[go: up one dir, main page]

CN115418022A - 一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用 - Google Patents

一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用 Download PDF

Info

Publication number
CN115418022A
CN115418022A CN202211160652.2A CN202211160652A CN115418022A CN 115418022 A CN115418022 A CN 115418022A CN 202211160652 A CN202211160652 A CN 202211160652A CN 115418022 A CN115418022 A CN 115418022A
Authority
CN
China
Prior art keywords
chloromethyl
linked
cross
preparation
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211160652.2A
Other languages
English (en)
Other versions
CN115418022B (zh
Inventor
陈新德
陈雪芳
冀旭冉
张海荣
熊莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202211160652.2A priority Critical patent/CN115418022B/zh
Publication of CN115418022A publication Critical patent/CN115418022A/zh
Application granted granted Critical
Publication of CN115418022B publication Critical patent/CN115418022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/18Chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用。该吸附树脂的制备方法,包括以下步骤:(1)水、分散剂、亚甲基蓝混合加热至分散剂溶解得到水相,水相中加入由氯甲基苯乙烯、二乙烯基苯、过氧化苯甲酰和致孔剂组成的油相,开启机械搅拌,缓慢升温至80℃~95℃,反应6~12h后,固液分离,乙醇、水交替洗涤得到固体产物,去除杂质,得到氯甲基交联聚苯乙烯微球;(2)将氯甲基交联聚苯乙烯微球溶胀在1,2‑二氯乙烷中,固液比1:3~1:8,加入催化剂,体系温度为40℃‑48℃下保持1.5‑2.5h,然后升温至60℃~80℃保温反应3~9h后,固液分离,得到的固体为超高交联吸附树脂。本发明将超高交联吸附树脂应用在分离生物质水解液中糠醛,效果良好。

Description

一种超高交联吸附树脂及其制备方法和在生物质水解液中产 物分离中的应用
技术领域:
本发明涉及功能高分子材料技术领域,具体涉及一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用。
背景技术:
木质纤维素是地球上最丰富的生物质资源,其主要由纤维素、半纤维素和木质素组成。其中,半纤维素经解聚、降解可制备糠醛。糠醛是重要的平台化合物,化学性质活泼,可用于塑料改性剂、医药、工业化学品、香料、溶剂、农药中间体、润滑油添加剂等各个行业。我国每年产生秸秆类废弃物约9亿吨。因此,将秸秆通过化学转化方法制备糠醛,具有广阔的应用前景。然而,在秸秆水解制备糠醛的过程中,会形成一系列其他的化合物。要得到纯度较高的糠醛,必须对降解产物混合物进行分离纯化。物理吸附法具有能耗低、设备简单等优势,因此具有良好的工业应用前景。吸附剂优良的吸附性能是制约物理吸附法工业应用的关键因素。目前常用的吸附剂主要有活性炭、活性粘土、颗粒白土、吸附树脂等。其中,活性炭比表面积最大,以微孔为主,主要依靠范德华力进行吸附,但其选择性较差,而且吸附后的活性炭不容易再生,容易造成固废污染;活性粘土、颗粒白土等非金属矿类吸附剂,这类吸附剂成本较低,但它们的比表面积一般较小,吸附选择性较差,且无法重复使用。相比以上的吸附剂,吸附树脂具有突出的优势,表面性质可调、结构可控,物理化学性质稳定,再生容易,一般可以多次循环使用。
传统的吸附树脂主要包括大孔吸附树脂和凝胶吸附树脂,是人工合成的具有多孔立体结构的高分子聚合物,具备优良的吸附性能,广泛应用于废水处理、药剂分离提纯、色谱分析填料等诸多领域。随着吸附树脂合成领域的不断发展,Davankov等利用线性聚苯乙烯或低交联的苯乙烯-二乙烯基苯共聚物通过Fridel-Crafts(傅-克)反应进行后交联合成了一种大网均孔苯乙烯共聚物,称之为超高交联树脂。与大孔吸附树脂相比,超交联多孔聚合物具有高比表面积、高孔隙率等特点,此外还包括高热稳定性、轻质、孔径可控等优点,因此成为了吸附、分离领域一个新的研究热点。
尽管超高交联吸附树脂具有更好的吸附性能,然而传统上超高交联吸附树脂的制备需要使用氯甲醚(交联剂,强致癌性),制备过程不环保。中国发明专利CN102875719A公开了10~100微米氯甲基化交联聚苯乙烯微球的制备方法,采用乳液聚合法两步制备出外层是氯甲基化交联聚苯乙烯的微球,粒径范围为10~60微米,并应用于色谱分离、生物医学、涂料和油墨等领域。中国发明专利CN110627753A公开了一种循环制备乙酰丙酸和糠醛的方法,采用聚苯乙烯类、聚丙烯酸酯类、聚丙烯酰胺类超高交联吸附树脂吸附/脱附制备乙酰丙酸和糠醛,所述的超高交联吸附树脂均采用悬挂双键交联的原理,利用未交联的二乙烯基苯的悬挂双键的自交联,制备出超高交联吸附树脂。现有技术公开的超高交联吸附树脂在制备过程中不可避免的使用到氯甲醚,且超高交联吸附树脂的微球粒径和比表面积小,不利于实现物质的吸附。
发明内容:
本发明解决了现有技术存在的问题,提供一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用,本发明针对糠醛的结构、分子大小、表面极性等特点,设计并合成了超高交联吸附树脂,用于吸附分离生物质水解液中的糠醛,具有吸附容量高、快速等优势,同时超高交联吸附树脂使用低碳醇类(甲醇、乙醇等)作为再生溶剂,绿色环保,且溶剂可以重复使用。
本发明的目的是提供一种超高交联吸附树脂的制备方法,包括以下步骤:
(1)氯甲基交联聚苯乙烯微球的制备:水、分散剂、亚甲基蓝溶液混合加热至分散剂溶解得到水相,水相中加入由单体氯甲基苯乙烯、交联剂二乙烯基苯、引发剂过氧化苯甲酰和致孔剂组成的油相,水相和油相的质量比为1.45~3:1,开启机械搅拌,缓慢升温至80℃~95℃,反应6~12h后,固液分离,乙醇、水交替洗涤得到固体产物,去除杂质,得到氯甲基交联聚苯乙烯微球;
(2)超高交联吸附树脂的制备:将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷中,固液比为1:3~1:8,加入催化剂,体系温度为40℃-48℃下保持1.5-2.5h,然后升温至60℃~80℃保温反应3~9h后,固液分离,得到的固体为超高交联吸附树脂。
本发明采用悬浮聚合技术,通过调控单体氯甲基苯乙烯、交联剂二乙烯基苯的用量,致孔剂的种类与用量,获得孔结构、孔径分布不同的氯甲基交联聚苯乙烯微球;然后将微球进行傅克后交联反应,获得不同结构的超高交联吸附树脂。该发明避免使用氯甲醚等强致癌物质,超高交联吸附树脂的制备过程绿色环保。
相比而言,本发明避免了氯甲醚的使用,同时可以获得较大的微球粒径和更高的比表面积,粒径范围为0.42~0.85mm(便于固液分离、回收循环使用),比表面积为480~1190m2/g。
优选地,步骤(1)所述的分散剂为聚乙烯醇和/或明胶,所述的致孔剂选自甲苯、正庚烷、环己烷、液体石蜡和异丁醇中的一种以上。分散剂为聚乙烯醇和明胶的混合物时,聚乙烯醇和明胶的质量比为1:1。水相中,分散剂与水的质量比为0.0025:1,亚甲基蓝溶液与水的体积比为0.0007:1,亚甲基蓝溶液中亚甲基蓝的质量分数为1wt%。
优选地,步骤(1)中按氯甲基苯乙烯质量百分比为100%计,二乙烯基苯占氯甲基苯乙烯的质量分数为10wt%~60wt%,致孔剂和氯甲基苯乙烯的质量比为0.63~1.6:1。过氧化苯甲酰占氯甲基苯乙烯的质量分数为1wt%~4wt%。
优选地,步骤(2)中催化剂为无水氯化铝,所述的无水氯化铝的用量为1,2-二氯乙烷质量的0.75%~3%。固液比指氯甲基交联聚苯乙烯微球与1,2-二氯乙烷的质量体积比,单位为g/mL。
优选地,步骤(2)具体步骤为:将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷中,加入催化剂,体系温度为45℃下保持2h,然后升温至70℃保温反应6h后,固液分离,得到的固体为超高交联吸附树脂。
本发明还保护通过上述制备方法得到的超高交联吸附树脂,所述的超高交联吸附树脂的粒径分布为0.42~0.85mm,比表面积为480~1190m2/g,总孔容为0.9~1.5m3/g,平均孔径为4~7nm。
本发明还保护上述超高交联吸附树脂在生物质水解液中产物分离中的应用。
优选地,所述的产物分离具体为糠醛分离。
优选地,所述的生物质水解液为甘蔗渣水解液、秸秆水解液或杜仲水解液。
优选地,所述的应用,包括如下步骤:
(1)取生物质水解液,将所述的超高交联吸附树脂按照生物质水解液质量的5%~20%的添加量加入到生物质水解液中,进行震荡和过滤,固液分离;
(2)将上述步骤(1)吸附后的树脂采用低碳醇溶液洗脱,即可富集糠醛;
(3)将上述步骤(2)中洗脱后的树脂用纯水洗涤,洗涤后的树脂即可回用至步骤(1)。
低碳醇包括甲醇、乙醇等,优选使用乙醇溶液洗脱,乙醇溶液的质量分数为95%。
本发明与现有技术相比,具有如下优点:本发明制备的超高交联吸附树脂的粒径较大且可以调控,比表面积、孔容较大,不但含有微孔,还含有介孔和大孔结构。将超高交联吸附树脂应用在分离生物质水解液中糠醛,效果良好,尤其是从甘蔗渣、秸秆、杜仲等生物质水解液中分离糠醛有较大的应用潜力。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。除特别说明,本文中的实验材料和试剂均为本技术领域常规市购产品。
实施例1
一种超高交联吸附树脂的制备方法,包括以下步骤:
(1)氯甲基交联聚苯乙烯微球的制备
在装有机械搅拌、温度计和冷凝管的1000ml三口烧瓶加:480g水、1.2g聚乙烯醇、1wt%亚甲基蓝溶液0.34mL,加热至聚乙烯醇溶解,得到水相;水相中加入包含190g氯甲基苯乙烯、20g二乙烯基苯、2g过氧化苯甲酰、60g甲苯和60g正庚烷的油相,开启机械搅拌,调节搅拌速度为150rpm,缓慢升温至80℃,反应12h,固液分离,多次乙醇、水交替洗涤得到固体产物,然后通过索氏抽提去除致孔剂和树脂孔道残留的杂质,得到氯甲基交联聚苯乙烯微球。
(2)超高交联吸附树脂的制备
将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷中,氯甲基交联聚苯乙烯微球与1,2-二氯乙烷固液比为1:3,加入1,2-二氯乙烷质量的0.75%的催化剂无水氯化铝,体系温度在45℃下保持2h,然后升温至80℃保温反应3h后,固液分离,得到的固体为超高交联吸附树脂。
制备的超高交联吸附树脂的粒径分布为0.42~0.65mm,比表面积为480.56m2/g,总孔容为0.986m3/g,平均孔径为7.9nm。
甘蔗渣水解液组成为:D-葡萄糖,8.843g/L;D-木糖,0.897g/L;L-阿拉伯糖,0.545g/L;甲酸,6.383g/L;乙酸,8.122g/L;乙酰丙酸,9.569g/L;糠醛,7.204g/L。
将得到的超高交联吸附树脂用于吸附甘蔗渣水解液中的糠醛,包括如下步骤:以甘蔗渣水解液质量的20%的添加量添加超高交联吸附树脂,恒温震荡3小时后过滤,固液分离;采用95%(w/w,g/g)的乙醇对吸附后的树脂进行洗脱,即可富集糠醛;并用纯水对洗脱后的树脂微球洗涤,即可对超高交联吸附树脂进行循环重复使用。
对糠醛的吸附容量为90.5mg/g,对糠醛的脱附得率为95.5%,糖损失为1.82%。
实施例2
一种超高交联吸附树脂的制备方法,包括以下步骤:
(1)氯甲基交联聚苯乙烯微球的制备
在装有机械搅拌、温度计和冷凝管的1000ml三口烧瓶加:480g水、1.2g明胶、1wt%亚甲基蓝溶液0.34mL,加热至明胶溶解,得到水相;水相中加入包含50g氯甲基苯乙烯、30g二乙烯基苯、2g过氧化苯甲酰、40g异丁醇和40g环己烷的油相,开启机械搅拌,调节搅拌速度为150rpm。缓慢升温至95℃,反应6h,固液分离,多次乙醇、水交替洗涤得到固体产物,然后通过索氏抽提去除致孔剂和树脂孔道残留的杂质,得到氯甲基交联聚苯乙烯微球。
(2)超高交联吸附树脂的制备
将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷中,氯甲基交联聚苯乙烯微球与1,2-二氯乙烷固液比为1:8,加入1,2-二氯乙烷质量的3%的催化剂无水氯化铝,体系温度在45℃下保持2h,然后升温至60℃保温反应9h后,固液分离,得到的固体为超高交联吸附树脂。
制备的超高交联吸附树脂的粒径分布为0.6~0.85mm,比表面积为890.56m2/g,总孔容为1.289m3/g,平均孔径为5.9nm。
水稻秸秆水解液组成为:D-葡萄糖,4.321g/L;D-木糖,1.068g/L;L-阿拉伯糖,0.599g/L;甲酸,7.251g/L;乙酸,6.298g/L;乙酰丙酸,10.652g/L;糠醛,7.051g/L。
将得到的超高交联吸附树脂用于吸附水稻秸秆水解液中的糠醛,包括如下步骤:以水稻秸秆水解液质量的15%的添加量添加超高交联吸附树脂,恒温震荡3小时后过滤,固液分离;采用95%(w/w,g/g)的乙醇对吸附后的树脂进行洗脱,即可富集糠醛;并用纯水对洗脱后的树脂微球洗涤,即可对超高交联吸附树脂进行循环重复使用。
对糠醛的吸附容量为110.9mg/g,对糠醛的脱附得率为94.2%,糖损失为1.66%。
实施例3
一种超高交联吸附树脂的制备方法,包括以下步骤:
(1)氯甲基交联聚苯乙烯微球的制备
在装有机械搅拌、温度计和冷凝管的1000ml三口烧瓶加:480g水、0.6g聚乙烯醇、0.6g明胶、1wt%亚甲基蓝溶液0.34mL,加热至聚乙烯醇、明胶溶解,得到水相。水相中加入包含95g氯甲基苯乙烯、35g二乙烯基苯、2g过氧化苯甲酰、60g甲苯和60g液体石蜡的油相,开启机械搅拌,调节搅拌速度为150rpm。缓慢升温至85℃,反应9h,固液分离,多次乙醇、水交替洗涤得到固体产物,然后通过索氏抽提去除致孔剂和树脂孔道残留的杂质,得到氯甲基交联聚苯乙烯微球。
(2)超高交联吸附树脂的制备
将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷溶液中,氯甲基交联聚苯乙烯微球与1,2-二氯乙烷固液比为1:5,加入1,2-二氯乙烷质量的2.25%的催化剂无水氯化铝,体系温度在45℃下保持2h,然后升温至70℃保温反应6h后,固液分离,得到的固体为超高交联吸附树脂。
制备的超高交联吸附树脂的粒径分布为0.5~0.65mm,比表面积为1190m2/g,总孔容为1.5m3/g,平均孔径为4.1nm。
杜仲水解液组成为:D-葡萄糖,4.809g/L;D-木糖,0.675g/L;L-阿拉伯糖,0.241g/L;甲酸,4.077g/L;乙酸,3.933g/L;乙酰丙酸,7.273g/L;糠醛,5.482g/L。
将得到的超高交联吸附树脂用于吸附杜仲水解液中的糠醛,包括如下步骤:以杜仲水解液质量的5%的添加量添加超高交联吸附树脂,恒温震荡3小时后过滤,固液分离;采用95%(w/w,g/g)的乙醇对吸附后的树脂进行洗脱,即可富集糠醛;并用纯水对洗脱后的树脂微球洗涤,即可对超高交联吸附树脂进行循环重复使用。
对糠醛的吸附容量为136.6mg/g,对糠醛的脱附得率为94.0%,糖损失为1.71%。
以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想,应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种超高交联吸附树脂的制备方法,其特征在于,包括以下步骤:
(1)氯甲基交联聚苯乙烯微球的制备:水、分散剂、亚甲基蓝溶液混合加热至分散剂溶解得到水相,水相中加入由单体氯甲基苯乙烯、交联剂二乙烯基苯、引发剂过氧化苯甲酰和致孔剂组成的油相,水相和油相的质量比为1.45~3:1,开启机械搅拌,缓慢升温至80℃~95℃,反应6~12h后,固液分离,得到固体产物,去除杂质,得到氯甲基交联聚苯乙烯微球;
(2)超高交联吸附树脂的制备:将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷中,固液比为1:3~1:8,加入催化剂,体系温度为40℃-48℃下保持1.5-2.5h,然后升温至60℃~80℃保温反应3~9h后,固液分离,得到的固体为超高交联吸附树脂。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的分散剂为聚乙烯醇和/或明胶,所述的致孔剂选自甲苯、正庚烷、环己烷、液体石蜡和异丁醇中的一种以上。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中按氯甲基苯乙烯质量百分比为100%计,二乙烯基苯占氯甲基苯乙烯的质量分数为10wt%~60wt%,致孔剂和氯甲基苯乙烯的质量比为0.63~1.6:1,过氧化苯甲酰占氯甲基苯乙烯的质量分数为1wt%~4wt%。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中催化剂为无水氯化铝,所述的无水氯化铝的用量为1,2-二氯乙烷质量的0.75%~3%。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)具体步骤为:将步骤(1)得到的氯甲基交联聚苯乙烯微球溶胀在1,2-二氯乙烷中,加入催化剂,体系温度为45℃下保持2h,然后升温至70℃保温反应6h后,固液分离,得到的固体为超高交联吸附树脂。
6.权利要求1所述的制备方法制备得到的超高交联吸附树脂,其特征在于,所述的超高交联吸附树脂的粒径分布为0.42~0.85mm,比表面积为480~1190m2/g,总孔容为0.98~1.5m3/g,平均孔径为4~7nm。
7.权利要求6所述的超高交联吸附树脂在生物质水解液中产物分离中的应用。
8.根据权利要求7所述的应用,其特征在于,所述的产物分离具体为糠醛分离。
9.根据权利要求7所述的应用,其特征在于,所述的生物质水解液为甘蔗渣水解液、秸秆水解液或杜仲水解液。
10.根据权利要求7或8所述的应用,其特征在于,包括如下步骤:
(1)取生物质水解液,将权利要求6所述的超高交联吸附树脂按照生物质水解液质量的5%~20%的添加量加入到生物质水解液中,进行震荡和过滤,固液分离;
(2)将上述步骤(1)吸附后的树脂采用低碳醇溶液洗脱,即可富集糠醛;
(3)将上述步骤(2)中洗脱后的树脂用纯水洗涤,洗涤后的树脂即可回用至步骤(1)。
CN202211160652.2A 2022-09-22 2022-09-22 一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用 Active CN115418022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211160652.2A CN115418022B (zh) 2022-09-22 2022-09-22 一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211160652.2A CN115418022B (zh) 2022-09-22 2022-09-22 一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用

Publications (2)

Publication Number Publication Date
CN115418022A true CN115418022A (zh) 2022-12-02
CN115418022B CN115418022B (zh) 2024-06-25

Family

ID=84204325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211160652.2A Active CN115418022B (zh) 2022-09-22 2022-09-22 一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用

Country Status (1)

Country Link
CN (1) CN115418022B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850600A (zh) * 2022-12-12 2023-03-28 国网江苏省电力有限公司双创中心 一种耐油多孔吸附树脂及其制备方法
CN116173921A (zh) * 2022-12-30 2023-05-30 中国科学院广州能源研究所 一种用于氢气和氮气分离的吸附树脂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391407A (zh) * 2011-09-26 2012-03-28 南京大学 用于中高浓度VOCs分离与回收的超高交联树脂及其制备方法和应用
CN110627753A (zh) * 2019-09-16 2019-12-31 中国科学院广州能源研究所 一种循环制备乙酰丙酸和糠醛的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391407A (zh) * 2011-09-26 2012-03-28 南京大学 用于中高浓度VOCs分离与回收的超高交联树脂及其制备方法和应用
CN110627753A (zh) * 2019-09-16 2019-12-31 中国科学院广州能源研究所 一种循环制备乙酰丙酸和糠醛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANLIN HUANG等: "Controllable Synthesis of Styrene-divinylbenzene Adsorption Resins and the Effect of Textural Properties on Removal Performance of Fermentation Inhibitors from Rice Straw Hydrolysate" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850600A (zh) * 2022-12-12 2023-03-28 国网江苏省电力有限公司双创中心 一种耐油多孔吸附树脂及其制备方法
CN116173921A (zh) * 2022-12-30 2023-05-30 中国科学院广州能源研究所 一种用于氢气和氮气分离的吸附树脂及其制备方法

Also Published As

Publication number Publication date
CN115418022B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
CN100509142C (zh) 一种头孢菌素c提取专用大孔吸附树脂及其制备方法
CN115418022B (zh) 一种超高交联吸附树脂及其制备方法和在生物质水解液中产物分离中的应用
CN108355626B (zh) 一种改性苯乙烯系吸附树脂、其制备方法及其在木质纤维素水解液的精制上的应用
CN102107127B (zh) 一种粉体造粒技术
CN102626661B (zh) 一种强酸型聚苯乙烯阳离子交换树脂、其制备方法及其应用
CN101693757B (zh) 亲水多孔酚醛类树脂及其制备方法和应用
CN102492178B (zh) 一种尺寸均一的魔芋葡甘聚糖微球及其制备方法
CN104226256B (zh) 一种球形成型Cu基金属有机骨架‑氧化石墨烯复合材料及制备方法
CN102942701B (zh) 一种含酚羟基超高交联吸附树脂及其制备方法和应用
CN101773812A (zh) 一种粒度均一的高比表面积聚合物微球树脂及其制备方法
CN107118294B (zh) 一种乙烯基吡啶修饰悬挂双键后交联树脂及其制备方法和应用
CN104927063A (zh) 一种吸附回收工业废水中酚类化合物的方法及吸附材料的制备方法
CN110227419A (zh) 一种腐植酸/β-环糊精聚合物、复合微球及其制备方法
Wang et al. Removal of copper ions by cellulose nanocrystal-based hydrogel and reduced adsorbents for its catalytic properties
CN103908955B (zh) 一种乙酰胺基修饰的超高交联型吸附树脂的制备方法及其应用
CN105037630A (zh) 一种亲水性聚合物微球及其简易制备方法
CN107417842A (zh) 一种中极性大孔吸附树脂及其在去除木质纤维素水解液中酸溶木质素的应用
Li et al. Lignin-based thermo-sensitive hydrogel for selective recovery of butanol from dilute solution
CN105884608B (zh) 一种从木质纤维素水解液中分离乙酰丙酸的方法
CN114014966B (zh) 一种酰胺基团改性超高交联吸附树脂及其制备方法和应用
CN114349890A (zh) 一种超高交联树脂及其制备方法与应用
JPS6361618B2 (zh)
CN104258906A (zh) 一种纳米多孔有机骨架固定酸催化剂及其合成方法
CN105665015B (zh) 一种固体酸催化剂及其制备方法和应用
Shi et al. Purification of Lignocellulose Hydrolysate by Org-Attapulgite/(Divinyl Benzene-Styrene-Methyl Acrylate) Composite Adsorbent.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant