CN115417626A - Method for solidifying/stabilizing landfill leachate concentrated solution by using geopolymer - Google Patents
Method for solidifying/stabilizing landfill leachate concentrated solution by using geopolymer Download PDFInfo
- Publication number
- CN115417626A CN115417626A CN202210972956.2A CN202210972956A CN115417626A CN 115417626 A CN115417626 A CN 115417626A CN 202210972956 A CN202210972956 A CN 202210972956A CN 115417626 A CN115417626 A CN 115417626A
- Authority
- CN
- China
- Prior art keywords
- landfill leachate
- geopolymer
- solidification
- stabilization
- concentrated solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000149 chemical water pollutant Substances 0.000 title claims abstract description 57
- 229920000876 geopolymer Polymers 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000000087 stabilizing effect Effects 0.000 title description 3
- 230000006641 stabilisation Effects 0.000 claims abstract description 24
- 238000011105 stabilization Methods 0.000 claims abstract description 24
- 238000007711 solidification Methods 0.000 claims abstract description 22
- 230000008023 solidification Effects 0.000 claims abstract description 22
- 239000003513 alkali Substances 0.000 claims abstract description 20
- 239000012190 activator Substances 0.000 claims abstract description 19
- 239000007787 solid Substances 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 12
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 11
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010881 fly ash Substances 0.000 claims abstract description 10
- 239000002243 precursor Substances 0.000 claims abstract description 9
- 239000002893 slag Substances 0.000 claims abstract description 9
- 239000012141 concentrate Substances 0.000 claims description 49
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000002002 slurry Substances 0.000 claims description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 8
- 239000004115 Sodium Silicate Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000005416 organic matter Substances 0.000 claims description 7
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims 1
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 230000004913 activation Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 239000003344 environmental pollutant Substances 0.000 abstract description 5
- 231100000719 pollutant Toxicity 0.000 abstract description 5
- 239000002910 solid waste Substances 0.000 abstract description 3
- 239000006227 byproduct Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 5
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000001746 injection moulding Methods 0.000 abstract 1
- 238000012423 maintenance Methods 0.000 abstract 1
- 239000012528 membrane Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 208000028659 discharge Diseases 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 238000002386 leaching Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000000404 calcium aluminium silicate Substances 0.000 description 2
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000002920 hazardous waste Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000429 sodium aluminium silicate Substances 0.000 description 2
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00767—Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
技术领域technical field
本发明涉及高盐有机废水的固化/稳定化处理,具体地说,本发明采用地质聚合物作为固化剂实现垃圾渗滤液浓缩液的高效无害化处理。The invention relates to solidification/stabilization treatment of high-salt organic wastewater. Specifically, the invention uses geopolymer as a solidification agent to realize efficient and harmless treatment of landfill leachate concentrate.
背景技术Background technique
垃圾渗滤液是垃圾填埋或堆存过程中不可避免产生的一种高浓度有机废水。过去的几十年中,随着膜生物反应器技术的成熟,实现了垃圾渗滤液的大规模处理。这种“生化法+膜处理”技术处理效果使人满意且水质稳定,已在中国等多个国家实行。但是,由于膜技术的限制,特别是高效耐污膜的缺乏,约占渗滤液体积1/3的膜浓缩液会在处理过程中产生,形成垃圾渗滤液浓缩液。垃圾渗滤液浓缩液含有大量有机质、氨氮、无机盐和重金属,成分复杂且难降解,已经成为行业废水处理一大难题。Landfill leachate is a kind of high-concentration organic wastewater that is inevitably produced in the process of landfill or stockpiling. In the past few decades, with the maturity of membrane bioreactor technology, large-scale treatment of landfill leachate has been realized. This "biochemical method + membrane treatment" technology has a satisfactory treatment effect and stable water quality, and has been implemented in many countries such as China. However, due to the limitations of membrane technology, especially the lack of high-efficiency fouling-resistant membranes, the membrane concentrate, which accounts for about 1/3 of the leachate volume, will be produced during the treatment process, forming landfill leachate concentrate. Landfill leachate concentrate contains a large amount of organic matter, ammonia nitrogen, inorganic salts and heavy metals. The composition is complex and difficult to degrade, which has become a major problem in industrial wastewater treatment.
现有的垃圾渗滤液浓缩液处理方法主要包括回灌、蒸发、焚烧、膜蒸馏以及高级氧化处理等。回灌会造成有机物和盐分的积累,使微生物活性降低,影响后续膜处理的稳定性。蒸发和焚烧对浓缩液的减量可达90%以上,但浓缩液中高浓度氯离子的腐蚀性极强。膜蒸馏法存在膜制备成本高、热传导系数低以及膜通量不高等问题,限制了其大规模的使用。高级氧化处理也因经济成本原因受到强烈制约。因此,亟需开发高效低成本且绿色的垃圾渗滤液浓缩液处理技术。The existing landfill leachate concentrate treatment methods mainly include recharge, evaporation, incineration, membrane distillation and advanced oxidation treatment. Recharge will cause the accumulation of organic matter and salt, which will reduce the activity of microorganisms and affect the stability of subsequent membrane treatment. Evaporation and incineration can reduce the concentrate by more than 90%, but the high concentration of chloride ions in the concentrate is extremely corrosive. Membrane distillation has problems such as high cost of membrane preparation, low thermal conductivity and low membrane flux, which limit its large-scale use. Advanced oxidation treatment is also strongly restricted due to economic cost reasons. Therefore, it is urgent to develop high-efficiency, low-cost and green landfill leachate concentrate treatment technology.
固化/稳定化利用物理或化学方法将垃圾渗滤液浓缩液中的危险废物固定或包容在惰性固体基质内,使之呈现化学稳定性或密封性,成本低、效果好且实现了危险废物的无害化处理,具有重要的应用前景。专利CN 103910481 B公开了一种利用共价键型无机有机复合絮凝剂和硅酸盐水泥复配固化/稳定化垃圾渗滤液或垃圾渗滤液膜浓缩液处理产生的污泥,具有良好的有机质和重金属固化能力。专利CN 111995111 A通过分步析出垃圾渗滤液浓缩液中的重金属后,再加入硫酸钠/钙和硅酸盐水泥固化/稳定化,实现了垃圾渗滤液浓缩液的无害化、稳定化处置。然而,水泥较高的碳排放和资源消耗使其发展不可持续。此外,水泥固化过程中存在的增容较大、耐久性不足、易遭碳化和腐蚀的缺陷使其大规模的应用存在争议。Solidification/stabilization uses physical or chemical methods to fix or contain hazardous waste in landfill leachate concentrate in an inert solid matrix, so that it presents chemical stability or sealing, low cost, good effect, and realizes the non-toxicity of hazardous waste. Harmful treatment has important application prospects. Patent CN 103910481 B discloses a kind of solidification/stabilization of landfill leachate or landfill leachate membrane concentrate by using a covalent bond type inorganic-organic composite flocculant and Portland cement to compound the sludge, which has good organic matter and Heavy metal solidification ability. Patent CN 111995111 A achieves harmless and stable disposal of landfill leachate concentrate by stepwise separating heavy metals in landfill leachate concentrate, and then adding sodium sulfate/calcium and Portland cement to solidify/stabilize it. However, cement's high carbon emissions and resource consumption make its development unsustainable. In addition, the defects of large volume expansion, insufficient durability, and susceptibility to carbonization and corrosion in the curing process of cement make its large-scale application controversial.
近年来,地质聚合物作为一种新型无机固化材料,制备工艺简单、力学性能优异且能耗低。在常温常压下,将水玻璃、氢氧化钠、铝源(粉煤灰、矿渣和尾矿)混合反应,经短时间(2~24h)养护即可得到,具有耐火耐高温和耐化学腐蚀的优点。据报道,地质聚合物的能耗为波兰特水泥的60%,且具有较低的CO2排放,只为波兰特水泥的10%~20%。基于此,本发明采用地质聚合物固化/稳定化技术实现垃圾渗滤液浓缩液的低成本、高效和无害化处理,实现垃圾渗滤液浓缩液中有机质、无机盐、氨氮以及重金属等多种污染物的同步固化/稳定化。In recent years, as a new type of inorganic solidified material, geopolymer has the advantages of simple preparation process, excellent mechanical properties and low energy consumption. Under normal temperature and pressure, mix and react water glass, sodium hydroxide, aluminum source (fly ash, slag and tailings), and obtain it after short-term (2-24h) curing. It has fire resistance, high temperature resistance and chemical corrosion resistance. The advantages. It is reported that the energy consumption of geopolymer is 60% of Portland cement, and has lower CO2 emission, which is only 10%-20% of Portland cement. Based on this, the present invention adopts geopolymer solidification/stabilization technology to realize low-cost, high-efficiency and harmless treatment of landfill leachate concentrate, and realizes various pollutions such as organic matters, inorganic salts, ammonia nitrogen and heavy metals in landfill leachate concentrate Simultaneous curing/stabilization of substances.
发明内容Contents of the invention
本发明旨在提供一种利用地质聚合物高效同步固化/稳定化垃圾渗滤液浓缩液中有机物、无机盐、氨氮以及重金属的方法,具体步骤如下:The present invention aims to provide a method for efficiently synchronously solidifying/stabilizing organic matters, inorganic salts, ammonia nitrogen and heavy metals in the landfill leachate concentrate by using geopolymers. The specific steps are as follows:
步骤1、固态碱激活剂、垃圾渗滤液浓缩液和地质聚合物前驱物经过计量后先后加入搅拌器内,各组分的质量比为:固态碱激活剂15%~25%,垃圾渗滤液浓缩液25%~50%,地质聚合物前驱物35%~60%。由于垃圾渗滤液浓缩液中含有大量的水,整个固化/稳定化体系不需要再额外加入任何试剂水。Step 1, solid alkali activator, landfill leachate concentrate and geopolymer precursor are added to the mixer successively after metering, the mass ratio of each component is: solid alkali activator 15% ~ 25%, landfill leachate concentrated Liquid 25% to 50%, geopolymer precursor 35% to 60%. Since the landfill leachate concentrate contains a large amount of water, the entire solidification/stabilization system does not need to add any additional reagent water.
步骤2、开启搅拌器搅拌,使物料混合均匀,形成可以倒入模具的浆体。
步骤3、将浆体注入成型模具中,震实台震实30~60s,排出浆体中的气泡,形成形状规则的固化体砌块。
步骤4、将固化体砌块密封放置高温箱中养护,在温度60℃~90℃下养护18~36h。养护结束后从高温箱中取出,自然状态下养生3~28天,固化/稳定化处理完成,检测各项指标。Step 4. Seal the solidified block and place it in a high-temperature box for curing at a temperature of 60° C. to 90° C. for 18 to 36 hours. After curing, take it out of the high-temperature box, keep it in a natural state for 3 to 28 days, complete the curing/stabilization treatment, and test various indicators.
进一步地,步骤1中固态碱激活剂为硅酸钠粉末和氢氧化钠颗粒按比例配制的混合物,混合后的激活剂的模数为0.89~1.16。Further, the solid alkali activator in step 1 is a mixture of sodium silicate powder and sodium hydroxide particles prepared in proportion, and the modulus of the mixed activator is 0.89-1.16.
进一步地,步骤1中地质聚合物前驱物为高炉矿渣、钢渣、粉煤灰、赤泥和偏高岭土的一种或多种组成,其特性为活性SiO2含量为30%~60%、活性Al2O3含量为15%~45%,活性CaO含量为0%~45%,其它Fe2O3、NaO和K2O等的总含量为5%~20%。Further, the geopolymer precursor in step 1 is one or more compositions of blast furnace slag, steel slag, fly ash, red mud and metakaolin, and its characteristics are that the active SiO2 content is 30% to 60%, the active Al The content of 2 O 3 is 15%-45%, the content of active CaO is 0%-45%, and the total content of other Fe 2 O 3 , NaO and K 2 O is 5%-20%.
进一步地,步骤2中搅拌时间为5~10min,采用初凝时间判断垃圾渗滤液浓缩液的添加量,初凝时间的下限为10~30min,上限为80~100min。Further, the stirring time in
本发明的地质聚合物固化/稳定化过程中,垃圾渗滤液浓缩液中的腐殖酸在强碱性条件下与钙离子和钠离子形成腐殖酸钠/钙沉淀填充于地质聚合物的缝隙和微孔中,氨氮通过地质聚合物中类沸石水合凝胶稳定,氯离子通过在碱激发条件下形成费氏盐稳定,硫酸根离子通过形成硫酸钙/钠结晶稳定。地质聚合物致密的水合硅铝酸钙/钠以及水合硅酸钙/钠凝胶结构对垃圾渗滤液浓缩液污染物具有优异的物理固封作用。During the solidification/stabilization process of the geopolymer of the present invention, the humic acid in the landfill leachate concentrate forms sodium humate/calcium precipitates with calcium ions and sodium ions under strong alkaline conditions and fills the gaps of the geopolymer And in micropores, ammonia nitrogen is stabilized by zeolite-like hydration gel in geopolymers, chloride ions are stabilized by forming Fischer salts under alkaline excitation conditions, and sulfate ions are stabilized by forming calcium sulfate/sodium crystals. The dense hydrated calcium/sodium aluminosilicate and hydrated calcium/sodium silicate gel structure of geopolymer have excellent physical sealing effect on the pollutants of landfill leachate concentrate.
本发明取得的优点和有益效果是:Advantage and beneficial effect that the present invention obtains are:
(1)本发明以常见的工业副产物(高炉矿渣和粉煤灰等)为主要固化/稳定化材料,来源广泛,成本低廉,避免使用水泥等能耗和碳排放大的不可再生资源,能大量节省垃圾渗滤液浓缩液的处理费用的同时减少资源消耗和碳排放;(1) The present invention uses common industrial by-products (blast furnace slag and fly ash, etc.) as the main solidification/stabilization material, which has a wide range of sources and low cost, avoids the use of cement and other non-renewable resources with large energy consumption and carbon emissions, and can Save a lot of treatment costs of landfill leachate concentrate while reducing resource consumption and carbon emissions;
(2)本发明采用固态碱激活剂,大大提高了地质聚合物对液态垃圾渗滤液浓缩液的处理能力,减少了运输和使用风险;(2) The present invention adopts a solid alkali activator, which greatly improves the processing capacity of the geopolymer to the liquid landfill leachate concentrate, and reduces the risk of transportation and use;
(3)本发明采用固态碱激活剂、垃圾渗滤液浓缩液和地质聚合物前驱物一次添加,解决了常规地质聚合物制备工艺需要提前制备碱激活剂溶液的分次添加问题,简化工艺流程,提高了工业化应用的可行性;(3) The present invention adopts solid alkali activator, landfill leachate concentrate and geopolymer precursor to add at one time, solves the conventional geopolymer preparation process and needs to prepare the stepwise addition of alkali activator solution in advance, and simplifies the process flow, Improve the feasibility of industrial application;
(4)本发明能够很好地降低垃圾渗滤液浓缩液的污染物毒性,减少环境风险,同时不排放废物,实现垃圾渗滤液浓缩液的零排放处理;(4) The present invention can well reduce the pollutant toxicity of the landfill leachate concentrate, reduce environmental risks, and simultaneously not discharge waste, and realize zero discharge treatment of the landfill leachate concentrate;
(5)本发明得到的固化/稳定化后的地质聚合物固化块具有良好的抗压强度和水硬性,因其无环境污染风险,可以用作制砖和路基材料。(5) The solidified/stabilized geopolymer solidified block obtained by the present invention has good compressive strength and hydraulic property, and can be used as brick making and roadbed material because it has no risk of environmental pollution.
附图说明Description of drawings
图1为本发明的地质聚合物固化/稳定化垃圾渗滤液浓缩液流程示意图。Fig. 1 is a schematic flow chart of the geopolymer solidification/stabilization landfill leachate concentrate of the present invention.
图2为制备的地质聚合物固化块的光学照片和扫描电镜图。Figure 2 is the optical photograph and scanning electron micrograph of the prepared geopolymer solidified block.
图3为碱激活剂模数对地质聚合物固化块抗压强度的影响。Figure 3 shows the effect of alkali activator modulus on the compressive strength of geopolymer solidified block.
图4为垃圾渗滤液浓缩液含量对地质聚合物固化块抗压强度的影响。Figure 4 shows the effect of landfill leachate concentrate content on the compressive strength of geopolymer solidified blocks.
具体实施方式detailed description
下面结合附图及实施例进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
实施例1:Example 1:
本实施例处理的是天津某垃圾填埋场垃圾渗滤液纳滤膜浓缩液,其有机质、氨氮、无机盐和重金属等含量见表1。垃圾渗滤液浓缩液的CODCr浓度为3873.6mg L-1,氨氮浓度为72.4mg-1,均高于《生活垃圾填埋场污染控制标准》(GB 16889—2008),需要进一步处理才能达标排放。此外,垃圾渗滤液浓缩液样品中还含有大量无机盐(TDS=89.3g L-1)和少量重金属,具有潜在的生态风险。In this example, the nanofiltration membrane concentrate of landfill leachate from a waste landfill in Tianjin was treated. The contents of organic matter, ammonia nitrogen, inorganic salts and heavy metals are shown in Table 1. The COD Cr concentration of the landfill leachate concentrate is 3873.6mg L -1 , and the ammonia nitrogen concentration is 72.4mg -1 , both of which are higher than the "Pollution Control Standards for Domestic Waste Landfill Sites" (GB 16889—2008), and further treatment is required to meet the discharge standards . In addition, the landfill leachate concentrate sample also contained a large amount of inorganic salts (TDS=89.3g L -1 ) and a small amount of heavy metals, which had potential ecological risks.
本实施例的垃圾渗滤液浓缩液固化/稳定化方法包括如下步骤(图1):The landfill leachate concentrate solidification/stabilization method of the present embodiment comprises the following steps (Fig. 1):
步骤1、取垃圾渗滤液浓缩液242mL装入搅拌器中,向搅拌器中添加50g氢氧化钠颗粒和120g硅酸钠粉末,搅拌,使物料混合均匀。接着向搅拌器中加入300g磨细高炉矿渣。Step 1. Take 242 mL of the landfill leachate concentrate and put it into a blender, add 50 g of sodium hydroxide particles and 120 g of sodium silicate powder into the blender, and stir to make the materials evenly mixed. Next, 300 g of ground blast furnace slag were added to the mixer.
步骤2、开启搅拌器搅拌5min,使物料混合均匀,形成可以倒入模具的浆体。
步骤3、将浆体注入成型模具中,震实台震实60s,排出浆体中的气泡,形成形状规则的固化体砌块。
步骤4、将固化体砌块密封放置高温箱中养护,在温度70℃下养护24h。养护结束后从高温箱中取出,自然状态下养生24天。Step 4. Seal the cured block and place it in a high-temperature box for curing at a temperature of 70°C for 24 hours. After curing, take it out of the high-temperature box and keep it in a natural state for 24 days.
如图2所示,获得的地质聚合物固化块具有良好的结构强度和水硬性,其28天无侧限抗压强度可达到7Mpa。X射线衍射和扫描电镜表明形成的固化块生产大量水合硅酸钙/钠和水合硅铝酸钙/钠凝胶,以及费氏盐和硫酸钙等其它稳定性成分(图2c和2d)。按照《固体废物浸出毒性浸出方法水平振荡法》(HJ 557—2010)对上述固化/稳定化样品进行粉碎并获得浸出液,检测有机质、氨氮、无机盐以及重金属浓度见表2,符合《生活垃圾填埋场污染控制标准》(GB 16889—2008)和《污水综合排放标准》(GB 8978—1996)要求。As shown in Figure 2, the obtained geopolymer solidified block has good structural strength and hydraulicity, and its 28-day unconfined compressive strength can reach 7Mpa. X-ray diffraction and scanning electron microscopy showed that the solidified mass formed produced large amounts of hydrated calcium/sodium silicate and hydrated calcium/sodium aluminosilicate gels, as well as other stabilizing components such as Fischer's salt and calcium sulfate (Fig. 2c and 2d). According to "Solid Waste Leaching Toxicity Leaching Method Horizontal Oscillating Method" (HJ 557-2010), the above-mentioned solidified/stabilized samples were pulverized and the leachate was obtained. The concentrations of organic matter, ammonia nitrogen, inorganic salts and heavy metals were detected in Table 2. Landfill Pollution Control Standards (GB 16889-2008) and Integrated Sewage Discharge Standards (GB 8978-1996).
表1.垃圾渗滤液浓缩液检测指标浓度Table 1. Detection index concentration of landfill leachate concentrate
N.D.代表该检测指标浓度低于仪器检测限。N.D. means that the concentration of the detection index is lower than the detection limit of the instrument.
表2.矿渣基地质聚合物固化/稳定化垃圾渗滤液浓缩液污染物浸出浓度Table 2. Pollutant leaching concentration of slag-based geopolymer solidification/stabilization landfill leachate concentrate
N.D.代表该检测指标浓度低于仪器检测限,/代表标准中对该指标尚未明确要求。N.D. means that the concentration of the detection index is lower than the detection limit of the instrument, / means that the index has not been clearly required in the standard.
实施例2:Example 2:
本实施处理的垃圾渗滤液浓缩液来源和固化/稳定化方法其余与实施例1相同,不同之处在于:The landfill leachate concentrate source and the solidification/stabilization method of this implementation process are all the same as in Example 1, except that:
步骤1中的地聚物前驱物为粉煤灰。The geopolymer precursor in step 1 is fly ash.
步骤1中加入粉煤灰300g、硅酸钠粉末120g、氢氧化钠50g、垃圾渗滤液浓缩液200mL。In step 1, add 300 g of fly ash, 120 g of sodium silicate powder, 50 g of sodium hydroxide, and 200 mL of landfill leachate concentrate.
步骤4中地质聚合物固化块的养护温度为80℃。The curing temperature of the geopolymer solidified block in step 4 is 80°C.
本实施例获得的粉煤灰基地质聚合物固化块28天无侧限抗压强度为11Mpa。根据《固体废物浸出毒性浸出方法水平振荡法》(HJ 557—2010)对上述固化/稳定化样品进行粉碎并获得浸出液,检测有机质、氨氮、无机盐以及重金属浓度见表3,符合《生活垃圾填埋场污染控制标准》(GB 16889—2008)和《污水综合排放标准》(GB 8978—1996)要求。The 28-day unconfined compressive strength of the fly ash-based geopolymer solidified block obtained in this example is 11 Mpa. According to "Solid Waste Leaching Toxic Leaching Method Horizontal Oscillating Method" (HJ 557-2010), the above-mentioned solidified/stabilized samples were pulverized and the leachate was obtained. The concentrations of organic matter, ammonia nitrogen, inorganic salts and heavy metals were detected in Table 3. Landfill Pollution Control Standards (GB 16889-2008) and Integrated Sewage Discharge Standards (GB 8978-1996).
表3.粉煤灰基地质聚合物固化/稳定化垃圾渗滤液浓缩液污染物浸出浓度Table 3. Pollutant leaching concentration of fly ash-based geopolymer solidified/stabilized landfill leachate concentrate
N.D.代表该检测指标浓度低于仪器检测限,/代表标准中对该指标尚未明确要求。N.D. means that the concentration of the detection index is lower than the detection limit of the instrument, / means that the index has not been clearly required in the standard.
实施例3:Example 3:
为了进一步考察步骤1中碱激活剂模数对制备的地质聚合物固化块抗压强度的影响,通过调节氢氧化钠颗粒和硅酸钠粉末的比例,获得了激活剂模数为0.89~1.27的固态碱激发剂,其它固化/稳定化过程与实施例2相同,结果如图3。In order to further investigate the influence of the alkali activator modulus in step 1 on the compressive strength of the prepared geopolymer solidified block, by adjusting the ratio of sodium hydroxide particles and sodium silicate powder, the activator modulus of 0.89-1.27 was obtained. Solid base activator, other curing/stabilization processes are the same as in Example 2, and the results are shown in Figure 3.
分别测定不同碱激活剂模数下,地质聚合物固化块在3、7、14和28天下的无侧限抗压强度。随着养护时间的延长,制备的地质聚合物固化块抗压强度不断增加,归因于地质聚合反应的持续发生,形成了更加致密坚固的地质聚合物凝胶。随着碱激活剂模数由0.89增加至1.16,制备的地质聚合物固化块28天抗压强度不断增加。但是,当碱激活剂模数进一步增加至1.27时,制备的地质聚合物固化块28天抗压强度反而下降。较强的碱含量有利于粉煤灰中活性硅铝的溶解和再聚合,而过高的碱浓度则会加剧Na+和OH-的离子对效应,降低碱活性。The unconfined compressive strength of geopolymer solidified blocks at 3, 7, 14 and 28 days were measured under different alkali activator moduli. As the curing time prolongs, the compressive strength of the prepared geopolymer solidified block increases continuously, which is attributed to the continuous occurrence of geopolymerization reaction, forming a denser and stronger geopolymer gel. As the modulus of the alkali activator increased from 0.89 to 1.16, the 28-day compressive strength of the prepared geopolymer cured block increased continuously. However, when the alkali activator modulus was further increased to 1.27, the 28-day compressive strength of the prepared geopolymer cured block decreased instead. Stronger alkali content is beneficial to the dissolution and repolymerization of active silica-alumina in fly ash, while too high alkali concentration will intensify the ion-pair effect of Na + and OH - and reduce the alkali activity.
实施例4:Example 4:
为了进一步考察步骤1中垃圾渗滤液浓缩液含量对制备的地质聚合物固化块抗压强度的影响,通过调节垃圾渗滤液浓缩液的添加量,获得了液固比分别为0.50、0.55、0.59和0.64的地质聚合物固化/稳定化体系,其它固化/稳定化过程与实施例2相同,结果如图4。In order to further investigate the impact of the content of the landfill leachate concentrate on the compressive strength of the prepared geopolymer solidified block in step 1, by adjusting the addition of the landfill leachate concentrate, the liquid-solid ratios of 0.50, 0.55, 0.59 and 0.64 geopolymer solidification/stabilization system, other solidification/stabilization processes are the same as in Example 2, and the results are shown in Figure 4.
分别测定不同液固比条件下,地质聚合物固化块在3、7、14和28天下的无侧限抗压强度。随着液固比的增加,所形成的地质聚合物固化块28天的抗压强度持续降低,表明垃圾渗滤液浓缩液含量是影响地质聚合物抗压性能的关键因素。垃圾渗滤液浓缩液作为地质聚合物中的唯一的溶剂,为活性硅铝的反应提供了溶液环境。过高的溶剂会稀释体系的碱浓度,减小活性硅铝的溶解速度。本实施例由于固态碱激活剂的使用大大提高了地质聚合物的垃圾渗滤液浓缩液的处理量,液固比明显高于传统地质聚合物(0.15~0.30)。此外,垃圾渗滤液浓缩液的含量也会明显影响地质聚合物的初凝时间,在实际工程应用中应着重考虑。The unconfined compressive strength of geopolymer solidified blocks at 3, 7, 14 and 28 days were measured under different liquid-solid ratio conditions. With the increase of the liquid-solid ratio, the 28-day compressive strength of the formed geopolymer solidified blocks continued to decrease, indicating that the content of landfill leachate concentrate is a key factor affecting the compressive properties of geopolymers. The landfill leachate concentrate, as the only solvent in the geopolymer, provides a solution environment for the reaction of active silica-alumina. Excessively high solvent will dilute the alkali concentration of the system and reduce the dissolution rate of active silica-alumina. In this embodiment, due to the use of the solid alkali activator, the treatment capacity of the landfill leachate concentrate of the geopolymer is greatly improved, and the liquid-solid ratio is obviously higher than that of the traditional geopolymer (0.15-0.30). In addition, the content of landfill leachate concentrate will also significantly affect the initial setting time of geopolymers, which should be considered in practical engineering applications.
以上所述仅为本发明优选的实施例而己,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210972956.2A CN115417626A (en) | 2022-08-15 | 2022-08-15 | Method for solidifying/stabilizing landfill leachate concentrated solution by using geopolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210972956.2A CN115417626A (en) | 2022-08-15 | 2022-08-15 | Method for solidifying/stabilizing landfill leachate concentrated solution by using geopolymer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115417626A true CN115417626A (en) | 2022-12-02 |
Family
ID=84199154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210972956.2A Pending CN115417626A (en) | 2022-08-15 | 2022-08-15 | Method for solidifying/stabilizing landfill leachate concentrated solution by using geopolymer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115417626A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116553872A (en) * | 2023-05-12 | 2023-08-08 | 北京师范大学 | A method for improving the efficiency of geopolymers for immobilizing anionic heavy metals |
CN116854197A (en) * | 2023-07-07 | 2023-10-10 | 西安科技大学 | Harmless treatment of industrial salt-containing wastewater and salt ion curing method for mixing mine filling/goaf grouting material |
CN117024042A (en) * | 2023-06-25 | 2023-11-10 | 广东工业大学 | Regenerated calcium source alkali-activated cementing material for solidifying concentrated liquid sludge of household garbage landfill and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180015515A1 (en) * | 2015-02-12 | 2018-01-18 | Neway Msw Ip Holding Llp | A novel method and an apparatus in converting unsorted municipal solid waste into geo-polymer pellets/briquettes and geo-polymer bricks/paver blocks |
CN109909262A (en) * | 2019-02-20 | 2019-06-21 | 辽宁海天阁环保科技有限公司 | A kind of collaboration solidifies the processing method of incineration of refuse flyash and rubbish concentrate |
FR3106507A1 (en) * | 2020-01-28 | 2021-07-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | SOLID MATERIAL WITH MULTIPLE OPEN POROSITY CONSISTING OF A GEOPOLYMER AND SOLID PARTICLES AND ITS PREPARATION PROCESS |
CN113563013A (en) * | 2021-07-14 | 2021-10-29 | 辽宁海天阁环保科技有限公司 | Method for preparing waste solidified body and ecological restoration functional component |
-
2022
- 2022-08-15 CN CN202210972956.2A patent/CN115417626A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180015515A1 (en) * | 2015-02-12 | 2018-01-18 | Neway Msw Ip Holding Llp | A novel method and an apparatus in converting unsorted municipal solid waste into geo-polymer pellets/briquettes and geo-polymer bricks/paver blocks |
CN109909262A (en) * | 2019-02-20 | 2019-06-21 | 辽宁海天阁环保科技有限公司 | A kind of collaboration solidifies the processing method of incineration of refuse flyash and rubbish concentrate |
FR3106507A1 (en) * | 2020-01-28 | 2021-07-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | SOLID MATERIAL WITH MULTIPLE OPEN POROSITY CONSISTING OF A GEOPOLYMER AND SOLID PARTICLES AND ITS PREPARATION PROCESS |
CN113563013A (en) * | 2021-07-14 | 2021-10-29 | 辽宁海天阁环保科技有限公司 | Method for preparing waste solidified body and ecological restoration functional component |
Non-Patent Citations (3)
Title |
---|
HAO ZHANG ET AL.: "Solidification/stabilization of landfill leachate concentrate contaminants using solid alkali-activated geopolymers with a high liquid solid ratio and fixing rate", CHEMOSPHERE, pages 1 - 10 * |
林宗寿: "《胶凝材料学》", 31 August 2014, 武汉理工大学出版社, pages: 193 * |
肖可青;: "垃圾填埋场渗滤液处理技术及其应用", 环境工程, no. 1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116553872A (en) * | 2023-05-12 | 2023-08-08 | 北京师范大学 | A method for improving the efficiency of geopolymers for immobilizing anionic heavy metals |
CN117024042A (en) * | 2023-06-25 | 2023-11-10 | 广东工业大学 | Regenerated calcium source alkali-activated cementing material for solidifying concentrated liquid sludge of household garbage landfill and preparation method thereof |
CN116854197A (en) * | 2023-07-07 | 2023-10-10 | 西安科技大学 | Harmless treatment of industrial salt-containing wastewater and salt ion curing method for mixing mine filling/goaf grouting material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals | |
CN115417626A (en) | Method for solidifying/stabilizing landfill leachate concentrated solution by using geopolymer | |
CN102897992B (en) | A method for solidification and stabilization of sludge from urban sewage treatment plants | |
CN108623199B (en) | Method for preparing geopolymer gelled material and geopolymer mortar | |
CN101328029B (en) | Preparation method of manganese slag-based geopolymer cementitious material | |
CN101318788B (en) | Inorganic polymer materials for immobilization of heavy metal waste | |
CN110723929B (en) | Baking-free brick and preparation method thereof | |
CN111807783A (en) | A solidifying agent for solidifying landfill leachate membrane concentrate and evaporation mother liquor | |
CN114262206A (en) | Alkali-activated concrete prepared from cement wastewater | |
CN105601135A (en) | Method for preparing geopolymer materials from red mud and coal ash | |
CN114394800A (en) | A kind of method of sludge biochar resource utilization | |
CN114804736A (en) | Geopolymer prepared from fly ash and bottom ash generated by burning household garbage and preparation method thereof | |
CN111762998A (en) | A kind of high temperature activated composite sludge powder to solidify dewatered sludge/sludge and its solidification method | |
CN106277862A (en) | A kind of method utilizing extracting vanadium from stone coal acid leaching residue to prepare geopolymer | |
CN116063018A (en) | Alkali-activated slag-tanning sludge curing agent and mixing ratio optimization method thereof | |
CN113651506A (en) | Method for solidifying infiltration filtrate sludge in new garbage landfill process | |
CN112608088B (en) | A kind of geopolymer grouting material based on incineration fly ash and preparation method thereof | |
CN102992724B (en) | Curing agent for expansible heavy metal polluted clay as well as preparation method and using method of curing agent | |
CN105478447A (en) | Treatment method for incineration fly ash of household rubbish | |
CN108588882A (en) | A kind of industrial residue based composite fibre and preparation method thereof | |
CN118754480A (en) | A gangue-based permeable filling material and mine water purification method thereof | |
CN117069403B (en) | A method for efficient in-situ detoxification and building material utilization of waste incineration fly ash | |
CN118005367A (en) | Fly ash-waste incineration fly ash-based solidified body and application thereof in preparation of wall bearing building block material | |
CN114804683A (en) | For Pb 2+ Novel APG curing agent for pollution treatment and preparation method thereof | |
CN1587103A (en) | Filter material having phosphor adsorbing and biological membrane function and its preparing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20221202 |
|
WD01 | Invention patent application deemed withdrawn after publication |