CN115420292A - Positioning and navigation method and system for a wheel-legged steel bar binding robot - Google Patents
Positioning and navigation method and system for a wheel-legged steel bar binding robot Download PDFInfo
- Publication number
- CN115420292A CN115420292A CN202211046674.6A CN202211046674A CN115420292A CN 115420292 A CN115420292 A CN 115420292A CN 202211046674 A CN202211046674 A CN 202211046674A CN 115420292 A CN115420292 A CN 115420292A
- Authority
- CN
- China
- Prior art keywords
- steel bar
- wheel
- robot
- legged
- leg type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0257—Hybrid positioning
- G01S5/0263—Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
- G01S5/0264—Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems at least one of the systems being a non-radio wave positioning system
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
本发明提供一种轮腿式钢筋捆扎机器人的定位导航方法及系统,属于钢筋自动化绑扎技术领域,定位导航方法包括:根据施工现场的钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图;基于建筑信息节点地图对轮腿式钢筋捆扎机器人进行路径规划;采用扩展卡尔曼滤波算法,根据单目相机测量的位移增量及UWB定位基站的测距信息,对轮腿式钢筋捆扎机器人进行定位;根据当前位置及施工路径,确定轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务。通过实时对轮腿式钢筋捆扎机器人进行定位并导航,提高了施工现场钢筋的绑扎效率。
The invention provides a positioning and navigation method and system for a wheel-leg type steel bar binding robot, which belongs to the technical field of steel bar automatic binding. The positioning and navigation method includes: establishing a building information node map of the steel bar net surface according to the profile information of the steel bar net surface at the construction site; Path planning for the wheel-legged steel bar binding robot based on the building information node map; the extended Kalman filter algorithm is used to position the wheel-legged steel bar binding robot according to the displacement increment measured by the monocular camera and the ranging information of the UWB positioning base station ; According to the current position and construction path, determine the movement direction of the wheel-legged steel bar binding robot, and perform the binding task. By positioning and navigating the wheel-legged steel bar binding robot in real time, the binding efficiency of steel bars at the construction site is improved.
Description
技术领域technical field
本发明涉及钢筋自动化绑扎技术领域,特别是涉及一种轮腿式钢筋捆扎机器人的定位导航方法及系统。The invention relates to the technical field of steel bar automatic binding, in particular to a positioning and navigation method and system for a wheel-leg type steel bar binding robot.
背景技术Background technique
在建筑行业,钢筋绑扎属于劳动密集型产业。在桥梁顶板预制和大型地下工程地面硬化等领域施工时,通常需要提前铺设钢筋骨架,这种钢筋骨架的结构较为简单,但钢筋骨架制造过程中的物料裁剪、运输、摆放和钢筋节点绑扎等工序都需要人工手动完成。这种施工方式成本高、速度慢,尤其是钢筋节点绑扎工序更是费时费力。In the construction industry, steel bar binding is a labor-intensive industry. In the fields of bridge roof prefabrication and ground hardening of large-scale underground projects, it is usually necessary to lay steel skeletons in advance. The process needs to be done manually. This construction method has high cost and slow speed, especially the binding process of steel bar nodes is time-consuming and labor-intensive.
为了解决人工绑扎大量钢筋节点效率低、成本高的问题,现有技术中有一种轮腿式钢筋捆扎机器人,该机器人能够在钢筋网面上进行横纵移动并自动完成钢筋节点的识别与绑扎作业。但是轮腿式钢筋捆扎机器人在实际施工时,由于缺乏定位和导航能力,钢筋捆扎机器人无法在钢筋网面上灵活运动,从而影响钢筋绑扎作业效率。In order to solve the problem of low efficiency and high cost of manually binding a large number of steel bar nodes, there is a wheel-legged steel bar binding robot in the prior art, which can move horizontally and vertically on the steel mesh surface and automatically complete the identification and binding of steel bar nodes. . However, during the actual construction of the wheel-legged steel bar binding robot, due to the lack of positioning and navigation capabilities, the steel bar binding robot cannot move flexibly on the steel mesh surface, which affects the efficiency of the steel bar binding operation.
发明内容Contents of the invention
本发明的目的是提供一种轮腿式钢筋捆扎机器人的定位导航方法及系统,可解决现有的钢筋绑扎机器人由于无法定位导航而导致的绑扎效率低的问题。The purpose of the present invention is to provide a positioning and navigation method and system for a wheel-legged steel bar binding robot, which can solve the problem of low binding efficiency caused by the inability of the existing steel bar binding robot to position and navigate.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following scheme:
一种轮腿式钢筋捆扎机器人的定位导航方法,包括:A positioning and navigation method for a wheel-legged steel bar binding robot, comprising:
获取施工现场的钢筋网面轮廓信息;Obtain the profile information of the steel mesh surface at the construction site;
根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图;所述建筑信息节点地图中包括多个钢筋节点及各钢筋节点的位置坐标;According to the outline information of the steel mesh surface, a building information node map of the steel mesh surface is established; the building information node map includes a plurality of steel bar nodes and position coordinates of each steel bar node;
基于所述建筑信息节点地图,对轮腿式钢筋捆扎机器人进行路径规划,确定轮腿式钢筋捆扎机器人的施工路径;所述施工路径中包括多个钢筋节点及各钢筋节点的位置坐标;Based on the building information node map, path planning is carried out to the wheel-leg type steel bar binding robot, and the construction path of the wheel-leg type steel bar binding robot is determined; the construction path includes a plurality of steel bar nodes and the position coordinates of each steel bar node;
采用扩展卡尔曼滤波算法,根据单目相机测量的所述轮腿式钢筋捆扎机器人的位移增量以及超宽带UWB定位基站对所述轮腿式钢筋捆扎机器人的测距信息,对所述轮腿式钢筋捆扎机器人进行定位,得到所述轮腿式钢筋捆扎机器人的当前位置;所述单目相机设置在所述轮腿式钢筋捆扎机器人上;所述UWB定位基站设置在施工现场;Using the extended Kalman filter algorithm, according to the displacement increment of the wheel-legged steel bar binding robot measured by the monocular camera and the distance measurement information of the wheel-legged steel bar binding robot by the ultra-wideband UWB positioning base station, the wheel-leg The type steel bar binding robot is positioned to obtain the current position of the wheel-leg type steel bar binding robot; the monocular camera is set on the wheel-leg type steel bar binding robot; the UWB positioning base station is set on the construction site;
根据所述当前位置及所述施工路径,确定所述轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务。According to the current position and the construction path, the moving direction of the wheel-legged steel bar binding robot is determined, and a binding task is performed.
可选地,所述获取施工现场的钢筋网面轮廓信息,具体包括:Optionally, the acquisition of the reinforcement mesh profile information on the construction site specifically includes:
采用无人机携带视觉传感器采集施工现场各区域的钢筋网面图像,得到多个局部图像;Use drones to carry visual sensors to collect images of steel mesh surfaces in various areas of the construction site, and obtain multiple partial images;
对多个局部图像进行拼接,得到施工现场图像;Splicing multiple partial images to obtain construction site images;
采用深度学习算法对所述施工现场图像进行钢筋实例分割,确定各钢筋的轮廓信息、钢筋数量、钢筋间距及钢筋直径,得到钢筋网面轮廓信息。The deep learning algorithm is used to segment the reinforcement instance in the image of the construction site, to determine the outline information of each reinforcement, the number of reinforcement, the distance between the reinforcement and the diameter of the reinforcement, and obtain the outline information of the reinforcement mesh.
可选地,所述视觉传感器为深度相机。Optionally, the visual sensor is a depth camera.
可选地,所述根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图,具体包括:Optionally, the establishment of a building information node map of the reinforced mesh surface according to the profile information of the reinforced mesh surface specifically includes:
根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息模型;According to the outline information of the steel mesh surface, a building information model of the steel mesh surface is established;
根据所述建筑信息模型,确定各钢筋节点的位置坐标;According to the building information model, determine the position coordinates of each reinforcement node;
根据各钢筋节点的位置坐标,建立建筑信息节点地图。According to the location coordinates of each reinforcement node, a building information node map is established.
可选地,所述基于所述建筑信息节点地图,对轮腿式钢筋捆扎机器人进行路径规划,确定轮腿式钢筋捆扎机器人的施工路径,具体包括:Optionally, the path planning of the wheel-legged steel bar binding robot based on the building information node map to determine the construction path of the wheel-legged steel bar binding robot specifically includes:
根据轮腿式钢筋捆扎机器人的尺寸信息,确定机器人模型;所述机器人模型为矩形框;Determine the robot model according to the size information of the wheel-leg type steel bar binding robot; the robot model is a rectangular frame;
基于所述机器人模型及所述建筑信息节点地图,对轮腿式钢筋捆扎机器人的施工路径进行仿真模拟,确定所述机器人模型横向运动及纵向运动过程中的位置坐标;Based on the robot model and the building information node map, the construction path of the wheel-legged steel bar binding robot is simulated to determine the position coordinates of the robot model during lateral movement and longitudinal movement;
根据所述机器人模型横向运动及纵向运动过程中的位置坐标,得到所述轮腿式钢筋捆扎机器人的施工路径。According to the position coordinates during the lateral movement and the longitudinal movement of the robot model, the construction path of the wheel-leg type steel bar binding robot is obtained.
可选地,所述采用扩展卡尔曼滤波算法,根据单目相机测量的所述轮腿式钢筋捆扎机器人的位移增量以及超宽带UWB定位基站对所述轮腿式钢筋捆扎机器人的测距信息,对所述轮腿式钢筋捆扎机器人进行定位,得到所述轮腿式钢筋捆扎机器人的当前位置,具体包括:Optionally, the extended Kalman filter algorithm is used, according to the displacement increment of the wheel-legged steel bar binding robot measured by the monocular camera and the distance measurement information of the wheel-legged steel bar binding robot by the ultra-wideband UWB positioning base station , positioning the wheel-leg type steel bar binding robot to obtain the current position of the wheel-leg type steel bar binding robot, specifically including:
在施工现场设置多个UWB定位基站,并建立UWB坐标系;所述UWB坐标系与所述建筑信息节点地图中的坐标系对应;A plurality of UWB positioning base stations are set at the construction site, and a UWB coordinate system is established; the UWB coordinate system corresponds to the coordinate system in the building information node map;
采用单目相机测量所述轮腿式钢筋捆扎机器人的初始位移增量;Adopt monocular camera to measure the initial displacement increment of described wheel-leg formula steel bar binding robot;
将所述初始位移增量转换到UWB坐标系下,得到目标位移增量;Converting the initial displacement increment to the UWB coordinate system to obtain the target displacement increment;
针对任一UWB定位基站,通过所述UWB定位基站测量所述UWB定位基站与所述轮腿式钢筋捆扎机器人的距离,得到测距信息;For any UWB positioning base station, measure the distance between the UWB positioning base station and the wheel-leg type steel bar binding robot through the UWB positioning base station to obtain ranging information;
采用扩展卡尔曼滤波算法,根据所述目标位移增量及各UWB定位基站的测距信息,确定所述轮腿式钢筋捆扎机器人的当前位置。The extended Kalman filter algorithm is used to determine the current position of the wheel-legged steel bar binding robot according to the target displacement increment and the ranging information of each UWB positioning base station.
可选地,所述根据所述当前位置及所述施工路径,确定所述轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务,具体包括:Optionally, the determining the movement direction of the wheel-legged steel bar binding robot according to the current position and the construction path, and performing a binding task specifically includes:
计算所述当前位置与所述施工路径中各钢筋节点的距离,并确定目标节点;所述目标节点为所述施工路径中与所述当前位置距离最近的钢筋节点;Calculate the distance between the current position and each reinforcement node in the construction path, and determine the target node; the target node is the reinforcement node closest to the current position in the construction path;
判断所述当前位置与所述目标节点的距离是否大于设定阈值;judging whether the distance between the current position and the target node is greater than a set threshold;
若所述当前位置与所述目标节点的距离大于设定阈值,则所述轮腿式钢筋捆扎机器人继续沿原方向运动,并执行绑扎任务;所述原方向为横向或纵向;If the distance between the current position and the target node is greater than a set threshold, the wheel-legged steel bar binding robot continues to move along the original direction and performs a binding task; the original direction is horizontal or vertical;
若所述当前位置与所述目标节点的距离小于或等于设定阈值,则所述轮腿式钢筋捆扎机器人从沿第一方向运动转为沿第二方向运动,并执行绑扎任务;所述第二方向为与所述第一方向在水平面上相互垂直的方向。If the distance between the current position and the target node is less than or equal to a set threshold, the wheel-legged steel bar binding robot moves from moving in the first direction to moving in the second direction, and performs a binding task; the second The two directions are directions perpendicular to the first direction on the horizontal plane.
可选地,在所述轮腿式钢筋捆扎机器人沿横向运动时,所述轮腿式钢筋捆扎机器人采用轮式运动沿钢筋的水平方向移动;Optionally, when the wheel-legged steel bar binding robot moves laterally, the wheel-legged steel bar binding robot moves along the horizontal direction of the steel bars by means of wheeled motion;
在所述轮腿式钢筋捆扎机器人沿纵向运动时,所述轮腿式钢筋捆扎机器人采用腿式运动沿垂直于钢筋的方向移动。When the wheel-legged steel bar binding robot moves longitudinally, the wheel-legged steel bar binding robot moves in a direction perpendicular to the steel bar by using leg motion.
为实现上述目的,本发明还提供了如下方案:To achieve the above object, the present invention also provides the following solutions:
一种轮腿式钢筋捆扎机器人的定位导航系统,包括:A positioning and navigation system for a wheel-legged steel bar binding robot, comprising:
轮廓获取单元,用于获取施工现场的钢筋网面轮廓信息;A contour acquisition unit is used to obtain the contour information of the reinforcement mesh surface on the construction site;
地图建立单元,与所述轮廓获取单元连接,用于根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图;所述建筑信息节点地图中包括多个钢筋节点及各钢筋节点的位置坐标;The map establishment unit is connected with the outline acquisition unit, and is used to establish a building information node map of the steel mesh surface according to the outline information of the steel mesh surface; the building information node map includes a plurality of reinforcement nodes and each reinforcement node Position coordinates;
路径规划单元,与所述地图建立单元连接,用于基于所述建筑信息节点地图,对轮腿式钢筋捆扎机器人进行路径规划,确定轮腿式钢筋捆扎机器人的施工路径;所述施工路径中包括多个钢筋节点及各钢筋节点的位置坐标;The path planning unit is connected with the map establishment unit, and is used to plan the path of the wheel-legged steel bar binding robot based on the building information node map, and determine the construction path of the wheel-legged steel bar binding robot; the construction path includes Multiple reinforcement nodes and the position coordinates of each reinforcement node;
定位单元,用于采用扩展卡尔曼滤波算法,根据单目相机测量的所述轮腿式钢筋捆扎机器人的位移增量以及超宽带UWB定位基站对所述轮腿式钢筋捆扎机器人的测距信息,对所述轮腿式钢筋捆扎机器人进行定位,得到所述轮腿式钢筋捆扎机器人的当前位置;所述单目相机设置在所述轮腿式钢筋捆扎机器人上;所述UWB定位基站设置在施工现场;The positioning unit is used to adopt the extended Kalman filter algorithm, according to the displacement increment of the wheel-legged steel bar binding robot measured by the monocular camera and the distance measurement information of the wheel-legged steel bar binding robot by the ultra-wideband UWB positioning base station, The wheel-leg type steel bar binding robot is positioned to obtain the current position of the wheel-leg type steel bar binding robot; the monocular camera is set on the wheel-leg type steel bar binding robot; the UWB positioning base station is set on the construction on site;
导航单元,分别与所述路径规划单元及所述定位单元连接,用于根据所述当前位置及所述施工路径,确定所述轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务。The navigation unit is respectively connected with the path planning unit and the positioning unit, and is used to determine the movement direction of the wheel-legged steel bar binding robot according to the current position and the construction path, and execute the binding task.
可选地,所述轮廓获取单元包括:Optionally, the contour acquisition unit includes:
图像采集模块,用于采用无人机携带视觉传感器采集施工现场各区域的钢筋网面图像,得到多个局部图像;The image acquisition module is used to use the unmanned aerial vehicle to carry the visual sensor to collect the image of the steel mesh surface in each area of the construction site to obtain multiple partial images;
拼接模块,与所述图像采集模块连接,用于对多个局部图像进行拼接,得到施工现场图像;The splicing module is connected with the image acquisition module, and is used to splice multiple partial images to obtain construction site images;
目标检测模块,与所述拼接模块连接,用于采用深度学习算法对所述施工现场图像进行钢筋实例分割,确定各钢筋的轮廓信息、钢筋数量、钢筋间距及钢筋直径,得到钢筋网面轮廓信息。The target detection module is connected with the splicing module, and is used to segment the image of the construction site using a deep learning algorithm to segment the reinforcement instance, determine the contour information of each reinforcement, the number of reinforcements, the spacing between the reinforcements and the diameter of the reinforcement, and obtain the contour information of the reinforcement mesh surface .
根据本发明提供的具体实施例,本发明公开了以下技术效果:首先根据施工现场的钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图,然后基于建筑信息节点地图,对轮腿式钢筋捆扎机器人进行路径规划,确定轮腿式钢筋捆扎机器人的施工路径,再采用扩展卡尔曼滤波算法,根据单目相机测量的位移增量以及UWB定位基站的测距信息,对轮腿式钢筋捆扎机器人进行定位,得到轮腿式钢筋捆扎机器人的当前位置,最后根据当前位置及施工路径,确定轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务,通过实时对轮腿式钢筋捆扎机器人进行定位并导航,提高了施工现场钢筋的绑扎效率。According to the specific embodiment provided by the present invention, the present invention discloses the following technical effects: first, according to the outline information of the steel mesh surface at the construction site, a building information node map of the steel mesh surface is established, and then based on the building information node map, the wheel-leg type steel bar The binding robot performs path planning to determine the construction path of the wheel-legged steel bar binding robot, and then uses the extended Kalman filter algorithm, according to the displacement increment measured by the monocular camera and the ranging information of the UWB positioning base station, the wheel-legged steel bar binding robot Carry out positioning to obtain the current position of the wheel-legged steel bar binding robot, and finally determine the movement direction of the wheel-legged steel bar binding robot according to the current position and construction path, and perform the binding task. By real-time positioning of the wheel-legged steel bar binding robot and Navigation, which improves the binding efficiency of steel bars on the construction site.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without paying creative labor.
图1为本发明轮腿式钢筋捆扎机器人的定位导航方法的流程图;Fig. 1 is the flow chart of the positioning and navigation method of the wheel-legged steel bar binding robot of the present invention;
图2为施工路径规划的原理图;Fig. 2 is the schematic diagram of construction path planning;
图3为单目相机和UWB组合定位的流程图;Figure 3 is a flowchart of combined positioning of monocular camera and UWB;
图4为本发明轮腿式钢筋捆扎机器人的定位导航系统的模块示意图。Fig. 4 is a block diagram of the positioning and navigation system of the wheel-legged steel bar binding robot of the present invention.
符号说明:Symbol Description:
轮廓获取单元-1,地图建立单元-2,路径规划单元-3,定位单元-4,导航单元-5,机器人模型-A,钢筋节点-B,施工路径-C。Outline acquisition unit-1, map establishment unit-2, path planning unit-3, positioning unit-4, navigation unit-5, robot model-A, steel bar node-B, construction path-C.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明的目的是提供一种轮腿式钢筋捆扎机器人的定位导航方法及系统,通过实时对轮腿式钢筋捆扎机器人进行定位并导航,提高了施工现场钢筋的绑扎效率。The purpose of the present invention is to provide a positioning and navigation method and system for a wheel-legged steel bar binding robot, which improves the binding efficiency of steel bars at the construction site by positioning and navigating the wheel-legged steel bar binding robot in real time.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例一Embodiment one
如图1所示,本实施例提供的轮腿式钢筋捆扎机器人的定位导航方法包括:As shown in Figure 1, the positioning and navigation method of the wheel-leg type steel bar binding robot provided in this embodiment includes:
S1:获取施工现场的钢筋网面轮廓信息。S1: Obtain the profile information of the reinforcement mesh on the construction site.
具体地,首先采用无人机携带视觉传感器采集施工现场各区域的钢筋网面图像,得到多个局部图像。在本实施例中,将深度相机固定在无人机上采集施工环境图像。所述视觉传感器为深度相机。然后对多个局部图像进行拼接,得到施工现场图像。具体地,采用基于特征的图像拼接技术对获取的局部图像进行拼接,获得完整施工区域图像。再采用深度学习算法对所述施工现场图像进行钢筋实例分割,确定各钢筋的轮廓信息、钢筋数量、钢筋间距及钢筋直径,得到钢筋网面轮廓信息。在本实施例中,利用Mask R-CNN深度学习算法对施工现场图像进行钢筋实例分割。Specifically, firstly, the visual sensor carried by the UAV is used to collect the images of the steel mesh surface in each area of the construction site, and multiple partial images are obtained. In this embodiment, the depth camera is fixed on the drone to collect images of the construction environment. The visual sensor is a depth camera. Then multiple partial images are spliced to obtain the construction site image. Specifically, a feature-based image mosaic technology is used to stitch the acquired partial images to obtain a complete image of the construction area. Then, the deep learning algorithm is used to segment the reinforcement instance in the image of the construction site to determine the outline information of each reinforcement, the number of reinforcement, the distance between the reinforcement and the diameter of the reinforcement, and obtain the outline information of the reinforcement mesh. In this embodiment, the Mask R-CNN deep learning algorithm is used to segment the reinforcement instance on the construction site image.
S2:根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图。所述建筑信息节点地图中包括多个钢筋节点及各钢筋节点的位置坐标。S2: Establish a building information node map of the reinforced mesh surface according to the outline information of the reinforced mesh surface. The building information node map includes a plurality of reinforcement nodes and position coordinates of each reinforcement node.
进一步地,S2包括:Further, S2 includes:
S21:根据所述钢筋网面轮廓信息,建立钢筋网面的BIM(Building InformationModeling,建筑信息模型)。S21: Establish a BIM (Building Information Modeling, building information model) of the steel mesh surface according to the profile information of the steel mesh surface.
S22:根据所述建筑信息模型,确定各钢筋节点的位置坐标。具体地,通过解析IFC文件获得每一根钢筋的位置。再在建筑信息模型中计算出每一钢筋节点的坐标值。钢筋节点为钢筋的交叉点。S22: Determine the position coordinates of each reinforcement node according to the building information model. Specifically, the position of each steel bar is obtained by parsing the IFC file. Then calculate the coordinate value of each reinforcement node in the building information model. Rebar nodes are intersection points of rebar.
S23:根据各钢筋节点的位置坐标,建立BIM节点地图。S23: Establish a BIM node map according to the position coordinates of each reinforcement node.
S3:基于所述建筑信息节点地图,对轮腿式钢筋捆扎机器人进行路径规划,确定轮腿式钢筋捆扎机器人的施工路径。所述施工路径中包括多个钢筋节点及各钢筋节点的位置坐标。S3: Based on the building information node map, perform path planning for the wheel-legged steel bar binding robot, and determine the construction path of the wheel-legged steel bar binding robot. The construction path includes a plurality of reinforcement nodes and position coordinates of each reinforcement node.
具体地,S3包括:Specifically, S3 includes:
S31:根据轮腿式钢筋捆扎机器人的尺寸信息,确定机器人模型。所述机器人模型为矩形框。S31: Determine the robot model according to the size information of the wheel-legged steel bar binding robot. The robot model is a rectangular frame.
S32:基于所述机器人模型及所述建筑信息节点地图,对轮腿式钢筋捆扎机器人的施工路径进行仿真模拟,确定所述机器人模型横向运动及纵向运动过程中的位置坐标。S32: Based on the robot model and the building information node map, simulate the construction path of the wheel-legged steel bar binding robot, and determine the position coordinates of the robot model during lateral movement and longitudinal movement.
具体地,将机器人模型和BIM节点地图导入ROS(RobotOperating System,机器人操作系统)建立仿真环境。在仿真环境下,对机器人模型的运动进行模拟,在BIM节点地图中记录机器人模型横向运动到钢筋网面边缘时的所有位置坐标。考虑轮腿式钢筋捆扎机器人的作业范围,模拟机器人模型在钢筋网面边缘纵向运动至相邻未绑扎区域,并记录所有机器人在此状态下的位置坐标。Specifically, import the robot model and BIM node map into ROS (RobotOperating System, robot operating system) to establish a simulation environment. In the simulation environment, the movement of the robot model is simulated, and all position coordinates when the robot model moves laterally to the edge of the steel mesh surface are recorded in the BIM node map. Considering the working range of the wheel-legged steel bar binding robot, simulate the longitudinal movement of the robot model on the edge of the steel mesh surface to the adjacent unbound area, and record the position coordinates of all robots in this state.
S33:根据所述机器人模型横向运动及纵向运动过程中的位置坐标,得到所述轮腿式钢筋捆扎机器人的施工路径。具体地,将所有的位置坐标按顺序首尾相连,形成施工路径。S33: Obtain the construction path of the wheel-legged steel bar binding robot according to the position coordinates of the robot model during the lateral movement and the longitudinal movement. Specifically, all position coordinates are connected end to end in order to form a construction path.
利用BIM节点地图完成轮腿式钢筋捆扎机器人在水平钢筋网面上的施工路径的规划原理如图2所示,图中A为机器人模型,B为BIM节点地图中的钢筋节点位置,C为在钢筋网面上规划出的施工路径。Using the BIM node map to complete the planning principle of the construction path of the wheel-legged steel bar binding robot on the horizontal steel mesh surface is shown in Figure 2. In the figure, A is the robot model, B is the location of the steel bar node in the BIM node map, and C is the location of the steel bar in the BIM node map. The construction path planned on the steel mesh surface.
S4:采用扩展卡尔曼滤波算法,根据单目相机测量的所述轮腿式钢筋捆扎机器人的位移增量以及超宽带UWB定位基站对所述轮腿式钢筋捆扎机器人的测距信息,对所述轮腿式钢筋捆扎机器人进行定位,得到所述轮腿式钢筋捆扎机器人的当前位置。所述单目相机设置在所述轮腿式钢筋捆扎机器人上。所述UWB定位基站设置在施工现场。S4: Using the extended Kalman filter algorithm, according to the displacement increment of the wheel-legged steel bar binding robot measured by the monocular camera and the distance measurement information of the wheel-legged steel bar binding robot by the ultra-wideband UWB positioning base station, the The wheel-leg type steel bar binding robot is positioned to obtain the current position of the wheel-leg type steel bar binding robot. The monocular camera is arranged on the wheel-leg type steel bar binding robot. The UWB positioning base station is set on the construction site.
具体地,通过单目视觉和UWB定位基站估计轮腿式钢筋捆扎机器人的位姿。S4具体包括:Specifically, the pose of the wheel-legged steel bar binding robot is estimated by monocular vision and UWB positioning base station. S4 specifically includes:
S41:在施工现场设置多个UWB(ultra wide band,超宽带)定位基站,并建立UWB坐标系。所述UWB坐标系与所述建筑信息节点地图中的坐标系对应。具体地,根据施工环境尺寸布置一定数量的UWB定位基站,并根据钢筋网面坐标建立与BIM坐标系对齐的UWB坐标系,作为组合定位的坐标系。S41: Setting multiple UWB (ultra wide band, ultra wide band) positioning base stations on the construction site, and establishing a UWB coordinate system. The UWB coordinate system corresponds to the coordinate system in the building information node map. Specifically, a certain number of UWB positioning base stations are arranged according to the size of the construction environment, and a UWB coordinate system aligned with the BIM coordinate system is established according to the coordinates of the steel mesh surface as the coordinate system for combined positioning.
S42:采用单目相机测量所述轮腿式钢筋捆扎机器人的初始位移增量。S42: Using a monocular camera to measure the initial displacement increment of the wheel-leg type steel bar binding robot.
在本实施例中,先为单目相机和UWB定位基站设置频率,分别采集数据。具体地,单目相机为单目视觉里程计。采用单目相机拍摄轮腿式钢筋捆扎机器人的周围环境图像。再计算相邻两帧图像的位移增量。In this embodiment, the frequency is first set for the monocular camera and the UWB positioning base station, and data are collected respectively. Specifically, the monocular camera is a monocular visual odometer. A monocular camera is used to capture images of the surrounding environment of a wheel-legged steel bar binding robot. Then calculate the displacement increment of two adjacent frames of images.
S43:将所述初始位移增量转换到UWB坐标系下,得到目标位移增量。S43: Transform the initial displacement increment into the UWB coordinate system to obtain a target displacement increment.
具体地,首先需要对安装在轮腿式钢筋捆扎机器人上的单目相机进行标定,消除单目相机的系统误差,并建立相机坐标系与UWB坐标系之间的位姿关系。将单目视觉里程计测量的位移增量经过空间变换转换到UWB坐标系下。Specifically, it is first necessary to calibrate the monocular camera installed on the wheel-legged steel bar binding robot, eliminate the systematic error of the monocular camera, and establish the pose relationship between the camera coordinate system and the UWB coordinate system. The displacement increment measured by the monocular visual odometer is transformed into the UWB coordinate system through space transformation.
S44:针对任一UWB定位基站,通过所述UWB定位基站测量所述UWB定位基站与所述轮腿式钢筋捆扎机器人的距离,得到测距信息。S44: For any UWB positioning base station, measure the distance between the UWB positioning base station and the wheel-leg type steel bar binding robot through the UWB positioning base station to obtain distance measurement information.
S45:采用扩展卡尔曼滤波算法,根据所述目标位移增量及各UWB定位基站的测距信息,确定所述轮腿式钢筋捆扎机器人的当前位置。即确定轮腿式捆扎机器人在钢筋网面上的位置坐标。S45: Using the extended Kalman filter algorithm, according to the target displacement increment and the ranging information of each UWB positioning base station, determine the current position of the wheel-legged steel bar binding robot. That is to determine the position coordinates of the wheel-legged binding robot on the steel mesh surface.
具体地,首先根据UWB定位基站获得的绝对位置信息,利用最小二乘法对单目视觉里程计进行绝对尺度估计。然后根据单目视觉里程计测量的位移增量,对UWB定位基站的往返时间测距值进行非视距误差鉴别。最后将视觉里程计的位移增量和UWB定位基站的测距信息作为量测值,利用扩展卡尔曼滤波算法进行数据融合,确定轮腿式钢筋捆扎机器人的当前位置。在本实施例中,通过EKF(Extended Kalman Filter,扩展卡尔曼滤波)算法的松耦合融合模式进行状态更新和量测更新,最终得到轮腿式钢筋捆扎机器人的定位信息。单目相机和UWB组合定位的过程如图3所示。Specifically, firstly, according to the absolute position information obtained by the UWB positioning base station, the absolute scale estimation of the monocular visual odometer is performed by using the least square method. Then according to the displacement increment measured by the monocular visual odometer, the non-line-of-sight error identification is performed on the round-trip time ranging value of the UWB positioning base station. Finally, the displacement increment of the visual odometer and the ranging information of the UWB positioning base station are used as measurement values, and the extended Kalman filter algorithm is used for data fusion to determine the current position of the wheel-legged steel bar binding robot. In this embodiment, the state update and measurement update are performed through the loosely coupled fusion mode of the EKF (Extended Kalman Filter, Extended Kalman Filter) algorithm, and finally the positioning information of the wheel-legged steel bar binding robot is obtained. The process of combined positioning of monocular camera and UWB is shown in Figure 3.
在实际应用时,需要利用单目相机和UWB定位基站,同时利用EKF融合两个传感器获得的信息,达到增强定位精度和稳定性的目的。In practical applications, it is necessary to use the monocular camera and UWB to locate the base station, and at the same time use the EKF to fuse the information obtained by the two sensors to achieve the purpose of enhancing the positioning accuracy and stability.
S5:根据所述当前位置及所述施工路径,确定所述轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务。S5: Determine the movement direction of the wheel-legged steel bar binding robot according to the current position and the construction path, and perform a binding task.
具体地,S5包括:Specifically, S5 includes:
S51:计算所述当前位置与所述施工路径中各钢筋节点的距离,并确定目标节点。所述目标节点为所述施工路径中与所述当前位置距离最近的钢筋节点。S51: Calculate the distance between the current position and each reinforcement node in the construction path, and determine a target node. The target node is the steel bar node closest to the current position in the construction path.
S52:判断所述当前位置与所述目标节点的距离是否大于设定阈值。S52: Determine whether the distance between the current position and the target node is greater than a set threshold.
S53:若所述当前位置与所述目标节点的距离大于设定阈值,则所述轮腿式钢筋捆扎机器人继续沿原方向运动,并执行绑扎任务。所述原方向为横向或纵向。S53: If the distance between the current position and the target node is greater than a set threshold, the wheel-legged steel bar binding robot continues to move in the original direction, and performs a binding task. The original direction is horizontal or vertical.
S54:若所述当前位置与所述目标节点的距离小于或等于设定阈值,则所述轮腿式钢筋捆扎机器人从沿第一方向运动转为沿第二方向运动,并执行绑扎任务。所述第二方向为与所述第一方向在水平面上相互垂直的方向。具体地,当第一方向为横向时,第二方向为纵向,当第一方向为纵向时,第二方向为横向。即根据轮腿式钢筋捆扎机器人的当前运动状态,由横向运动变为纵向运动或由纵向运动变为横向运动,并执行绑扎任务。S54: If the distance between the current position and the target node is less than or equal to a set threshold, the wheel-legged steel bar binding robot changes from moving along the first direction to moving along the second direction, and performs a binding task. The second direction is a direction perpendicular to the first direction on a horizontal plane. Specifically, when the first direction is horizontal, the second direction is vertical, and when the first direction is vertical, the second direction is horizontal. That is, according to the current motion state of the wheel-legged steel bar binding robot, it changes from lateral motion to longitudinal motion or from longitudinal motion to lateral motion, and performs the binding task.
在本实施例中,在所述轮腿式钢筋捆扎机器人沿横向运动时,所述轮腿式钢筋捆扎机器人采用轮式运动沿钢筋的水平方向移动。在所述轮腿式钢筋捆扎机器人沿纵向运动时,所述轮腿式钢筋捆扎机器人采用腿式运动沿垂直于钢筋的方向移动。In this embodiment, when the wheel-leg type steel bar binding robot moves laterally, the wheel-leg type steel bar binding robot moves along the horizontal direction of the steel bars by means of wheel motion. When the wheel-legged steel bar binding robot moves longitudinally, the wheel-legged steel bar binding robot moves in a direction perpendicular to the steel bar by using leg motion.
本发明通过实时对轮腿式钢筋捆扎机器人进行定位和导航,提高了轮腿式捆扎机器人在钢筋网面绑扎施工中的灵活性。The invention improves the flexibility of the wheel-leg binding robot in the binding construction of the steel mesh surface by positioning and navigating the wheel-leg binding robot in real time.
实施例二Embodiment two
为了执行上述实施例一对应的方法,以实现相应的功能和技术效果,下面提供一种轮腿式钢筋捆扎机器人的定位导航系统。In order to implement the method corresponding to the first embodiment above to achieve corresponding functions and technical effects, a positioning and navigation system for a wheel-leg type steel bar binding robot is provided below.
如图4所示,本实施例提供的轮腿式钢筋捆扎机器人的定位导航系统包括:轮廓获取单元1、地图建立单元2、路径规划单元3、定位单元4及导航单元5。As shown in FIG. 4 , the positioning and navigation system of the wheel-legged steel bar binding robot provided in this embodiment includes: a
其中,轮廓获取单元1用于获取施工现场的钢筋网面轮廓信息。Wherein, the
具体地,所述轮廓获取单元1包括:图像采集模块、拼接模块及目标检测模块。图像采集模块用于采用无人机携带视觉传感器采集施工现场各区域的钢筋网面图像,得到多个局部图像。拼接模块与所述图像采集模块连接,拼接模块用于对多个局部图像进行拼接,得到施工现场图像。目标检测模块与所述拼接模块连接,目标检测模块用于采用深度学习算法对所述施工现场图像进行钢筋实例分割,确定各钢筋的轮廓信息、钢筋数量、钢筋间距及钢筋直径,得到钢筋网面轮廓信息。Specifically, the
地图建立单元2与所述轮廓获取单元1连接,地图建立单元2用于根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息节点地图。所述建筑信息节点地图中包括多个钢筋节点及各钢筋节点的位置坐标。The
具体地,所述地图建立单元2包括:BIM模型建立模块、节点坐标确定模块及地图建立模块。BIM模型建立模块与所述轮廓获取单元1连接,BIM模型建立模块用于根据所述钢筋网面轮廓信息,建立钢筋网面的建筑信息模型。节点坐标确定模块与BIM模型建立模块连接,节点坐标确定模块用于根据所述建筑信息模型,确定各钢筋节点的位置坐标。地图建立模块用于根据各钢筋节点的位置坐标,建立建筑信息节点地图。Specifically, the
路径规划单元3与所述地图建立单元2连接,路径规划单元3用于基于所述建筑信息节点地图,对轮腿式钢筋捆扎机器人进行路径规划,确定轮腿式钢筋捆扎机器人的施工路径。所述施工路径中包括多个钢筋节点及各钢筋节点的位置坐标。The
具体地,所述路径规划单元3包括:机器人模型确定模块、仿真模块及路径确定模块。机器人模型确定模块用于根据轮腿式钢筋捆扎机器人的尺寸信息,确定机器人模型。所述机器人模型为矩形框。仿真模块分别与地图建立单元2及机器人模型确定模块连接,仿真模块用于基于所述机器人模型及所述建筑信息节点地图,对轮腿式钢筋捆扎机器人的施工路径进行仿真模拟,确定所述机器人模型横向运动及纵向运动过程中的位置坐标。路径确定模块与仿真模块连接,路径确定模块用于根据所述机器人模型横向运动及纵向运动过程中的位置坐标,得到所述轮腿式钢筋捆扎机器人的施工路径。Specifically, the
定位单元4用于采用扩展卡尔曼滤波算法,根据单目相机测量的所述轮腿式钢筋捆扎机器人的位移增量以及超宽带UWB定位基站对所述轮腿式钢筋捆扎机器人的测距信息,对所述轮腿式钢筋捆扎机器人进行定位,得到所述轮腿式钢筋捆扎机器人的当前位置。所述单目相机设置在所述轮腿式钢筋捆扎机器人上。所述UWB定位基站设置在施工现场。The
具体地,所述定位单元4包括:坐标系确定模块、位移测量模块、坐标转换模块、测距模块及融合模块。坐标系确定模块用于在施工现场设置多个UWB定位基站,并建立UWB坐标系。所述UWB坐标系与所述建筑信息节点地图中的坐标系对应。位移测量模块用于采用单目相机测量所述轮腿式钢筋捆扎机器人的初始位移增量。坐标转换模块与位移测量模块连接,坐标转换模块用于将所述初始位移增量转换到UWB坐标系下,得到目标位移增量。测距模块用于针对任一UWB定位基站,通过所述UWB定位基站测量所述UWB定位基站与所述轮腿式钢筋捆扎机器人的距离,得到测距信息。融合模块与坐标转换模块及测距模块连接,融合模块用于采用扩展卡尔曼滤波算法,根据所述目标位移增量及各UWB定位基站的测距信息,确定所述轮腿式钢筋捆扎机器人的当前位置。Specifically, the
导航单元5分别与所述路径规划单元3及所述定位单元4连接,导航单元5用于根据所述当前位置及所述施工路径,确定所述轮腿式钢筋捆扎机器人的运动方向,并执行绑扎任务。The
具体地,所述导航单元5包括:距离计算模块、判断模块、方向维持模块及变向模块。距离计算模块,分别与所述路径规划单元3及所述定位单元4连接,用于计算所述当前位置与所述施工路径中各钢筋节点的距离,并确定目标节点。所述目标节点为所述施工路径中与所述当前位置距离最近的钢筋节点。判断模块,用于判断所述当前位置与所述目标节点的距离是否大于设定阈值。方向维持模块,与判断模块连接,用于在所述当前位置与所述目标节点的距离大于设定阈值时,所述轮腿式钢筋捆扎机器人继续沿原方向运动,并执行绑扎任务。所述原方向为横向或纵向。变向模块,与判断模块连接,用于在所述当前位置与所述目标节点的距离小于或等于设定阈值时,所述轮腿式钢筋捆扎机器人从沿第一方向运动转为沿第二方向运动,并执行绑扎任务。所述第二方向为与所述第一方向在水平面上相互垂直的方向。Specifically, the
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to the present invention Thoughts, there will be changes in specific implementation methods and application ranges. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211046674.6A CN115420292B (en) | 2022-08-30 | 2022-08-30 | A positioning and navigation method and system for a wheel-legged steel bar bundling robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211046674.6A CN115420292B (en) | 2022-08-30 | 2022-08-30 | A positioning and navigation method and system for a wheel-legged steel bar bundling robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115420292A true CN115420292A (en) | 2022-12-02 |
CN115420292B CN115420292B (en) | 2024-04-19 |
Family
ID=84199670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211046674.6A Active CN115420292B (en) | 2022-08-30 | 2022-08-30 | A positioning and navigation method and system for a wheel-legged steel bar bundling robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115420292B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116225030A (en) * | 2023-05-09 | 2023-06-06 | 中铁九局集团有限公司 | Walking control system and method of steel bar binding robot |
CN118342533A (en) * | 2024-06-07 | 2024-07-16 | 济南工程职业技术学院 | Pose control method and device for reinforcement bar binding robot |
CN119228786A (en) * | 2024-11-28 | 2024-12-31 | 杭州宇泛智能科技股份有限公司 | Panoramic identification method, system and electronic equipment for steel bar binding points |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180297207A1 (en) * | 2017-04-14 | 2018-10-18 | TwoAntz, Inc. | Visual positioning and navigation device and method thereof |
CN113264212A (en) * | 2021-05-08 | 2021-08-17 | 济客筑科技(太仓)有限公司 | Dot-matrix steel bar binding system of multi-axis robot and working method thereof |
CN114862829A (en) * | 2022-05-30 | 2022-08-05 | 北京建筑大学 | Method, device, equipment and storage medium for positioning reinforcement binding points |
-
2022
- 2022-08-30 CN CN202211046674.6A patent/CN115420292B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180297207A1 (en) * | 2017-04-14 | 2018-10-18 | TwoAntz, Inc. | Visual positioning and navigation device and method thereof |
CN113264212A (en) * | 2021-05-08 | 2021-08-17 | 济客筑科技(太仓)有限公司 | Dot-matrix steel bar binding system of multi-axis robot and working method thereof |
CN114862829A (en) * | 2022-05-30 | 2022-08-05 | 北京建筑大学 | Method, device, equipment and storage medium for positioning reinforcement binding points |
Non-Patent Citations (2)
Title |
---|
孙曼晖;杨绍武;易晓东;刘衡竹;: "基于GIS和SLAM的机器人大范围环境自主导航", 仪器仪表学报, no. 03, 15 March 2017 (2017-03-15) * |
杨记周;胡广宇;许玉云;骆永乐;双丰;: "室内移动机器人平台设计与实现", 自动化仪表, no. 05, 20 May 2019 (2019-05-20) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116225030A (en) * | 2023-05-09 | 2023-06-06 | 中铁九局集团有限公司 | Walking control system and method of steel bar binding robot |
CN118342533A (en) * | 2024-06-07 | 2024-07-16 | 济南工程职业技术学院 | Pose control method and device for reinforcement bar binding robot |
CN119228786A (en) * | 2024-11-28 | 2024-12-31 | 杭州宇泛智能科技股份有限公司 | Panoramic identification method, system and electronic equipment for steel bar binding points |
Also Published As
Publication number | Publication date |
---|---|
CN115420292B (en) | 2024-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115420292B (en) | A positioning and navigation method and system for a wheel-legged steel bar bundling robot | |
Ding et al. | BIM-based task-level planning for robotic brick assembly through image-based 3D modeling | |
Feng et al. | Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites | |
CN109059942B (en) | An underground high-precision navigation map construction system and construction method | |
CN104914865B (en) | Intelligent Mobile Robot Position Fixing Navigation System and method | |
Tsuruta et al. | Mobile robot for marking free access floors at construction sites | |
Shahi et al. | Onsite 3D marking for construction activity tracking | |
CN107065887B (en) | Method of backward navigation in the channel of omnidirectional mobile robot | |
CN111639505B (en) | Hybrid positioning navigation system and method for indoor inspection robot | |
CN106338245A (en) | Non-contact movement measuring method for workpiece | |
CN102706342A (en) | Location and environment modeling method of intelligent movable robot | |
CN106840148A (en) | Wearable positioning and path guide method based on binocular camera under outdoor work environment | |
CN106199626A (en) | Based on the indoor three-dimensional point cloud map generation system and the method that swing laser radar | |
CN110147103B (en) | Lane positioning method of automatic driving container truck in wharf shore bridge area | |
CN107702722A (en) | A kind of las er-guidance AGV natural navigation localization methods | |
CN111207753A (en) | A method for simultaneous positioning and mapping in a multi-glass partition environment | |
Kim et al. | Autonomous mobile robot localization and mapping for unknown construction environments | |
Kayhani et al. | Tag-based indoor localization of UAVs in construction environments: Opportunities and challenges in practice | |
Mao et al. | Virtual laser target board for alignment control and machine guidance in tunnel-boring operations | |
Yin et al. | Towards BIM-based robot localization: A real-world case study | |
Liang et al. | On-site visualization of building component erection enabled by integration of four-dimensional modeling and automated surveying | |
Yamamoto et al. | Basic technology toward autonomous hydraulic excavator | |
CN107402011B (en) | Composite grid map construction method for greenhouse mobile robot | |
CN113484843A (en) | Method and device for determining external parameters between laser radar and integrated navigation | |
CN108458707B (en) | Autonomous positioning method and positioning system of operating robot in multi-pendulous pipeline scene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |