CN115417419B - 一种基于笼目结构的MgB3超导体材料 - Google Patents
一种基于笼目结构的MgB3超导体材料 Download PDFInfo
- Publication number
- CN115417419B CN115417419B CN202211017509.8A CN202211017509A CN115417419B CN 115417419 B CN115417419 B CN 115417419B CN 202211017509 A CN202211017509 A CN 202211017509A CN 115417419 B CN115417419 B CN 115417419B
- Authority
- CN
- China
- Prior art keywords
- mgb
- superconductor material
- cage
- cage structure
- transition temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 48
- 239000002887 superconductor Substances 0.000 title claims abstract description 31
- 230000007704 transition Effects 0.000 claims abstract description 23
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000006355 external stress Effects 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims abstract description 4
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical group Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 abstract 1
- 239000010432 diamond Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 2
- 229910019043 CoSn Inorganic materials 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- PZKRHHZKOQZHIO-UHFFFAOYSA-N [B].[B].[Mg] Chemical compound [B].[B].[Mg] PZKRHHZKOQZHIO-UHFFFAOYSA-N 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000819 phase cycle Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
本发明公开了一种基于笼目结构的MgB3超导体材料,所述MgB3超导体材料是由笼目结构的硼原子层和菱形结构的镁原子层交错堆叠而成的范德华层状材料,该MgB3超导体材料晶格结构信息为:镁原子处于两个笼目结构的硼原子层的六元环的中心位置,晶体空间群为P6/mmm,晶格常数为a=3.465Å,c=3.593Å,B‑B原子键长为1.733Å。本发明所述的基于笼目结构的MgB3超导体材料具有结构简单、质量轻及本征超导转变温度高的特点,是已知的笼目结构超导体中最高的;该基于笼目结构的MgB3超导体材料的超导转变温度可通过外部应力应变微调。
Description
技术领域
本发明属于超导新材料技术领域,具体涉及一种基于笼目结构的MgB3超导体材料。
背景技术
近两年来,具有笼目结构的材料吸引了极大的研究兴趣,并取得了一些重要的研究进展。研究发现,笼目结构材料可以表现出许多优异的物理性质,例如平带、超导、非平庸的拓扑性质、电荷密度波、对密度波、相列相、反常霍尔效应、时间反演对称性破缺电荷序等。最近报道取得重要研究进展的笼目结构材料有Fe3Sn2(不超导)、CoSn型家族材料(超导转变温度小于1.9K)、AV3Sb5家族材料(超导转变温度介于0.9到2.8K)、AV6Sb6家族材料(不超导)、LaRu3Si2(超导转变温度小于7K),这些笼目结构材料比较重且超导转变温度较低,甚至不超导。因此迫切需要研究发明一种结构简单、质量更轻、超导转变温度更高且性质更丰富的笼目结构超导体材料。在基础研究和应用前景方面,镁硼化物(例如MgB2)一直是一种重要的超导材料,然而其是否能够形成笼目结构的MgB3超导体材料未见相关报道。
发明内容
本发明解决的技术问题是提供了一种结构简单、质量轻、超导转变温度高、应力应变可调且性质丰富的基于笼目结构的MgB3超导体材料,该基于笼目结构的MgB3超导体材料能够作为性能优异的超导材料和拓扑材料。
本发明为解决上述技术问题采用如下技术方案,一种基于笼目结构的MgB3超导体材料,其特征在于:所述MgB3超导体材料是由笼目结构的硼原子层和菱形结构的镁原子层交错堆叠而成的范德华层状材料,该MgB3超导体材料晶格结构信息为:镁原子处于两个笼目结构的硼原子层的六元环的中心位置,晶体空间群为P6/mmm,晶格常数为a=3.465Å,c=3.593Å,B-B原子键长为1.733Å。
进一步限定,在常压下,所述基于笼目结构的MgB3超导体材料的本征超导转变温度为12.2K,通过施加外部应力应变,所述基于笼目结构的MgB3超导体材料的超导转变温度为15.4K。
本发明与现有技术相比具有以下优点和有益效果:本发明所述的基于笼目结构的MgB3超导体材料具有结构简单、质量轻及本征超导转变温度高的特点,是已知的笼目结构超导体中最高的;该基于笼目结构的MgB3超导体材料的超导转变温度可通过外部应力应变微调,同时该基于笼目结构的MgB3超导体材料还具有其它一些独特的物理特性,如具有范霍夫奇点、平带、多狄拉克点和非平庸的拓扑性质等。
附图说明
图1是基于笼目结构的MgB3超导块体的晶体结构示意图,图1(a)为俯视图,图1(b)为侧视图,由图可知硼原子层为笼目晶格,由六元环和三角晶格组成,两个笼目硼原子层的六元环的中心为镁原子。
图2是基于MgB3超导块体的压力-超导转变温度曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
本发明构造了由笼目结构的硼原子层和菱形结构的镁原子层交错堆叠而成的范德华层状笼目结构MgB3超导体材料,该MgB3超导体材料晶格结构信息为:镁原子处于两个笼目结构的硼原子层的六元环的中心位置,晶体空间群为P6/mmm,晶格常数为a=3.465Å,c=3.593Å,B-B原子键长为1.733Å。该MgB3超导体材料的制备过程参考MgB2超导材料的制备方法,例如混合物理化学气相沉积法、粉末法、固相反应法、电子束蒸发法、共蒸发法、溅射法等,并通过具体控制理论摩尔配比即可得到。
本发明通过使用业界先进的超导体密度泛函方法测试了其超导转变温度,并通过施加外部应力应变来调控其超导转变温度。通过对其超导电性的测量,揭示了该基于笼目结构的MgB3超导体材料具有高超导转变温度性质,在常压下,该基于笼目结构的MgB3超导体材料的本征超导转变温度为12.2K,为已知的笼目型超导体材料的最高超导转变温度,为进一步制备具有结构简单、质量轻、转变温度高的超导材料提供了重要理论依据和具体结构模型数据。通过对其施加外部应力应变,该基于笼目结构的MgB3超导体材料的超导转变温度可通过外部应力应变微调,其超导转变温度可提高到15.4K。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。
Claims (1)
1.一种基于笼目结构的MgB3超导体材料,其特征在于:所述MgB3超导体材料是由笼目结构的硼原子层和菱形结构的镁原子层交错堆叠而成的范德华层状材料,该MgB3超导体材料晶格结构信息为:镁原子处于两个笼目结构的硼原子层的六元环的中心位置,晶体空间群为P6/mmm,晶格常数为a=3.465Å,c=3.593Å,B-B原子键长为1.733Å,在常压下,所述基于笼目结构的MgB3超导体材料的本征超导转变温度为12.2K,通过施加外部应力应变,所述基于笼目结构的MgB3超导体材料的超导转变温度为15.4K。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211017509.8A CN115417419B (zh) | 2022-08-24 | 2022-08-24 | 一种基于笼目结构的MgB3超导体材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211017509.8A CN115417419B (zh) | 2022-08-24 | 2022-08-24 | 一种基于笼目结构的MgB3超导体材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115417419A CN115417419A (zh) | 2022-12-02 |
CN115417419B true CN115417419B (zh) | 2023-08-29 |
Family
ID=84197447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211017509.8A Active CN115417419B (zh) | 2022-08-24 | 2022-08-24 | 一种基于笼目结构的MgB3超导体材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115417419B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1416405A (zh) * | 2001-01-09 | 2003-05-07 | 科学技术振兴事业团 | 金属间化合物超导体及合金超导体以及它们的制造方法 |
CN1463249A (zh) * | 2001-06-01 | 2003-12-24 | 财团法人国际超电导产业技术研究中心 | 具有高临界电流密度的MgB2基超导体及其制造方法 |
JP2006278105A (ja) * | 2005-03-29 | 2006-10-12 | Nippon Telegr & Teleph Corp <Ntt> | 超伝導体積層構造及びその製造方法 |
JP2007095367A (ja) * | 2005-09-27 | 2007-04-12 | National Institute For Materials Science | 二硼化マグネシウム超伝導体線材の作製方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102114423B1 (ko) * | 2018-02-06 | 2020-05-25 | 한국기계연구원 | 이붕소마그네슘을 포함하는 초전도체 및 이의 제조방법 |
-
2022
- 2022-08-24 CN CN202211017509.8A patent/CN115417419B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1416405A (zh) * | 2001-01-09 | 2003-05-07 | 科学技术振兴事业团 | 金属间化合物超导体及合金超导体以及它们的制造方法 |
CN1463249A (zh) * | 2001-06-01 | 2003-12-24 | 财团法人国际超电导产业技术研究中心 | 具有高临界电流密度的MgB2基超导体及其制造方法 |
JP2006278105A (ja) * | 2005-03-29 | 2006-10-12 | Nippon Telegr & Teleph Corp <Ntt> | 超伝導体積層構造及びその製造方法 |
JP2007095367A (ja) * | 2005-09-27 | 2007-04-12 | National Institute For Materials Science | 二硼化マグネシウム超伝導体線材の作製方法 |
Non-Patent Citations (1)
Title |
---|
Novel magnesium borides and their superconductivity;M. Mahdi Davari Esfahani. Et al;Physical Chemistry Chemical Physics;第19卷(第22期);第14486-14494页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115417419A (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dresselhaus et al. | Relation of carbon nanotubes to other carbon materials | |
Holm et al. | Theory of the ternary layered system Ti–Al–N | |
Ding et al. | Bi2O2Se: A rising star for semiconductor devices | |
Wang | Solvated fullerenes, a new class of carbon materials suitable for high-pressure studies: A review | |
Yang et al. | Pressure Effects on Structural, Electronic, Elastic, and Optical Properties of Cubic and Tetragonal Phases of BaZrO_ {3} | |
Lu et al. | Versatile mechanical properties of novel g-SiCx monolayers from graphene to silicene: a first-principles study | |
CN115417419B (zh) | 一种基于笼目结构的MgB3超导体材料 | |
Takeda et al. | Growth of superconducting SmFeAs (O, F) epitaxial films by F diffusion | |
Qing-He et al. | Origin of the c-axis ultraincompressibility of Mo2GaC above about 15 GPa from first principles | |
Högberg et al. | Growth and property characterization of epitaxial MAX-phase thin films from the Tin+ 1 (Si, Ge, Sn) Cn systems | |
Bai et al. | Multi-band Superconductivity in a misfit layered compound (SnSe) 1.16 (NbSe2) 2 | |
Yang et al. | Simultaneous optimization of phononic and electronic transport in two-dimensional Bi2O2Se by defect engineering | |
Wu et al. | Theoretical study of spin-orbit coupling in Janus monolayer MA2Z4 | |
Viana et al. | Thermal stability and electronic properties of boron nitride nanoflakes | |
Li et al. | Spin-orbital coupling induced isolated flat band in bismuthene with k-dependent spin texture | |
Dadras et al. | Analysis of YBCO high temperature superconductor doped with silver nanoparticles and carbon nanotubes using Williamson–Hall and size–strain plot | |
Yamanaka et al. | Missing superconductivity in BaAlSi with the AlB2 type structure | |
Sahara et al. | Mechanism of the increase in bulk modulus of perovskite Sc Rh 3 B x by vacancies | |
Ren et al. | Structural phase evolution and superconductivity in the non-stoichiometric intermetallic compound niobium diboride | |
Kolli et al. | First-principles characterization of structural, elastic, electronic phase transitions and magnetic properties of FeCrScZ (Z= Si, Ge) Heusler compounds under pressure | |
TW202323185A (zh) | 堆疊石墨烯技術中的擾動對稱性 | |
Shi et al. | Defect formation and magnetic properties of carbon-doped ZnO nanowires by the first principles | |
Sakai et al. | Electronic properties of BCN ternary kagome lattices | |
Dong et al. | Realizing Strong and Robust Quasi-1D Superconductors via Multiorbital Chains: NaBe as an Example | |
JP3390028B2 (ja) | 超伝導体膜およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |