CN115410334A - A flame detection device and method - Google Patents
A flame detection device and method Download PDFInfo
- Publication number
- CN115410334A CN115410334A CN202211047210.7A CN202211047210A CN115410334A CN 115410334 A CN115410334 A CN 115410334A CN 202211047210 A CN202211047210 A CN 202211047210A CN 115410334 A CN115410334 A CN 115410334A
- Authority
- CN
- China
- Prior art keywords
- signal
- resistor
- ultraviolet
- self
- fire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000005855 radiation Effects 0.000 claims abstract description 44
- 238000000825 ultraviolet detection Methods 0.000 claims abstract description 17
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 11
- 239000003990 capacitor Substances 0.000 claims description 33
- 230000003321 amplification Effects 0.000 claims description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 10
- 230000002265 prevention Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000013461 design Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/12—Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本申请涉及火灾报警技术领域,特别是涉及一种火焰探测装置及方法。The present application relates to the field of fire alarm technology, in particular to a flame detection device and method.
背景技术Background technique
随着人们对火灾的防范意识逐渐提升,火灾报警系统的需求量得到急剧增长。火灾探测器是火灾报警系统中,对现场进行探查,进而发现火灾的设备。它的作用是监视环境中有没有火灾的发生。常用的火灾探测器之一为红紫外复合火焰探测器,包括紫外传感器、红外传感器,该探测器可以探测碳氢化合物燃烧火焰,如氢气、羟基化合物以及金属和无机物燃烧火焰。With the gradual improvement of people's awareness of fire prevention, the demand for fire alarm systems has increased dramatically. A fire detector is a device used in a fire alarm system to detect a scene and discover a fire. Its function is to monitor whether there is a fire in the environment. One of the commonly used fire detectors is a red-ultraviolet composite flame detector, including ultraviolet sensors and infrared sensors, which can detect hydrocarbon combustion flames, such as hydrogen, hydroxyl compounds, and metal and inorganic combustion flames.
在使用红紫外复合火焰探测器进行火焰探测的过程中,通常需要对紫外光电管处的火焰进行紫外辐射感应,生成电信号,并根据电信号来判断是否发生火灾。然而,在将紫外辐射转化为电信号的过程中,会有干扰信号的影响,导致生成的电信号不能真实反映紫外辐射强度,进而影响火灾判别的准确性。In the process of using red-ultraviolet composite flame detectors for flame detection, it is usually necessary to sense the ultraviolet radiation of the flame at the ultraviolet photoelectric cell, generate electrical signals, and judge whether a fire has occurred based on the electrical signals. However, in the process of converting ultraviolet radiation into electrical signals, there will be interference signals, resulting in the generation of electrical signals that cannot truly reflect the intensity of ultraviolet radiation, thereby affecting the accuracy of fire discrimination.
发明内容Contents of the invention
本申请公开了一种火焰探测装置及方法,在进行火灾判断时,通过对紫外光电管对应的自放电信号进行检测,来实现对紫外辐射对应的电信号进行优化,进而避免紫外光电光自放电现象对探测器的火灾判断结果造成影响,提高火灾判断准的准确性。The application discloses a flame detection device and method. When judging a fire, the self-discharge signal corresponding to the ultraviolet photoelectric tube is detected to optimize the electrical signal corresponding to the ultraviolet radiation, thereby avoiding the self-discharge of the ultraviolet photoelectric light. The phenomenon affects the fire judgment result of the detector and improves the accuracy of fire judgment.
第一方面,本申请提供了一种火焰探测装置,所述装置包括紫外探测模块及控制模块,所述紫外探测模块包括紫外光电管、检测单元、以及信号生成单元;所述检测单元及所述信号生成单元,分别与所述紫外光电管及所述控制模块连接;In a first aspect, the present application provides a flame detection device, the device includes an ultraviolet detection module and a control module, the ultraviolet detection module includes an ultraviolet photocell, a detection unit, and a signal generation unit; the detection unit and the a signal generation unit connected to the ultraviolet photocell and the control module respectively;
所述检测单元,用于生成所述紫外光电管对应的自放电信号;所述信号生成单元,用于将所述紫外光电管探测到的紫外辐射生成第一电信号;所述控制模块,用于根据所述第一电信号、所述自放电信号来进行火灾判断。The detection unit is used to generate a self-discharge signal corresponding to the ultraviolet photocell; the signal generation unit is used to generate a first electrical signal from the ultraviolet radiation detected by the ultraviolet photocell; the control module uses Fire judgment is performed according to the first electrical signal and the self-discharge signal.
基于上述装置,通过对紫外光电管对应的自放电信号进行检测,来实现对紫外辐射对应的电信号进行优化,进而避免紫外光电光自放电现象对探测器的火灾判断结果造成影响,提高火灾判断准的准确性。Based on the above device, by detecting the self-discharge signal corresponding to the ultraviolet photocell, the electrical signal corresponding to the ultraviolet radiation is optimized, thereby avoiding the influence of the ultraviolet photoelectric self-discharge phenomenon on the fire judgment result of the detector, and improving the fire judgment standard accuracy.
在一种可能的设计中,所述紫外探测模块还包括驱动单元,所述驱动单元包括整定电路、变压器以及开关电路,所述开关电路与所述变压器连接,所述变压器与所述整定电路连接,所述整定电路与所述紫外光电管连接;In a possible design, the ultraviolet detection module further includes a drive unit, the drive unit includes a setting circuit, a transformer, and a switch circuit, the switch circuit is connected to the transformer, and the transformer is connected to the setting circuit , the setting circuit is connected to the ultraviolet photocell;
所述开关电路,用于通过脉冲宽度调制PWM信号接入第一电源;所述变压器,用于对所述第一电源进行变压,得到第二电源;所述整定电路,用于对所述第二电源进行整定,得到驱动电源,其中,所述驱动电源用于驱动所述紫外光电管。The switch circuit is used to access the first power supply through the pulse width modulation PWM signal; the transformer is used to transform the first power supply to obtain the second power supply; the setting circuit is used to control the The second power supply is adjusted to obtain a driving power supply, wherein the driving power supply is used to drive the ultraviolet photoelectric tube.
基于上述装置,可以将紫外探测模块的供电电源转化为高压脉冲的驱动电压,进而实现在不影响紫外探测模块正常使用的情况下,避免对紫外探测模块持续供电,延长紫外探测模块的使用寿命。Based on the above device, the power supply of the ultraviolet detection module can be converted into a high-voltage pulse driving voltage, thereby avoiding continuous power supply to the ultraviolet detection module and prolonging the service life of the ultraviolet detection module without affecting the normal use of the ultraviolet detection module.
在一种可能的设计中,所述开关电路包括第一电阻、三极管以及第一二极管;所述第一二极管的第一端与所述第一电源连接;所述第一二极管的第二端与所述三极管的第一端连接;所述三极管的第二端接地;所述三极管的第三端与所述第一电阻连接,其中,所述第一电阻用于接收所述PWM信号。In a possible design, the switch circuit includes a first resistor, a triode, and a first diode; the first end of the first diode is connected to the first power supply; the first diode The second end of the tube is connected to the first end of the triode; the second end of the triode is grounded; the third end of the triode is connected to the first resistor, wherein the first resistor is used to receive the the PWM signal described above.
基于上述装置,通过PWM信号来驱动开关电路,进而实现将火灾探测模块的供电电源转化为脉冲电源,进而有助于延长紫外探测模块的使用寿命。Based on the above device, the PWM signal is used to drive the switching circuit, thereby converting the power supply of the fire detection module into a pulse power supply, thereby helping to prolong the service life of the ultraviolet detection module.
在一种可能的设计中,所述整定电路包括第二二极管、第一电容、第二电阻、第二电容及第三电阻;所述第二二极管的第一端与所述变压器连接,且所述第二二极管的第二端与所述第二电阻连接;位于所述第二电阻与所述第二二极管的第一端之间的第一预设点,与接地点之间设置第一电容;所述第二电阻与所述第三电阻连接,且位于所述第二电阻与所述第三电阻之间的第二预设点,与所述接地点之间设置第二电容;所述第二电阻与所述紫外光电管连接。In a possible design, the tuning circuit includes a second diode, a first capacitor, a second resistor, a second capacitor, and a third resistor; the first end of the second diode and the transformer connected, and the second end of the second diode is connected to the second resistor; a first preset point between the second resistor and the first end of the second diode, and A first capacitor is set between the ground points; the second resistor is connected to the third resistor, and is located at a second preset point between the second resistor and the third resistor, and between the ground point A second capacitor is arranged between them; the second resistor is connected to the ultraviolet photoelectric cell.
基于上述装置,可以实现对变压器输出的电压进行整定,将变压后的交流脉冲电压整定为直流脉冲电压,使得供电质量更为稳定。Based on the above device, the voltage output by the transformer can be adjusted, and the transformed AC pulse voltage can be adjusted to a DC pulse voltage, so that the power supply quality is more stable.
在一种可能的设计中,所述检测单元包括第四电阻、第五电阻以及第六电阻;所述第四电阻的第一端与所述紫外光电管连接,且所述第四电阻的第二端通过所述第五电阻与接地点连接;所述第四电阻与所述第五电阻串联后,与所述第六电阻并联;所述第六电阻的非接地端与所述信号生成单元连接。In a possible design, the detection unit includes a fourth resistor, a fifth resistor, and a sixth resistor; the first end of the fourth resistor is connected to the ultraviolet photocell, and the first end of the fourth resistor The two ends are connected to the ground point through the fifth resistor; the fourth resistor is connected in parallel with the sixth resistor after being connected in series with the fifth resistor; the non-ground terminal of the sixth resistor is connected to the signal generating unit connect.
基于上述装置,可以实现对紫外光电管的自放电信号进行检测,进而有助于避免自放电信号对紫外辐射对应的电信号造成影响,提高火焰探测器对火灾判断准确性。Based on the above device, it is possible to detect the self-discharge signal of the ultraviolet photoelectric cell, thereby helping to prevent the self-discharge signal from affecting the electrical signal corresponding to the ultraviolet radiation, and improving the accuracy of the flame detector in judging fire.
在一种可能的设计中,所述信号生成单元包括第七电阻、第三电容、第三三极管以及比较器;所述第七电阻的第一端与所述检测单元连接;所述第七电阻的第二端与所述第三电容的第一端连接,且所述第三电容的第二端接地;所述第二电容与所述第三三极管并联,且所述第二电容的第一端对应的并联点与所述比较器连接;所述比较器与所述控制模块连接。In a possible design, the signal generation unit includes a seventh resistor, a third capacitor, a third triode, and a comparator; the first end of the seventh resistor is connected to the detection unit; the first The second end of the seven resistors is connected to the first end of the third capacitor, and the second end of the third capacitor is grounded; the second capacitor is connected in parallel with the third triode, and the second The parallel connection point corresponding to the first end of the capacitor is connected to the comparator; the comparator is connected to the control module.
基于上述装置,可以将紫外光电管感应到的紫外辐射转化为电信号,以供控制器对是否发生火灾进行判断。Based on the above device, the ultraviolet radiation sensed by the ultraviolet photocell can be converted into an electrical signal for the controller to judge whether a fire has occurred.
在一种可能的设计中,所述装置还包括红外探测模块,所述红外探测模块包括红外传感器、信号滤波放大器以及放大系数调节器;所述红外传感器与所述信号滤波放大器连接;所述信号滤波放大器与所述控制模块连接;所述放大系数调节器与所述控制模块及所述信号滤波放大器连接;In a possible design, the device further includes an infrared detection module, and the infrared detection module includes an infrared sensor, a signal filter amplifier, and an amplification factor regulator; the infrared sensor is connected to the signal filter amplifier; the signal The filter amplifier is connected to the control module; the amplification factor regulator is connected to the control module and the signal filter amplifier;
所述红外传感器,用于感应红外辐射,并将所述红外辐射转化为第二电信号,其中,所述第二电信号包括时域信息和频域信息;所述信号滤波放大器,用于对所述第二电信号进行滤波和放大处理,生成第三电信号;所述放大系数调节器,用于对所述信号滤波放大器进行参数调节。The infrared sensor is used to sense infrared radiation and convert the infrared radiation into a second electrical signal, wherein the second electrical signal includes time domain information and frequency domain information; the signal filter amplifier is used to The second electrical signal is filtered and amplified to generate a third electrical signal; the amplification factor regulator is used to adjust parameters of the signal filter amplifier.
基于上述装置,生成红外辐射对应的电信号,以使控制模块根据电信号判断火灾是否发生时,同时考虑红外辐射对应电信号的频域信息和时域信息,增强火灾判断的准确性。Based on the above device, the electrical signal corresponding to the infrared radiation is generated, so that when the control module judges whether a fire has occurred according to the electrical signal, the frequency domain information and the time domain information of the electrical signal corresponding to the infrared radiation are considered at the same time, so as to enhance the accuracy of fire judgment.
第二方面,本申请提供了一种火焰探测方法,基于上述任一火焰探测装置,所述方法包括:In a second aspect, the present application provides a flame detection method based on any of the above flame detection devices, the method comprising:
获取所述紫外光电管的自放电信号;Obtain the self-discharge signal of the ultraviolet photocell;
根据所述自放电信号对应的各个脉冲间隔,计算所述紫外光电管对应的防误报信号;Calculate the anti-false alarm signal corresponding to the ultraviolet photoelectric cell according to each pulse interval corresponding to the self-discharge signal;
根据所述防误报信号以及所述紫外光电管对应的第一电信号,计算所述紫外光电管对应的第一有效电信号;calculating a first effective electrical signal corresponding to the ultraviolet photoelectric cell according to the anti-false alarm signal and the first electrical signal corresponding to the ultraviolet photoelectric cell;
根据所述第一有效电信号,判断当前检测到的火焰数据是否引起火灾。According to the first effective electrical signal, it is judged whether the currently detected flame data causes a fire.
通过上述方法,在计算紫外辐射对应的有效电信号时,充分考虑了紫外光电管自放电现象带来的影响,进而提高火灾判断的准确性。Through the above method, when calculating the effective electrical signal corresponding to the ultraviolet radiation, the influence brought by the self-discharge phenomenon of the ultraviolet photoelectric tube is fully considered, thereby improving the accuracy of fire judgment.
在一种可能的设计中,所述根据所述自放电信号对应的各个脉冲间隔,计算所述紫外光电管对应的防误报信号,包括:In a possible design, the calculation of the anti-false alarm signal corresponding to the ultraviolet photocell according to each pulse interval corresponding to the self-discharge signal includes:
计算所述自放电信号中任意两个相邻脉冲的脉冲间隔对应的时间长度;Calculating the time length corresponding to the pulse interval between any two adjacent pulses in the self-discharge signal;
确定各个时间长度中的最大时间长度与最小时间长度之间的差值;determining a difference between a maximum time length and a minimum time length of the respective time lengths;
根据所述差值、所述自放电信号的最大脉冲幅值、以及所述自放电信号的放电时间长度,计算所述防误报警信号。The anti-false alarm signal is calculated according to the difference, the maximum pulse amplitude of the self-discharge signal, and the discharge time length of the self-discharge signal.
通过上述方法,计算出防误报警信息,进而提高火灾判断的准确性。Through the above method, the false alarm prevention information is calculated, thereby improving the accuracy of fire judgment.
在一种可能的设计中,所述根据所述防误报信号以及所述紫外光电管对应的第一电信号,计算所述紫外光电管对应的第一有效电信号,包括:In a possible design, the calculation of the first effective electrical signal corresponding to the ultraviolet photoelectric cell according to the anti-false alarm signal and the first electrical signal corresponding to the ultraviolet photoelectric cell includes:
计算所述第一电信号中各个脉冲信号对应的离散积分;calculating a discrete integral corresponding to each pulse signal in the first electrical signal;
求取所述离散积分与所述防误报信号之间的第一差值;finding a first difference between the discrete integral and the anti-false alarm signal;
将所述第一差值,确定为所述紫外光电管对应的第一有效电信号。The first difference is determined as the first effective electrical signal corresponding to the ultraviolet photocell.
通过上述方法,计算出紫外光电管对应的有效电信号,进而排除了紫外光电管自放电信号的干扰,提高火灾判断的准确性。Through the above method, the effective electrical signal corresponding to the ultraviolet photoelectric cell is calculated, and then the interference of the self-discharge signal of the ultraviolet photoelectric cell is eliminated, and the accuracy of fire judgment is improved.
在一种可能的设计中,所述根据所述第一有效电信号,判断当前检测到的火焰数据是否引起火灾,包括:In a possible design, the judging whether the currently detected flame data causes a fire according to the first effective electrical signal includes:
判断所述第一有效电信号是否大于第一预设阈值;judging whether the first effective electrical signal is greater than a first preset threshold;
若是,则确定当前检测到的火焰数据引起火灾;If so, then determine that the currently detected flame data causes a fire;
若否,则确定当前检测到的火焰数据没有引起火灾。If not, it is determined that the currently detected flame data does not cause a fire.
通过上述方法,基于第一有点电信号来判断是否发生火灾,可以有效排除紫外光电管对应的自放电信号的干扰,提高火灾判断的准确性。Through the above method, judging whether a fire has occurred based on the first electrical signal can effectively eliminate the interference of the self-discharge signal corresponding to the ultraviolet photocell, and improve the accuracy of fire judgment.
在一种可能的设计中,所述根据所述第一有效电信号,判断当前检测到的火焰数据是否引起火灾,包括:In a possible design, the judging whether the currently detected flame data causes a fire according to the first effective electrical signal includes:
获取红外辐射对应的第二电信号;acquiring a second electrical signal corresponding to the infrared radiation;
根据所述第二电信号对应的信号强度、平均功率,计算所述红外辐射对应的频域特征;calculating the frequency domain characteristics corresponding to the infrared radiation according to the signal strength and average power corresponding to the second electrical signal;
根据所述频域特征、所述红外辐射对应的时域特征,计算所述红外辐射对应的第二有效信号;calculating a second effective signal corresponding to the infrared radiation according to the frequency domain feature and the time domain feature corresponding to the infrared radiation;
根据所述第一有效信号以及所述第二有效信号,判断当前检测到的火焰数据是否引起火灾。According to the first valid signal and the second valid signal, it is judged whether the currently detected flame data causes a fire.
通过上述方法,同时考虑红外辐射的时域特性和频域特性来进行火灾判断,相比仅仅考虑时域特性而言,可以提高火灾判断准确性,防止误报警。Through the above method, the fire judgment is carried out by considering the time-domain characteristics and frequency-domain characteristics of infrared radiation at the same time. Compared with only considering the time-domain characteristics, the accuracy of fire judgment can be improved and false alarms can be prevented.
附图说明Description of drawings
图1为本申请提供的一种火焰探测装置的结构示意图之一;Fig. 1 is one of structural schematic diagrams of a kind of flame detection device provided by the present application;
图2为本申请提供的一种火焰探测装置的结构示意图之二;Fig. 2 is the second structural schematic diagram of a flame detection device provided by the present application;
图3为本申请提供的一种火焰探测装置的结构示意图之三;Fig. 3 is the third structural schematic diagram of a flame detection device provided by the present application;
图4为本申请提供的一种火焰探测装置的结构示意图之四;Fig. 4 is the fourth structural schematic diagram of a flame detection device provided by the present application;
图5为本申请提供的一种火焰探测装置的结构示意图之五;Fig. 5 is the fifth structural diagram of a flame detection device provided by the present application;
图6为本申请提供的一种火焰探测装置的结构示意图之六;Fig. 6 is the sixth structural schematic diagram of a flame detection device provided by the present application;
图7为本申请提供的一种火焰探测装置的结构示意图之七;Fig. 7 is the seventh structural diagram of a flame detection device provided by the present application;
图8为本申请提供的一种火焰探测装置的结构示意图之八;Fig. 8 is the eighth structural schematic diagram of a flame detection device provided by the present application;
图9为本申请提供的一种火焰探测方法的流程示意图。FIG. 9 is a schematic flowchart of a flame detection method provided by the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。A与B连接,可以表示:A与B直接连接和A与B通过C连接这两种情况。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。In order to make the purpose, technical solution and advantages of the application clearer, the application will be further described in detail below in conjunction with the accompanying drawings. The specific operation methods in the method embodiments can also be applied to the device embodiments or system embodiments. It should be noted that in the description of the present application, "plurality" is understood as "at least two". "And/or" describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently. The connection between A and B can mean: A and B are directly connected and A and B are connected through C. In addition, in the description of the present application, words such as "first" and "second" are only used for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
下面结合附图,对本申请实施例进行详细描述。The embodiments of the present application will be described in detail below in conjunction with the accompanying drawings.
红紫外复合火焰探测器为一种常用的火焰探测器,在使用红紫外复合火焰探测器进行火焰探测的过程中,通常需要对紫外光电管处的火焰进行紫外辐射感应,生成电信号,并将电信号的脉冲密度特征作为火灾是否发生的判别条件之一。然而,由于紫外光电管自放电现象的存在,将会对电信号的脉冲密度特征造成影响,进而影响火灾判别的准确性。The red-ultraviolet composite flame detector is a commonly used flame detector. In the process of using the red-ultraviolet composite flame detector for flame detection, it is usually necessary to sense the ultraviolet radiation of the flame at the ultraviolet photocell, generate an electrical signal, and send The pulse density characteristics of electrical signals are used as one of the criteria for judging whether a fire occurs. However, due to the existence of the self-discharge phenomenon of the ultraviolet photocell, it will affect the pulse density characteristics of the electrical signal, and then affect the accuracy of fire discrimination.
为了解决上述问题,本申请提供了一种火焰探测装置及方法,通过对紫外光电管对应的自放电信号进行检测,来实现对紫外辐射对应的电信号进行优化,进而避免紫外光电光自放电现象对探测器的火灾判断结果造成影响,提高火灾判断准的准确性。In order to solve the above problems, the present application provides a flame detection device and method, by detecting the self-discharge signal corresponding to the ultraviolet photocell, to realize the optimization of the electrical signal corresponding to the ultraviolet radiation, and then avoid the self-discharge phenomenon of ultraviolet photoelectricity It will affect the fire judgment result of the detector and improve the accuracy of fire judgment.
如图1所示,为本申请提供的一种火焰探测装置的结构示意图,包括紫外探测模块11及控制模块12,紫外探测模块11包括紫外光电管11a、检测单元11b、以及信号生成单元11c;检测单元11b及信号生成单元11c,分别与紫外光电管11a及控制模块12连接。As shown in Figure 1, it is a schematic structural diagram of a flame detection device provided by the present application, including an
检测单元11b,用于生成紫外光电管11a对应的自放电信号;信号生成单元11c,用于将紫外光电管11a探测到的紫外辐射生成第一电信号;控制模块12,用于根据第一电信号、自放电信号来进行火灾判断。The
基于上述装置,可以同时获取紫外辐射对应的第一放电信息,以及紫外光电管对应的自放电信号。因此,控制模块12在进行火灾判断时,可以排除紫外光电管自放电信息的干扰,提高火灾判断的准确性。Based on the above device, the first discharge information corresponding to the ultraviolet radiation and the self-discharge signal corresponding to the ultraviolet photoelectric cell can be acquired simultaneously. Therefore, when the
在一种可能的应用场景中,如图2所示,紫外探测模块11还包括驱动单元21,驱动单元21包括整定电路21a、变压器21b以及开关电路21c,开关电路21c与变压器21b连接,变压器21b与整定电路21a连接,整定电路21a与紫外光电管11a连接。In a possible application scenario, as shown in FIG. 2, the
开关电路21c,用于通过脉冲宽度调制PWM信号接入第一电源,具体的,在PWM信号处于高电平时,第一电源接通,在PWM信号处于低电平时,第一电源断开,通过控制PWM的占空比,可以控制第一电源接入和断开的时间,同时,通过控制PWM信号的高电平时间和低电平时间,可以控制第一电源的接入和断开的频率,进而实现对第一电源的电压有效值进行控制,从而不影响紫外探测模块的正常工作。The
变压器21b,用于对第一电源进行变压,得到第二电源,其中,第二电源的电压幅值可以通过调整变压器的参数来调整;整定电路21a,用于对第二电源进行整定,进而将第二电源对应的交流电压整定为直流电压,从而得到驱动电源,通过直流的驱动电源来驱动紫外光电管11a,可以提高供电稳定性,进而延长紫外光电管的使用寿命。The
在一种可能的应用场景中,如图3所示,开关电路21c包括第一电阻31、三极管32以及第一二极管33;第一二极管33的第一端与第一电源连接;第一二极管33的第二端与三极管32的第一端32a连接;三极管32的第二端32b接地;三极管32的第三端32c与第一电阻31连接,其中,第一电阻31用于接收PWM信号。In a possible application scenario, as shown in FIG. 3, the
基于上述装置,在PWM信号为高电平时,三极管32的第一端32a与第二端32b之间导通,此时,通过第一二极管33的作用,第一电源两端的电压值,即为变压器21b的输入电压。在PWM为低电平信号时,三极管32的第一端32a与第二端32b之间断开,此时,变压器21b无电压输入。Based on the above device, when the PWM signal is at a high level, the
在一种可能的应用场景中,如图4所示,变压器21b包括原边41和副边42,原边41与第一二极管33并联,副边42两端接入整定电路,其中,原边41与原边41与副边42分别有不同的线圈组成,通过调节原边41与副边42的线圈匝数比,可以调节副边42的电压,实现对第一电源进行变压,得到第二电源。In a possible application scenario, as shown in FIG. 4, the
在一种可能的应用场景中,如图5所示,整定电路21a包括第二二极管51、第一电容52、第二电阻53、第二电容54及第三电阻55;第二二极管51的第一端与变压器21b连接,且第二二极管51的第二端与第二电阻53连接;位于第二电阻53与第二二极管51的第一端之间的第一预设点,与接地点之间设置第一电容52;第二电阻53与第三电阻55连接,且位于第二电阻53与第三电阻55之间的第二预设点,与接地点之间设置第二电容54;第二电阻53与紫外光电管11a连接。In a possible application scenario, as shown in FIG. 5, the
基于上述装置,在第二二极管51两端的电压为正向电压时,第一电容52两端的电压即为变压器21b的输出电压,该输出电压通过第二电阻53分压后,得到的电压为第二电容54两端的电压,该电压通过第三电阻55分压,得到的电压为紫外光电管11a的输入电压。通过调整第二电容54以及第三电阻55的元件参数,可以控制紫外光电管11a的放电时间及恢复时间。Based on the above-mentioned device, when the voltage across the
在一种可能的应用场景中,如图6所示,检测单元11b包括第四电阻61、第五电阻62以及第六电阻63;第四电阻61的第一端与紫外光电管11a连接,且第四电阻61的第二端通过第五电阻62与接地点连接;第四电阻61与第五电阻62串联后,与第六电阻63并联;第六电阻63的非接地端与信号生成单元11c连接。In a possible application scenario, as shown in FIG. 6, the
基于上述装置,在进行紫外光电管自放电实验时,通过第四电阻61分压后,得到的第五电阻62两端的电压即为自放电信号,将自放电信号输入控制模块12后,可以避免自放电信号对火灾判断的影响。Based on the above-mentioned device, when carrying out the self-discharge experiment of the ultraviolet photoelectric tube, after the voltage is divided by the
在一种可能的应用场景中,如图7所示,信号生成单元11c包括第七电阻71、第三电容72、第三三极管73以及比较器74;第七电阻71的第一端与检测单元11b连接;第七电阻71的第二端与第三电容72的第一端连接,且第三电容72的第二端接地;第三电容72与第三三极管73并联,且第三电容72与第三三极管73的非接地端与比较器74连接;比较器74与控制模块12连接。In a possible application scenario, as shown in FIG. 7 , the
通过上述装置,紫外光电管11a将紫外辐射转化为电信号后,经过第七电阻71分压后,得到第三电容72两端的电压,在第三电容72两端的电压大于比较器74对应的预设电压时,生成高电平信号,在第三电容两端的电压小于预设电压时,生成低电平信号,比较器74生成的高电平信号和低电平信号,共同组成紫外光电管对应的第一电信号。Through the above-mentioned device, after the
在一种可能的应用场景中,如图8所示,火焰探测装置还包括红外探测模块81,红外探测模块81包括红外传感器81a、信号滤波放大器81b以及放大系数调节器81c;红外传感器81a与信号滤波放大器81b连接;信号滤波放大器81b与控制模块12连接;放大系数调节器81c与控制模块12及信号滤波放大器81b连接;In a possible application scenario, as shown in FIG. 8, the flame detection device also includes an
红外传感器81a,用于感应红外辐射,并将红外辐射转化为第二电信号,其中,所述第二电信号包括时域信息和频域信息;信号滤波放大器81b,用于对第二电信号进行滤波和放大处理,生成第三电信号;在将第三电信号发送给控制模块12以后,放大系数调节器81c通过控制模块12的反馈结果,对信号滤波放大器81b进行参数调节。The
基于上述装置,在考虑红外辐射来进行火灾判断时,同时考虑红外辐射对应电信号的时域信息和频域信息,相比只考虑时域信息而言,有助于提高火灾判断的准确性。Based on the above-mentioned device, when considering infrared radiation for fire judgment, the time domain information and frequency domain information of the electrical signal corresponding to infrared radiation are considered at the same time, which is helpful to improve the accuracy of fire judgment compared with only considering time domain information.
基于上述任一火焰探测装置,本申请实施例中还提供了一种火焰探测方法,如图9所示,为本申请中一种火焰探测方法的流程示意图,包括如下步骤:Based on any of the above-mentioned flame detection devices, the embodiment of the present application also provides a flame detection method, as shown in Figure 9, which is a schematic flow chart of a flame detection method in the present application, including the following steps:
S91,获取紫外光电管的自放电信号;S91, acquiring the self-discharge signal of the ultraviolet photoelectric cell;
S92,根据自放电信号对应的各个脉冲间隔,计算紫外光电管对应的防误报信号;S92, according to each pulse interval corresponding to the self-discharge signal, calculate the anti-false alarm signal corresponding to the ultraviolet photoelectric cell;
S93,根据防误报信号以及紫外光电管对应的第一电信号,计算紫外光电管对应的第一有效电信号;S93, according to the anti-false alarm signal and the first electrical signal corresponding to the ultraviolet photoelectric cell, calculate the first effective electrical signal corresponding to the ultraviolet photoelectric cell;
S94,根据第一有效电信号,判断当前检测到的火焰数据是否引起火灾。S94. According to the first effective electrical signal, it is judged whether the currently detected flame data causes a fire.
在本申请实施例中,首先通过上述火灾探测装置中的检测模块来检测紫外光电管对应的自放电信号,然后确定出自放电信号对应的各个脉冲间隔,并根据自放电信号对应的各个脉冲间隔,计算紫外光电管对应的防误报信号,其中,防误报信号表征对紫外辐射对应的第一电信号对应的调整信号。具体来讲:In the embodiment of the present application, the self-discharge signal corresponding to the ultraviolet photoelectric cell is first detected by the detection module in the above-mentioned fire detection device, and then each pulse interval corresponding to the self-discharge signal is determined, and according to each pulse interval corresponding to the self-discharge signal, An anti-false alarm signal corresponding to the ultraviolet photoelectric cell is calculated, wherein the anti-false alarm signal represents an adjustment signal corresponding to the first electrical signal corresponding to the ultraviolet radiation. Specifically:
首先,计算自放电信号中任意两个相邻脉冲的脉冲间隔对应的时间长度,比如,当前有a、b、c、d四个脉冲,a脉冲对应的时间为t1,b脉冲对应的时间为t2,c脉冲对应的时间为t3,d脉冲对应的时间为t4,那么可以计算得到三个脉冲间隔对应的时间长度。其中,a、b脉冲之间的脉冲间隔对应的时间长度为T1=t2-t1,b、c脉冲之间的脉冲间隔对应的时间长度为T2=t3-t2,以及c、d脉冲之间的脉冲间隔对应的时间长度为T1=t4-t3。First, calculate the time length corresponding to the pulse interval between any two adjacent pulses in the self-discharge signal, for example, there are currently four pulses a, b, c, and d, the time corresponding to pulse a is t 1 , and the time corresponding to pulse b is t 2 , the time corresponding to pulse c is t 3 , and the time corresponding to pulse d is t 4 , then the time length corresponding to the three pulse intervals can be calculated. Wherein, the time length corresponding to the pulse interval between a and b pulses is T 1 =t 2 -t 1 , the time length corresponding to the pulse interval between b and c pulses is T 2 =t 3 -t 2 , and c The time length corresponding to the pulse interval between the , d pulses is T 1 =t 4 -t 3 .
进一步,确定出各个时间长度中的最大时间长度与最小时间长度之间的差值。比如,在计算出上述各个时间长度之间的大小顺序为T1>T2>T3,那么可以确定出最大时间长度Tmax=T1,以及最小时间长度Tmin=T3。此时,计算得到他们之间的差值Tmax-Tmin=T1-T3。Further, the difference between the maximum time length and the minimum time length among the various time lengths is determined. For example, if the order of the above-mentioned time lengths is calculated as T 1 >T 2 >T 3 , then the maximum time length T max =T 1 and the minimum time length T min =T 3 can be determined. At this time, the difference T max -T min =T 1 -T 3 between them is calculated.
最后,根据差值、自放电信号的最大脉冲幅值、以及自放电信号的放电时间长度,计算防误报警信号。具体计算公式为:Finally, the anti-false alarm signal is calculated according to the difference, the maximum pulse amplitude of the self-discharge signal, and the discharge time length of the self-discharge signal. The specific calculation formula is:
F=β(Tmax-Tmin)+γT1max+ρUmax (1)F=β(T max -T min )+γT 1max +ρU max (1)
在公式(1)中,β为自放电时间间隔系数,γ为时间宽度系数,ρ为脉冲幅值系数,T1max为自放电信号脉冲的最大时间宽度,Umax为自放电信号脉冲的最大幅值。In formula (1), β is the self-discharge time interval coefficient, γ is the time width coefficient, ρ is the pulse amplitude coefficient, T 1max is the maximum time width of the self-discharge signal pulse, U max is the maximum amplitude of the self-discharge signal pulse value.
在计算得到紫外光电管对应的防误报信号以后,进一步根据防误报信号以及紫外光电管对应的第一电信号,计算紫外光电管对应的第一有效电信号。在本申请实施例中,第一电信号通过信号生成单元得到。计算第一有效信号的具体方法包括:首先,计算第一电信号中各个脉冲信号对应的离散积分;然后,求取离散积分与防误报信号之间的第一差值;将第一差值,确定为所述紫外光电管对应的第一有效电信号。After the anti-false alarm signal corresponding to the ultraviolet photoelectric cell is calculated, the first effective electrical signal corresponding to the ultraviolet photoelectric cell is further calculated according to the anti-false alarm signal and the first electrical signal corresponding to the ultraviolet photoelectric cell. In the embodiment of the present application, the first electrical signal is obtained by a signal generating unit. The specific method for calculating the first effective signal includes: first, calculating the discrete integral corresponding to each pulse signal in the first electrical signal; then, calculating the first difference between the discrete integral and the anti-false alarm signal; calculating the first difference , determined as the first effective electrical signal corresponding to the ultraviolet photocell.
上述第一有效电信号对应的计算公式为:The calculation formula corresponding to the above-mentioned first effective electrical signal is:
在公式(2)中,K表示第一有效电信号,a(τ)表示第一电信号中的脉冲,F表示防误报警信号。In formula (2), K represents the first effective electrical signal, a(τ) represents the pulse in the first electrical signal, and F represents the anti-false alarm signal.
在计算得到紫外光电管对应的第一有效电信号以后,进一步根据第一有效电信号,判断当前检测到的火焰数据是否引起火灾,具体包括:After the first effective electrical signal corresponding to the ultraviolet photocell is calculated, further according to the first effective electrical signal, it is judged whether the currently detected flame data causes a fire, specifically including:
判断第一有效电信号是否大于第一预设阈值,其中,第一预设阈值可以取值为0,当然也可以是根据具体情况来调整,不同的第一预设阈值影响火焰探测器对火灾探测的敏感度;若第一有效电信号是否大于第一预设阈值,则确定当前检测到的火焰数据引起火灾,执行报警操作;否则,确定当前检测到的火焰数据没有引起火灾,不进行报警。Judging whether the first effective electrical signal is greater than the first preset threshold, wherein the first preset threshold can be set to 0, and of course it can be adjusted according to specific conditions. Different first preset thresholds affect the flame detector’s response to fire Sensitivity of detection; if the first effective electrical signal is greater than the first preset threshold, it is determined that the currently detected flame data causes a fire, and an alarm operation is performed; otherwise, it is determined that the currently detected flame data does not cause a fire, and no alarm is issued .
在一种可能的应用场景中,为了进一步提高火灾判断的准确性,在计算得到紫外光电管对应的第一有效电信号以后,还需获取红外辐射对应的第二电信号,在本申请实施例中,第二电信号时通过红外探测模块检测得到;然后,根据第二电信号对应的信号强度、平均功率,计算红外辐射对应的频域特征,具体计算方法可以通过快速傅里叶变换(fastFourier transform,FFT)来实现。In a possible application scenario, in order to further improve the accuracy of fire judgment, after calculating the first effective electrical signal corresponding to the ultraviolet photocell, it is necessary to obtain the second electrical signal corresponding to the infrared radiation. In the embodiment of this application Among them, the second electrical signal is detected by the infrared detection module; then, according to the signal strength and average power corresponding to the second electrical signal, the frequency domain characteristics corresponding to the infrared radiation are calculated, and the specific calculation method can be obtained by fast Fourier transform (fastFourier transform, FFT) to achieve.
进一步,根据频域特征、红外辐射对应的时域特征,计算红外辐射对应的第二有效信号,并根据第一有效信号以及第二有效信号,判断当前检测到的火焰数据是否引起火灾。Further, according to the frequency domain feature and the time domain feature corresponding to the infrared radiation, calculate the second effective signal corresponding to the infrared radiation, and judge whether the currently detected flame data causes a fire according to the first effective signal and the second effective signal.
具体的,若第一有效信号大于第一预设阈值,或者第二有效信号大于第二预设阈值,则确定当前检测到的火焰数据引起火灾,执行报警操作;若第一有效信号小于或等于第一预设阈值,且第二有效信号小于或等于第二预设阈值,则确定当前检测到的火焰数据没有引起火灾,不执行报警操作。Specifically, if the first effective signal is greater than the first preset threshold, or the second effective signal is greater than the second preset threshold, it is determined that the currently detected flame data causes a fire, and an alarm operation is performed; if the first effective signal is less than or equal to The first preset threshold, and the second effective signal is less than or equal to the second preset threshold, it is determined that the currently detected flame data does not cause a fire, and no alarm operation is performed.
通过上述方法,对红外辐射对应的第二电信号通过时域、频域双层数据来判断是否发生火灾,可以提高火灾判断的准确性。同时,通过检测出紫外光电管对应的自放电信号,对紫外辐射对应的第一电信号进行进一步处理,得到更能反映紫外辐射强度的第一有效电信号,并基于第一有效电信号来判断是否发生火灾,可以排除紫外光电管自放电现象的影响,提高火灾判断的准确性。Through the above method, the second electrical signal corresponding to the infrared radiation is judged whether a fire has occurred through the double-layer data of the time domain and the frequency domain, which can improve the accuracy of fire judgment. At the same time, by detecting the self-discharge signal corresponding to the ultraviolet photocell, the first electrical signal corresponding to the ultraviolet radiation is further processed to obtain the first effective electrical signal that can better reflect the intensity of the ultraviolet radiation, and judge based on the first effective electrical signal Whether a fire occurs, the influence of the self-discharge phenomenon of the ultraviolet photoelectric cell can be eliminated, and the accuracy of fire judgment can be improved.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。While preferred embodiments of the invention have been described, additional changes and modifications to these embodiments can be made by those skilled in the art once the basic inventive concept is appreciated. Therefore, it is intended that the appended claims be construed to cover the preferred embodiment as well as all changes and modifications which fall within the scope of the invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211047210.7A CN115410334A (en) | 2022-08-29 | 2022-08-29 | A flame detection device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211047210.7A CN115410334A (en) | 2022-08-29 | 2022-08-29 | A flame detection device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115410334A true CN115410334A (en) | 2022-11-29 |
Family
ID=84162485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211047210.7A Pending CN115410334A (en) | 2022-08-29 | 2022-08-29 | A flame detection device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115410334A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117636559A (en) * | 2023-11-29 | 2024-03-01 | 营口世纪电子仪器股份有限公司 | High-speed high-precision flame detection device and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421926U (en) * | 1990-06-14 | 1992-02-24 | ||
CN202111674U (en) * | 2011-06-14 | 2012-01-11 | 株洲科瑞变流电气有限公司 | PWM signal driving device |
CN202172516U (en) * | 2011-08-02 | 2012-03-21 | 北京同步科技有限公司 | Brightness and color temperature adjustable LED lamp |
JP2013196266A (en) * | 2012-03-19 | 2013-09-30 | Hochiki Corp | Flame monitoring device |
CN108765863A (en) * | 2018-09-06 | 2018-11-06 | 无锡圣敏传感科技股份有限公司 | A kind of flame detector and flame detecting alarm system |
CN111192431A (en) * | 2019-12-28 | 2020-05-22 | 西安惠迪诺华电子科技股份有限公司 | Single ultraviolet flame detector and false alarm prevention method |
CN111819027A (en) * | 2020-05-13 | 2020-10-23 | 马鞍山市明珠电子科技有限公司 | Fire detection method and fire detection device |
-
2022
- 2022-08-29 CN CN202211047210.7A patent/CN115410334A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421926U (en) * | 1990-06-14 | 1992-02-24 | ||
CN202111674U (en) * | 2011-06-14 | 2012-01-11 | 株洲科瑞变流电气有限公司 | PWM signal driving device |
CN202172516U (en) * | 2011-08-02 | 2012-03-21 | 北京同步科技有限公司 | Brightness and color temperature adjustable LED lamp |
JP2013196266A (en) * | 2012-03-19 | 2013-09-30 | Hochiki Corp | Flame monitoring device |
CN108765863A (en) * | 2018-09-06 | 2018-11-06 | 无锡圣敏传感科技股份有限公司 | A kind of flame detector and flame detecting alarm system |
CN111192431A (en) * | 2019-12-28 | 2020-05-22 | 西安惠迪诺华电子科技股份有限公司 | Single ultraviolet flame detector and false alarm prevention method |
CN111819027A (en) * | 2020-05-13 | 2020-10-23 | 马鞍山市明珠电子科技有限公司 | Fire detection method and fire detection device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117636559A (en) * | 2023-11-29 | 2024-03-01 | 营口世纪电子仪器股份有限公司 | High-speed high-precision flame detection device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6346712B1 (en) | Flame detector | |
CN115410334A (en) | A flame detection device and method | |
CN107396273B (en) | Detection circuit of broadcast sound box and detection method and device thereof | |
US4634813A (en) | Wire tap detection device | |
CN113985235A (en) | Distributed arc detection system, photovoltaic system with distributed arc detection system and arc detection method | |
KR20170109939A (en) | Electric leakage detecting circuit for electric leakage circuit breaker | |
US8311755B2 (en) | Sampling rate adjustment system and method | |
CN114062213A (en) | Smoke detection sensor circuit and smoke sensor | |
CN1707320B (en) | Display state sensing | |
CN118023687A (en) | Welding temperature real-time detection method and device and hot-press welding machine | |
KR20180085489A (en) | A Smart Cabinet Panel System | |
US10339794B2 (en) | Smoke detector and method for determining failure thereof | |
AU750314B2 (en) | Light obstruction type smoke sensor | |
CN115452669A (en) | Detection method and circuit of range-adjustable smoke detector | |
CN113991980A (en) | Control method and controller of switching power supply and switching power supply | |
JP7270351B2 (en) | fire alarm system | |
KR101768185B1 (en) | Display monitoring system | |
KR101276709B1 (en) | Circuit for receiving optical signal | |
CN221039300U (en) | Fault arc separation detection circuit | |
KR100343439B1 (en) | Plasma display panel | |
CN119224510B (en) | Insulation monitoring circuit and insulation monitoring method | |
CN217521653U (en) | Electrical safety monitoring and alarm system | |
CN115188151B (en) | Video camera | |
CN119936572A (en) | Arc light detection circuit and method, arc light detection device and microwave equipment | |
JP2010049603A (en) | Monitoring system and current fluctuation control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221129 |