inverter 332a is input to the gate common connection point of the second CMOS inverter 332b, an H signal is output from the drain common connection point of the second CMOS inverter 332b, and the H signal is fed back to the gate common connection point of the first CMOS inverter 332a. As a result, the "H, L, H" signal is always maintained on the ring-shaped transmission line.

例如,如图3所示,像素电位生成电路333由异或(EXOR)的逻辑门电路构成。像素电位生成电路333具有两个输入端子,在一个输入端子中输入保持在锁存电路332中的写入数据信号SIG,在另一个输入端子中输入从外部装置供给的公共电压VCOM。公共电压VCOM也可以使H(高)电平的电压(例如,3V)和L(低)电平的电压(例如,0V)周期性地反相。例如,在保持在锁存电路332中的写入数据信号SIG是L信号的情况下,在对置电极334c的电压与像素电极334a之间产生电位差,如果是常白模式则成为黑显示,如果是常黑模式,则成为白显示。此外,在保持在锁存电路332中的写入数据信号SIG是H信号的情况下,在对置电极334c的电压与像素电极334a之间不产生电位差,如果是常白模式则成为白显示,如果是常黑模式,则成为黑显示。在像素电路33的这样的驱动中,即使在使公共电压VCOM反相驱动的情况下,也能够保持对置电极334c的电压与像素电极334a之间的电位差,因此能够在保持像素电路33中的图像显示的状态下,对像素电路33进行交流驱动。由此,恩能够抑制像素电路33的液晶334b的劣化。For example, as shown in FIG. 3 , the pixel potential generating circuit 333 is composed of an exclusive OR (EXOR) logic gate circuit. The pixel potential generating circuit 333 has two input terminals, and the write data signal SIG held in the latch circuit 332 is input to one input terminal, and the common voltage VCOM supplied from the external device is input to the other input terminal. The common voltage VCOM can also periodically invert the voltage of the H (high) level (for example, 3V) and the voltage of the L (low) level (for example, 0V). For example, when the write data signal SIG held in the latch circuit 332 is an L signal, a potential difference is generated between the voltage of the opposing electrode 334c and the pixel electrode 334a, and if it is a normally white mode, it becomes a black display, and if it is a normally black mode, it becomes a white display. In addition, when the write data signal SIG held in the latch circuit 332 is an H signal, no potential difference is generated between the voltage of the opposing electrode 334c and the pixel electrode 334a, and if it is a normally white mode, it becomes a white display, and if it is a normally black mode, it becomes a black display. In such driving of the pixel circuit 33, even when the common voltage VCOM is driven in reverse phase, the potential difference between the voltage of the counter electrode 334c and the pixel electrode 334a can be maintained, so the pixel circuit 33 can be AC driven while maintaining the image display in the pixel circuit 33. Thus, the degradation of the liquid crystal 334b of the pixel circuit 33 can be suppressed.

在改写像素电路33中的图像显示的情况下,使写入开关电路331接通。即,向栅极信号线31供给H信号,向源极信号线32供给图像数据信号。将供给至源极信号线32的图像数据信号向锁存电路332传输,并保持于锁存电路332。由此,对置电极334c的电压与像素电极334a之间的电位差根据图像数据信号而变化,例如在图像数据信号为L信号的情况下,如果是常白模式,则成为黑显示,如果是常黑模式,则成为白显示,在图像数据信号为H信号的情况下,如果是常白模式,则成为白显示,如果是常黑模式,则成为黑显示。When rewriting the image display in the pixel circuit 33, the write switch circuit 331 is turned on. That is, the H signal is supplied to the gate signal line 31, and the image data signal is supplied to the source signal line 32. The image data signal supplied to the source signal line 32 is transmitted to the latch circuit 332 and held in the latch circuit 332. As a result, the potential difference between the voltage of the counter electrode 334c and the pixel electrode 334a changes according to the image data signal. For example, when the image data signal is an L signal, if it is a normally white mode, it becomes a black display, and if it is a normally black mode, it becomes a white display. When the image data signal is an H signal, if it is a normally white mode, it becomes a white display, and if it is a normally black mode, it becomes a black display.

像素电路33也可以构成为锁存电路332保持多个比特,在这种情况下,像素电路33能够进行灰度显示。此外,像素电路33也可以构成为包含进行红色的灰度显示的副像素电路、进行绿色的灰度显示的副像素电路、进行蓝色的灰度显示的副像素电路。在这种情况下,像素电路33能够进行全彩显示。The pixel circuit 33 may also be configured such that the latch circuit 332 holds a plurality of bits. In this case, the pixel circuit 33 can perform grayscale display. In addition, the pixel circuit 33 may also be configured to include a sub-pixel circuit for performing red grayscale display, a sub-pixel circuit for performing green grayscale display, and a sub-pixel circuit for performing blue grayscale display. In this case, the pixel circuit 33 can perform full-color display.

在点矩阵型显示装置1中,能够按与一个栅极信号线31连接的每个像素电路33进行显示部3中的改写驱动,能够对除此以外的像素电路33进行静止图像驱动。因此,点矩阵型显示装置1的功耗低。In the dot matrix display device 1, rewriting drive in the display unit 3 can be performed for each pixel circuit 33 connected to one gate signal line 31, and still image drive can be performed for the other pixel circuits 33. Therefore, the dot matrix display device 1 has low power consumption.

例如,如图4所示,分频电路4对从信号供给装置输入的移位时钟信号SCLK(以下,也称为第一时钟信号)进行分频,生成频率比第一时钟信号SCLK低的时钟信号(以下,也称为第二时钟信号)DIV_CLK。信号供给装置基于从TV接收机、个人计算机等外部装置输入的影像信号、同步信号、时钟信号等,生成第一时钟信号SCLK,并输出到点矩阵型显示装置1。此外,信号供给装置生成后述的串行信号SI以及芯片选择信号SCS,并将这些信号输出到点矩阵型显示装置1。For example, as shown in FIG4 , the frequency division circuit 4 divides the shift clock signal SCLK (hereinafter, also referred to as the first clock signal) input from the signal supply device to generate a clock signal (hereinafter, also referred to as the second clock signal) DIV_CLK having a lower frequency than the first clock signal SCLK. The signal supply device generates the first clock signal SCLK based on the image signal, synchronization signal, clock signal, etc. input from an external device such as a TV receiver or a personal computer, and outputs it to the dot matrix display device 1. In addition, the signal supply device generates the serial signal SI and the chip selection signal SCS described later, and outputs these signals to the dot matrix display device 1.

本实施方式的点矩阵型显示装置1也可以具备控制第一时钟信号SCLK的频率的时钟频率控制部。在这种情况下,容易使第一时钟信号SCLK的频率高速化。时钟频率控制部也可以包含在上述的信号供给装置中,也可以与信号供给装置分开设置。此外,时钟频率控制部也可以是保存在IC(Integrated Circuit)、LSI(Large Scale Integrated Circuit)等驱动元件的RAM(Random Access Memory)、ROM(Read Only Memory)中的程序软件,还可以是形成在电路基板上的频率控制电路等。The dot matrix display device 1 of this embodiment may also include a clock frequency control unit for controlling the frequency of the first clock signal SCLK. In this case, it is easy to increase the frequency of the first clock signal SCLK. The clock frequency control unit may also be included in the above-mentioned signal supply device, or may be provided separately from the signal supply device. In addition, the clock frequency control unit may also be program software stored in the RAM (Random Access Memory) or ROM (Read Only Memory) of a driving element such as an IC (Integrated Circuit) or an LSI (Large Scale Integrated Circuit), or may be a frequency control circuit formed on a circuit substrate, etc.

此外,本实施方式的点矩阵型显示装置1通过分频电路4对第一时钟信号SCLK进行分频,生成频率比第一时钟信号SCLK低的第二时钟信号DIV_CLK,但不限于该结构。例如,也可以具备:第一时钟信号产生部,生成第一时钟信号SCLK;第二时钟信号产生部,其与该第一时钟信号产生部分开设置,生成第二时钟信号DIV_CLK。在这种情况下,能够更精确地控制第一时钟信号SCLK的频率和第二时钟信号DIV_CLK的频率。In addition, the dot matrix display device 1 of this embodiment divides the first clock signal SCLK by the frequency dividing circuit 4 to generate a second clock signal DIV_CLK having a lower frequency than the first clock signal SCLK, but is not limited to this structure. For example, it may also include: a first clock signal generating unit that generates the first clock signal SCLK; and a second clock signal generating unit that is separately provided from the first clock signal generating unit to generate the second clock signal DIV_CLK. In this case, the frequency of the first clock signal SCLK and the frequency of the second clock signal DIV_CLK can be controlled more accurately.

例如,如图4所示,分频电路4包括触发器电路41和反相器电路42。触发器电路41具有D端子、CK端子、Q端子以及XRST端子。向CK端子供给第一时钟信号SCLK。反相器电路42的输入端子与Q端子连接,反相器电路42的输出端子与D端子连接。此外,向XRST端子供给芯片选择信号SCS。芯片选择信号SCS是在对显示部3进行改写驱动时成为H(高)电平的信号。根据分频电路4,从Q端子输出的第二时钟信号DIV_CLK的频率成为第一时钟信号SCLK的频率的二分之一。另外,分频电路4的分频数是任意的,分频电路例如可以对第一时钟信号SCLK进行3分频、4分频,也可以进行n分频(n为2以上的整数)。也可以使第一时钟信号SCLK的频率越高,则越增大n的值。For example, as shown in FIG4 , the frequency division circuit 4 includes a trigger circuit 41 and an inverter circuit 42. The trigger circuit 41 has a D terminal, a CK terminal, a Q terminal, and an XRST terminal. The first clock signal SCLK is supplied to the CK terminal. The input terminal of the inverter circuit 42 is connected to the Q terminal, and the output terminal of the inverter circuit 42 is connected to the D terminal. In addition, the chip selection signal SCS is supplied to the XRST terminal. The chip selection signal SCS is a signal that becomes an H (high) level when the display unit 3 is rewritten and driven. According to the frequency division circuit 4, the frequency of the second clock signal DIV_CLK output from the Q terminal becomes half of the frequency of the first clock signal SCLK. In addition, the frequency division number of the frequency division circuit 4 is arbitrary. For example, the frequency division circuit can divide the first clock signal SCLK by 3, 4, or n (n is an integer greater than 2). The higher the frequency of the first clock signal SCLK, the greater the value of n.

变换电路5将从信号供给装置输入的串行信号SI与第一时钟信号SCLK同步地获取。串行信号SI经由串行接口从信号供给装置输入至变换电路5。变换电路5将获取的串行信号SI变换为并行信号。The conversion circuit 5 acquires the serial signal SI input from the signal supply device in synchronization with the first clock signal SCLK. The serial signal SI is input from the signal supply device to the conversion circuit 5 via the serial interface. The conversion circuit 5 converts the acquired serial signal SI into a parallel signal.

在本实施方式中,例如如图2所示,串行信号SI包括地址数据A0~A7(在统称的情况下,仅记载为“A”)以及图像数据D0~D255(在统称的情况下,仅记载为“D”)。地址数据A0~A7是用于确定(即,选择)多个像素电路33中的、进行图像数据的改写的一个以上的像素电路33的数据。图像数据D0~D255是表示向所选择的一个以上的像素电路33供给的、应该显示该一个以上的像素电路33的图像的数据。In the present embodiment, for example, as shown in FIG. 2 , the serial signal SI includes address data A0 to A7 (in the case of collective reference, simply recorded as “A”) and image data D0 to D255 (in the case of collective reference, simply recorded as “D”). The address data A0 to A7 is data for specifying (i.e., selecting) one or more pixel circuits 33 among a plurality of pixel circuits 33 for rewriting image data. The image data D0 to D255 is data indicating an image to be displayed by the one or more pixel circuits 33 selected.

串行信号SI也可以包括不用于改写驱动的虚拟数据DM。在本实施方式中,例如如图2所示,串行信号SI包括虚拟数据DM0~DM31(在统称的情况下,仅记载为“DM”)。The serial signal SI may include dummy data DM not used for rewriting driving. In the present embodiment, as shown in FIG. 2 , for example, the serial signal SI includes dummy data DM0 to DM31 (when collectively referred to, simply described as “DM”).

串行信号SI与第一时钟信号SCLK同步地被传输到变换电路5。串行信号SI例如如图2所示,也可以以前端的8个时钟传输地址数据A0~A7,以接下来的256个时钟传输图像数据D0~D255,接下来以32个时钟传输虚拟数据DM0~DM31。The serial signal SI is transmitted to the conversion circuit 5 in synchronization with the first clock signal SCLK. For example, as shown in FIG2 , the serial signal SI may transmit address data A0 to A7 with the first 8 clocks, transmit image data D0 to D255 with the next 256 clocks, and then transmit dummy data DM0 to DM31 with the next 32 clocks.

在这种情况下,能够将虚拟数据DM的传输期间利用于执行改写驱动的改写执行期间等,从而有利于高速化。即,虚拟数据DM的传输期间也可以是基于地址数据A的栅极信号GATE被供给到栅极信号线31的栅极信号GATE的激活期间,并且是基于图像数据D的源极信号被供给到源极信号线32的源极信号的激活期间。In this case, the transmission period of the dummy data DM can be utilized for the rewrite execution period of the rewrite drive, etc., which is conducive to high speed. That is, the transmission period of the dummy data DM can also be the activation period of the gate signal GATE supplied to the gate signal line 31 based on the gate signal GATE of the address data A, and the activation period of the source signal supplied to the source signal line 32 based on the source signal of the image data D.

虚拟数据DM的传输期间也可以为地址数据A的传输期间以及图像数据D的传输期间的合计的同等以下。在这种情况下,有利于高速化。虚拟数据DM的传输期间可以为地址数据A的传输期间以及图像数据D的传输期间的合计的0.5倍以上且1倍以下,但不限于该范围。The transmission period of the dummy data DM may be equal to or less than the total transmission period of the address data A and the transmission period of the image data D. In this case, it is advantageous to increase the speed. The transmission period of the dummy data DM may be greater than 0.5 times and less than 1 times the total transmission period of the address data A and the transmission period of the image data D, but is not limited to this range.

此外,虚拟数据DM的传输期间也可以为与地址数据A的传输期间以及图像数据D的传输期间的至少一方同等以下。在这种情况下,有利于高速化。虚拟数据DM的传输期间可以为地址数据A的传输期间以及图像数据D的传输期间中的至少一方的0.7倍以上且1倍以下,但不限于该范围。In addition, the transmission period of the dummy data DM may be equal to or shorter than at least one of the transmission period of the address data A and the transmission period of the image data D. In this case, it is advantageous to increase the speed. The transmission period of the dummy data DM may be 0.7 times or more and 1 times or less than at least one of the transmission period of the address data A and the transmission period of the image data D, but is not limited to this range.

此外,虚拟数据DM的传输期间也可以为与地址数据A的传输期间以及图像数据D的传输期间的任一短的一方同等以下。在这种情况下,有利于高速化。虚拟数据DM的传输期间可以是地址数据A的传输期间以及图像数据D的传输期间中的任一短的一方的0.7倍以上且1倍以下,但不限于该范围。In addition, the transmission period of the dummy data DM may be equal to or shorter than the shorter one of the transmission period of the address data A and the transmission period of the image data D. In this case, it is advantageous to increase the speed. The transmission period of the dummy data DM may be 0.7 times or more and 1 times or less than the shorter one of the transmission period of the address data A and the transmission period of the image data D, but is not limited to this range.

控制电路6控制对显示部3的改写驱动。控制电路6与第二时钟信号DIV_CLK同步地进行动作。控制电路6生成用于对变换电路5中的串行-并行(串行到并行)变换进行控制的控制信号、特别是用于对变换电路5中的串行-并行变换的定时进行控制的控制信号。The control circuit 6 controls the rewriting drive of the display unit 3. The control circuit 6 operates in synchronization with the second clock signal DIV_CLK. The control circuit 6 generates a control signal for controlling the serial-parallel (serial-to-parallel) conversion in the conversion circuit 5, and in particular, a control signal for controlling the timing of the serial-parallel conversion in the conversion circuit 5.

控制电路6包括计数器电路(计数电路)61、垂直控制电路62以及水平控制电路63。The control circuit 6 includes a counter circuit (counting circuit) 61 , a vertical control circuit 62 , and a horizontal control circuit 63 .

计数器电路61与第二时钟信号DIV_CLK同步地进行动作,生成计数器信号(计数信号)CNT[8:0]。计数器信号CNT[8:0]是对作为脉冲信号的第二时钟信号DIV_CLK的上升沿的数量进行计数而得到的信号。计数器信号CNT[8:0]用于生成控制由变换电路5进行的串行-并行变换的控制信号。The counter circuit 61 operates synchronously with the second clock signal DIV_CLK to generate a counter signal (count signal) CNT[8:0]. The counter signal CNT[8:0] is a signal obtained by counting the number of rising edges of the second clock signal DIV_CLK, which is a pulse signal. The counter signal CNT[8:0] is used to generate a control signal for controlling the serial-parallel conversion performed by the conversion circuit 5.

计数器电路61例如在图5A所示的同步式计数器电路的情况下,包括多个组合逻辑电路611和多个触发器电路612。The counter circuit 61 includes a plurality of combinational logic circuits 611 and a plurality of flip-flop circuits 612 in the case of a synchronous counter circuit as shown in FIG. 5A , for example.

组合逻辑电路611包括多个逻辑门电路而构成。此外,各触发器电路612具有D端子、Q端子、CK端子以及XRST端子。各触发器电路612从Q端子输出计数器信号CNT[8:0]的各比特(图5A所示的CNT0~CNT8)。向D端子输入组合逻辑电路611基于计数器信号CNT[8:0]生成的下一个计数器信号NEXT_CNT[8:0]的各比特(图5A所示的NEXT_CNT0~NEXT_CNT8)。向CK端子输入第二时钟信号DIV_CLK,向XRST端子输入芯片选择信号SCS。The combinational logic circuit 611 is composed of a plurality of logic gate circuits. In addition, each flip-flop circuit 612 has a D terminal, a Q terminal, a CK terminal, and an XRST terminal. Each flip-flop circuit 612 outputs each bit of the counter signal CNT[8:0] (CNT0 to CNT8 shown in FIG. 5A ) from the Q terminal. Each bit of the next counter signal NEXT_CNT[8:0] generated by the combinational logic circuit 611 based on the counter signal CNT[8:0] is input to the D terminal (NEXT_CNT0 to NEXT_CNT8 shown in FIG. 5A ). The second clock signal DIV_CLK is input to the CK terminal, and the chip select signal SCS is input to the XRST terminal.

通常,组合逻辑电路是不具有由计算NOT、AND、OR等基本的逻辑函数的逻辑门和连接它们的布线构成的反馈环的电路。组合逻辑电路具有几个输入和输出(通常为一个),各输入值以及输出值取0或者1的值。各输出值仅通过输入值的组合而唯一地决定。即,组合逻辑电路计算逻辑函数。任意的逻辑函数能够用乘积和公式表示。因此,能够使用NOT、AND、OR的各逻辑门并通过NOT-AND-OR的组合电路来实现任意的逻辑函数。将这样的电路通常称为AND-OR二级组合逻辑电路,但逻辑电路的级数一多,动作速度就会变慢,因此组合逻辑电路611容易成为第一时钟信号SCLK的上限频率(以往,1.5MHz左右)的限速部。Usually, a combinational logic circuit is a circuit that does not have a feedback loop consisting of logic gates that calculate basic logic functions such as NOT, AND, OR, and wiring that connects them. A combinational logic circuit has several inputs and outputs (usually one), and each input value and output value takes a value of 0 or 1. Each output value is uniquely determined only by the combination of input values. That is, the combinational logic circuit calculates a logic function. Any logic function can be expressed by a product-sum formula. Therefore, it is possible to use each logic gate of NOT, AND, and OR and implement any logic function through a combinational circuit of NOT-AND-OR. Such a circuit is usually called an AND-OR two-level combinational logic circuit, but as the number of levels of the logic circuit increases, the operating speed will slow down, so the combinational logic circuit 611 is likely to become the speed limiter of the upper limit frequency of the first clock signal SCLK (in the past, about 1.5MHz).

垂直控制电路62基于从计数器电路61输出的计数器信号CNT[8:0]来生成垂直开始脉冲信号SRIN_V以及栅极激活信号ENB_V。垂直开始脉冲信号SRIN_V是生成地址数据A0~A7的获取定时信号的移位寄存器的开始信号。垂直开始脉冲信号SRIN_V与地址数据A的前端相对应地进行激活。另外,在本说明书中,“信号激活”时意味着信号成为接通状态(即,H(高)的状态),“信号非激活”时意味着信号成为截止状态(即,L(低)的状态)。栅极激活信号ENB_V是决定向栅极信号线31供给的栅极信号GATE的激活期间的信号。栅极激活信号ENB_V在传输地址数据A以及图像数据D之后,在传输虚拟数据DM时激活。The vertical control circuit 62 generates a vertical start pulse signal SRIN_V and a gate activation signal ENB_V based on the counter signal CNT[8:0] output from the counter circuit 61. The vertical start pulse signal SRIN_V is a start signal of a shift register that generates an acquisition timing signal for address data A0 to A7. The vertical start pulse signal SRIN_V is activated corresponding to the front end of the address data A. In addition, in this specification, "signal activation" means that the signal becomes an on state (i.e., H (high) state), and "signal inactivation" means that the signal becomes an off state (i.e., L (low) state). The gate activation signal ENB_V is a signal that determines the activation period of the gate signal GATE supplied to the gate signal line 31. The gate activation signal ENB_V is activated when the dummy data DM is transmitted after the address data A and the image data D are transmitted.

例如,如图5B所示,垂直控制电路62包括组合逻辑电路621、触发器电路622、第一单发脉冲电路623、第二单发脉冲电路624、第三单发脉冲电路625、或(OR)的逻辑门电路(以下,也称为OR电路)626以及RS锁存电路627。For example, as shown in Figure 5B, the vertical control circuit 62 includes a combinational logic circuit 621, a trigger circuit 622, a first single-shot pulse circuit 623, a second single-shot pulse circuit 624, a third single-shot pulse circuit 625, an OR logic gate circuit (hereinafter also referred to as an OR circuit) 626 and an RS latch circuit 627.

组合逻辑电路621构成为包括多个逻辑门电路。组合逻辑电路621基于由计数器电路61生成的计数器信号CNT[8:0]生成第一控制信号CS1并将其输出到触发器电路622。The combinational logic circuit 621 is configured to include a plurality of logic gate circuits and generates a first control signal CS1 based on the counter signal CNT[8:0] generated by the counter circuit 61 and outputs the first control signal CS1 to the flip-flop circuit 622 .

触发器电路622具有D端子、Q端子、CK端子以及XRST端子。向D端子输入由组合逻辑电路621生成的第一控制信号CS1。向CK端子输入第二时钟信号DIV_CLK。向XRST端子输入芯片选择信号SCS。Q端子与第一单发脉冲电路623连接。触发器电路622将第一控制信号CS1保持在第二时钟信号DIV_CLK的上升沿,将第一控制信号CS1输出到第一单发脉冲电路623。The flip-flop circuit 622 has a D terminal, a Q terminal, a CK terminal, and an XRST terminal. The first control signal CS1 generated by the combinational logic circuit 621 is input to the D terminal. The second clock signal DIV_CLK is input to the CK terminal. The chip select signal SCS is input to the XRST terminal. The Q terminal is connected to the first single-shot pulse circuit 623. The flip-flop circuit 622 keeps the first control signal CS1 at the rising edge of the second clock signal DIV_CLK, and outputs the first control signal CS1 to the first single-shot pulse circuit 623.

第一单发脉冲电路623包括延迟电路及与(AND)的逻辑门电路。第一单发脉冲电路623与从触发器电路622输出的第一控制信号CS1的上升相应地生成第一触发信号TS1,并输出到OR电路626。The first one-shot pulse circuit 623 includes a delay circuit and an AND logic gate circuit, and generates a first trigger signal TS1 in response to a rising edge of the first control signal CS1 outputted from the flip-flop circuit 622 , and outputs the first trigger signal TS1 to the OR circuit 626 .

第二单发脉冲电路624包括延迟电路及与(AND)的逻辑门电路。第二单发脉冲电路624与芯片选择信号SCS的上升相应地生成第二触发信号TS2,并输出到OR电路626。The second one-shot pulse circuit 624 includes a delay circuit and an AND logic gate circuit, and generates a second trigger signal TS2 in response to a rising edge of the chip selection signal SCS, and outputs the second trigger signal TS2 to the OR circuit 626 .

第三单发脉冲电路625包括延迟电路及或非(NOR)的逻辑门电路。第三单发脉冲电路625与第二时钟信号DIV_CLK的下降相应地生成第三触发信号TS3,并输出至RS锁存电路627。The third one-shot pulse circuit 625 includes a delay circuit and a NOR logic gate circuit. The third one-shot pulse circuit 625 generates a third trigger signal TS3 in response to a falling edge of the second clock signal DIV_CLK, and outputs the third trigger signal TS3 to the RS latch circuit 627 .

OR电路626对从第一单发脉冲电路623输出的第一触发信号TS1以及从第二单发脉冲电路624输出的第二触发信号TS2的或进行运算,并输出至RS锁存电路627。The OR circuit 626 performs an OR operation on the first trigger signal TS1 output from the first one-shot pulse circuit 623 and the second trigger signal TS2 output from the second one-shot pulse circuit 624 , and outputs the result to the RS latch circuit 627 .

RS锁存电路627具有S端子、R端子以及Q端子。从OR电路626输出的第一触发信号TS1以及第二触发信号TS2的或被输入至S端子。从第三单发脉冲电路625输出的第三触发信号TS3被输入至R端子。RS锁存电路627从Q端子输出垂直开始脉冲信号SRIN_V。RS锁存电路627的动作是公知。例如,RS锁存电路627在向S端子输入L信号、向R端子输入H信号的情况下,只要从Q端子输出作为垂直开始脉冲信号SRIN_V的L信号,并且向S端子或者R端子输入的信号不产生迁移,或者S端子或者R端子均为L信号输入,就维持其输出状态。此外,RS锁存电路向S端子输入H信号、向R端子输入L信号的情况下,只要从Q端子输出作为垂直开始脉冲信号SRIN_V的H信号,并且输入至S端子或者R端子的信号不会产生迁移,或者S端子或者R端子均为L信号输入,就维持其输出状态。The RS latch circuit 627 has an S terminal, an R terminal, and a Q terminal. The OR of the first trigger signal TS1 and the second trigger signal TS2 output from the OR circuit 626 is input to the S terminal. The third trigger signal TS3 output from the third single-shot pulse circuit 625 is input to the R terminal. The RS latch circuit 627 outputs the vertical start pulse signal SRIN_V from the Q terminal. The operation of the RS latch circuit 627 is well known. For example, when the RS latch circuit 627 inputs an L signal to the S terminal and an H signal to the R terminal, as long as the L signal as the vertical start pulse signal SRIN_V is output from the Q terminal, and the signal input to the S terminal or the R terminal does not transition, or the S terminal or the R terminal is input with an L signal, the output state is maintained. In addition, when the RS latch circuit inputs an H signal to the S terminal and an L signal to the R terminal, as long as the H signal as the vertical start pulse signal SRIN_V is output from the Q terminal, and the signal input to the S terminal or the R terminal does not transition, or the S terminal or the R terminal is input with an L signal, the output state is maintained.

例如,如图5B所示,垂直控制电路62包括组合逻辑电路628和触发器电路629。For example, as shown in FIG. 5B , the vertical control circuit 62 includes a combinational logic circuit 628 and a flip-flop circuit 629 .

组合逻辑电路628包括多个逻辑门电路而构成。组合逻辑电路628基于由计数器电路61生成的计数器信号CNT[8:0]生成第二控制信号CS2,并将其输出至触发器电路629。The combinatorial logic circuit 628 includes a plurality of logic gate circuits and generates a second control signal CS2 based on the counter signal CNT[8:0] generated by the counter circuit 61 , and outputs the second control signal CS2 to the flip-flop circuit 629 .

触发器电路629具有D端子、Q端子、CK端子以及XRST端子。向D端子输入由组合逻辑电路628生成的第二控制信号CS2。向CK端子输入第二时钟信号DIV_CLK。向XRST端子输入芯片选择信号SCS。触发器电路629从Q端子输出栅极激活信号ENB_V。触发器电路629将第二控制信号CS2保持在第二时钟信号DIV_CLK的上升沿,并且输出作为栅极激活信号ENB_V的第二控制信号CS2。The trigger circuit 629 has a D terminal, a Q terminal, a CK terminal, and an XRST terminal. The second control signal CS2 generated by the combinational logic circuit 628 is input to the D terminal. The second clock signal DIV_CLK is input to the CK terminal. The chip select signal SCS is input to the XRST terminal. The trigger circuit 629 outputs the gate activation signal ENB_V from the Q terminal. The trigger circuit 629 keeps the second control signal CS2 at the rising edge of the second clock signal DIV_CLK, and outputs the second control signal CS2 as the gate activation signal ENB_V.

例如,如图5C所示,水平控制电路63包括组合逻辑电路631、触发器电路632、第四单发脉冲电路633、第五单发脉冲电路634以及RS锁存电路635。For example, as shown in FIG. 5C , the horizontal control circuit 63 includes a combinational logic circuit 631 , a flip-flop circuit 632 , a fourth one-shot pulse circuit 633 , a fifth one-shot pulse circuit 634 , and an RS latch circuit 635 .

组合逻辑电路631包括多个逻辑门电路而构成。组合逻辑电路631基于由计数器电路61生成的计数器信号CNT[8:0]生成第三控制信号CS3,并将其输出至触发器电路632。The combinational logic circuit 631 includes a plurality of logic gate circuits and generates a third control signal CS3 based on the counter signal CNT[8:0] generated by the counter circuit 61 , and outputs the third control signal CS3 to the flip-flop circuit 632 .

触发器电路632具有D端子、Q端子、CK端子以及XRST端子。向D端子输入由组合逻辑电路631生成的第三控制信号CS3。向CK端子输入第二时钟信号DIV_CLK。向XRST端子输入芯片选择信号SCS。Q端子与第四单发脉冲电路633连接。触发器电路632将第三控制信号CS3保持在第二时钟信号DIV_CLK的上升沿,将第三控制信号CS3输入至第四单发脉冲电路633。The flip-flop circuit 632 has a D terminal, a Q terminal, a CK terminal, and an XRST terminal. The third control signal CS3 generated by the combinational logic circuit 631 is input to the D terminal. The second clock signal DIV_CLK is input to the CK terminal. The chip select signal SCS is input to the XRST terminal. The Q terminal is connected to the fourth single-shot pulse circuit 633. The flip-flop circuit 632 keeps the third control signal CS3 at the rising edge of the second clock signal DIV_CLK, and inputs the third control signal CS3 to the fourth single-shot pulse circuit 633.

第四单发脉冲电路633包括延迟电路及与(AND)的逻辑门电路。第四单发脉冲电路633与从触发器电路632输出的第三控制信号CS3的上升相应地生成第四触发信号TS4,并输出至RS锁存电路635。The fourth one-shot pulse circuit 633 includes a delay circuit and an AND logic gate circuit, and generates a fourth trigger signal TS4 in response to a rising edge of the third control signal CS3 outputted from the flip-flop circuit 632 , and outputs the fourth trigger signal TS4 to the RS latch circuit 635 .

第五单发脉冲电路634包括延迟电路及或非(NOR)的逻辑门电路。第五单发脉冲电路634与芯片选择信号SCS的下降相应地生成第五触发信号TS5,并输出至RS锁存电路635。The fifth one-shot pulse circuit 634 includes a delay circuit and a NOR logic gate circuit. The fifth one-shot pulse circuit 634 generates a fifth trigger signal TS5 in response to a falling edge of the chip selection signal SCS, and outputs the fifth trigger signal TS5 to the RS latch circuit 635 .

RS锁存电路635具有S端子、R端子以及Q端子。从第四单发脉冲电路633输出的第四触发信号TS4被输入至S端子。从第五单发脉冲电路634输出的第五触发信号TS5被输入至R端子。RS锁存电路635从Q端子输出水平开始脉冲信号SRIN_H。RS锁存电路635的动作是公知的。例如,RS锁存电路635在向S端子输入L信号,向R端子输入了H信号的情况下,只要从Q端子输出作为水平开始脉冲信号SRIN_H的L信号,并且向S端子或者R端子输入的信号不产生迁移,或者S端子或者R端子均为L信号输入,就维持其输出状态。此外,RS锁存电路在向S端子输入了H信号、向R端子输入了L信号的情况下,只要从Q端子输出作为水平开始脉冲信号SRIN_H的H信号,并且输入至S端子或者R端子的信号不产生迁移,或者S端子或者R端子均为L信号输入,就维持其输出状态。The RS latch circuit 635 has an S terminal, an R terminal, and a Q terminal. The fourth trigger signal TS4 output from the fourth single-shot pulse circuit 633 is input to the S terminal. The fifth trigger signal TS5 output from the fifth single-shot pulse circuit 634 is input to the R terminal. The RS latch circuit 635 outputs a horizontal start pulse signal SRIN_H from the Q terminal. The operation of the RS latch circuit 635 is well known. For example, when the RS latch circuit 635 inputs an L signal to the S terminal and an H signal to the R terminal, as long as an L signal as the horizontal start pulse signal SRIN_H is output from the Q terminal, and the signal input to the S terminal or the R terminal does not transition, or the S terminal or the R terminal is input with an L signal, the output state is maintained. In addition, when the RS latch circuit inputs an H signal to the S terminal and an L signal to the R terminal, as long as an H signal as the horizontal start pulse signal SRIN_H is output from the Q terminal, and the signal input to the S terminal or the R terminal does not transition, or the S terminal or the R terminal is input with an L signal, the output state is maintained.

例如,如图5C所示,水平控制电路63包括组合逻辑电路636和触发器电路637。For example, as shown in FIG. 5C , the horizontal control circuit 63 includes a combinational logic circuit 636 and a flip-flop circuit 637 .

组合逻辑电路636包括多个逻辑门电路而构成。组合逻辑电路636基于由计数器电路61生成的计数器信号CNT[8:0]生成第四控制信号CS4,并输出至触发器电路637。The combinational logic circuit 636 includes a plurality of logic gate circuits and generates a fourth control signal CS4 based on the counter signal CNT[8:0] generated by the counter circuit 61 , and outputs the fourth control signal CS4 to the flip-flop circuit 637 .

触发器电路637具有D端子、Q端子、CK端子以及XRST端子。向D端子输入由组合逻辑电路636生成的第四控制信号CS4。向CK端子输入第二时钟信号DIV_CLK。向XRST端子输入芯片选择信号SCS。触发器电路637从Q端子输出数据激活信号ENB_H。触发器电路637将第四控制信号CS4保持在第二时钟信号DIV_CLK的上升沿,输出作为数据激活信号ENB_H的第四控制信号CS4。The flip-flop circuit 637 has a D terminal, a Q terminal, a CK terminal, and an XRST terminal. The fourth control signal CS4 generated by the combinational logic circuit 636 is input to the D terminal. The second clock signal DIV_CLK is input to the CK terminal. The chip select signal SCS is input to the XRST terminal. The flip-flop circuit 637 outputs the data activation signal ENB_H from the Q terminal. The flip-flop circuit 637 keeps the fourth control signal CS4 at the rising edge of the second clock signal DIV_CLK, and outputs the fourth control signal CS4 as the data activation signal ENB_H.

接下来,本实施方式的点矩阵型显示装置1中的变换电路5的电路结构的一例进行说明。变换电路5包括垂直变换电路51和水平变换电路55。Next, an example of the circuit configuration of the conversion circuit 5 in the dot matrix display device 1 of the present embodiment will be described. The conversion circuit 5 includes a vertical conversion circuit 51 and a horizontal conversion circuit 55 .

垂直变换电路51基于从垂直控制电路62输出的垂直开始脉冲信号SRIN_V,对串行信号SI中包括的地址数据A0~A7进行并行变换。例如,如图1所示,垂直变换电路51包括移位寄存器电路52、多个锁存激活信号电路53以及多个锁存电路54。The vertical conversion circuit 51 performs parallel conversion on the address data A0 to A7 included in the serial signal SI based on the vertical start pulse signal SRIN_V output from the vertical control circuit 62. For example, as shown in FIG.

移位寄存器电路52与第一时钟信号SCLK同步地进行动作。从垂直控制电路62输出的垂直开始脉冲信号SRIN_V被输入至移位寄存器电路52。The shift register circuit 52 operates in synchronization with the first clock signal SCLK. The vertical start pulse signal SRIN_V output from the vertical control circuit 62 is input to the shift register circuit 52 .

例如,如图6A所示,移位寄存器电路52包括串联连接的多级的触发器电路521。多级触发器电路521分别具有D端子、CK端子以及Q端子。向CK端子输入第一时钟信号SCLK。从垂直控制电路62输出的垂直开始脉冲信号SRIN_V被输入至第一级的触发器电路521的D端子。多级触发器电路521分别输出垂直移位信号SRV1~SRVn(在统称的情况下,仅记载为“SRV”)。在此,n是根据栅极信号线31的条数决定的正整数,在本实施方式中,n=8。前级的触发器电路521的Q端子与第二级以后的触发器电路521的D端子连接。多级触发器电路521的Q端子分别与多个锁存激活信号电路53连接。For example, as shown in FIG6A , the shift register circuit 52 includes a plurality of stages of trigger circuits 521 connected in series. The plurality of trigger circuits 521 each have a D terminal, a CK terminal, and a Q terminal. The first clock signal SCLK is input to the CK terminal. The vertical start pulse signal SRIN_V output from the vertical control circuit 62 is input to the D terminal of the trigger circuit 521 of the first stage. The plurality of trigger circuits 521 each output vertical shift signals SRV1 to SRVn (in the case of a general term, simply recorded as “SRV”). Here, n is a positive integer determined according to the number of gate signal lines 31. In the present embodiment, n=8. The Q terminal of the trigger circuit 521 of the previous stage is connected to the D terminal of the trigger circuit 521 of the second stage and thereafter. The Q terminals of the plurality of trigger circuits 521 are respectively connected to a plurality of latch activation signal circuits 53.

例如,如图1所示,多级触发器电路521与多个锁存激活信号电路53分别连接,多个锁存激活信号电路53分别与多个锁存电路54连接。For example, as shown in FIG. 1 , the multi-stage flip-flop circuit 521 is connected to a plurality of latch activation signal circuits 53 , respectively, and the plurality of latch activation signal circuits 53 is connected to a plurality of latch circuits 54 , respectively.

例如,如图6B所示,多个锁存激活信号电路53分别包括反相器电路531及与非(NAND)的逻辑门电路(以下,也称为NAND电路)532。NAND电路532具有两个输入端子,从触发器电路521输出的垂直移位信号SRV被输入至一方的输入端子,由反相器电路531反相的第一时钟信号SCLK被输入至另一方的输入端子。多个锁存激活信号电路53分别向多个锁存电路54输出垂直锁存激活信号LTV1~LTVn(在统称的情况下,仅记载为“LTV”)。For example, as shown in FIG6B , the plurality of latch activation signal circuits 53 each include an inverter circuit 531 and a NAND logic gate circuit (hereinafter, also referred to as a NAND circuit) 532. The NAND circuit 532 has two input terminals, and the vertical shift signal SRV output from the flip-flop circuit 521 is input to one input terminal, and the first clock signal SCLK inverted by the inverter circuit 531 is input to the other input terminal. The plurality of latch activation signal circuits 53 each output vertical latch activation signals LTV1 to LTVn (when collectively referred to, simply recorded as "LTV") to the plurality of latch circuits 54.

多个锁存电路54分别具有D端子、CK端子以及Q端子,向CK端子输入从与该锁存电路54连接的锁存激活信号电路53输出的垂直锁存激活信号LTV。此外,从信号供给装置供给的串行信号SI被输入至D端子。多个锁存电路54在锁存激活信号LTV为H信号的期间,分别获取串行信号SI中包括的地址数据A0~A7,保持锁存激活信号LTV为L信号的期间。例如,如图2所示,多个锁存电路54分别从Q端子输出作为地址信号GS0~GS7的地址数据A0~A7。另外,在图2中,仅示出作为GS0输出的地址数据A0以及作为GS7输出的地址数据A7。在图2所示的GS0、GS7中,标注了阴影线的区域表示可以是高电平或者低电平中的任一个的状态。The plurality of latch circuits 54 respectively have a D terminal, a CK terminal, and a Q terminal, and the vertical latch activation signal LTV output from the latch activation signal circuit 53 connected to the latch circuit 54 is input to the CK terminal. In addition, the serial signal SI supplied from the signal supply device is input to the D terminal. The plurality of latch circuits 54 respectively obtain the address data A0 to A7 included in the serial signal SI during the period when the latch activation signal LTV is an H signal, and maintain the period when the latch activation signal LTV is an L signal. For example, as shown in FIG2 , the plurality of latch circuits 54 respectively output the address data A0 to A7 as the address signals GS0 to GS7 from the Q terminal. In addition, in FIG2 , only the address data A0 output as GS0 and the address data A7 output as GS7 are shown. In GS0 and GS7 shown in FIG2 , the area marked with hatched lines indicates a state that can be either a high level or a low level.

点矩阵型显示装置1具备解码器电路7和驱动器电路8。驱动器电路8包括垂直驱动器电路81和水平驱动器电路82。The dot matrix display device 1 includes a decoder circuit 7 and a driver circuit 8. The driver circuit 8 includes a vertical driver circuit 81 and a horizontal driver circuit 82.

解码器电路7基于从控制电路6输出的栅极激活信号ENB_V,对从垂直变换电路51输出的地址信号GS0~GS7进行解码(decode),生成用于选择多条栅极信号线31中的任一个的地址解码信号DEC1~DEC256(在统称的情况下,仅记载为“DEC”)。从解码器电路7输出的地址解码信号DEC被输入至垂直驱动器电路81。The decoder circuit 7 decodes the address signals GS0 to GS7 output from the vertical conversion circuit 51 based on the gate activation signal ENB_V output from the control circuit 6, and generates address decoding signals DEC1 to DEC256 (in the case of a general term, simply recorded as "DEC") for selecting any one of the plurality of gate signal lines 31. The address decoding signal DEC output from the decoder circuit 7 is input to the vertical driver circuit 81.

例如,如图8所示,解码器电路7具有多个或非(NOR)的逻辑门电路(以下,也称为NOR电路)71。在本实施方式中,解码器电路7具有与栅极信号线31的条数(256条)相等数量的NOR电路71,各NOR电路71具有8个输入端子。各NOR电路71在所输入的信号的全部为L信号的情况下输出H信号,在所输入的信号中的至少一个为H信号的情况下输出L信号。For example, as shown in FIG8 , the decoder circuit 7 has a plurality of NOR logic gate circuits (hereinafter, also referred to as NOR circuits) 71. In the present embodiment, the decoder circuit 7 has the same number of NOR circuits 71 as the number of gate signal lines 31 (256), and each NOR circuit 71 has 8 input terminals. Each NOR circuit 71 outputs an H signal when all input signals are L signals, and outputs an L signal when at least one of the input signals is an H signal.

向各NOR电路71输入从垂直变换电路51输出的地址信号GS0~GS7以及地址信号GS0~GS7各自的反相信号XGS0~XGS7所构成的16个信号中的8个信号。对多个NOR电路71分别输入不同组合的8个信号。从地址信号GS0~GS7以及反相信号XGS0~XGS7的16个信号选出不同的8个信号的组合为28=256种,因此能够通过输入至解码器电路7的8个信号,从多个NOR电路71中的一个NOR电路71输出H信号,从其他NOR电路71使L信号输出。在本实施方式中,例如,如图8所示,通过在各NOR电路71的8个输入端子的前级配置k个(k为0以上且8以下的整数)反相器电路72,从而使地址信号GS反相。对于多个NOR电路71中的一个NOR电路71,不配置反相器电路72,直接输入地址信号GS。Eight signals out of 16 signals composed of the address signals GS0 to GS7 output from the vertical conversion circuit 51 and the inverted signals XGS0 to XGS7 of the address signals GS0 to GS7 are input to each NOR circuit 71. Eight signals of different combinations are input to each of the plurality of NOR circuits 71. There are 2 8 = 256 combinations of eight different signals selected from the 16 signals of the address signals GS0 to GS7 and the inverted signals XGS0 to XGS7. Therefore, by the eight signals input to the decoder circuit 7, an H signal can be output from one of the plurality of NOR circuits 71, and an L signal can be output from the other NOR circuits 71. In the present embodiment, for example, as shown in FIG. 8 , k (k is an integer greater than or equal to 0 and less than or equal to 8) inverter circuits 72 are arranged at the front stage of the eight input terminals of each NOR circuit 71, so that the address signal GS is inverted. For one of the plurality of NOR circuits 71, the inverter circuit 72 is not arranged, and the address signal GS is directly input.

垂直驱动器电路81配置在解码器电路7的后级。例如,如图9A所示,垂直驱动器电路81包括多个与(AND)的逻辑门电路(以下,也称为AND电路)811,多个AND电路811分别配置在解码器电路7的多个NOR电路71的后级。The vertical driver circuit 81 is arranged at the subsequent stage of the decoder circuit 7. For example, as shown in FIG9A, the vertical driver circuit 81 includes a plurality of AND logic gate circuits (hereinafter, also referred to as AND circuits) 811, and the plurality of AND circuits 811 are arranged at the subsequent stages of the plurality of NOR circuits 71 of the decoder circuit 7, respectively.

各AND电路811具有两个输入端子,从与该AND电路811连接的NOR电路71输出的地址解码信号DEC被输入至一方的输入端子,从控制电路6输出的栅极激活信号ENB_V被输入至另一方的输入端子。多个AND电路811的输出端子分别与多条栅极信号线31连接。Each AND circuit 811 has two input terminals, one of which is input with an address decoding signal DEC output from a NOR circuit 71 connected to the AND circuit 811, and the other of which is input with a gate activation signal ENB_V output from the control circuit 6. The output terminals of the plurality of AND circuits 811 are connected to the plurality of gate signal lines 31, respectively.

例如,如图9A所示,在多个AND电路811和多条栅极信号线31之间可以配置缓冲电路812。各AND电路811在地址解码信号DEC以及栅极激活信号ENB_V双方为H信号的情况下输出H信号,在地址解码信号DEC以及栅极激活信号ENB_V中的至少一方为L信号的情况下输出L信号。例如,如图2所示,在栅极激活信号ENB_V正在激活(为H信号)的情况下,垂直驱动器电路81能够输出对多条栅极信号线31中的1条进行激活的栅极信号GATE。For example, as shown in FIG9A , a buffer circuit 812 may be configured between a plurality of AND circuits 811 and a plurality of gate signal lines 31. Each AND circuit 811 outputs an H signal when both the address decoding signal DEC and the gate activation signal ENB_V are H signals, and outputs an L signal when at least one of the address decoding signal DEC and the gate activation signal ENB_V is an L signal. For example, as shown in FIG2 , when the gate activation signal ENB_V is activated (is an H signal), the vertical driver circuit 81 can output a gate signal GATE for activating one of the plurality of gate signal lines 31.

在图9A所示的垂直驱动器电路81中,通过由与非(NAND)的逻辑门电路和使该逻辑门电路的输出反相的反相器电路构成AND电路811,来抑制电路规模的增大。In the vertical driver circuit 81 shown in FIG. 9A , an AND circuit 811 is formed of a NAND logic gate circuit and an inverter circuit for inverting the output of the logic gate circuit, thereby suppressing an increase in circuit scale.

水平变换电路55基于从水平控制电路63输出的水平开始脉冲信号SRIN_H,对串行信号SI中包括的图像数据D0~D255进行并行变换。例如,如图7A所示,水平变换电路55包括移位寄存器电路56、多个锁存激活信号电路57和多个锁存电路58。The horizontal conversion circuit 55 performs parallel conversion on the image data D0 to D255 included in the serial signal SI based on the horizontal start pulse signal SRIN_H output from the horizontal control circuit 63. For example, as shown in FIG. 7A , the horizontal conversion circuit 55 includes a shift register circuit 56, a plurality of latch activation signal circuits 57, and a plurality of latch circuits 58.

移位寄存器电路56与第一时钟信号SCLK同步地进行动作。从水平控制电路63输出的水平开始脉冲信号SRIN_H被输入至移位寄存器电路56。The shift register circuit 56 operates in synchronization with the first clock signal SCLK. The horizontal start pulse signal SRIN_H output from the horizontal control circuit 63 is input to the shift register circuit 56 .

例如,如图7A所示,移位寄存器电路56包括串联连接的多级触发器电路561。此外,例如,如图1所示,多级触发器电路561分别与多个锁存激活信号电路57连接,多个锁存激活信号电路57分别与多个锁存电路58连接。For example, as shown in Fig. 7A, the shift register circuit 56 includes a plurality of stages of flip-flop circuits 561 connected in series. In addition, for example, as shown in Fig. 1, the plurality of stages of flip-flop circuits 561 are connected to a plurality of latch activation signal circuits 57, respectively, and the plurality of latch activation signal circuits 57 are connected to a plurality of latch circuits 58, respectively.

移位寄存器电路56的多级触发器电路561分别具有D端子、CK端子以及Q端子。向CK端子输入第一时钟信号SCLK。从水平控制电路63输出的水平开始脉冲信号SRIN_H被输入至第一级的触发器电路561的D端子。多级触发器电路561分别输出水平移位信号SRH1~SRHm(在统称的情况下,仅记载为“SRH”)。在此,m是与源极信号线32的条数相等的正整数,在本实施方式中,m=256。前级的触发器电路561的Q端子与第二级以后的触发器电路561的D端子连接。多级触发器电路561的Q端子分别与多个锁存激活信号电路57连接。The multi-stage trigger circuits 561 of the shift register circuit 56 respectively have a D terminal, a CK terminal and a Q terminal. The first clock signal SCLK is input to the CK terminal. The horizontal start pulse signal SRIN_H output from the horizontal control circuit 63 is input to the D terminal of the first-stage trigger circuit 561. The multi-stage trigger circuits 561 respectively output horizontal shift signals SRH1 to SRHm (in the case of a general term, simply recorded as "SRH"). Here, m is a positive integer equal to the number of source signal lines 32. In the present embodiment, m=256. The Q terminal of the previous stage trigger circuit 561 is connected to the D terminal of the trigger circuit 561 after the second stage. The Q terminals of the multi-stage trigger circuits 561 are respectively connected to multiple latch activation signal circuits 57.

例如,如图7B所示,多个锁存激活信号电路57分别包括反相器电路571、与非(NAND)的逻辑门电路(以下,也称为NAND电路)572。NAND电路572具有两个输入端子,从触发器电路561输出的水平移位信号SRH被输入至一方的输入端子,由反相器电路571反相的第一时钟信号SCLK被输入至另一方的输入端子。多个锁存激活信号电路57分别向多个锁存电路58输出水平锁存激活信号LTH1~LTHm(在统称的情况下,仅记载为“LTH”)。For example, as shown in FIG7B , the plurality of latch activation signal circuits 57 each include an inverter circuit 571 and a NAND logic gate circuit (hereinafter, also referred to as a NAND circuit) 572. The NAND circuit 572 has two input terminals, and the horizontal shift signal SRH output from the flip-flop circuit 561 is input to one input terminal, and the first clock signal SCLK inverted by the inverter circuit 571 is input to the other input terminal. The plurality of latch activation signal circuits 57 each output horizontal latch activation signals LTH1 to LTHm (in the case of collective reference, simply recorded as "LTH") to the plurality of latch circuits 58.

多个锁存电路58分别具有D端子、CK端子以及Q端子,向CK端子输入从与该锁存电路58连接的锁存激活信号电路57输出的水平锁存激活信号LTH。此外,向D端子输入从信号供给装置供给的串行信号SI。多个锁存电路58在锁存激活信号LTH为H信号的期间,分别获取串行信号SI中包括的图像数据D0~D255,保持锁存激活信号LTH为L信号的期间。例如,如图2所示,多个锁存电路58分别从O端子输出作为数据信号DATA1~DATA256的图像数据D0~D255。另外,在图2中,仅表示作为DATA1输出的图像数据D0以及作为DATA256输出的图像数据D255。在图2所示的DATA1、DATA256中,标注了阴影线的区域表示可以是高电平或者低电平中的任一个的状态。The plurality of latch circuits 58 respectively have a D terminal, a CK terminal, and a Q terminal, and a horizontal latch activation signal LTH outputted from a latch activation signal circuit 57 connected to the latch circuit 58 is inputted to the CK terminal. In addition, a serial signal SI supplied from a signal supply device is inputted to the D terminal. The plurality of latch circuits 58 respectively obtain image data D0 to D255 included in the serial signal SI during a period when the latch activation signal LTH is an H signal, and maintain a period when the latch activation signal LTH is an L signal. For example, as shown in FIG. 2 , the plurality of latch circuits 58 respectively output image data D0 to D255 as data signals DATA1 to DATA256 from the O terminal. In addition, in FIG. 2 , only the image data D0 outputted as DATA1 and the image data D255 outputted as DATA256 are shown. In DATA1 and DATA256 shown in FIG. 2 , the hatched area indicates a state that can be either a high level or a low level.

水平驱动器电路82配置在水平变换电路55的后级。例如,如图9B所示,水平驱动器电路82包括多个与(AND)的逻辑门电路(以下,也称为AND电路)821,多个AND电路821分别配置在水平变换电路55的多个锁存电路58的后级。The horizontal driver circuit 82 is arranged at the subsequent stage of the horizontal conversion circuit 55. For example, as shown in FIG9B, the horizontal driver circuit 82 includes a plurality of AND logic gate circuits (hereinafter, also referred to as AND circuits) 821, and the plurality of AND circuits 821 are arranged at the subsequent stages of the plurality of latch circuits 58 of the horizontal conversion circuit 55, respectively.

各AND电路821具有两个输入端子,从与该AND电路821连接的锁存电路58输出的数据信号DATA被输入至一方的输入端子,从控制电路6输出的数据激活信号ENB_H被输入至另一方的输入端子。多个AND电路821的输出端子分别与多条源极信号线32连接。Each AND circuit 821 has two input terminals, one of which is input with a data signal DATA output from a latch circuit 58 connected to the AND circuit 821, and the other of which is input with a data activation signal ENB_H output from the control circuit 6. The output terminals of the plurality of AND circuits 821 are connected to the plurality of source signal lines 32, respectively.

例如,如图9B所示,也可以在多个AND电路821与多条源极信号线32之间配置缓冲电路822。各AND电路821在数据信号DATA以及数据激活信号ENB_H双方为H信号的情况下输出H信号,在数据信号DATA以及数据激活信号ENB_H中的至少一方为L信号的情况下输出L信号。例如,如图2所示,在数据激活信号ENB_H正在激活(为H信号)的情况下,水平驱动器电路82能够向多条源极信号线32分别输出写入数据信号SIG1~SIG256(在统称的情况下,仅记载为“SIG”)。For example, as shown in FIG9B , a buffer circuit 822 may be configured between a plurality of AND circuits 821 and a plurality of source signal lines 32. Each AND circuit 821 outputs an H signal when both the data signal DATA and the data activation signal ENB_H are H signals, and outputs an L signal when at least one of the data signal DATA and the data activation signal ENB_H is an L signal. For example, as shown in FIG2 , when the data activation signal ENB_H is activated (is an H signal), the horizontal driver circuit 82 can output write data signals SIG1 to SIG256 (in the case of collective reference, simply recorded as "SIG") to the plurality of source signal lines 32.

在图9B所示的水平驱动器电路中,通过由与非(NAND)的逻辑门电路和使该逻辑门电路的输出反相的反相器电路构成AND电路821,来抑制电路规模的增大。In the horizontal driver circuit shown in FIG. 9B , an AND circuit 821 is formed of a NAND logic gate circuit and an inverter circuit for inverting the output of the logic gate circuit, thereby suppressing an increase in circuit scale.

在本实施方式的点矩阵型显示装置1中,控制电路6特别是计数器电路61与对第一时钟信号SCLK进行2分频而得到的第二时钟信号DIV_CLK同步地进行动作。计数器电路61包括规定其动作速度的组合逻辑电路611(图5A中记载)。因此,计数器电路61中的延迟时间T_delay不依赖于第二时钟信号DIV_CLK的时钟周期T2,而仅由计数器电路61的电路结构决定。即,以往,计数器电路61中的组合逻辑电路611成为第一时钟信号SCLK的上限频率的限速部。例如,以往,第一时钟信号SCLK的上限频率为1.5MHz左右,难以使第一时钟信号SCLK的频率比1.5MHz左右高速化。因此,本发明人想到即使使第一时钟信号SCLK的频率高速化,只要使计数器电路61以与以往相同程度的频率进行动作即可。为了使计数器电路61与第二时钟信号DIV_CLK同步地正常进行动作,需要满足组合逻辑电路611从接收计数器信号CNT[8:0]到生成下一个计数器信号NEXT_CNT[8:0]为止的延迟时间T_delay为时钟周期T2以下的条件,根据该条件,决定时钟周期T2的最小值T2_min即可。在本实施方式的点矩阵型显示装置1中,例如如图10所示,能够设为T_delay≤T2_min。由于第二时钟信号DIV_CLK是对第一时钟信号SCLK进行2分频而得到的信号,因此第一时钟信号SCLK能够使该时钟周期T1的最小值T1_min高速化至T_delay/2。例如,能够将第一时钟信号SCLK的频率设为3.0MHz左右,将第二时钟信号DIV_CLK的频率设为1.5MHz左右。In the dot matrix display device 1 of the present embodiment, the control circuit 6, in particular the counter circuit 61, operates synchronously with the second clock signal DIV_CLK obtained by dividing the first clock signal SCLK by 2. The counter circuit 61 includes a combinational logic circuit 611 (described in FIG. 5A ) that specifies its operating speed. Therefore, the delay time T_delay in the counter circuit 61 does not depend on the clock period T2 of the second clock signal DIV_CLK, but is determined only by the circuit structure of the counter circuit 61. That is, in the past, the combinational logic circuit 611 in the counter circuit 61 became the speed limiter of the upper limit frequency of the first clock signal SCLK. For example, in the past, the upper limit frequency of the first clock signal SCLK was about 1.5MHz, and it was difficult to make the frequency of the first clock signal SCLK faster than about 1.5MHz. Therefore, the inventors thought that even if the frequency of the first clock signal SCLK is increased in speed, it is sufficient to make the counter circuit 61 operate at the same frequency as before. In order for the counter circuit 61 to operate normally in synchronization with the second clock signal DIV_CLK, it is necessary to satisfy the condition that the delay time T_delay from the reception of the counter signal CNT[8:0] to the generation of the next counter signal NEXT_CNT[8:0] of the combinational logic circuit 611 is less than the clock period T2. According to this condition, the minimum value T2_min of the clock period T2 can be determined. In the dot matrix display device 1 of the present embodiment, for example, as shown in FIG. 10, it can be set to T_delay≤T2_min. Since the second clock signal DIV_CLK is a signal obtained by dividing the first clock signal SCLK by 2, the first clock signal SCLK can speed up the minimum value T1_min of the clock period T1 to T_delay/2. For example, the frequency of the first clock signal SCLK can be set to about 3.0MHz, and the frequency of the second clock signal DIV_CLK can be set to about 1.5MHz.

在以往的点矩阵型显示装置中,计数器电路与从外部装置供给的外部时钟信号(相当于第一时钟信号SCLK)同步地进行动作,因此为了使计数器电路正常地动作,外部时钟信号的周期的最小值与计数器电路的延迟时间相等。In previous dot-matrix display devices, the counter circuit operates in synchronization with an external clock signal (equivalent to the first clock signal SCLK) supplied from an external device. Therefore, in order for the counter circuit to operate normally, the minimum value of the period of the external clock signal is equal to the delay time of the counter circuit.

由此可知,在本实施方式的点矩阵型显示装置1中,与以往的点矩阵型显示装置相比,能够使第一时钟信号SCLK的频率为2倍。根据本实施方式的点矩阵型显示装置1,能够提高第一时钟信号SCLK的频率,因此能够缩短串行信号SI的传输时间等,使显示控制高速化。It can be seen from this that in the dot matrix display device 1 of the present embodiment, the frequency of the first clock signal SCLK can be doubled compared to the conventional dot matrix display device. According to the dot matrix display device 1 of the present embodiment, the frequency of the first clock signal SCLK can be increased, so that the transmission time of the serial signal SI can be shortened, and the display control can be accelerated.

此外,在本实施方式的点矩阵型显示装置1中,垂直变换电路51基于垂直开始脉冲信号SRIN_V和串行输入的串行信号SI中包括的地址数据A,生成作为并行信号的地址信号GS。因此,能够简化用于从外部输入地址数据A的布线构造。此外,由于垂直变换电路51将串行输入的地址数据A变换为作为并行信号的地址信号GS并输出,因此能够将地址信号GS的传输时间维持得较短。In addition, in the dot matrix display device 1 of the present embodiment, the vertical conversion circuit 51 generates the address signal GS as a parallel signal based on the vertical start pulse signal SRIN_V and the address data A included in the serial signal SI input in series. Therefore, it is possible to simplify the wiring structure for inputting the address data A from the outside. In addition, since the vertical conversion circuit 51 converts the serially input address data A into the address signal GS as a parallel signal and outputs it, it is possible to maintain the transmission time of the address signal GS short.

解码器电路7基于地址信号GS0~GS7生成被供给至多条(256条)栅极信号线31的地址解码信号DEC1~DEC256。由此,能够通过数量少于栅极信号线31的条数的地址信号GS0~GS7来驱动多条栅极信号线31。因此,能够简化用于从外部输入地址数据A的布线构造,减少垂直变换电路51的电路规模。The decoder circuit 7 generates address decoding signals DEC1 to DEC256 supplied to a plurality of (256) gate signal lines 31 based on the address signals GS0 to GS7. Thus, the plurality of gate signal lines 31 can be driven by address signals GS0 to GS7, which are less in number than the number of gate signal lines 31. Therefore, the wiring structure for inputting address data A from the outside can be simplified, and the circuit scale of the vertical conversion circuit 51 can be reduced.

本公开的计时装置是具备本公开的点矩阵型显示装置1的计时装置,是具备控制经过时间的最小单位的经时控制部的结构。根据该结构,由于具备能够进行高速驱动的本公开的点矩阵型显示装置1,因此能够以1秒单位、0.1秒单位、0.01秒单位、0.001秒单位等那样对经过时间的最小单位进行广泛地控制。因此,本公开的计时装置能够应用于体育运动等运动竞技、汽车赛车以及飞机比赛等速度比赛中使用的秒表、高速摄影设备中使用的时间显示部等。The timing device disclosed in the present invention is a timing device having the dot matrix display device 1 disclosed in the present invention, and is a structure having a time control unit that controls the minimum unit of elapsed time. According to this structure, since the dot matrix display device 1 disclosed in the present invention is capable of high-speed driving, the minimum unit of elapsed time can be widely controlled in 1 second unit, 0.1 second unit, 0.01 second unit, 0.001 second unit, etc. Therefore, the timing device disclosed in the present invention can be applied to stopwatches used in sports competitions such as sports, speed competitions such as car racing and airplane competitions, time display units used in high-speed photography equipment, etc.

经时控制部也可以是保存在点矩阵型显示装置1的内部或者外部所具备的IC、LSI等驱动元件的RAM、ROM等存储部中的程序软件。此外,经时控制部也可以是在点矩阵型显示装置1的内部或者外部所具备的电路基板上形成的经时控制电路等。The time control unit may also be a program software stored in a storage unit such as a RAM or ROM of a driving element such as an IC or LSI provided inside or outside the dot matrix display device 1. In addition, the time control unit may also be a time control circuit formed on a circuit substrate provided inside or outside the dot matrix display device 1.

图11是具备本公开的点矩阵型显示装置1的计时装置200的示意性的主视图。点矩阵型显示装置1被组装于计时装置200的显示部201。显示部201具有显示区域202、203、204。计时装置200可以是秒表、具有秒表功能的数字手表、具有秒表功能的智能手表等,图11的例子是具有秒表功能的数字手表。计时装置200在周边部具备计时开始按钮205、计时停止按钮206以及经过时间的最小单位变更按钮207。每当按压按钮207时,经过时间的最小单位经由经时控制部208以1秒单位、0.1秒单位、0.01秒单位、0.001秒单位循环地变更。经时控制部208内置于计时装置200。计时定时由计时开始按钮205以及计时停止按钮206控制,但也可以使用光传感器、红外线传感器等人体感应传感器,电气地控制计时定时。在这种情况下,能够以更高的精度进行计时。FIG. 11 is a schematic front view of a timing device 200 having a dot matrix display device 1 of the present disclosure. The dot matrix display device 1 is assembled in a display unit 201 of the timing device 200. The display unit 201 has display areas 202, 203, and 204. The timing device 200 may be a stopwatch, a digital watch with a stopwatch function, a smart watch with a stopwatch function, etc. The example in FIG. 11 is a digital watch with a stopwatch function. The timing device 200 has a timing start button 205, a timing stop button 206, and a minimum unit change button 207 for the elapsed time on the periphery. Each time the button 207 is pressed, the minimum unit of the elapsed time is cyclically changed in 1 second unit, 0.1 second unit, 0.01 second unit, and 0.001 second unit via the elapsed time control unit 208. The elapsed time control unit 208 is built into the timing device 200. The timing is controlled by the timing start button 205 and the timing stop button 206, but the timing can also be electrically controlled using a human body sensing sensor such as a light sensor or an infrared sensor. In this case, timing can be performed with higher accuracy.

根据本公开的点矩阵型显示装置,能够缩短地址数据以及图像数据的传输时间,并且能够使控制改写驱动的控制电路正常地动作。即,即使为了缩短图像数据的传输时间而提高第一时钟信号的时钟频率,控制电路也能够基于频率比第一时钟信号的频率低的第二时钟信号、例如与以往相同程度的时钟频率的第二时钟信号,控制由变换电路进行的串行并行变换的定时。其结果,能够使控制电路正常地动作。According to the dot matrix display device disclosed in the present invention, the transmission time of address data and image data can be shortened, and the control circuit for controlling the rewrite drive can operate normally. That is, even if the clock frequency of the first clock signal is increased in order to shorten the transmission time of the image data, the control circuit can control the timing of the serial-to-parallel conversion performed by the conversion circuit based on a second clock signal having a lower frequency than the first clock signal, for example, a second clock signal having the same clock frequency as before. As a result, the control circuit can operate normally.

根据本公开的计时装置,由于具备能够高速驱动的本公开的点矩阵型显示装置,因此能够以1秒单位、0.1秒单位、0.01秒单位、0.001秒单位等那样对经过时间的最小单位进行广泛的控制。According to the timekeeping device of the present disclosure, since it includes the dot matrix display device of the present disclosure that can be driven at high speed, it is possible to perform a wide range of control over the minimum unit of the elapsed time, such as 1 second unit, 0.1 second unit, 0.01 second unit, 0.001 second unit, etc.

以上,对本公开的各实施方式进行了详细说明,此外,本公开并不限定于上述的实施方式,在不脱离本公开的主旨的范围内,能够进行各种变更、改良等。当然能够将分别构成上述各实施方式的全部或者一部分适当地在不矛盾的范围内组合。The above detailed descriptions of the various embodiments of the present disclosure are given. In addition, the present disclosure is not limited to the above embodiments, and various changes and improvements can be made without departing from the scope of the present disclosure. Of course, all or part of the above embodiments can be appropriately combined within the scope of non-contradiction.

-工业可用性--Industrial Availability-

本公开的点矩阵型显示装置能够应用于各种电子设备。作为该电子设备,例如有汽车路径引导系统(汽车导航系统)、船舶路径引导系统、飞机路径引导系统、汽车等交通工具的仪表用指示器、隔离面板、智能手机终端、移动电话、平板终端、个人数字助理(PDA)、摄影机、数码相机、电子手册、电子书、电子词典、个人计算机、复印机、游戏设备的终端装置、电视、商品显示标签、价格显示标签、产业用的可编程显示装置、汽车音响、数字音频播放器、传真机、打印机、现金自动存取款机(ATM)、自动售货机、医疗用显示装置、数字显示式手表、智能手表、车站以及设置于机场等的引导显示装置等。The dot matrix display device disclosed in the present invention can be applied to various electronic devices. As such electronic devices, for example, there are automobile route guidance systems (automobile navigation systems), ship route guidance systems, aircraft route guidance systems, instrument indicators for vehicles such as automobiles, partition panels, smart phone terminals, mobile phones, tablet terminals, personal digital assistants (PDAs), cameras, digital cameras, electronic manuals, electronic books, electronic dictionaries, personal computers, copiers, terminal devices for game devices, televisions, product display labels, price display labels, industrial programmable display devices, car audio, digital audio players, fax machines, printers, cash automatic deposit and withdrawal machines (ATMs), vending machines, medical display devices, digital display watches, smart watches, stations, and guidance display devices set up at airports, etc.

-符号说明--Explanation of symbols-

1 点矩阵型显示装置1 Dot matrix display device

2 基板2. Substrate

3 显示部3 Display

31 栅极信号线31 Gate signal line

32 源极信号线32 Source signal line

33 像素电路33 Pixel Circuit

331 写入开关电路331 Write switch circuit

332 锁存电路332 Latch Circuit

332a,332b CMOS反相器332a, 332b CMOS Inverter

333 像素电位生成电路333 Pixel potential generation circuit

334 液晶元件334 Liquid crystal element

334a 像素电极334a Pixel electrode

334b 液晶334b LCD

334c 对置电极334c Counter electrode

4 分频电路4-way frequency divider

41 触发器电路41 Trigger Circuit

42 反相器电路42 Inverter Circuit

5 变换电路5 Conversion circuit

51 垂直变换电路51 vertical conversion circuit

52 移位寄存器电路52 Shift Register Circuit

521 触发器电路521 Trigger Circuit

53 锁存激活信号电路53 Latch activation signal circuit

531 反相器电路531 Inverter Circuit

532 逻辑门电路(NAND电路)532 Logic Gate Circuit (NAND Circuit)

54 锁存电路54 Latch Circuit

55 水平变换电路55 Horizontal conversion circuit

56 移位寄存器电路56 Shift Register Circuit

561 触发器电路561 Trigger Circuit

57 锁存激活信号电路57 Latch activation signal circuit

571 反相器电路571 Inverter Circuit

572 逻辑门电路(NAND电路)572 Logic Gate Circuit (NAND Circuit)

58 锁存电路58 Latch Circuit

6 控制电路6 Control Circuit

61 计数器电路61 Counter Circuit

611 组合逻辑电路611 Combinational Logic Circuits

612 触发器电路612 Trigger Circuit

62 垂直控制电路62 vertical control circuit

621 组合逻辑电路621 Combinational Logic Circuits

622 触发器电路622 Trigger Circuit

623 第一单发脉冲电路623 First single pulse circuit

624 第二单发脉冲电路624 Second single pulse circuit

625 第三单发脉冲电路625 The third single pulse circuit

626 逻辑门电路(OR电路)626 Logic Gate Circuit (OR Circuit)

627 RS锁存电路627 RS latch circuit

628 组合逻辑电路628 Combinational Logic Circuits

629 触发器电路629 Trigger Circuit

63 水平控制电路63 Horizontal control circuit

631 组合逻辑电路631 Combinational Logic Circuits

632 触发器电路632 Trigger Circuit

633 第四单发脉冲电路633 Fourth single pulse circuit

634 第五单发脉冲电路634 Fifth single pulse circuit

635 RS锁存电路635 RS latch circuit

636 组合逻辑电路636 Combinational Logic Circuits

637 触发器电路637 Trigger Circuit

7 解码器电路7 Decoder Circuit

71 逻辑门电路(NOR电路)71 Logic gate circuit (NOR circuit)

72 反相器电路72 Inverter Circuit

8 驱动器电路8 Driver Circuit

81 垂直驱动器电路81 Vertical driver circuit

811 逻辑门电路(AND电路)811 Logic Gate Circuit (AND Circuit)

812 缓冲电路812 Buffer Circuit

82 水平驱动器电路82 Horizontal driver circuit

821 逻辑门电路(AND电路)821 Logic Gate Circuit (AND Circuit)

822 缓冲电路822 Buffer Circuit

200 计时装置200 Timing Device

201 显示部201 Display

202、203、204 显示区域202, 203, 204 Display area

205 计时开始按钮205 Chrono start button

206 计时停止按钮206 Chrono stop button

207 最小单位变更按钮207 Minimum unit change button

208 经时控制部。208 Time control unit.

Claims (11)

1.一种点矩阵型显示装置,具备:1. A dot matrix display device comprising: 显示部,具有:多条栅极信号线,在第一方向上延伸;多条源极信号线,在与所述第一方向交叉的第二方向上延伸;及多个像素电路,与所述多条栅极信号线和所述多条源极信号线的交叉部对应地配置;A display unit having: a plurality of gate signal lines extending in a first direction; a plurality of source signal lines extending in a second direction intersecting the first direction; and a plurality of pixel circuits arranged corresponding to intersections of the plurality of gate signal lines and the plurality of source signal lines; 变换电路,将经由串行接口从外部输入的串行信号与从外部输入的第一时钟信号同步地获取,并将获取到的所述串行信号变换为并行信号,该串行信号包括用于确定进行图像数据的改写的像素电路的地址数据和向所述像素电路供给的所述图像数据;以及a conversion circuit that acquires a serial signal input from the outside via a serial interface in synchronization with a first clock signal input from the outside, and converts the acquired serial signal into a parallel signal, the serial signal including address data for specifying a pixel circuit for rewriting image data and the image data supplied to the pixel circuit; and 控制电路,基于频率比所述第一时钟信号的频率低的第二时钟信号,生成对所述变换电路的串行并行变换的定时进行控制的控制信号,a control circuit that generates a control signal for controlling the timing of serial-to-parallel conversion of the conversion circuit based on a second clock signal having a frequency lower than that of the first clock signal, 所述多个像素电路分别具备保持所述图像数据的锁存电路,Each of the plurality of pixel circuits includes a latch circuit for holding the image data. 不进行所述图像数据的改写的所述像素电路使用保持于所述锁存电路的所述图像数据来执行静止图像驱动,The pixel circuit that does not rewrite the image data performs still image driving using the image data held in the latch circuit, 所述串行信号包括不用于改写驱动的虚拟数据,The serial signal includes dummy data not used for rewriting the drive, 所述虚拟数据继所述地址数据以及所述图像数据后而被传输至所述变换电路,The dummy data is transmitted to the conversion circuit after the address data and the image data. 所述虚拟数据的传输期间是基于地址信号的栅极信号被供给至所述栅极信号线的所述栅极信号的激活期间,所述地址信号用于确定进行所述图像数据的改写的所述像素电路,并且所述虚拟数据的传输期间是基于所述图像数据的源极信号被供给至所述源极信号线的所述源极信号的激活期间,The transmission period of the dummy data is an activation period of a gate signal supplied to the gate signal line based on a gate signal of an address signal for determining the pixel circuit for rewriting the image data, and the transmission period of the dummy data is an activation period of a source signal supplied to the source signal line based on a source signal of the image data, 所述虚拟数据的传输期间比所述图像数据的传输期间短。A transmission period of the dummy data is shorter than a transmission period of the image data. 2.根据权利要求1所述的点矩阵型显示装置,其中,2. The dot matrix display device according to claim 1, wherein: 具备:时钟频率控制部,控制所述第一时钟信号的频率。The device comprises: a clock frequency control unit configured to control the frequency of the first clock signal. 3.根据权利要求1或2所述的点矩阵型显示装置,其中,3. The dot matrix display device according to claim 1 or 2, wherein: 具备:分频电路,基于所述第一时钟信号,生成对该第一时钟信号进行分频后的所述第二时钟信号。The device includes a frequency dividing circuit for generating, based on the first clock signal, the second clock signal obtained by frequency-dividing the first clock signal. 4.根据权利要求1所述的点矩阵型显示装置,其中,4. The dot matrix display device according to claim 1, wherein: 具备:have: 第一时钟信号产生部,生成所述第一时钟信号;以及A first clock signal generating unit, generating the first clock signal; and 第二时钟信号产生部,生成所述第二时钟信号。The second clock signal generating unit generates the second clock signal. 5.根据权利要求1或2所述的点矩阵型显示装置,其中,5. The dot matrix display device according to claim 1 or 2, wherein: 所述控制电路基于对所述第二时钟信号的上升沿的数量进行计数而得到的计数信号,生成所述控制信号。The control circuit generates the control signal based on a count signal obtained by counting the number of rising edges of the second clock signal. 6.根据权利要求5所述的点矩阵型显示装置,其中,6. The dot matrix display device according to claim 5, wherein: 所述控制电路包括计数电路,该计数电路与所述第二时钟信号同步地生成所述计数信号。The control circuit includes a counting circuit that generates the counting signal in synchronization with the second clock signal. 7.根据权利要求1或2所述的点矩阵型显示装置,其中,7. The dot matrix display device according to claim 1 or 2, wherein: 所述变换电路具有垂直变换电路,The conversion circuit has a vertical conversion circuit. 所述垂直变换电路基于所述控制信号,将所述串行信号中包括的所述地址数据变换为并行信号,生成所述地址信号。The vertical conversion circuit converts the address data included in the serial signal into a parallel signal based on the control signal to generate the address signal. 8.根据权利要求7所述的点矩阵型显示装置,其中,8. The dot matrix display device according to claim 7, wherein: 所述垂直变换电路具有解码器电路,The vertical conversion circuit has a decoder circuit, 所述解码器电路基于所述地址信号,生成向所述多条栅极信号线供给的地址解码信号。The decoder circuit generates an address decoding signal to be supplied to the plurality of gate signal lines based on the address signal. 9.根据权利要求1或2所述的点矩阵型显示装置,其中,9. The dot matrix display device according to claim 1 or 2, wherein: 所述变换电路具有水平变换电路,The conversion circuit has a horizontal conversion circuit. 所述水平变换电路基于所述控制信号,将所述串行信号中包括的所述图像数据变换为并行信号,生成向所述多条源极信号线供给的数据信号。The horizontal conversion circuit converts the image data included in the serial signal into a parallel signal based on the control signal, and generates a data signal to be supplied to the plurality of source signal lines. 10.根据权利要求1所述的点矩阵型显示装置,其中,10. The dot matrix display device according to claim 1, wherein: 所述锁存电路保持多个比特,由此所述像素电路进行灰度显示。The latch circuit holds a plurality of bits, whereby the pixel circuit performs grayscale display. 11.一种计时装置,11. A timing device, 具备权利要求1~10中任一项所述的点矩阵型显示装置,A dot matrix display device according to any one of claims 1 to 10, 具备对经过时间的最小单位进行控制的经时控制部。A time control unit is provided for controlling the minimum unit of elapsed time.
CN202180029097.7A 2020-04-24 2021-04-06 Dot matrix display device and timer Active CN115428064B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020-077808 2020-04-24
JP2020077808 2020-04-24
PCT/JP2021/014629 WO2021215239A1 (en) 2020-04-24 2021-04-06 Dot matrix display device and timing apparatus

Publications (2)

Publication Number Publication Date
CN115428064A CN115428064A (en) 2022-12-02
CN115428064B true CN115428064B (en) 2024-09-20

Family

ID=78270739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180029097.7A Active CN115428064B (en) 2020-04-24 2021-04-06 Dot matrix display device and timer

Country Status (5)

Country Link
US (1) US12014698B2 (en)
EP (1) EP4141856A4 (en)
JP (1) JP7431951B2 (en)
CN (1) CN115428064B (en)
WO (1) WO2021215239A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282938A (en) * 1997-04-07 1998-10-23 Seiko Epson Corp Display control circuit, image display device, and electronic apparatus having the same
JP2002175040A (en) * 2000-09-05 2002-06-21 Toshiba Corp Display device and driving method thereof
JP2010128014A (en) * 2008-11-25 2010-06-10 Toshiba Mobile Display Co Ltd Liquid crystal display device
WO2013084813A1 (en) * 2011-12-07 2013-06-13 シャープ株式会社 Display device and electrical apparatus
CN208207529U (en) * 2018-06-15 2018-12-07 苏州工业职业技术学院 A kind of voltage timing type timer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584871B2 (en) * 1989-08-31 1997-02-26 キヤノン株式会社 Display device
US6078318A (en) * 1995-04-27 2000-06-20 Canon Kabushiki Kaisha Data transfer method, display driving circuit using the method, and image display apparatus
KR100467991B1 (en) * 2000-09-05 2005-01-24 가부시끼가이샤 도시바 Display device
JP3632957B2 (en) * 2001-02-26 2005-03-30 株式会社半導体エネルギー研究所 Active matrix display device
KR101160828B1 (en) * 2004-12-23 2012-06-29 삼성전자주식회사 Display device, driving method thereof, and driving apparatus for display device
JP2009031751A (en) * 2007-06-29 2009-02-12 Sony Corp Display device, its driving method, and electronic equipment
CN101918995B (en) 2008-04-18 2013-04-10 夏普株式会社 Display device and mobile terminal
JP6305725B2 (en) 2013-10-29 2018-04-04 京セラディスプレイ株式会社 Method for driving dot matrix display device and dot matrix display device
JP6608730B2 (en) 2016-02-29 2019-11-20 京セラ株式会社 Dot matrix display device
WO2017169406A1 (en) * 2016-03-31 2017-10-05 カシオ計算機株式会社 Dot matrix display device and time display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282938A (en) * 1997-04-07 1998-10-23 Seiko Epson Corp Display control circuit, image display device, and electronic apparatus having the same
JP2002175040A (en) * 2000-09-05 2002-06-21 Toshiba Corp Display device and driving method thereof
JP2010128014A (en) * 2008-11-25 2010-06-10 Toshiba Mobile Display Co Ltd Liquid crystal display device
WO2013084813A1 (en) * 2011-12-07 2013-06-13 シャープ株式会社 Display device and electrical apparatus
CN208207529U (en) * 2018-06-15 2018-12-07 苏州工业职业技术学院 A kind of voltage timing type timer

Also Published As

Publication number Publication date
US20230162698A1 (en) 2023-05-25
EP4141856A1 (en) 2023-03-01
US12014698B2 (en) 2024-06-18
EP4141856A4 (en) 2024-05-01
CN115428064A (en) 2022-12-02
JPWO2021215239A1 (en) 2021-10-28
JP7431951B2 (en) 2024-02-15
WO2021215239A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US8542184B2 (en) Driving device and driving method of electrophoretic display
US6628259B2 (en) Device circuit of display unit
CN101918995B (en) Display device and mobile terminal
CN104217690B (en) Gate driver circuit, array base palte, display unit
EP3182400B1 (en) Gate in panel (gip) driving circuit and display device using the same
US9711104B2 (en) Display device and electrical apparatus
US7596201B2 (en) Gray code counter and display device therewith
CN101925946A (en) Display device and mobile terminal
KR101090248B1 (en) Column driver and flat panel display having the same
TW201308286A (en) Liquid-crystal display device and method of driving same
CN109074783B (en) Dot matrix display device and time display device
JP6305725B2 (en) Method for driving dot matrix display device and dot matrix display device
KR20170072514A (en) Gate driving circuit and display device using the same
CN102385840B (en) Integrated circuit (IC) apparatus and electronic equipment
KR100614489B1 (en) Line driver circuit, electro-optic device, and display device
CN103135439B (en) Timer device and electronic apparatus
CN102034437B (en) Integrated circuit device and electronic equipment
CN115428064B (en) Dot matrix display device and timer
KR102436556B1 (en) Display Device
KR101213828B1 (en) Hybrid Gate Driver for Liquid Crystal Panel
JP2016033541A (en) Dot matrix type display device
KR20240083675A (en) Gate driving circuit and display device
JP2016051088A (en) Dot-matrix type display device
JP2003347919A (en) Cascade connection circuit and electronic apparatus provided with same
JPS6248238B2 (en)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant