CN115418661A - A supported heterostructure nano-electrocatalytic material AB@(ABOx)-(A/B-)-L-C and its preparation - Google Patents
A supported heterostructure nano-electrocatalytic material AB@(ABOx)-(A/B-)-L-C and its preparation Download PDFInfo
- Publication number
- CN115418661A CN115418661A CN202210401100.XA CN202210401100A CN115418661A CN 115418661 A CN115418661 A CN 115418661A CN 202210401100 A CN202210401100 A CN 202210401100A CN 115418661 A CN115418661 A CN 115418661A
- Authority
- CN
- China
- Prior art keywords
- metal
- heteroatom
- abo
- doped
- heterostructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 84
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 106
- 239000002184 metal Substances 0.000 claims abstract description 105
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 86
- 239000003446 ligand Substances 0.000 claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 47
- 239000012298 atmosphere Substances 0.000 claims abstract description 30
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 30
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 21
- 150000003839 salts Chemical class 0.000 claims abstract description 21
- 238000000889 atomisation Methods 0.000 claims abstract description 10
- 238000000197 pyrolysis Methods 0.000 claims abstract description 10
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 7
- 239000003513 alkali Substances 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 33
- 229910052698 phosphorus Inorganic materials 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- 239000001301 oxygen Substances 0.000 claims description 26
- -1 actinide rare earth metals Chemical class 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 229910052797 bismuth Inorganic materials 0.000 claims description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000011669 selenium Substances 0.000 claims description 19
- 229910052711 selenium Inorganic materials 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- 229910052796 boron Inorganic materials 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 13
- 229910052714 tellurium Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052684 Cerium Inorganic materials 0.000 claims description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 12
- 239000010411 electrocatalyst Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 9
- 239000012266 salt solution Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000012159 carrier gas Substances 0.000 claims description 8
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 5
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 claims description 5
- RJFAYQIBOAGBLC-UHFFFAOYSA-N Selenomethionine Natural products C[Se]CCC(N)C(O)=O RJFAYQIBOAGBLC-UHFFFAOYSA-N 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 229960002718 selenomethionine Drugs 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052768 actinide Inorganic materials 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 4
- 150000002602 lanthanoids Chemical class 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- 238000000859 sublimation Methods 0.000 claims description 4
- 230000008022 sublimation Effects 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical class [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000002585 base Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 2
- 150000004692 metal hydroxides Chemical class 0.000 claims description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 2
- 229920001308 poly(aminoacid) Polymers 0.000 claims description 2
- 150000003212 purines Chemical class 0.000 claims description 2
- 150000003230 pyrimidines Chemical class 0.000 claims description 2
- 238000006479 redox reaction Methods 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- BPLUKJNHPBNVQL-UHFFFAOYSA-N triphenylarsine Chemical compound C1=CC=CC=C1[As](C=1C=CC=CC=1)C1=CC=CC=C1 BPLUKJNHPBNVQL-UHFFFAOYSA-N 0.000 claims description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 1
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 150000001413 amino acids Chemical class 0.000 claims 1
- 229910000085 borane Inorganic materials 0.000 claims 1
- HYQSHKNTKRZDOM-UHFFFAOYSA-N cesium dodecahydrododecaborate methanolate Chemical compound [Cs+].[Cs+].[B-][B][B][B][B][B][B][B][B][B][B][B-] HYQSHKNTKRZDOM-UHFFFAOYSA-N 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 125000005843 halogen group Chemical group 0.000 claims 1
- 229910052744 lithium Inorganic materials 0.000 claims 1
- 238000011068 loading method Methods 0.000 claims 1
- 150000005041 phenanthrolines Chemical class 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium(II) oxide Chemical compound [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 54
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 39
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 14
- 239000002994 raw material Substances 0.000 abstract description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 7
- 239000000969 carrier Substances 0.000 abstract description 5
- 239000001569 carbon dioxide Substances 0.000 abstract description 4
- 239000000446 fuel Substances 0.000 abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 144
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 78
- 229910002546 FeCo Inorganic materials 0.000 description 48
- 238000012512 characterization method Methods 0.000 description 39
- 230000003197 catalytic effect Effects 0.000 description 35
- 229910017052 cobalt Inorganic materials 0.000 description 33
- 239000010941 cobalt Substances 0.000 description 33
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 33
- 229910052742 iron Inorganic materials 0.000 description 25
- 229910003321 CoFe Inorganic materials 0.000 description 23
- 239000011162 core material Substances 0.000 description 23
- 229910052785 arsenic Inorganic materials 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 229910052740 iodine Inorganic materials 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 229910052787 antimony Inorganic materials 0.000 description 13
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 12
- 230000004044 response Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000011943 nanocatalyst Substances 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- 230000027756 respiratory electron transport chain Effects 0.000 description 8
- 229910052794 bromium Inorganic materials 0.000 description 7
- 239000011258 core-shell material Substances 0.000 description 7
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 125000004430 oxygen atom Chemical group O* 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- AAMATCKFMHVIDO-UHFFFAOYSA-N azane;1h-pyrrole Chemical compound N.C=1C=CNC=1 AAMATCKFMHVIDO-UHFFFAOYSA-N 0.000 description 6
- IYNWNKYVHCVUCJ-UHFFFAOYSA-N bismuth Chemical compound [Bi].[Bi] IYNWNKYVHCVUCJ-UHFFFAOYSA-N 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- 229910052792 caesium Inorganic materials 0.000 description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 5
- 239000013067 intermediate product Substances 0.000 description 5
- 230000002688 persistence Effects 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- 238000004502 linear sweep voltammetry Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 229910052689 Holmium Inorganic materials 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 3
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical compound N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000000329 molecular dynamics simulation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 238000009790 rate-determining step (RDS) Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- SKFLKCLXNZFRNN-UHFFFAOYSA-N (2-bromo-4-nitrophenyl)methanol Chemical compound OCC1=CC=C([N+]([O-])=O)C=C1Br SKFLKCLXNZFRNN-UHFFFAOYSA-N 0.000 description 2
- VYPSHMOLHNQXBM-LURJTMIESA-N (3s)-1-iodo-3-methylpentane Chemical compound CC[C@H](C)CCI VYPSHMOLHNQXBM-LURJTMIESA-N 0.000 description 2
- OEOIWYCWCDBOPA-UHFFFAOYSA-N 6-methyl-heptanoic acid Chemical compound CC(C)CCCCC(O)=O OEOIWYCWCDBOPA-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- NSPSPMKCKIPQBH-UHFFFAOYSA-K bismuth;7,7-dimethyloctanoate Chemical compound [Bi+3].CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O NSPSPMKCKIPQBH-UHFFFAOYSA-K 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 238000000970 chrono-amperometry Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 229960003067 cystine Drugs 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001889 high-resolution electron micrograph Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910020676 Co—N Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HOYKPPXKLRXDBR-UHFFFAOYSA-N [O].[Co].[Co] Chemical compound [O].[Co].[Co] HOYKPPXKLRXDBR-UHFFFAOYSA-N 0.000 description 1
- VQNPRYUMHLOITA-UHFFFAOYSA-N [Se]O Chemical compound [Se]O VQNPRYUMHLOITA-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YWWZCHLUQSHMCL-UHFFFAOYSA-N diphenyl diselenide Chemical compound C=1C=CC=CC=1[Se][Se]C1=CC=CC=C1 YWWZCHLUQSHMCL-UHFFFAOYSA-N 0.000 description 1
- 238000000619 electron energy-loss spectrum Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000010808 liquid waste Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- RSNHZVDDPZNWDV-UHFFFAOYSA-L strontium;tellurate Chemical compound [Sr+2].[O-][Te]([O-])(=O)=O RSNHZVDDPZNWDV-UHFFFAOYSA-L 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 150000003498 tellurium compounds Chemical class 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ZHXAZZQXWJJBHA-UHFFFAOYSA-N triphenylbismuthane Chemical compound C1=CC=CC=C1[Bi](C=1C=CC=CC=1)C1=CC=CC=C1 ZHXAZZQXWJJBHA-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
- C25B3/26—Reduction of carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Catalysts (AREA)
Abstract
一种负载型异质结构纳米电催化材料AB@(ABOx)‑(A/B‑)‑L‑C及制备,属于纳米电催化材料领域。本发明以混合金属盐、碱溶液和杂原子配体为原料、以多孔载体,发明超声雾化微凝胶化联合气氛高温裂解工艺制备具有负载型以金属合金为核、以金属氧化物镶嵌进金属‑杂原子共掺杂碳层为壳的金属合金@金属‑杂原子共掺杂碳异质结构电催化材料,其具有比商用Pt/C更高的电催化性能,适用于燃料电池和二氧化碳资源化利用的电极催化剂层的制备。The invention relates to a supported heterostructure nano-electrocatalytic material AB@(ABO x )-(A/B-)-L-C and its preparation, belonging to the field of nano-electrocatalytic materials. The invention uses mixed metal salts, alkali solution and heteroatom ligands as raw materials, and uses porous carriers to invent ultrasonic atomization microgelation combined with high-temperature pyrolysis in the atmosphere to prepare a loaded type with metal alloy as the core and metal oxide embedded Metal-heteroatom co-doped carbon layer metal alloy@metal-heteroatom co-doped carbon heterostructure electrocatalytic material, which has higher electrocatalytic performance than commercial Pt/C, suitable for fuel cells and carbon dioxide Preparation of electrode catalyst layer for resource utilization.
Description
技术领域technical field
本发明涉及一种新型异质结构纳米电催化材料及其规模化制备方法,尤其一种金属合金(AB)@金属氧化物(ABOx)镶嵌金属(AB)和杂原子(L)共掺杂壳层(C)异质结构纳米电催化材料(AB@(ABOx)-(A/B-)-L-C)及其制备方法,属于用于新型异质结构杂化材料技术领域。The invention relates to a novel heterostructure nano-electrocatalytic material and its large-scale preparation method, especially a metal alloy (AB)@metal oxide (ABO x ) mosaic metal (AB) and heteroatom (L) co-doping The shell (C) heterostructure nano-electrocatalytic material (AB@(ABO x )-(A/B-)-LC) and its preparation method belong to the technical field of novel heterostructure hybrid materials.
背景技术Background technique
零或低碳排放清洁能源和碳中和技术,是保障我国碳达标和生态环境质量的两个关键技术,相应的燃料电池(FC)和CO2资源化技术成为重点发展领域;其中酸性质子交换膜(PEM)或碱性阴离子交换膜(AEM)醇/氢FC具有操作温度低(25-100℃)、能量转换效率高、零或低碳排放等特点,成为重点发展方向。氢能具有单位质量功率密度高、无碳排放、储量丰、可循环、无固液态废弃物等特点,替代化石能源已成为必然。Zero or low-carbon emission clean energy and carbon neutral technology are two key technologies to ensure China's carbon compliance and ecological environment quality. The corresponding fuel cell (FC) and CO2 resource technology have become key development areas; among them, acidic proton exchange Membrane (PEM) or alkaline anion exchange membrane (AEM) alcohol/hydrogen FC has the characteristics of low operating temperature (25-100°C), high energy conversion efficiency, zero or low carbon emissions, and has become a key development direction. Hydrogen energy has the characteristics of high power density per unit mass, no carbon emissions, abundant reserves, recyclability, and no solid and liquid waste. It has become inevitable to replace fossil energy.
氢基FC的核心部件是电堆,主要由电极、电解质隔膜与双极板等构成。双极板及气体扩散层(GDL)、离子交换膜和催化剂层是其主要成本,在目前比较成熟的商用PEMFC的电堆中占比约70%,其中催化剂占比21%。虽然也研制了很多低铂合金和非铂催化剂,由于催化性能(特别是催化氧还原反应(ORR))的活性、抗中毒性和持久性、安全性、循环寿命等指标仍待提高,目前商用的PEMFC电极催化材料仍为Pt类稀贵金属或其合金。虽然通过对PEM材料及其与活性层界面复合优化可以提高其性价比,但是受限于稀贵的Pt 基原材料,很难大幅度降低电极催化材料的成本(目前PEMFC负极Pt用量平均约为0.4mg Pt/cm2)而获得持续发展,严重制约着FC产业化发展。我国对高性能稀贵金属电催化材料,如Pt、Ir、Pd、Ru、Rh等,商业渠道基本依赖进口。因此,为解决Pt等稀贵金属电极催化材料的高成本和持续化应用问题,需要研制高性能非稀贵金属(NRNM)及低含量稀贵金属(LRNM)高效催化剂,其是下一代高性价比PEMFC和新一代更安全可靠AEMFC电堆以及二氧化碳资源化利用的关键催化材料。The core component of a hydrogen-based FC is the stack, which is mainly composed of electrodes, electrolyte diaphragms, and bipolar plates. Bipolar plates and gas diffusion layers (GDL), ion exchange membranes and catalyst layers are the main costs, accounting for about 70% of the current relatively mature commercial PEMFC stacks, of which catalysts account for 21%. Although many low-platinum alloys and non-platinum catalysts have also been developed, due to the catalytic performance (especially catalytic oxygen reduction reaction (ORR)) of activity, anti-poisoning and durability, safety, cycle life and other indicators still need to be improved, the current commercial The PEMFC electrode catalyst materials are still Pt-like rare metals or their alloys. Although the optimization of the PEM material and its interfacial recombination with the active layer can improve its cost performance, it is difficult to greatly reduce the cost of electrode catalytic materials due to the limitation of rare and expensive Pt-based raw materials (currently, the average amount of Pt used in PEMFC negative electrodes is about 0.4mg Pt/cm 2 ) has achieved sustainable development, which seriously restricts the development of FC industrialization. my country basically relies on imports of high-performance rare and precious metal electrocatalytic materials, such as Pt, Ir, Pd, Ru, Rh, etc., through commercial channels. Therefore, in order to solve the high cost and continuous application of Pt and other rare metal electrode catalytic materials, it is necessary to develop high-performance non-rare noble metal (NRNM) and low-level rare metal (LRNM) high-efficiency catalysts, which are the next generation of cost-effective PEMFC and new A generation of safer and more reliable AEMFC stacks and key catalytic materials for resource utilization of carbon dioxide.
本发明以混合金属盐、碱溶液和杂原子配体为原料、以多孔载体,发明超声雾化微凝胶化联合气氛高温裂解工艺制备具有负载型以金属合金为核、以金属氧化物镶嵌金属-杂原子共掺杂碳层为壳的异质结构金属-杂原子杂化碳电催化材料,其具有比商用Pt/C更高的电催化性能,适用于燃料电池和二氧化碳资源化利用的电极催化剂层的制备。The invention uses mixed metal salts, alkali solutions and heteroatom ligands as raw materials, and uses porous carriers to invent ultrasonic atomization microgelation combined with high-temperature pyrolysis process to prepare a loaded type with metal alloy as the core and metal oxide embedded metal -Heterostructure metal-heteroatom hybrid carbon electrocatalytic material with heteroatom co-doped carbon layer as the shell, which has higher electrocatalytic performance than commercial Pt/C, and is suitable for electrodes for fuel cells and carbon dioxide resource utilization Preparation of the catalyst layer.
发明内容Contents of the invention
针对现有燃料电池和二氧化碳资源化用稀贵金属和非稀贵金属电催化材料在活性、抗中毒性和持久性、安全性、循环寿命亟待提高、而成本亟待大幅度降低的难题,本发明设计并制备出一种新型的复合和杂化电催化材料,并发明了一种超声雾化微溶胶化-杂原子配位凝胶化联合气氛高温裂解工艺规模化制备方法,具有对其形貌、尺寸、异质界面微结构和成分进行灵活调控的特点。Aiming at the problems that the existing rare and precious metal and non-rare precious metal electrocatalytic materials for fuel cell and carbon dioxide resource utilization need to be improved in terms of activity, poisoning resistance, durability, safety and cycle life, and the cost needs to be greatly reduced, the present invention designs and A new type of composite and hybrid electrocatalytic material was prepared, and a large-scale preparation method of ultrasonic atomization microsolification-heteroatom coordination gelation combined with atmosphere pyrolysis process was invented, which has the advantages of its shape and size. , The characteristics of the flexible regulation of the microstructure and composition of the heterogeneous interface.
所述的制备工艺包括以下步骤:Described preparation process comprises the following steps:
(1)超声雾化微溶胶化,通过超声雾化将碱溶液形成微液滴,滴入含有分散剂的混合金属盐溶液中,构建多元聚羟基金属混合物溶胶,通过离心机将该溶胶离心、用蒸馏水洗涤数次备用;所述的金属至少包括金属A和金属B;(1) Ultrasonic atomization microsolization, the alkali solution is formed into micro-droplets by ultrasonic atomization, and dropped into the mixed metal salt solution containing the dispersant to construct a multi-component polyhydroxy metal mixture sol, and the sol is centrifuged by a centrifuge, Washing several times with distilled water for later use; the metals at least include metal A and metal B;
(2)溶胶-凝胶相转化制备多元金属-杂原子配合物凝胶,将洗涤干净的多元聚羟基金属混合物溶胶和多孔载体及含杂原子L的配体混合后,加入到溶剂中混合均匀,配体杂原子和羟基发生置换反应或/和与金属发生络合反应,使多元聚羟基金属溶胶凝胶化,形成金属-杂原子配合物微凝胶负载在多孔载体上,然后离心成淤浆并洗涤干净后使用有机溶剂喷雾干燥器干燥成粉体;(2) Sol-gel phase inversion to prepare multi-element metal-heteroatom complex gel, mix the washed multi-element polyhydroxy metal mixture sol with porous carrier and ligand containing heteroatom L, then add to the solvent and mix evenly , Ligand heteroatoms and hydroxyl groups undergo substitution reactions or/and complexation reactions with metals to gel the multi-component polyhydroxy metal sol to form metal-heteroatom complex microgels loaded on porous carriers, and then centrifuged to form a slurry Slurry is washed and dried into powder using an organic solvent spray dryer;
(3)高温裂解制备金属合金核-金属氧化物镶嵌杂原子掺杂壳体电催化剂,将粉体放入石英管式炉中的表面皿上平铺均匀,在不同的气氛范围下进行煅烧,得到金属合金(AB) @金属氧化物(ABOx)镶嵌金属(A/B)和杂原子(L)共掺杂壳体(C)异质结构纳米电催化材料(AB@((ABOx)-(A/B-)-L-C)。(3) Prepare the metal alloy core-metal oxide mosaic heteroatom-doped shell electrocatalyst by pyrolysis, put the powder into the surface dish in the quartz tube furnace and spread it evenly, and perform calcination under different atmosphere ranges, Metal alloy (AB)@metal oxide (ABO x ) mosaic metal (A/B) and heteroatom (L) co-doped shell (C) heterostructure nano-electrocatalytic material (AB@((ABO x ) -(A/B-)-LC).
其中步骤(1)中的金属A和金属B均选自第四、第五和第六周期的过渡金属,如Sc、Ti、V、Cr、Fe、Co、Ni、Mn、Zn、Cu、Cr、Ti、Mo、Y、Ag、Nb、Au、Pt、Pd、Ir、Ru、 Rh、Oe;镧系和锕系稀土金属,如La、Ce、Gd、Nd、Ho;以及IA的K、Rb、Cs;IIA的 Be、Mg、Ca;IIIA的Ga、In;IVA的Ge、Sn、Pb;VA的Sb、Bi;金属A和金属B不同,金属A和金属B为单一的金属或多种金属;金属A和金属B的比例不限制,如摩尔比为 10:1-1:10等,根据需要调节;Wherein the metal A and metal B in the step (1) are all selected from transition metals of the fourth, fifth and sixth periods, such as Sc, Ti, V, Cr, Fe, Co, Ni, Mn, Zn, Cu, Cr , Ti, Mo, Y, Ag, Nb, Au, Pt, Pd, Ir, Ru, Rh, Oe; lanthanide and actinide rare earth metals, such as La, Ce, Gd, Nd, Ho; and K, Rb of IA , Cs; Be, Mg, Ca of IIA; Ga, In of IIIA; Ge, Sn, Pb of IVA; Sb, Bi of VA; metal A and metal B are different, metal A and metal B are a single metal or multiple Metal; the ratio of metal A to metal B is not limited, such as the molar ratio is 10:1-1:10, etc., it can be adjusted as needed;
金属盐为卤化物、硫酸盐、硝酸盐、高卤酸盐、磷酸盐等可溶于水的金属盐,其浓度范围为0.01M到1M;碱溶液为碱金属(LiOH、NaOH、KOH、RuOH))、碱土金属(如Be(OH)2、 Ca(OH)2)、硼氢化钠或有机强碱(如氨水、水合肼、乙二胺)溶液,浓度为0.01M到1M。Metal salts are metal salts soluble in water such as halides, sulfates, nitrates, perhalogenates, phosphates, etc., and their concentration ranges from 0.01M to 1M; alkaline solutions are alkali metals (LiOH, NaOH, KOH, RuOH )), alkaline earth metal (such as Be(OH) 2 , Ca(OH) 2 ), sodium borohydride or organic strong base (such as ammonia water, hydrazine hydrate, ethylenediamine) solution, the concentration is 0.01M to 1M.
步骤(2)载体选自多孔活性炭黑、氧化石墨烯片、碳纳米管、改性分子筛(如咪唑改性ZIF-8)、多孔羟基磷灰石、磷钨酸铈改性纳米孔二氧化硅(MCM-41@Cs-TPA)、磷钨酸铈改性纳米孔氧化铝(Al2O3@Cs-TPA)、磷钨酸铈改性纳米孔氧化钛(TiO2@Cs-TPA)等或其他的改性载体,使用浓度为0.1g/L到500g/L;Step (2) The carrier is selected from porous activated carbon black, graphene oxide sheets, carbon nanotubes, modified molecular sieves (such as imidazole modified ZIF-8), porous hydroxyapatite, cerium phosphotungstate modified nanoporous silica (MCM-41@Cs-TPA), cerium phosphotungstate modified nanoporous alumina (Al 2 O 3 @Cs-TPA), cerium phosphotungstate modified titanium oxide (TiO 2 @Cs-TPA), etc. Or other modified carriers, the use concentration is 0.1g/L to 500g/L;
步骤(2)中杂原子L掺杂碳壳的杂原子L选自IIIA、IVA、VA、VIA主族元素中除碳和氧外的一个或一个以上元素,如硼(Boron)、Al、Ga、Sn、N、P、As、Sb、Bi、S、Se、 Te,掺杂方式为构建。所述的含杂原子L的配体如选自如邻二氮菲、嘌呤类、嘧啶类、聚氨基酸类、三苯基磷、硒蛋氨酸、三苯基砷、多聚硼烷盐(如球状十二硼溴酸铯Cs2(B12Br12)、十二硼碘酸铈Ce(B12Br12)2、十二硼氢化锂Li2(B12H12))、烷氧基铋、烷氧基硒、烷氧基硫等等中的一种或几种;In step (2), the heteroatom L doped with the carbon shell is selected from one or more elements except carbon and oxygen in the main group elements of IIIA, IVA, VA, and VIA, such as boron (Boron), Al, Ga , Sn, N, P, As, Sb, Bi, S, Se, Te, the doping method is construction. The ligand containing heteroatom L is selected from such as o-phenanthroline, purines, pyrimidines, polyamino acids, triphenylphosphine, selenomethionine, triphenylarsenic, polyborane salt (such as spherical deca Cesium diborobromide Cs 2 (B 12 Br 12 ), Ce(B 12 Br 12 ) 2 , Lithium dodecaborohydride Li 2 (B 12 H 12 )), bismuth alkoxide, alkane One or more of oxyselenium, alkoxysulfur, etc.;
含杂原子L的配体与金属的摩尔比不限定,如1:10-10:1;含杂原子L的配体浓度为0.1g/L 到200g/L。The molar ratio of the ligand containing the heteroatom L to the metal is not limited, such as 1:10-10:1; the concentration of the ligand containing the heteroatom L is 0.1 g/L to 200 g/L.
溶剂为能够溶解金属氢氧化物溶胶和杂原子配体的溶剂,如乙醇、乙醚、丙酮、苯等。The solvent is a solvent capable of dissolving the metal hydroxide sol and the heteroatom ligand, such as ethanol, ether, acetone, benzene and the like.
步骤(2)多元聚羟基金属混合物溶胶和多孔载体及含杂原子L的配体混合反应时,采用Y型微通道混合器。Step (2) When the multi-component polyhydroxy metal mixture sol is mixed and reacted with the porous carrier and the ligand containing the heteroatom L, a Y-shaped microchannel mixer is used.
步骤(3)中的不同气氛为惰性气氛或/和进一步待掺杂的杂原子元素的前驱体气氛,待掺杂的杂原子元素的前驱体气氛选自氨气、咪唑、磷化氢、硼烷、硫磺蒸气、二氧化硫蒸气、二氧化硒蒸气等,含量为5-20V%;若室温为固体的物质对应的气氛,通过将固体物质(如硫磺、二氧化硒、烷氧基铋)放置在管式炉的金属-杂原子配合物微凝胶负载在多孔载体前进行加热,控制其加热温度在其沸点或升华点上或下,通过温度控制其蒸发量,通过惰性载气进入到反应体系;气氛气体整体流量为5-40sccm。步骤(3)中的掺杂的杂原子可以与步骤(2)中的相同或不同。相同时,可进一步提高整体掺杂量;不相同时,可进一步引入新的掺杂元素。The different atmospheres in step (3) are an inert atmosphere or/and a precursor atmosphere of a heteroatom element to be doped further, and the precursor atmosphere of a heteroatom element to be doped is selected from ammonia, imidazole, phosphine, boron Alkane, sulfur vapor, sulfur dioxide vapor, selenium dioxide vapor, etc., with a content of 5-20V%; if the room temperature is an atmosphere corresponding to a solid substance, by placing the solid substance (such as sulfur, selenium dioxide, bismuth alkoxide) on The metal-heteroatom complex microgel loaded in the tube furnace is heated in front of the porous carrier, the heating temperature is controlled above or below its boiling point or sublimation point, the evaporation amount is controlled by the temperature, and the inert carrier gas enters the reaction system ; The overall flow rate of the atmosphere gas is 5-40sccm. The doped heteroatoms in step (3) may be the same as or different from those in step (2). When they are the same, the overall doping amount can be further increased; when they are different, new doping elements can be further introduced.
此时如果气氛是通过蒸发固体杂原子化合物的,就将其放在加热炉的前段控温区的石英培养皿,然后打开惰性气体阀,根据需要,控制气体流速在10-40sccm,再将炉子温度逐步提高到需要的裂解温度,一般煅烧温度控制在400℃到1400℃之间,保温0.5-4个小时后降温出料。At this time, if the atmosphere is by evaporating solid heteroatom compounds, it is placed on the quartz petri dish in the front temperature control zone of the heating furnace, then the inert gas valve is opened, and the gas flow rate is controlled at 10-40 sccm as required, and the furnace is turned on again. The temperature is gradually increased to the required cracking temperature. Generally, the calcination temperature is controlled between 400°C and 1400°C, and the temperature is lowered after 0.5-4 hours of heat preservation.
本发明所得材料结构为:金属合金AB为核心,金属氧化物ABOx为镶嵌金属与杂原子 L共掺杂的金属-杂原子共掺杂层为壳层C,形成异质结构;上述异质结构负载在多孔载体上形成纳米电催化材料,上述具有负载型以金属合金为核、以金属氧化物镶嵌金属-杂原子共掺杂层为壳的异质结构金属-杂原子杂化(碳)电催化材料就获得了一种新型的以金属合金为核、以金属氧化物镶嵌金属和杂原子共掺杂碳基异质结构纳米电催化材料(AB@(ABOx)-(A/B-)-L-C)。The material structure obtained in the present invention is: the metal alloy AB is the core, the metal oxide ABOx is the inlaid metal and the heteroatom L co-doped metal-heteroatom co-doped layer is the shell C, forming a heterostructure; the above heterostructure Loaded on a porous carrier to form a nano-electrocatalytic material, the above-mentioned heterostructure metal-heteroatom hybrid (carbon) electrocatalyst with a metal alloy as the core and a metal oxide embedded metal-heteroatom co-doped layer as the shell The catalytic material obtained a new type of nano-electrocatalytic material (AB@(ABOx)-(A/B-)- L-C).
本发明所得材料的应用,作为电催化材料,用于电催化氧化还原反应。The application of the obtained material in the present invention is used as an electrocatalytic material for electrocatalytic redox reactions.
本发明第一步骤使用的超声雾化微溶胶化装置具有规模化制备聚羟基金属溶胶的能力,实验室小型装置就具有50-100g/次的能力;第二步骤杂原子配位凝胶化的工艺具有灵活多样的操控能力,可以根据需要更换需要的溶剂、多孔载体和杂原子配体等,为后续的高温理解制备提供多种前驱体;而气氛可控高温裂解具有对气氛调控能力,可以实现对电催化剂及其预用载体进行杂原子化、提高整体催化位点密度的能力。The ultrasonic atomization microsolization device used in the first step of the present invention has the ability to prepare polyhydroxy metal sol on a large scale, and the small laboratory device has the ability of 50-100g/time; the second step heteroatom coordination gelation The process has flexible and diverse control capabilities, and can replace the required solvents, porous carriers, and heteroatom ligands according to needs, providing a variety of precursors for subsequent high-temperature understanding and preparation; while the atmosphere-controlled high-temperature pyrolysis has the ability to control the atmosphere. Realize the ability to heteroatomize electrocatalysts and their pre-used supports and increase the overall catalytic site density.
附图说明Description of drawings
图1为本发明制备工艺步骤1所用通过微料液泵控制的超声雾化微溶胶化工艺、步骤2 所用微流体杂原子配位凝胶化工艺和步骤3所用气氛高温裂解工艺及其原理和装置结构简图示意图;Fig. 1 is the ultrasonic atomization microsolization process controlled by the micro material liquid pump used in the
图2为对实施例1制备的Co3Fe7@(CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料的形貌表征:(1)高角度环形暗场STEM(HAADF-STEM)图像;(2)单个粒子的HAADF-STEM 图像(nm:纳米即10-9米)。Figure 2 is the morphology characterization of the Co 3 Fe 7 @(CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic material prepared in Example 1: (1) High-angle annular dark-field STEM (HAADF-STEM) image; (2) HAADF-STEM image of a single particle (nm: nanometer,
图3为对单个Co3Fe7@(CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料的电子能量损失谱图:(a)整体形貌图;(b)绿框中获得的元素分布图;(c)Fe;(d)Co;(e)C;(f)N;(g)O;(h)C+N叠加图;(i)Fe+NFigure 3 is the electron energy loss spectrum of a single Co 3 Fe 7 @(CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic material: (a) overall morphology; (b) (c) Fe; (d) Co; (e) C; (f) N; (g) O; (h) C+N overlay; (i) Fe+N
图4为对单个Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料的局部核壳界面处形貌与结构表征:(a)单个颗粒的TEM图像;(b)对应区域的HR-TEM图像(上)以及对CoFe2O4(311)晶面(下左)和Co3Fe7(110)晶面(下右)的快速傅里叶变换图。Figure 4 shows the morphology and structure characterization of the local core-shell interface of a single Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic material: (a) single particle TEM image of ; (b) HR-TEM image of the corresponding area (upper) and fast Fourier for CoFe 2 O 4 (311) crystal plane (lower left) and Co 3 Fe 7 (110) crystal plane (lower right) Leaf transformation map.
图5是对Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料在0.1M-KOH介质内和商用Pt/C电催化氧还原反应(ORR)催化性能的线性扫描伏安法(LSV)曲线比较图。Figure 5 shows the electrocatalytic oxygen reduction reaction of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic materials in 0.1M-KOH medium and commercial Pt/C ( ORR) catalytic performance of the linear sweep voltammetry (LSV) curve comparison chart.
图6是对Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料在0.1M-KOH介质内和商用Pt/C电催化氧还原反应(ORR)催化性能的塔菲尔斜率比较图。Figure 6 shows the electrocatalytic oxygen reduction reaction of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic materials in 0.1M-KOH medium and commercial Pt/C ( ORR) catalytic performance Tafel slope comparison plot.
图7是对Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料在0.1M-KOH介质内和商用Pt/C电催化氧还原反应(ORR)催化性能的电化学阻抗谱(EIS)的Nyquist图。Figure 7 shows the electrocatalytic oxygen reduction reaction of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic materials in 0.1M-KOH medium and commercial Pt/C ( Nyquist plot of electrochemical impedance spectroscopy (EIS) for catalytic performance of ORR).
图8是在0.6V电压下对Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)异质结构纳米催化材料在 0.1M-KOH介质内和商用Pt/C电催化氧还原反应(ORR)催化性能测试的计时电流响应曲线比较图。Figure 8 shows the effect of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) heterostructure nanocatalytic materials in 0.1M-KOH medium and commercial Pt/C electrode at 0.6V voltage. Comparison chart of chronoamperometric response curves of catalytic oxygen reduction reaction (ORR) catalytic performance test.
图9是对不同Co:Fe摩尔比下制备的CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)型催化剂(x: 0.001-1;y:1-0.001;z:0.001-3)的微结构表征TEM图像。(a)、(b)Co/Fe=0.001/1的纳米粒子的TEM和高分辨TEM;(c)、(d)F2C1为Co/Fe=1/2的纳米粒子的TEM和高分辨 TEM;(e)、(f)Co/Fe=2/1纳米粒子的TEM和高分辨TEM;(g)、(h)Co/Fe=1/0.001的纳米粒子的TEM和高分辨TEM。Figure 9 shows Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) catalysts prepared under different Co:Fe molar ratios (x: 0.001-1; TEM images of the microstructure characterization of y: 1-0.001; z: 0.001-3). (a), (b) TEM and high-resolution TEM of nanoparticles with Co/Fe=0.001/1; (c), (d) TEM and high-resolution TEM of nanoparticles with Co/Fe=1/2 as F2C1; (e), (f) TEM and high-resolution TEM of Co/Fe=2/1 nanoparticles; (g), (h) TEM and high-resolution TEM of Co/Fe=1/0.001 nanoparticles.
图10使用旋转圆盘电极(RDE)在0.1M KOH电解质中对不同Co/Fe比例下制备的CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)纳米电催化材料和商用Pt/C的ORR电催化性能的线性扫描伏安法(LSV)曲线。Fig. 10 Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-) Linear sweep voltammetry (LSV) curves of the ORR electrocatalytic performance of -NC) nanoelectrocatalytic materials and commercial Pt/C.
图11混合金属盐原料中不同Co/Fe比例下制备的CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)纳米电催化材料和商用Pt/C的塔菲尔曲线斜率比较图。Figure 11 Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials and commercial Pt prepared under different Co/Fe ratios in mixed metal salt raw materials /C's Tafel curve slope comparison graph.
图12混合金属盐原料中不同Co/Fe比例下制备的CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)纳米电催化材料和商用Pt/C的电化学阻抗谱(EIS)的Nyquist图。Figure 12 Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials and commercial Pt prepared under different Co/Fe ratios in mixed metal salt raw materials Nyquist plot of electrochemical impedance spectroscopy (EIS) of /C.
图13混合金属盐原料中不同Co/Fe比例下制备的CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)纳米电催化材料和商用Pt/C的在0.6V电压下、在0.1M-KOH介质内电催化氧还原反应(ORR)催化性能测试的计时电流响应曲线。Figure 13 Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials and commercial Pt prepared under different Co/Fe ratios in mixed metal salt raw materials Chronoamperometric response curves of electrocatalytic oxygen reduction reaction (ORR) catalytic performance test in 0.1M-KOH medium at 0.6V voltage of /C.
表1根据XPS测试得到的Co/Fe不同比例下制备的异质结构催化剂中各元素原子百分比。Table 1 shows the atomic percentages of each element in the heterostructure catalysts prepared under different ratios of Co/Fe according to the XPS test.
表2根据N1s峰拟合得到的Co/Fe不同比例下制备的异质结构催化剂中N种类含量的比例。Table 2 The ratio of N species content in heterostructure catalysts prepared under different ratios of Co/Fe obtained by N1s peak fitting.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。The present invention will be further described below in conjunction with the examples, but the present invention is not limited to the following examples.
实施例1Example 1
(1)实施步骤1(1)
步骤1中碱液的制备:取0.56g KOH于PTFE烧杯中,加入25mL去离子水,在超声振荡器中振荡2min,使其充分溶解。Preparation of lye in step 1: Take 0.56g of KOH in a PTFE beaker, add 25mL of deionized water, and vibrate in an ultrasonic oscillator for 2min to fully dissolve it.
步骤1中混合金属盐溶液的制备:取0.5g FeCl2·4H2O(2.5mmol)和0.6g CoCl2·6H2O (2.5mmol)于烧杯中,再加入0.75g聚乙烯吡咯烷酮(PVP),在玻璃烧杯中加入50mL 乙醇和50mL去离子水,超声波振荡2min使其充分溶解。Preparation of mixed metal salt solution in step 1: Take 0.5g FeCl 2 4H 2 O (2.5mmol) and 0.6g CoCl 2 6H 2 O (2.5mmol) in a beaker, then add 0.75g polyvinylpyrrolidone (PVP) , Add 50mL of ethanol and 50mL of deionized water into a glass beaker, and oscillate ultrasonically for 2 minutes to fully dissolve it.
在图1中使用料液泵1将碱溶液以1mL/min的流速送到超声雾化器中进行雾化为4-5 微米大小的微液滴,并溅射进入使用料液泵2以2mL/min的流速送过来的混合金属盐溶液中,通过沉淀反应形成聚羟基铁和聚羟基钴的微溶胶,然后一起进入多元金属聚羟基化合物微溶胶形成池中待用。(泵送的使用管道直径为0.5mm-5mm)。这时,可以使用离心机进行离心分离和乙醇洗涤该类微溶胶2-3次后再溶解在125mL乙醇-水(1:1)的混合溶剂中备用,离心速率微8000-13000rpm(转/分钟),时间为5-30min(分钟)。In Figure 1, feed
(2)实施步骤2(2) Implement
步骤2中杂原子掺杂/改性多孔载体(直径约10-200nm)+杂原子配体悬混液的制备:将0.2g邻二氮菲和1.0g氮改性多孔碳黑溶解在由15ml去离子水和110mL乙醇构建的混合溶剂中,搅拌30min使其充分溶解备用。Preparation of heteroatom-doped/modified porous carrier (about 10-200nm in diameter)+heteroatom ligand suspension in step 2: 0.2g o-phenanthroline and 1.0g nitrogen-modified porous carbon black were dissolved in 15ml In a mixed solvent constructed of ionic water and 110mL ethanol, stir for 30min to fully dissolve it for later use.
使用料液泵3和4分别将多元金属聚羟基化合物微溶胶溶液和杂原子掺杂/改性多孔载体+杂原子配体悬混液泵送到Y型微通道混合器(管道直径为0.5mm-5mm)混合均匀,这时负载在多孔载体上的杂原子配体会和多元金属聚羟基化合物中的羟基发生配体交换反应并发生凝胶化,在多孔载体上形成多元金属-杂原子配合物微凝胶:,并进入到杂原子改性多孔载体负载多元金属-杂原子配合物微凝胶收集器中。然后经过离心和洗涤后溶解在50mL 含有30V%乙醇的水溶液中,使用有机溶剂喷雾干燥器干燥成粉体,获得催化剂的前驱体粉体:杂原子改性多孔载体负载多元金属-杂原子配合物微凝胶粉体。Use liquid pumps 3 and 4 to pump the multi-element metal polyhydroxy compound microsol solution and the heteroatom-doped/modified porous carrier+heteroatom ligand suspension to the Y-shaped microchannel mixer (the diameter of the pipeline is 0.5mm- 5mm) and mixed evenly, then the heteroatom ligand loaded on the porous carrier will undergo ligand exchange reaction with the hydroxyl group in the multi-metal polyhydroxy compound and gelation will occur, forming a multi-element metal-heteroatom complex microparticle on the porous carrier. Gel: and enter into the heteroatom-modified porous carrier loaded multi-element metal-heteroatom complex microgel collector. Then after centrifugation and washing, dissolve in 50mL aqueous solution containing 30V% ethanol, use an organic solvent spray dryer to dry into powder, and obtain the precursor powder of the catalyst: heteroatom modified porous carrier loaded multi-element metal-heteroatom complex Microgel powder.
(3)实施步骤3(3) Implement
步骤3中高温裂解用杂原子化合物气氛的制备,将惰性载气(这里使用氮气)通过35%的浓氨水饱和氨气后构建为含有氨气的裂解用气氛载气。这时,如果需要的获得的杂原子化合物气氛所用的杂原子化合物室温下为固体(如碘、硫磺、SeO2、(NH4)2CO3、CO(NH2)2、三苯基磷(TPP)),就将其放在步骤3中的加热段I处的有通气口的容器内,通过控制该段加热温度超过该化合物沸点或升华点。本实施例中不用。In
将步骤2中制备的杂原子改性多孔载体负载多元金属-杂原子配合物微凝胶粉体放到步骤3中的高温炉的加热段III的多孔载物台上的表面皿上,均匀铺散,在20sccm(标准立方厘米/分钟,标准mL/min)载气气氛下,将炉子温度升到800℃后保温2小时进行杂原子化合物气氛下的高温理解,然后在惰性气氛载气下降温到室温,将制备好的催化剂粉体取出后,使用乙醇溶剂和离心机洗涤2-3次后,再使用该炉子在氮气气氛下于800℃干燥退火活化后,就得到需要的以钴铁合金为核、以钴氧体嵌合钴/铁和氮原子共掺杂碳壳异质结构纳米电催化材料:Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料。Put the heteroatom-modified porous carrier loaded multi-element metal-heteroatom complex microgel powder prepared in
(4)Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料的微结构和组成表征。(4) Microstructure and composition characterization of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials.
图2是制备的Co3Fe7@(CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料宽视野下高角度环形暗场扫描透射电子显微镜图像(HAADF-STEM),负载在碳载体上的颗粒具有明显的核壳结构,对其粒径大小统计说明其大小在50到400nm,平均直径约190nm,壳层厚度10-20nm,平均厚度18nm。对单个颗粒的HAADF-STEM图像表明其内核具有比外壳更亮(此为暗场像),说明内核由比外壳更重的原子构建(如内核为CoFe,外壳为碳基材料)。图3是对另外一个典型的单个粒子核心核壳层元素分布的表征结果。可以看出,其内核以CoFe合金为主,Co 主要集中在内核、壳层含量比铁少,铁除了在核心外,在壳层也大量含有且含量比钴高。根据钴铁合金二元相图、X-光衍射图谱(XRD)和元素定量含量分析,表明其内核为Co3Fe7合金。对碳、氮和氧元素的分析表明:碳和氮基本分布在壳层,说明其壳层为氮掺杂改性碳;氧则集中在壳层,但在界面处也有,说明核壳间的界面处有钴氧体存在。对非金属元素的分析和图4对单个颗粒的核壳界面的高分辨电镜照片和晶体结构的分析一直,图4右中对界面微结构的高分辨电镜照片和傅里叶变换的晶体结构证明其核心为Co3Fe7合金、在界面内生有CoFe2O4晶粒、壳层为有很多部分结晶(石墨化)的非晶碳层。根据铁和钴在壳层的分布基本很均匀,可以断定钴除了构建钴氧体外,其在壳层和氮一起对碳进行了共掺杂改性或形成碳化铁、碳化钴,根据XRD分析,其并没有明显的Fe3C或Co3C的峰,通过对其拉曼光谱表征,其石墨化程度很高,说明其大部分是和氮一起共掺杂进壳层石墨化结构的碳中的,构建了大量的金属原子-氮-碳(石墨化)单原子或多原子活性位点。进而对其金属原子-氮- 碳活性位点中氮配体特性进行了表征,主要根据对XPS表征的N1s峰拟合得到的N种类含量的比例。结果表明,氮配体种类比例为:吡啶型氮为14%;吡咯型氮为43.0%,石墨型氮为42.3%;氮氧型氮含量为1.7%。Figure 2 is the wide-field high-angle annular dark-field scanning transmission electron microscope image (HAADF-STEM) of the prepared Co 3 Fe 7 @(CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic material. The particles on the carbon carrier have an obvious core-shell structure, and the statistics of the particle size show that the size is between 50 and 400nm, with an average diameter of about 190nm, and a shell thickness of 10-20nm, with an average thickness of 18nm. The HAADF-STEM image of a single particle shows that the inner core is brighter than the outer shell (this is a dark field image), indicating that the inner core is composed of atoms heavier than the outer shell (such as CoFe inner core and carbon-based material outer shell). Figure 3 is the characterization result of another typical single particle core core shell element distribution. It can be seen that the core is dominated by CoFe alloy, Co is mainly concentrated in the core, and the shell content is less than that of iron. In addition to the core, iron is also contained in a large amount in the shell and the content is higher than cobalt. According to the binary phase diagram, X-ray diffraction pattern (XRD) and element quantitative content analysis of cobalt-iron alloy, it shows that the inner core is Co 3 Fe 7 alloy. The analysis of carbon, nitrogen and oxygen elements shows that: carbon and nitrogen are basically distributed in the shell, indicating that the shell is nitrogen-doped modified carbon; oxygen is concentrated in the shell, but also at the interface, indicating that the core-shell Cobalt oxide exists at the interface. The analysis of non-metallic elements and the analysis of the high-resolution electron micrograph and crystal structure of the core-shell interface of a single particle in Figure 4 have been consistent, and the high-resolution electron micrograph and Fourier transform crystal structure of the interface microstructure in the middle of Figure 4 Its core is Co 3 Fe 7 alloy, CoFe 2 O 4 grains grow in the interface, and the shell layer is an amorphous carbon layer with many partial crystallization (graphitization). According to the distribution of iron and cobalt in the shell layer is basically very uniform, it can be concluded that cobalt, in addition to building cobalt oxides, co-doped carbon together with nitrogen in the shell layer to modify or form iron carbide and cobalt carbide. According to XRD analysis, It does not have obvious Fe 3 C or Co 3 C peaks. According to its Raman spectrum, its degree of graphitization is very high, indicating that most of it is co-doped with nitrogen into the carbon of the shell graphitization structure. , constructing a large number of metal atom-nitrogen-carbon (graphitized) single-atom or multi-atom active sites. Furthermore, the characteristics of the nitrogen ligands in the metal atom-nitrogen-carbon active sites were characterized, mainly based on the proportion of N species content obtained by fitting the N1s peak characterized by XPS. The results showed that the proportion of nitrogen ligands was as follows: pyridine type nitrogen was 14%, pyrrole type nitrogen was 43.0%, graphite type nitrogen was 42.3% and oxynitride type nitrogen content was 1.7%.
(5)Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料催化ORR的电催化性能表征(5) Characterization of electrocatalytic performance of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials for ORR
图5是使用旋转圆盘电极(RDE)在0.1M KOH电解质中对 Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料和商用Pt/C对ORR电催化性能的线性扫描伏安法(LSV)曲线比较,结果表明其比商用Pt/C具有更大的正电势和更大的电流密度。其起始电势和半波电势分别达到1.05V和0.89V(电催化活性指标),对应的Pt/C的为0.95V 和0.84V;对其计算出的电流密度可以达到27mA/cm2,而对应的Pt/C只有5mA/cm2。图6是对该催化剂和Pt/C电催化ORR性能的塔菲尔斜率比较图,结果表明该催化剂的塔菲尔斜率(69mV/dec)比商业Pt/C催化剂的低(76mV/dec),表明在限速步骤中表现出强于商业 Pt/C催化剂的高活性。图7中和Pt/C的电化学阻抗谱(EIS)的Nyquist图表明, Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料的半圆直径比Pt/C催化剂小得多,这表示 Co3Fe7@(CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料的电荷转移电阻较低,更有利的反应中电子的转移。稳定性直接关系到催化剂的寿命,如图8所示,在0.6V电压下测试的计时电流响应表明,在36,000秒后Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)催化剂的极限电流密度保持初始值的87.0%,远高于商业Pt/C催化剂的55.5%,表明在碱性介质中 Co3Fe7@((CoFe2O4)-(Co/Fe-)-N-C)电催化剂具有出色的催化活性耐久性。根据对其微结构、组成晶体结构和元素电子结构的表征,可以得到:以上比商用Pt/C具有更优异的催化ORR 性能主要得益于高导电的CoFe合金核和经过气氛高温热裂解过程获得的金属和氮改性高石墨化碳基壳比碳负载Pt纳米催化剂具有更高的导电性和更多的金属-氮-碳构建的单-多原子活性中心,而界面处或碳层内嵌合的钴氧体本身在金属合金核协同下具有更高催化活性。根据公认的理论研究结果,构建的金属-氮-碳构建的单-多原子活性中心和氮配位形式有关,吡啶氮和是模型氮均为sp2杂化的,为π系统贡献一个p电子,吡咯氮是sp3杂化的,为π系统贡献两个p电子,因此吡啶态氮和石墨型氮比吡咯氮有更大的电负性25,26(吡咯氮的稍低电负性有利于对氧和过渡产物*OH的吸附和稳定),活性次序依次为:吡咯型氮>吡啶型氮> 石墨型氮>氮氧型氮;同时研究也表明如果石墨型氮中碳如果和氧共价有C-O碳,其具有高的催化活性,而我们的成分表征也说明我们的催化剂具有大量的氧化型碳,这就决定了具有大量有活性的石墨型氮,额外提高我们催化剂的活性中心位点密度。我们制备的催化剂壳层具有非常高的吡咯型氮,而很低的氧化型氮。因此,该异质结构中的金属合金核、界面处或碳层内嵌合的钴氧体以及金属-氮-碳单-多原子活性中心的多级组份具有高的协同效应,同时通过我们发明的气氛高温热裂解方法,壳层构建了含量非常高的吡咯型氮金属-N-C活性位点和有O-C结构的石墨型氮催化活性位点,另外,通过合金化加入第二元素Co,其和氮的结合力高,使得Fe上的Bader电荷减少,OH*结合能降低,从而又可以促进反应动力学;这些特点共同提高了我们制备的此类异质结构电催化剂的ORR催化活性和持久性(寿命)。Fig. 5 shows the reaction of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials and commercial Pt/C pair in 0.1M KOH electrolyte using rotating disk electrode (RDE). Comparison of linear sweep voltammetry (LSV) curves of the electrocatalytic performance of ORR, the results show that it has a larger positive potential and higher current density than commercial Pt/C. Its initial potential and half-wave potential reach 1.05V and 0.89V (electrocatalytic activity index) respectively, and the corresponding Pt/C is 0.95V and 0.84V; the calculated current density can reach 27mA/cm 2 , while The corresponding Pt/C is only 5mA/cm 2 . Figure 6 is a comparison of the Tafel slopes of the catalyst and Pt/C electrocatalytic ORR performance, and the results show that the Tafel slope (69mV/dec) of the catalyst is lower than that of the commercial Pt/C catalyst (76mV/dec), It shows that it exhibits higher activity than commercial Pt/C catalysts in the rate-limiting step. The Nyquist plot of the electrochemical impedance spectroscopy (EIS) of Pt/C in Figure 7 shows that the semicircle diameter ratio of Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials The Pt/C catalyst is much smaller, which means that the Co 3 Fe 7 @(CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic material has a lower charge transfer resistance and more favorable electron transfer in the reaction . The stability is directly related to the lifetime of the catalyst, as shown in Figure 8, the chronoamperometry response tested at 0.6V shows that after 36,000 seconds, Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe-) -NC) catalyst maintained 87.0% of the initial value, much higher than 55.5% of the commercial Pt/C catalyst, indicating that Co 3 Fe 7 @((CoFe 2 O 4 )-(Co/Fe -)-NC) electrocatalysts exhibit excellent catalytic activity durability. According to the characterization of its microstructure, compositional crystal structure and elemental electronic structure, it can be concluded that the above has better catalytic ORR performance than commercial Pt/C, mainly due to the highly conductive CoFe alloy core and the high-temperature pyrolysis process in the atmosphere. The metal- and nitrogen-modified highly graphitized carbon-based shell has higher conductivity and more metal-nitrogen-carbon-constructed single-polyatomic active centers than carbon-supported Pt nanocatalysts, while the interface or carbon layer embedded The combined cobalt oxide itself has higher catalytic activity under the cooperation of the metal alloy core. According to the accepted theoretical research results, the single-polyatomic active center constructed by the metal-nitrogen-carbon structure is related to the nitrogen coordination form. Both the pyridine nitrogen and the model nitrogen are sp2 hybridized, contributing a p electron to the π system. Pyrrole nitrogen is sp3 hybridized and contributes two p-electrons to the π system, so pyridinic nitrogen and graphitic nitrogen have greater electronegativity than pyrrole nitrogen25,26 (the slightly lower electronegativity of pyrrole nitrogen is beneficial to Oxygen and transition product *OH adsorption and stabilization), the order of activity is: pyrrole-type nitrogen > pyridine-type nitrogen > graphite-type nitrogen > nitrogen-oxygen-type nitrogen; at the same time, studies have also shown that if carbon in graphite-type nitrogen is covalently covalent with oxygen CO carbon, which has high catalytic activity, and our composition characterization also shows that our catalyst has a large amount of oxidized carbon, which determines that there is a large amount of active graphitic nitrogen, which additionally increases the active center site density of our catalyst . The catalyst shell we prepared has very high pyrrole nitrogen and very low oxide nitrogen. Therefore, the metal alloy core, the intercalated cobalt oxide at the interface or within the carbon layer, and the multilevel composition of metal-nitrogen-carbon single-multiatom active centers in this heterostructure have a high synergistic effect, and at the same time through our In the invented atmosphere high-temperature pyrolysis method, the shell layer builds a very high content of pyrrole-type nitrogen metal-NC active sites and graphite-type nitrogen catalytic active sites with an OC structure. In addition, the second element Co is added through alloying, which The high binding force with nitrogen reduces the Bader charge on Fe and reduces the OH* binding energy, which in turn can promote the reaction kinetics; these characteristics together improve the ORR catalytic activity and durability of the heterostructure electrocatalysts prepared by us. Sex (life).
实施例2Example 2
(1)实施步骤1(1) Implement
在实施例1步骤1中混合金属盐溶液中,我们将Co:Fe的摩尔比改为0.001:1、2:1、1:2和1:0.001,分别制备金属盐溶液。In the mixed metal salt solution in
(2)实施步骤2(2) Implement
和实施例1一样Same as Example 1
(3)实施步骤3(3) Implement
和实施例1一样。最后获得CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)型催化剂,x:0.001-1; y:1-0.001;z:0.001-3Same as Example 1. Finally, a Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) catalyst is obtained, x: 0.001-1; y: 1-0.001; z: 0.001-3
(4)CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)纳米电催化材料的微结构和组成表征(4) Microstructure and composition characterization of Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials
图9是对不同Co:Fe摩尔比下制备的CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)型催化剂(x: 0.001-1;y:1-0.001;z:0.001-3)的微结构表征TEM图像,结果表明,不管Co/Fe为多少,它们都可以形成和Co/Fe=1/1纳米材料类似的核壳异质结构;不过当钴或铁量相对低时,形成的核壳结构的壳层厚度比较薄,且壳层的氧化物含量明显比较多。因此可以通过反应原液中混合金属盐各自的含量来调控壳层微结构和组成。进而使用X-光电子能谱(XPS)对其成分(表层8nm)进行了成分和元素价态和配位状态分析。表1是对包括其元素含量的分析结果,实例1中Co/Fe=1/1时的也列入表中进行比较,随着原料钴盐含量提高,其构建的纳米材料的外壳(含有钴氧体和金属-N-C单原子位点)中钴含量也提高,在Co/Fe=1/2和1/1 下的催化剂中,其Co/Fe含量比基本和原料一直;但是,当Co含量超过铁后,制备的催化剂外壳中的钴含量仍远低于铁含量,说明制备过程中铁比钴更易富集在外壳中构建钴氧体(CoFe2O4)和更多铁基的金属-N-C单原子位点。根据N配位种类,对XPS表征的N元素峰位进行了拟合,将其吡啶氮、吡咯氮、石墨氮和N-O含量随Co/Fe比进行了解析,列于表2中。可见,随着钴的加入,制备的催化剂中吡啶氮含量下降而吡咯氮和石墨氮含量升高;在Co/Fe=1/2时吡咯氮达到最高,为43.3%;而氧化氮含量在Co/Fe=1/1时达到最低,为1.7%,其余都是随着钴的加入而升高。根据氮配位种类,可以预测,在Co/Fe处在1/2和1/1处,其综合催化性能应该比较优异。Figure 9 shows Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) catalysts prepared under different Co:Fe molar ratios (x: 0.001-1; y: 1-0.001; z: 0.001-3) microstructure characterization TEM images, the results show that regardless of the amount of Co/Fe, they can form a core-shell heterostructure similar to Co/Fe=1/1 nanomaterials ; However, when the amount of cobalt or iron is relatively low, the shell thickness of the formed core-shell structure is relatively thin, and the oxide content of the shell is obviously more. Therefore, the microstructure and composition of the shell can be regulated by the respective contents of the mixed metal salts in the reaction stock solution. Furthermore, X-photoelectron spectroscopy (XPS) was used to analyze its composition (surface layer 8nm) and element valence and coordination states. Table 1 is to include the analytical result of its element content, when Co/Fe=1/1 in the example 1, also list in the table and compare, along with the raw material cobalt salt content improves, the outer shell of the nanometer material (containing cobalt) of its construction Oxygen body and metal-NC single atomic site) also increase the cobalt content, in the catalyst under Co/Fe=1/2 and 1/1, its Co/Fe content ratio is basically the same as the raw material; however, when the Co content After exceeding iron, the cobalt content in the shell of the prepared catalyst is still much lower than that of iron, indicating that iron is more likely to be enriched than cobalt during the preparation process to build cobalt oxides (CoFe 2 O 4 ) and more iron-based metal-NCs in the shell. single atomic site. According to the type of N coordination, the peak position of N element characterized by XPS was fitted, and the contents of pyridine nitrogen, pyrrole nitrogen, graphitic nitrogen and NO were analyzed with the Co/Fe ratio, which are listed in Table 2. It can be seen that with the addition of cobalt, the content of pyridine nitrogen in the prepared catalyst decreases and the content of pyrrole nitrogen and graphite nitrogen increases; when Co/Fe=1/2, pyrrole nitrogen reaches the highest, which is 43.3%; while the content of nitrogen oxides in Co When /Fe=1/1, it reaches the lowest level, which is 1.7%, and the others increase with the addition of cobalt. According to the type of nitrogen coordination, it can be predicted that the comprehensive catalytic performance of Co/Fe at 1/2 and 1/1 should be relatively excellent.
(5)Co3Fe7@(CoFe2O4)-(Co/Fe-)-N-C)纳米电催化材料催化ORR的电催化性能表征(5) Characterization of electrocatalytic performance of Co 3 Fe 7 @(CoFe 2 O 4 )-(Co/Fe-)-NC) nano-electrocatalytic materials for ORR
图10是对使用旋转圆盘电极(RDE)在0.1M KOH电解质中对 CoxFey@((CozFe(3-z)O4)-(Co/Fe-)-N-C)纳米电催化材料和商用Pt/C对ORR电催化性能的线性扫描伏安法(LSV)曲线比较,结果表明其比商用Pt/C具有更大的正电势和更大的电流密度,其中最好的是在Co/Fe=1/2处,但比Co/Fe=1/1的小。图11是不同Co/Fe的催化剂的塔菲尔斜率,可见铁含量或钴含量都几乎为100%时最小,均比Pt/C的小,表明在限速步骤中表现出强于商业Pt/C催化剂的高活性;其中近乎100%钴的催化剂的为最小,61mV/dec,说明在限速步骤中纯钴催化剂的催化活性最高。图12是不同Co/Fe比制备的催化剂和Pt/C的电化学阻抗谱(EIS)的Nyquist曲线比较图,结合实施例1中图6的结果表明,钴含量近乎100%原料制备的纳米电催化材料的半圆直径比Co/Fe=1/1的还小,即比Pt/C催化剂更小,这表示钴含量近乎100%时,纳米电催化材料的电荷转移电阻较低,更有利的反应中电子的转移。图13是对不同Co/Fe的催化剂在0.6V电压下测试的计时电流响应,其在36000秒时均具有比Pt/C高的活性比,其中Co/Fe=1/2和几乎纯钴的也分别达到82.5%和81.5%,但明显比Co/Fe=1/1的87%小一些。综合考虑电催化性能,还是在Co/Fe=1/1时制备的电催化剂催化ORR的效果最好。Figure 10 shows the electrocatalysis of Co x Fe y @((Coz Fe (3-z) O 4 )-(Co/Fe-)-NC) nanometers in 0.1M KOH electrolyte using rotating disk electrode (RDE) Comparison of the linear sweep voltammetry (LSV) curves of the electrocatalytic performance of the material and commercial Pt/C on the ORR, the results show that it has a larger positive potential and a higher current density than the commercial Pt/C, the best of which is at Co/Fe=1/2, but smaller than Co/Fe=1/1. Figure 11 is the Tafel slope of the catalysts with different Co/Fe. It can be seen that the iron content or cobalt content is almost 100% and the minimum is the smallest, which is smaller than that of Pt/C, indicating that it is stronger than commercial Pt/C in the rate-limiting step. The high activity of the C catalyst; the catalyst with nearly 100% cobalt is the smallest, 61 mV/dec, indicating that the pure cobalt catalyst has the highest catalytic activity in the rate-limiting step. Fig. 12 is the Nyquist curve comparison figure of the electrochemical impedance spectrum (EIS) of the catalyst prepared by different Co/Fe ratios and Pt/C, in conjunction with the result of Fig. 6 among the
实施例3Example 3
(1)实施步骤1(1) Implement
在步骤1中混合金属盐溶液中,我们将铁盐分别换为其它金属盐(统称M1),M1盐的摩尔含量和钴盐具有一样的摩尔数,即Co/M1=1/1,分别制备混合金属盐溶液,然后按与实施例1步骤1-3中同样的工艺参数制备电催化剂。M1可以为第四、第五和第六周期的过渡金属,如Sc、Ti、V、Cr、Ni、Mn、Zn、Cu、Cr、Ti、Mo、Y、Ag、Nb、Au、Pt、Pd、Ir、 Ru、Rh、Oe;镧系和锕系稀土金属,如La、Ce、Gd、Nd、Ho;以及IA的K、Rb、Cs; IIA的Be、Mg、Ca;IIIA的Ga、In;IVA的Ge、Sn、Pb;VA的Sb、Bi。同时我们使用密度反泛函数(DFT)联合集团展开(CE)方法(DFT-CE)对该类多级结构催化剂各级微结构的组成、晶相、表界面和亚表面原子排列、元素价态和电子结构以及不同元素价态下电子转移能进行计算,同时根据分子动力学对各级微结构与反应物(如氧气、氢气)、中间产物(如*OH)和最终产物(如水)以及对CO和CO2的吸脱附能以及不同元素价态下电子转移能进行了计算,根据催化反应热力学和动力学理论对其中的M1进行筛选,择优录用,其结果和下面(5)中的实验测试结果基本一致。In the mixed metal salt solution in
(2)实施步骤2(2) Implement
和实施例1一样Same as Example 1
(3)实施步骤3(3) Implement
和实施例1一样。最后获得CoxM1y@((CozM1(2Q/n-2z/n)OQ)-(Co/M1-)-N-C)型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z为0到Q的数。Same as Example 1. Finally obtain Co x M1 y @(( Coz M1 (2Q/n-2z/n) O Q )-(Co/M1-)-NC) type catalyst, wherein n is the valence state of metal M1 in this catalyst, Q is the number of oxygen atoms in the formed M1 oxygen body; z is the number from 0 to Q.
(4)CoxM1y@((CozM1(2Q/n-2z/n)OQ)-(Co/M1-)-N-C)型纳米电催化材料的微结构和组成表征(4) Microstructure and composition characterization of Co x M1 y @(( Coz M1 (2Q/n-2z/n) O Q )-(Co/M1-)-NC) nano-electrocatalytic materials
使用和实施例1中对微结构和组成的表征方法表明,Co和M1可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴的混合氧化物嵌合M1/Co和氮原子共掺杂碳壳构成,M1和钴共同和N构建M1/Co-N-C活性中心。The characterization method to microstructure and composition shows in Example 1 that Co and M1 can build nanocatalysts with the same structure, whose particle size varies from 0.5nm to 500nm, and is also a mixed oxide of alloy core, M1 and cobalt The chimeric M1/Co and nitrogen atoms are co-doped carbon shells, and M1 and cobalt work together with N to build the M1/Co-N-C active center.
(5)CoxM1y@((CozM1(2Q/n-2z/n)OQ)-(Co/M1-)-N-C)型纳米电催化材料催化ORR的电催化性能表征(5) Electrocatalytic performance characterization of Co x M1 y @(( Coz M1 (2Q/n-2z/n) O Q )-(Co/M1-)-NC) nano-electrocatalytic materials for ORR
对制备的CoxM1y@((CozM1(2Q/n-2z/n)OQ)-(Co/M1-)-N-C)型纳米电催化材料催化ORR的性能表征结果表明,当M1=Mn、Sn、Mo、Cr、Cu、V、W、Ce、Gd、Hg等具有多价态或未充满f轨道电子的金属时,催化性能最好。其中M1=Mn、Cu、W、Ce、Hg时,其半波电位可以达到0.9-1.4V,起始电压可以达到1.1-1.6V,塔菲尔斜率可以小到0.60mV/dec到 0.5mV/dec,0.6V电压下测试的计时电流响应,在36000秒时仍可保持为93%-96%。The performance characterization results of the prepared Co x M1 y @(( Coz M1 (2Q/n-2z/n) O Q )-(Co/M1-)-NC) nano-electrocatalytic materials for catalytic ORR showed that when M1 =Mn, Sn, Mo, Cr, Cu, V, W, Ce, Gd, Hg and other metals with multivalent states or not filled f orbital electrons, the catalytic performance is the best. Where M1=Mn, Cu, W, Ce, Hg, its half-wave potential can reach 0.9-1.4V, the initial voltage can reach 1.1-1.6V, and the Tafel slope can be as small as 0.60mV/dec to 0.5mV/ dec, the chronocurrent response tested under 0.6V voltage can still maintain 93%-96% at 36000 seconds.
实施例4Example 4
(1)实施步骤1(1) Implement
在步骤1中混合金属盐溶液中,我们将第三种金属盐(统称M1)按和铁和钴同样摩尔含量与钴和铁的盐混合,即Co/Fe/M1=1/1/1,构建三单元混合金属盐。然后按与实施例1步骤1-3中同样的工艺参数制备电催化剂。M1可以为第四、第五和第六周期的过渡金属,如Sc、Ti、V、Cr、Ni、Mn、Zn、Cu、Cr、Ti、Mo、Y、Ag、Nb、Au、Pt、Pd、Ir、Ru、 Rh、Oe;镧系和锕系稀土金属,如La、Ce、Gd、Nd、Ho;以及IA的K、Rb、Cs;IIA的 Be、Mg、Ca;IIIA的Ga、In;IVA的Ge、Sn、Pb;VA的Sb、Bi。In the mixed metal salt solution in
(2)实施步骤2(2) Implement
和实施例1一样Same as Example 1
(3)实施步骤3(3) Implement
和实施例1一样。最后获得(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-N-C)型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z为 0到Q的数。Same as Example 1. Finally, a (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-NC) type catalyst is obtained, where n is the metal M1 in The valence state in the catalyst, Q is the number of oxygen atoms in the formed M1 oxygen body; z is the number from 0 to Q.
(4)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-N-C)型纳米电催化材料的微结构和组成表征(4) Microstructure of (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-NC) type nano-electrocatalytic materials and compositional characterization
使用和实施例1中对微结构和组成的表征方法表明,Co和M1可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴的混合氧化物嵌合M1/Co和氮原子共掺杂碳壳构成,M1和钴共同和N构建M1/Co-N-C活性中心。The characterization method to microstructure and composition shows in Example 1 that Co and M1 can build nanocatalysts with the same structure, whose particle size varies from 0.5nm to 500nm, and is also a mixed oxide of alloy core, M1 and cobalt The chimeric M1/Co and nitrogen atoms are co-doped carbon shells, and M1 and cobalt work together with N to build the M1/Co-N-C active center.
(5)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-N-C)型纳米电催化材料催化 ORR的电催化性能表征(5)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-NC) type nano-electrocatalytic materials catalyzed ORR Electrocatalytic Performance Characterization
对制备的(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-N-C)型三元金属合金纳米电催化材料催化ORR的性能表征结果表明,当M1=Mn、Cr、Cu、V、Hg、Ce、Gd具有多价态但价态间电子转移数为1-2的或未充满f轨道电子的金属时,催化性能最好。其中 M1=Mn、Cu、Ce、Hg时,其半波电位可以达到0.95-1.6V,起始电压可以达到1.1-1.8V,塔菲尔斜率可以小到0.50mV/dec到0.3mV/dec,0.6V电压下测试的计时电流响应,在36000 秒时仍可保持为94%-97%。Nano-electrocatalysis of the prepared (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-NC) type ternary metal alloy The performance characterization results of material-catalyzed ORR show that when M1=Mn, Cr, Cu, V, Hg, Ce, Gd have multi-valence states but the number of electron transfers between valence states is 1-2 or metals that are not filled with f orbital electrons , the best catalytic performance. When M1=Mn, Cu, Ce, Hg, its half-wave potential can reach 0.95-1.6V, the initial voltage can reach 1.1-1.8V, and the Tafel slope can be as small as 0.50mV/dec To 0.3mV/dec, the chronoamperometric response tested at 0.6V voltage can still maintain 94%-97% at 36000 seconds.
实施例5Example 5
(1)实施步骤1(1) Implement
在步骤1中的杂原子配体中的氮配体用一下含有其它杂原子的配体替换,构建由Co、 Fe、和M1共同构建的混合金属杂原子配体(Co-L、Fe-L和M1-L)的催化剂前驱体。然后按与实施例1步骤1-3中同样的工艺参数制备电催化剂。杂原子配体可以为以下种类:IIIA、IVA、VA、VIA主族元素中除碳、氧、氮外的一个元素的有机配合物或无极化合物,如硼(Boron)、Al、Ga、Sn、N、P、As、Sb、Bi、S、Se、Te。比较典型的是:含磷的三苯基磷;含砷的为乙氧基砷;含硫和氮的胱氨酸和半胱氨酸;含硒的硒蛋氨酸;含铋的异辛酸铋、月桂酸铋、新癸酸铋、环烷酸铋;含碘的1-碘-3-甲基戊烷;含溴的2-溴-4-硝基苯甲醇等。我们使用密度反泛函数(DFT)方法对该类多级结构催化剂各级微结构的组成、晶相、表界面和亚表面原子排列、元素价态和电子结构以及不同元素价态下电子转移能进行计算,特别是对金属(M)和不同杂原子配体和碳构建的M-L-C的电子结构和轨道杂化能进行计算;同时根据分子动力学对各级微结构与反应物(如氧气、氢气)、中间产物(如*OH)和最终产物(如水)以及对CO和CO2的吸脱附能以及不同元素价态下电子转移能进行了计算,特别是M-L-C中活性中心金属与反应物如氧气、氢气)、中间产物(如*OH)和最终产物(如水)以及对CO和CO2的吸脱附能进行了计算,根据催化反应热力学和动力学理论对其中的 L进行筛选,择优录用和实验验证,其结果和下面(5)中的实验测试结果基本一致。The nitrogen ligand in the heteroatom ligand in
(2)实施步骤2(2) Implement
和实施例1一样Same as Example 1
(3)实施步骤3(3) Implement
和实施例1一样。最后获得(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z为0到Q的数,L=B、Al、P、As、Bi、Sb、S、Se、Te、Br、I。Same as Example 1. Finally, a (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) type catalyst is obtained, where n is the metal M1 in The valence state in this catalyst, Q is the number of oxygen atoms in the formed M1 oxygen body; z is the number from 0 to Q, L=B, Al, P, As, Bi, Sb, S, Se, Te, Br, I.
(4)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型纳米电催化材料的微结构和组成表征(4) Microstructure of (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) type nano-electrocatalytic materials and compositional characterization
使用和实施例1中对微结构和组成的表征方法表明,混合金属盐和不同杂原子配体可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴及铁的混合氧化物嵌合M1/Co/Fe和杂原子L共掺杂碳壳构成,M1和钴及铁共同和L构建 M1/Co/Fe-L-C活性中心。The characterization method for microstructure and composition in Example 1 shows that mixed metal salts and different heteroatom ligands can construct nanocatalysts with the same structure, and their particle sizes range from 0.5nm to 500nm. They are also composed of alloy cores, M1 It is composed of co-doped carbon shell with mixed oxides of cobalt and iron M1/Co/Fe and heteroatom L, M1, cobalt and iron together with L to build M1/Co/Fe-L-C active center.
(5)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型纳米电催化材料催化 ORR的电催化性能表征(5)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) nano-electrocatalytic materials catalyzed ORR Electrocatalytic Performance Characterization
对制备的(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型三元金属合金纳米电催化材料催化ORR的性能表征结果表明,当L=P、Bi、As、Te、Se、I时具有多配位和多价态的杂原子(如磷具有+3和+5价,配位数可达5;如Te具有+4和+6价,配位数可达 8)时,催化活性最好,但对于高周期(如第六周期元素,催化持久性和稳定性不太高)。其中L=Se、Te、P、As、I时,其半波电位可以达到1.0-1.8V,起始电压可以达到1.2-1.9V,塔菲尔斜率可以小到0.40mV/dec到0.25mV/dec,0.6V电压下测试的计时电流响应,在36000 秒时仍可保持为92%-99%。Nano-electrocatalysis of prepared (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) type ternary metal alloy The performance characterization results of material-catalyzed ORR show that when L=P, Bi, As, Te, Se, I, there are multi-coordinated and multi-valent heteroatoms (such as phosphorus has +3 and +5 valences, and the coordination number can be up to 5; such as Te has +4 and +6 valence, the coordination number can reach 8), the catalytic activity is the best, but for high period (such as the sixth period element, the catalytic durability and stability are not too high). Among them When L=Se, Te, P, As, I, the half-wave potential can reach 1.0-1.8V, the initial voltage can reach 1.2-1.9V, and the Tafel slope can be as small as 0.40mV/dec to 0.25mV/dec , the chronocurrent response tested under 0.6V voltage can still maintain 92%-99% at 36000 seconds.
实施例6Example 6
(1)实施步骤1(1) Implement
在步骤1中杂原子配体使用除了氮配体外的杂原子配体(L)构建N和L同时存在的二元杂原子配体,构建由Co、Fe、和M1共同构建的混合金属混合杂原子配体(Co-L、Fe-L 和M1-L;Co-N和Fe-N和M1-N以及Co-N-L、Fe-N-L和M1-N-L)化合物催化剂前驱体。然后按与实施例1步骤1-3中同样的工艺参数制备电催化剂。杂原子配体可以为以下种类: IIIA、IVA、VA、VIA主族元素中除碳、氧、氮外的一个元素的有机配合物或无极化合物,如硼(Boron)、Al、Ga、Sn、N、P、As、Sb、Bi、S、Se、Te。比较典型的是:含磷的三苯基磷;含砷的为乙氧基砷;含硫和氮的胱氨酸和半胱氨酸;含硒的硒蛋氨酸;含铋的异辛酸铋、月桂酸铋、新癸酸铋、环烷酸铋;含碘的1-碘-3-甲基戊烷;含溴的2-溴-4-硝基苯甲醇等。我们使用密度反泛函数(DFT)方法对该类多级结构催化剂各级微结构的组成、晶相、表界面和亚表面原子排列、元素价态和电子结构以及不同元素价态下电子转移能进行计算,特别是对金属(M)和不同杂原子配体和碳构建的M-L-C及M-N-L-C的电子结构和轨道杂化能进行计算;同时根据分子动力学对各级微结构与反应物(如氧气、氢气)、中间产物(如*OH)和最终产物(如水)以及对CO和CO2的吸脱附能以及不同元素价态下电子转移能进行了计算,特别是M-L-C中活性中心金属与反应物如氧气、氢气)、中间产物(如*OH)和最终产物(如水)以及对CO和CO2的吸脱附能进行了计算,根据催化反应热力学和动力学理论对其中的L进行筛选,择优录用和实验验证,其结果和下面(5)中的实验测试结果基本一致。In
(2)实施步骤2(2) Implement
和实施例1一样Same as Example 1
(3)实施步骤3(3) Implement
和实施例1一样。最后获得(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(N/L)-C)型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z 为0到Q的数,L=B、Al、P、As、Bi、Sb、S、Se、Te、Br、I等。Same as Example 1. Finally, (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(N/L)-C) type catalyst is obtained, Wherein n is the valence state of metal M1 in this catalyst, Q is the number of oxygen atoms in the M1 oxygen body formed; z is the number from 0 to Q, L=B, Al, P, As, Bi, Sb, S, Se, Te, Br, I, etc.
(4)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(N/L)-C)型纳米电催化材料的微结构和组成表征(4)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(N/L)-C) nano Microstructural and compositional characterization of electrocatalytic materials
使用和实施例1中对微结构和组成的表征方法表明,混合金属盐和不同杂原子配体可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴及铁的混合氧化物嵌合M1/Co/Fe及杂原子N和L共掺杂碳壳构成,M1和钴及铁共同和L构建M1/Co/Fe-N/L-C活性中心。The characterization method for microstructure and composition in Example 1 shows that mixed metal salts and different heteroatom ligands can construct nanocatalysts with the same structure, and their particle sizes range from 0.5nm to 500nm. They are also composed of alloy cores, M1 It is composed of co-doped carbon shells co-doped with cobalt and iron mixed oxides M1/Co/Fe and heteroatoms N and L, and M1 and cobalt and iron work together with L to build M1/Co/Fe-N/L-C active centers.
(5)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(N/L)-C)型纳米电催化材料催化ORR的电催化性能表征(5)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(N/L)-C) nano Characterization of electrocatalytic performance of electrocatalytic materials for ORR
对制备的(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(N/L)-C)型三元金属合金纳米电催化材料催化ORR的性能表征结果表明,当L=Bi、As、Te、I时具有多配位和多价态的杂原子(如磷具有+3和+5价,配位数可达5;如Te具有+4和+6价,配位数可达8)时,催化活性最好,但对于高周期(如第六周期元素,催化持久性和稳定性不太高)。其中L=Te、As、I时,其半波电位可以达到1.0-1.9V,起始电压可以达到1.2-2.0V,塔菲尔斜率可以小到0.40mV/dec到0.20mV/dec,0.6V电压下测试的计时电流响应,在36000秒时仍可保持为96%-99.9%。For the prepared (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(N/L)-C) type three The performance characterization results of ORR catalyzed by metal alloy nano-electrocatalytic materials show that when L=Bi, As, Te, I, heteroatoms with multi-coordination and multi-valence states (such as phosphorus with +3 and +5 valences, coordination The number can reach 5; if Te has +4 and +6 valence, the coordination number can reach 8), the catalytic activity is the best, but for high period (such as the sixth period element, the catalytic durability and stability are not too high) When L=Te, As, I, its half-wave potential can reach 1.0-1.9V, the initial voltage can reach 1.2-2.0V, and the Tafel slope can be as small as 0.40mV/dec to 0.20mV/dec, 0.6 The chronoamperometric response tested under V voltage can still maintain 96%-99.9% at 36000 seconds.
通过对其构建的全电池测试电堆的测试结果表明,计算的体积活性可以达到300-1000A/cm3,与美国能源部的300A/cm3标准持平或远超其标准。对其重复使用次数也进行了测试,可以反复只用1000次以上而活性持久性仍能保持80-95%以上。The test results of the full battery test stack constructed by it show that the calculated volume activity can reach 300-1000A/cm 3 , which is equal to or far exceeds the 300A/cm 3 standard of the US Department of Energy. Its repeated use times have also been tested, and it can be used repeatedly for more than 1000 times and the activity persistence can still maintain more than 80-95%.
实施例7Example 7
(1)实施步骤1(1) Implement
和实施例6一样Same as Example 6
(2)实施步骤2(2) Implement
将实施例6中步骤2中2中杂原子掺杂/改性多孔载体(直径约10-200nm)+杂原子配体悬混液的制备步骤中使用得氮改性多孔碳黑换成如下多元杂原子配体改性分子筛(如ZIF-8)。以N,P改性ZIF-8为例,具体改性步骤如下。将氮配体如将0.2g邻二氮菲(或卟啉,或咪唑,或嘌呤,或嘧啶)和1.0gZIF-8溶解在由15ml去离子水和110mL乙醇构建的混合溶剂中,混合0.5-2小时后,进行喷雾干燥处理获得氮配体表面涂层的ZIF-8;然后将获得的氮配体表面涂层的ZIF-8(约1.2g)和0.3克磷配体(三苯基磷(Ph3P)、或三苯氧基磷(Ph3P=O),或三苯基氨基磷(Ph3P=NH))溶解到乙醚中混合0.5-2小时后,通过旋转干燥后获得N配体和P配体表面改性ZIF-8备用;最后在管式炉中在400-1000℃下,在惰性气氛(氮气,流速5-40sccm)下处理0.5-2小时,降温获得需要的N,P改性ZIF-8。如果需要获得Se或 Te与N,P共改性ZIF-8,就在获得N配体和P配体表面改性ZIF-8后,将0.2g硒蛋氨酸或碲化合物(如碲酸锶)加入到乙醇和水混合液,经过充分混合和喷雾干燥后在在管式炉惰性气氛下热处理0.5-2小时,构建N,P,Se或N,P,Te改性ZIF-8。然后在后续的制备中,分别使用不同多元杂原子配体改性的ZIF-8代替N-改性多孔碳作为该步骤中用的载体,如 N,P-ZIF-8;N,Se-ZiF-8;P,Te-ZIF-8。The nitrogen-modified porous carbon black used in the preparation step of the heteroatom-doped/modified porous carrier (about 10-200 nm in diameter)+heteroatom ligand suspension in
(3)实施步骤3(3) Implement
和实施例6一样。最后获得(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-ZIF-8)型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z 为0到Q的数,L=B、Al、P、As、Bi、Sb、S、Se、Te、Br、I等中的两个或两个以上。Same as Example 6. Finally, (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(L)-ZIF-8) type catalyst is obtained, Wherein n is the valence state of metal M1 in this catalyst, Q is the number of oxygen atoms in the M1 oxygen body formed; z is the number from 0 to Q, L=B, Al, P, As, Bi, Sb, S, Two or more of Se, Te, Br, I, etc.
(4)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-ZIF-8)型纳米电催化材料的微结构和组成表征(4)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(L)-ZIF-8) nano Microstructural and compositional characterization of electrocatalytic materials
使用和实施例6中对微结构和组成的表征方法表明,混合金属盐和不同杂原子配体可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴及铁的混合氧化物嵌合M1/Co/Fe及多元杂原子L共掺杂ZIF-8构成,M1和钴及铁共同和L构建M1/Co/Fe-(L)-(Si/Al)活性中心。The characterization method for microstructure and composition in Example 6 shows that mixed metal salts and different heteroatom ligands can build nanocatalysts with the same structure, and their particle sizes range from 0.5nm to 500nm. They are also composed of alloy cores, M1 It is composed of co-doped ZIF-8 co-doped with cobalt and iron mixed oxide M1/Co/Fe and multi-element heteroatom L, and M1 and cobalt and iron are used together with L to construct M1/Co/Fe-(L)-(Si/ Al) active center.
(5)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-ZIF-8)型纳米电催化材料催化ORR的电催化性能表征(5)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(L)-ZIF-8) nano Characterization of electrocatalytic performance of electrocatalytic materials for ORR
对制备的多杂原子改性ZIF-8负载(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-ZIF-8)型三元金属合金纳米电催化材料催化ORR的性能表征结果表明,当L=N、P、Te、Sb、S时具有多配位和多价态的杂原子(如磷具有+3和+5价,配位数可达5;如Te具有+4和+6价,配位数可达8)时,催化活性最好,活性持久性也好。其中L=Te、As、I时,其半波电位可以达到1.0-2.0V,起始电压可以达到1.2-2.3V,塔菲尔斜率可以小到0.35mV/dec到0.20mV/dec,0.6V电压下测试的计时电流响应,在36000秒时仍可保持为97%-99.9%。For the prepared multi-heteroatom modified ZIF-8 supported (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-( The performance characterization results of L)-ZIF-8) type ternary metal alloy nano-electrocatalytic materials for catalytic ORR show that when L=N, P, Te, Sb, S, there are heteroatoms with multi-coordination and multi-valence states (such as Phosphorus has +3 and +5 valences, and the coordination number can reach 5; as Te has +4 and +6 valences, and the coordination number can reach 8), the catalytic activity is the best, and the activity persistence is also good. Wherein L=Te , As, and I, its half-wave potential can reach 1.0-2.0V, the initial voltage can reach 1.2-2.3V, and the Tafel slope can be as small as 0.35mV/dec to 0.20mV/dec, tested at 0.6V voltage The chronocurrent response can still be maintained at 97%-99.9% at 36000 seconds.
通过对其构建的全电池测试电堆的测试结果表明,计算的体积活性可以达到400-1200A/cm3,超过美国能源部2015年公布的300A/cm3标准。对其重复使用次数也进行了测试,可以反复只用1000次以上而活性持久性仍能保持84-95%以上。The test results of the full battery test stack constructed by it show that the calculated volume activity can reach 400-1200A/cm 3 , exceeding the 300A/cm 3 standard announced by the US Department of Energy in 2015. Its repeated use times have also been tested, and it can be used repeatedly for more than 1000 times and the activity persistence can still maintain more than 84-95%.
实施例8Example 8
(1)实施步骤1(1) Implement
和实施例6一样Same as Example 6
(2)实施步骤2(2) Implement
将实施例6中步骤2中2中杂原子掺杂/改性多孔载体(直径约10-200nm)+杂原子配体悬混液的制备步骤中使用得氮改性多孔碳黑换成磷钨酸铯(Cs-TPA)或磷钨酸铋(Bi-TPA)表面改性的MCM-41,其制备方法如下。磷钨酸铯的制备工艺如下:使用等体积浸渍方法对购买的1克MCM-41进行Cs2CO3表面修饰,即将Cs2CO3饱和水溶液(261g/100mL)逐滴滴到1克MCM-41中,达到饱和润湿度;然后在110℃下烘干,再在氮气保护下与500℃下退火两小时,得到Cs-MCM-41;然后将样品粉碎后,使用浓度为1g/mL的磷钨酸(TPA)丁醇溶液逐滴滴到制备的Cs-MCM-41粉体中,达到饱和润湿度,然后在110℃下烘干,再在空气下于300℃下退火两小时,获得Cs-TPA-MCM-41。之后以此为多孔载体代替N-改性多孔碳作为该步骤中用的载体开展步骤2和步骤3的制备工艺。Replace the nitrogen-modified porous carbon black used in the preparation step of the heteroatom-doped/modified porous carrier (about 10-200nm in diameter) + heteroatom ligand suspension in
(3)实施步骤3(3) Implement
和实施例6一样。最后获得(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)- (Cs-TPA-MCM-41))型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z为0到Q的数,L=B、Al、P、As、Bi、Sb、S、Se、Te、Br、I等中的两个或两个以上。Same as Example 6. Finally, (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(L)- (Cs-TPA-MCM- 41)) type catalyst, wherein n is the valence state of metal M1 in the catalyst, Q is the number of oxygen atoms in the formed M1 oxygen body; z is the number from 0 to Q, L=B, Al, P, As, Two or more of Bi, Sb, S, Se, Te, Br, I, etc.
(4)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-(Cs-TPA-MCM-41))型纳米电催化材料的微结构和组成表征(4)(FeCo) x M1 y @((((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(L)-(Cs-TPA-MCM Microstructure and composition characterization of -41)) type nano-electrocatalytic materials
使用和实施例6中对微结构和组成的表征方法表明,混合金属盐和不同杂原子配体可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴及铁的混合氧化物嵌合M1/Co/Fe及多元杂原子L共掺杂Cs-TPA-MCM-41构成,M1和钴及铁共同和L构建M1/Co/Fe-(L)-P、M1/Co/Fe-(L)-Cs、M1/Co/Fe-(L)-Si、M1/Co/Fe-(L)-W多种类型的催化活性中心。The characterization method for microstructure and composition in Example 6 shows that mixed metal salts and different heteroatom ligands can build nanocatalysts with the same structure, and their particle sizes range from 0.5nm to 500nm. They are also composed of alloy cores, M1 It is composed of co-doped Cs-TPA-MCM-41 with mixed oxides of cobalt and iron M1/Co/Fe and multi-element heteroatoms L, and M1 and cobalt and iron together with L to construct M1/Co/Fe-(L) -P, M1/Co/Fe-(L)-Cs, M1/Co/Fe-(L)-Si, M1/Co/Fe-(L)-W various types of catalytic active centers.
(5)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-(Cs-TPA-MCM-41))型纳米电催化材料催化ORR的电催化性能表征(5)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-(L)-(Cs-TPA-MCM Characterization of electrocatalytic performance of -41)) type nano-electrocatalytic materials for ORR
对制备的多杂原子改性Cs-TPA-MCM-41负载(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-(L)-(Cs-TPA-MCM-41))型三元金属合金纳米电催化材料催化ORR的性能表征结果表明,当L=N、P、As、Sb、Bi、Se、I时具有多配位和多价态的杂原子(如磷具有+3和+5价,配位数可达8;如Se具有+4和+6价,配位数可达8)时,催化活性最好,活性持久性也好。其中L=P、Sb、Bi时,其半波电位可以达到1.0-2.2V,起始电压可以达到1.2-2.5V,塔菲尔斜率可以小到0.35mV/dec到0.15mV/dec, 0.6V电压下测试的计时电流响应,在36000秒时仍可保持为96%-99.9%。The prepared multi-heteroatom modified Cs-TPA-MCM-41 loaded with (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1 -)-(L)-(Cs-TPA-MCM-41)) type ternary metal alloy nano-electrocatalytic material catalyzed ORR performance characterization results show that when L=N, P, As, Sb, Bi, Se, I When heteroatoms with multi-coordination and multi-valence state (such as phosphorus has +3 and +5 valence, the coordination number can reach 8; such as Se has +4 and +6 valence, the coordination number can reach 8), the catalytic The activity is the best, and the activity persistence is also good. When L=P, Sb, Bi, its half-wave potential can reach 1.0-2.2V, the initial voltage can reach 1.2-2.5V, and the Tafel slope can be as small as 0.35mV /dec to 0.15mV/dec, the chronoamperometric response tested at 0.6V voltage can still maintain 96%-99.9% at 36000 seconds.
通过对其构建的全电池测试电堆的测试结果表明,计算的体积活性可以达到500-1500A/cm3,远超过美国能源部2015年公布的300A/cm3标准。对其重复使用次数也进行了测试,可以反复只用1500次以上而活性持久性仍能保持90-98%以上。The test results of the full battery test stack constructed by it show that the calculated volume activity can reach 500-1500A/cm 3 , far exceeding the 300A/cm 3 standard announced by the US Department of Energy in 2015. Its repeated use times have also been tested, and it can be used repeatedly for more than 1500 times and the activity persistence can still maintain more than 90-98%.
实施例9Example 9
(1)实施步骤1(1) Implement
和实施例5一样。Same as Example 5.
(2)实施步骤2(2) Implement
和实施例5一样。Same as Example 5.
(3)实施步骤3(3) Implement
步骤3中高温裂解用杂原子化合物气氛的制备,通过将固体杂原子配体放在步骤3中的加热段I处的有通气口的容器内,控制该段加热温度超过该化合物沸点或升华点。将惰性载气(这里使用氩气)通过该加热汽化段构建为含有杂原子气氛的裂解用气氛载气。这里的固态杂原子配体为碘、三苯基铋、二苯基二硒醚和十二碘十二硼酸铈,用量为0.1-2g;加热段I 处的温度分别控制在190℃、320℃、390℃和680℃。The preparation of the heteroatom compound atmosphere for pyrolysis in
最后分别获得杂原子碘(I)、铋(Bi)、硒(Se)、碘-铈-硼(I-Ce-B)整体掺杂量提高的(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型催化剂,其中n为金属M1在此催化剂中的价态、Q为形成的M1氧体中的氧原子数;z为0到Q的数,L=B、Al、P、As、 Bi、Sb、S、Se、Te、Br、I。Finally, (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) type catalyst, where n is the valence state of metal M1 in this catalyst, Q is the formed M1 oxygen body The number of oxygen atoms in; z is the number from 0 to Q, L=B, Al, P, As, Bi, Sb, S, Se, Te, Br, I.
(4)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型纳米电催化材料的微结构和组成表征(4) Microstructure of (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) type nano-electrocatalytic materials and compositional characterization
使用和实施例1中对微结构和组成的表征方法表明,混合金属盐和不同杂原子配体可以构建同样结构的纳米催化剂,其粒径从0.5nm到500nm不等,也是由合金核、M1和钴及铁的混合氧化物嵌合M1/Co/Fe和杂原子L共掺杂碳壳构成,M1和钴及铁共同和L构建 M1/Co/Fe-L-C活性中心。如杂原子为碘(I)、铋(Bi)、硒(Se)、碘-铈-硼(I-Ce-B)整体掺杂量提高量分别为50%、20%、40%、70%-100%-20%。The characterization method for microstructure and composition in Example 1 shows that mixed metal salts and different heteroatom ligands can construct nanocatalysts with the same structure, and their particle sizes range from 0.5nm to 500nm. They are also composed of alloy cores, M1 It is composed of co-doped carbon shell with mixed oxides of cobalt and iron M1/Co/Fe and heteroatom L, M1, cobalt and iron together with L to build M1/Co/Fe-L-C active center. For example, if the heteroatom is iodine (I), bismuth (Bi), selenium (Se), and iodine-cerium-boron (I-Ce-B), the overall doping amount increases by 50%, 20%, 40%, and 70% respectively. -100% -20%.
(5)(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型纳米电催化材料催化 ORR的电催化性能表征(5)(FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) nano-electrocatalytic materials catalyzed ORR Electrocatalytic Performance Characterization
对制备的(FeCo)xM1y@(((FeCo)zM1(2Q/n-2z/n)OQ)-((Fe/Co/M1-)-L-C)型三元金属合金纳米电催化材料催化ORR的性能表征结果表明,当L=I、Bi、Se、I-Ce-B时均具有多配位和多价态的杂原子,催化活性可以大幅度提高,其半波电位可以达到1.3、1.4、1.5、2.0V,起始电压可以达到1.3、1.8、1.6、2.1V,塔菲尔斜率可以小到0.35mV/dec、0.30mV/dec、0.26mV/dec、 0.24mV/dec,0.6V电压下测试的计时电流响应,在36000秒时仍可保持为95%、98%、94%、 99%。Nano-electrocatalysis of prepared (FeCo) x M1 y @(((FeCo) z M1 (2Q/n-2z/n) O Q )-((Fe/Co/M1-)-LC) type ternary metal alloy The performance characterization results of material-catalyzed ORR show that when L=I, Bi, Se, and I-Ce-B, there are multi-coordination and multi-valence heteroatoms, the catalytic activity can be greatly improved, and its half-wave potential can reach 1.3, 1.4, 1.5, 2.0V, the initial voltage can reach 1.3, 1.8, 1.6, 2.1V, the Tafel slope can be as small as 0.35mV/dec, 0.30mV/dec, 0.26mV/dec, 0.24mV/dec, The chronocurrent response tested under 0.6V voltage can still maintain 95%, 98%, 94%, 99% at 36000 seconds.
表1根据XPS测试得到的Co/Fe不同比例下制备的异质结构催化剂中各元素原子百分比。Table 1 shows the atomic percentages of each element in the heterostructure catalysts prepared under different ratios of Co/Fe according to the XPS test.
表2根据N1s峰拟合得到的Co/Fe不同比例下制备的异质结构催化剂中N种类含量的比例。Table 2 The ratio of N species content in heterostructure catalysts prepared under different ratios of Co/Fe obtained by N1s peak fitting.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210401100.XA CN115418661A (en) | 2022-04-14 | 2022-04-14 | A supported heterostructure nano-electrocatalytic material AB@(ABOx)-(A/B-)-L-C and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210401100.XA CN115418661A (en) | 2022-04-14 | 2022-04-14 | A supported heterostructure nano-electrocatalytic material AB@(ABOx)-(A/B-)-L-C and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115418661A true CN115418661A (en) | 2022-12-02 |
Family
ID=84196166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210401100.XA Pending CN115418661A (en) | 2022-04-14 | 2022-04-14 | A supported heterostructure nano-electrocatalytic material AB@(ABOx)-(A/B-)-L-C and its preparation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115418661A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116532084A (en) * | 2023-04-28 | 2023-08-04 | 淮安兴淮消防设备有限公司 | Nd-doped Bi 2 WO 6 Preparation and application of nanoflower-biomass porous carbon material |
CN116581307A (en) * | 2023-06-19 | 2023-08-11 | 广东格林赛福能源科技有限公司 | S-doped NC/Co/Cs 2 Se/CoSe catalyst, preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070160899A1 (en) * | 2006-01-10 | 2007-07-12 | Cabot Corporation | Alloy catalyst compositions and processes for making and using same |
CN109524678A (en) * | 2019-01-23 | 2019-03-26 | 中南大学 | A kind of analysis oxygen ferrocobalt-cobalt ferrite/nitrogen-doped nanometer carbon pipe composite catalyst and its preparation method and application |
CN111001427A (en) * | 2019-12-24 | 2020-04-14 | 山西大学 | Cobalt-nitrogen co-doped carbon-based electrocatalyst material and preparation method thereof |
EP3780197A1 (en) * | 2019-08-14 | 2021-02-17 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for preparing a porous carbonaceous and nitrogenous material with metallic dopant, in particular useful as a catalyst for oxygen reduction reaction (orr) |
CN112993283A (en) * | 2019-12-18 | 2021-06-18 | 天津天兆御华科技有限公司 | Transition metal nitrogen-doped carbon-based catalyst and preparation method and application thereof |
US20220037675A1 (en) * | 2020-08-03 | 2022-02-03 | Nanyang Technological University | Catalyst for rechargeable energy storage devices and method for making the same |
-
2022
- 2022-04-14 CN CN202210401100.XA patent/CN115418661A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070160899A1 (en) * | 2006-01-10 | 2007-07-12 | Cabot Corporation | Alloy catalyst compositions and processes for making and using same |
CN109524678A (en) * | 2019-01-23 | 2019-03-26 | 中南大学 | A kind of analysis oxygen ferrocobalt-cobalt ferrite/nitrogen-doped nanometer carbon pipe composite catalyst and its preparation method and application |
EP3780197A1 (en) * | 2019-08-14 | 2021-02-17 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for preparing a porous carbonaceous and nitrogenous material with metallic dopant, in particular useful as a catalyst for oxygen reduction reaction (orr) |
CN112993283A (en) * | 2019-12-18 | 2021-06-18 | 天津天兆御华科技有限公司 | Transition metal nitrogen-doped carbon-based catalyst and preparation method and application thereof |
CN111001427A (en) * | 2019-12-24 | 2020-04-14 | 山西大学 | Cobalt-nitrogen co-doped carbon-based electrocatalyst material and preparation method thereof |
US20220037675A1 (en) * | 2020-08-03 | 2022-02-03 | Nanyang Technological University | Catalyst for rechargeable energy storage devices and method for making the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116532084A (en) * | 2023-04-28 | 2023-08-04 | 淮安兴淮消防设备有限公司 | Nd-doped Bi 2 WO 6 Preparation and application of nanoflower-biomass porous carbon material |
CN116581307A (en) * | 2023-06-19 | 2023-08-11 | 广东格林赛福能源科技有限公司 | S-doped NC/Co/Cs 2 Se/CoSe catalyst, preparation method and application thereof |
CN116581307B (en) * | 2023-06-19 | 2024-01-30 | 广东格林赛福能源科技有限公司 | S-doped NC/Co/Cs 2 Se/CoSe catalyst, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Stability of single-atom catalysts for electrocatalysis | |
Luo et al. | Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction | |
Zhang et al. | Controlled synthesis of co@ N-doped carbon by pyrolysis of ZIF with 2-aminobenzimidazole ligand for enhancing oxygen reduction reaction and the application in Zn–air battery | |
Hu et al. | Review and perspectives of carbon-supported platinum-based catalysts for proton exchange membrane fuel cells | |
Chen et al. | From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis | |
Zhu et al. | Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite | |
Chebrolu et al. | Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process | |
Fan et al. | A metal–organic-framework/carbon composite with enhanced bifunctional electrocatalytic activities towards oxygen reduction/evolution reactions | |
CN108493461A (en) | A kind of N adulterates the catalyst and preparation method thereof of porous carbon coating Fe, Co bimetal nano particles | |
CN112825357B (en) | Pt-based multi-component transition metal alloy nano electro-catalyst, preparation and application | |
Zhang et al. | Isolated transition metal nanoparticles anchored on N-doped carbon nanotubes as scalable bifunctional electrocatalysts for efficient Zn–air batteries | |
KR101117066B1 (en) | Synthesis method of Pt alloy/supporter catalysts, catalysts and fuel cell using the same | |
JP2007519165A (en) | Nanostructured metal-carbon composite for electrode catalyst of fuel cell and production method thereof | |
CN113862693A (en) | Preparation method and application of nitrogen-doped mesoporous carbon-supported highly dispersed Ru nanoparticle catalyst | |
CN101436670A (en) | Fuel battery cathode catalyst and preparation method thereof | |
CN112221530A (en) | Preparation method and application of a non-precious metal single-atom bifunctional electrocatalyst | |
CN115881992B (en) | PtZnM multi-element alloy catalyst supported by microporous Zn-NC carbon carrier and preparation method and application thereof | |
CN103170334A (en) | Carbon-supported cobalt oxide catalyst and preparation and application thereof | |
CN111215056B (en) | Preparation method and application of low-load Pd/hollow carbon sphere oxygen reduction electrocatalyst | |
CN115418661A (en) | A supported heterostructure nano-electrocatalytic material AB@(ABOx)-(A/B-)-L-C and its preparation | |
US20220416260A1 (en) | Hybrid catalyst suitable for use in proton exchange membrane fuel cell | |
Hyung Kweon et al. | Electrochemical catalysts for green hydrogen energy | |
CN112941541A (en) | Monoatomic two-dimensional material and preparation method and application thereof | |
CN116742023A (en) | Nitrogen-doped carbon nano-tube supported metal alloy nitrogen-doped carbon nano-sheet catalyst and preparation method and application thereof | |
Tu et al. | Boosting the oxygen reduction reaction of a nonprecious metal Fe–Nx/C electrocatalyst by integrating tube-terminated edges into the basal plane of Fe-and N-codoped carbon bubbles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |